
Copyright

by

Jean-Philippe Etienne Martin

2006



The Dissertation Committee for Jean-Philippe Etienne Martin

certifies that this is the approved version of the following dissertation:

Byzantine Fault-Tolerance and Beyond

Committee:

Lorenzo Alvisi, Supervisor

Michael Dahlin

Gregory Plaxton

Fred B. Schneider

Harrick Vin



Byzantine Fault-Tolerance and Beyond

by

Jean-Philippe Etienne Martin, B.S., M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2006



Acknowledgments

I would like to thank my thesis advisor, Prof. Lorenzo Alvisi, for his constant

mentoring and support. I am fortunate to have been able to work with him. I

also want to thank Prof. Mike Dahlin for his feedback on the thesis and help with

several papers and Prof. Peter Stone for insightful discussions and help with thesis

writing. Thanks also to the other committee members, Prof. Greg Paxton, Prof.

Fred Schneider, and Prof. Harrick Vin, for their careful reading of my draft. I also

really appreciate the effort that the faculty at UT makes to be available to their

students. These efforts are very much appreciated; in particular I would would like

to thank Prof. Don Batory and Prof. J Moore.

I owe a great deal to all of the LASR group and the 3rd floor lunch group for

their support and many conversations, insightful or relaxing as needed. I could not

have asked for a better group of people to work with. In particular I would like to

thank Allen, Amit, Arun, Ed, Jian, and Roberto—it was great working with you.

Many thanks to Maria and Ted as well as Stefano and Chiara for their generous

help in times of need. An especially heartfelt thanks to Eunjin for her support,

encouragement and understanding through long years of graduate school.

iv



Last but not least, I would like to thank my family for their support, love,

and encouragement starting long before graduate school.

Jean-Philippe Etienne Martin

The University of Texas at Austin

December 2006

v



Byzantine Fault-Tolerance and Beyond

Publication No.

Jean-Philippe Etienne Martin, Ph.D.

The University of Texas at Austin, 2006

Supervisor: Lorenzo Alvisi

Byzantine fault-tolerance techniques are useful because they tolerate arbi-

trary faults regardless of cause: bugs, hardware glitches, even hackers. These tech-

niques have recently gained popularity after it was shown that they could be made

practical.

Most of the dissertation builds on Byzantine fault-tolerance (BFT) and ex-

tends it with new results for Byzantine fault-tolerance for both quorum systems and

state machine replication. Our contributions include proving new lower bounds,

finding new protocols that meet these bounds, and providing new functionality at

lower cost through a new architecture for state machine replication.

The second part of the dissertation goes beyond Byzantine fault-tolerance.
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We show that BFT techniques are not sufficient for networks that span multiple

administrative domains, propose the new BAR model to describe these environ-

ments, and show how to build BAR-Tolerant protocols through our example of a

BAR-Tolerant terminating reliable broadcast protocol.
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Chapter 1

Introduction

In an ideal world, computer systems would work as designed. We do not live in an

ideal world. Computer systems fail because of software or hardware defects [79, 94,

148], either spontaneously or because of malicious attacks [65].

The reliability of a distributed system (defined as continuity of correct ser-

vice) can be improved through replication. Starting from a set of assumptions

covering the reliability of the components (nodes) that constitute the system, the

reliability and timeliness of inter-node communication, and the behavior of faulty

nodes, replication in space or time can be used to design distributed systems that

provably continue to function correctly despite the failure of one or more of their

components.

Such guarantees, however, have a flip side: if the system ever operates in

an environment that violates any of the initial assumptions, then its behavior can

become unpredictable. Malicious attackers, for instance, could bring a system down

by forcing it to operate outside of the boundaries defined by the assumptions under

which it was designed.
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We believe that, if assumptions can be the cause of failures, then they should

be treated as faults [14] and that consequently, in designing systems, the sound prin-

ciple of fault prevention should be applied to remove all unnecessary assumptions.

In this dissertation, we investigate systems designed under very weak assump-

tions. We model communication between nodes as asynchronous: in the message-

passing style of communication that we consider in the rest of this document, this

means that nodes do not have access to a synchronized clock, there exist no upper

bound on message delivery time, and there is no bound on the relative processing

speed of nodes. We model the behavior of faulty nodes according to the Byzantine

failure model [90, 124], in which faulty nodes behave arbitrarily.

The first six chapters of the dissertation explore what systems can be built,

and at which cost, under this weak set of assumptions, focusing on two fundamental

constructs used to build reliable distributed systems: the register [83]—the unit

of reliable distributed storage—and the replicated state machine [82, 84, 139]—a

general methodology for building fault-tolerant services.

Our findings improve the capabilities [107, 108, 109, 158] and reduce the

cost [108, 110, 111, 158] of asynchronous Byzantine fault-tolerant techniques by

revisiting Byzantine replication protocols from first principles. In particular, we have

focused on reducing replication costs in terms of the number of nodes to tolerate f

Byzantine nodes. This cost could otherwise become prohibitive when, to reduce the

risk of correlated failures, the different nodes are built from different software stacks

(as in n-version programming [13] or opportunistic n-version programming [130]).

Our contributions include proving new lower bounds, finding new protocols

that meet these bounds, providing new functionality at lower cost through a new

architecture for state machine replication, and, with the introduction of the Privacy
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Firewall, resolving for the first time the tension between replication and confiden-

tiality in state machine replication.

In the last chapter of this dissertation we consider instead an increasingly

important class of systems: cooperative services. These systems have no central

administrator and as a result, Byzantine fault-tolerance is no longer sufficient. In

cooperative services, nodes can deviate from their assigned protocol not only because

they are broken, but also because they (or, rather , their administrators) are selfishly

intent on maximizing their own utility. It is always possible to model all such

behaviors as Byzantine, but it is impossible to design reliable distributed systems

under the assumption that all nodes may be Byzantine.

We address this challenge by introducing a new system model, called BAR,

that treats selfish deviations separately from arbitrary ones. We provide a formal

framework for reasoning about protocols in the BAR model by introducing the

notion of Byzantine Nash Equilibrium that bridges Byzantine fault-tolerance and

Game Theory [57]. To show that it is possible to design interesting protocols in the

BAR model, we derive a new terminating reliable broadcast protocol and prove that

it is a Byzantine Nash equilibrium. The new protocol, in addition the customary

number of Byzantine nodes allowed in solutions based on traditional Byzantine

fault-tolerance, tolerates also an arbitrary number of selfish nodes.

1.1 Overview of our Contributions

The simplest way to list our contributions is to group them by the primitive that is

made Byzantine fault-tolerant.
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BFT Quorums and Registers Registers are a unit of distributed storage. They

offer two operations: read and write. Quorums [59] are a tool we use to build

registers. Our contributions to BFT registers are:

• A safe [83] register with 3f + 1 nodes that does not require digital signatures.

Previous signature-free protocols required 4f +1 nodes instead, where f is the

number of tolerated Byzantine failures.

• A proof that this protocol is optimal in the number of nodes.

• An atomic register with 3f + 1 nodes that does not require digital signatures.

A safe register offers only weak guarantees if several nodes execute read or

write at the same time—an atomic register is much stronger. Previous work

offered no BFT signature-free atomic register.

• A protocol for dynamic quorums and registers. The resulting atomic register

has the property that an administrator can change the set of nodes imple-

menting the register while the system is running, without interrupting it. The

system still only requires the minimal number of nodes: 3f + 1.

• A new trade-off: if it is not necessary to be able to determine when writes

complete, we can build a non-confirmable register using only 2f + 1 nodes

instead of 3f + 1.

• A new regular register for situations where some (but not all) nodes may be

asynchronous. This protocol only needs f + d + 1 nodes when d nodes may

violate the synchrony assumptions.

The contribution that most surprised us relates to the distinction between,

on the one hand, protocols that rely on the adversary not being able to forge digital

4



signatures or read encrypted messages (more generally an adversary that is compu-

tationally bound) and, on the other hand, protocols that impose no such restriction

on the adversary. Previous results [100] require more nodes to tolerate a given num-

ber of Byzantine failures when the adversary is not computationally bound. We

show that when links are reliable (meaning no message is lost in transit), atomic

registers can be implemented for an adversary that is not computationally bound

without requiring any more nodes than for a computationally bound adversary.

BFT State Machine Replication Our contributions are:

• A new architecture for BFT state machine replication that reduces the cost

from 3f + 1 to 2f + 1 replicas of the state machine.

• The Privacy Firewall, the first replicated state machine1 with confidentiality

guarantees. An adversary who takes control of any of the nodes in the tradi-

tional state machine replication approach may access information that should

have been confidential. Our new Privacy Firewall ensures that even if the ad-

versary can control some number of nodes, the system as a whole will prevent

the adversary from extracting confidential information from them. This result

is achieved by requiring all communication to go through the Privacy Firewall.

These two contributions come from the same principle: physically separating

agreement from execution. Agreement is the procedure through which the nodes

determine the order in which to execute operations. The agreement nodes require

little storage and computational power compared to execution nodes, but most im-

portantly the software they are running is simple. It is therefore easy to write

1Earlier systems could store encrypted data on behalf of clients [4, 80, 100, 105, 113, 134], our
mechanism instead applies to any state machine.
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several implementations of the agreement node, so they are more likely to fail in-

dependently. Since these nodes are cheap, we then investigate the benefits of using

additional agreement nodes and find the following.

• A new consensus protocol that completes in two communication steps in the

common case instead of three previously. We show that the minimal number

of nodes required to complete in two steps despite t failures is 3f +2t+1. Our

consensus protocol matches this lower bound.

Cooperative Services

• A new model, BAR, that describes cooperative services. This model assumes

that the nodes in the system may be Byzantine, Altruistic, or Rational. The

Byzantine nodes may deviate arbitrarily from the protocol. Altruistic nodes

follow the protocol unconditionally. Rational nodes seek to maximize their

benefit, so they will only follow the protocol if no other course of action benefits

them more. The rational nodes must be further described by indicating what

they consider a benefit or a cost. Nodes do not initially know which other

nodes are Byzantine, altruistic or rational.

• A new terminating reliable broadcast protocol, TRB+, that ensures that ra-

tional nodes maximize their utility by participating in the protocol truthfully.

This is the first TRB protocol for the BAR model: it allows us to ensure

that the altruistic and rational nodes will correctly participate in the agree-

ment protocol. The TRB+ protocol demonstrates how to build BAR-Tolerant

protocols.

The rest of this thesis is organized as follows: Chapter 2 presents quorums,

registers, and their semantics. Chapter 3 and 4 show new results related to the

6



minimal number of nodes required for various kind of registers. Chapter 5 presents

registers with a dynamic membership. Chapter 6 presents work related to state

machine replication, and chapter 7 explores the BAR model.
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Chapter 2

Registers and Quorums

2.1 Introduction

In this chapter we introduce quorums and registers, as these concepts are used in

the next few chapters. We define the safe, regular and atomic semantics and present

masking and dissemination quorums. Readers already familiar with these notions

may choose to skip this chapter.

2.2 Registers

The register [83] is an abstraction that provides two operations: read() and write(∆).

Using a global clock, we assign a time to the start and end (or completion)

of each operation. We say that an operation A happens before another operation B

if A ends before B starts. We then require that there exists a total order → of all

operations (serialized order) that is consistent with the partial order of the happens

before relation. In this total order, we call write w the latest completed write relative

to some read r if w → r and there is no other write w′ such that w → w′ ∧ w′ → r.

8



We say that two operations A and B are concurrent if neither A happens before B

nor B happens before A.

Lamport defines three different kinds of registers [83]: safe, regular and

atomic. His original definitions exclude concurrent writes, so we present extended

definitions that allow for concurrent writes [145]. A safe register is a register that

provides safe semantics (similarly for regular and atomic).

• safe semantics guarantees that a read r that is not concurrent with any write

returns the value of the latest completed write relative to r. A read concurrent

with a write can return any value.

• regular semantics provides safe semantics and guarantees that if a read r is

concurrent with one or more writes, then it returns either the latest completed

write relative to r or one of the values being written concurrently with r.

• atomic semantics provides regular semantics and guarantees that the sequence

of values read by any given client is consistent with the global serialization

order (→). The global serialization order provides a total order on all writes

that is consistent with the happens before relation.

Read and writes are defined as starting when the read() (respectively write(∆))

operation is called. The above definitions do not specify when the write completes.

The choice is left to the specific protocol. In all cases, the completion of a write

is a well-defined event. We say that a protocol is live if all operations eventually

complete. Quorums are a used to build registers: we introduce them in the following

section, and then show two fault-tolerant registers that can be built using quorums.

The node that sends requests to the register is called the client.

9



2.3 Quorums

A quorum system [59, 153] Q is a collection of subsets of servers, each pair of

which intersect. Quorum systems provide two benefits: fault-tolerance and improved

performance. If a protocol is designed so that it can make progress even when clients

can communicate with only one quorum, then the quorum system will continue to

function despite some number of failed nodes as long as a quorum is available.

Quorum systems can also improve performance because the work from executing

operations is spread across server nodes.

Quorum systems can be used for a variety of applications. We focus on

using quorum systems for registers [59], but quorum systems have also been used to

protected confidentiality of data [68], replicate objects [66], or control access [118],

for example.

The failures that quorum systems can tolerate can be described in two differ-

ent ways. The simplest is the threshold model that puts a limit f to the number of

nodes that might fail (f is called the resilience threshold) . This pattern is common

but it is not expressive enough when nodes do not fail uniformly. Some nodes could

be more likely to fail, or some nodes may fail in a correlated manner because they

have some parts in common. There is a model that can express these dependencies:

the fail-prone system model [100]. We specify sets of servers, called failure scenarios.

The set of failure scenarios is the fail-prone system B. Fault-tolerant protocols de-

signed for the fail-prone model give guarantees as long as at least one of the failure

scenarios contains all of the faulty nodes.

Quorum systems are a powerful mechanism, and part of their power comes

from the fact that their properties hold regardless of how the client determines which

set of nodes it communicates with when forming a quorum. There is a trade-off be-
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tween the number of messages sent and the time it may take to locate a responsive

quorum: contacting all the nodes at once minimizes the time until a quorum re-

sponds, at the expense of possibly sending more messages than necessary. Sending

only to one quorum and only contacting more nodes if there is no immediate answer

reduces the number of extraneous messages but may slow down the application.

Protocols built on top of quorums use the Q-RPC(. . .) communication prim-

itive [100]. Q-RPC(. . .) takes as input a message and the set of all nodes. It sends

the message to at least a quorum of responsive nodes and returns their answers.

This primitive maintains the ability for the administrator to trade between speed

or number of messages.

2.3.1 Byzantine Fault-Tolerant Registers using Quorums

Malkhi and Reiter were the first to propose to use quorums to build Byzantine

fault-tolerant registers. The protocol they use is shown in Figure 2.1. The server

side is not shown, but it is very simple: servers store a value and a timestamp, and

they are updated when the server receives a STORE with a higher timestamp. The

pseudocode shows the client-side of write and read. The write(. . .) operation first

queries a quorum of servers for their timestamp, and then stores the value with a

new, higher, timestamp on a quorum. The read() operation queries a quorum of

servers for their (timestamp, value) pair and selects one pair using the select(. . .)

function. We specify the quorum construction and the select(. . .) function below.

Quorums must intersect to guarantee that if a client A writes some value

to a quorum and then another client B reads from another quorum, B will see the

value written by A. In order for this property to hold despite failures, their first

construction requires the intersection to contain a voucher set of correct nodes (M-
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write(∆) :
1. Timestamps := Q-RPC(“GET-TS”) // response from server i is tsi

2. last ts := max( Timestamps )
3. choose a new timestamp new ts that is larger than both

last ts and any timestamp previously chosen by this server.
4. Q-RPC(“STORE”,new ts,∆)

〈ts, ∆〉=read() :
1. Values := Q-RPC(“GET”) // response from server i is (tsi,∆i)
2. answer := select(Values)
3. return answer

Figure 2.1: Write and read protocols for Malkhi and Reiter’s constructions

Consistency). A voucher set is a set that is large enough to not be covered by any of

the failure scenarios (in the threshold case, f +1 nodes). It is also necessary that the

client always be able to find some quorum to communicate with (M-Availability).

These two requirements are precisely captured in the definition below.

Definition 1. A quorum system Q is a masking quorum system for a fail-prone

system B if the following properties are satisfied.

M-Consistency ∀Q1, Q2 ∈ Q ∀B1, B2 ∈ B : ((Q1 ∩ Q2) \ B1) 6⊆ B2

M-Availability ∀B ∈ B ∃Q ∈ Q : B ∩ Q = ∅

To select the correct value from a read operation, the reader discards values

that are not contained in a voucher set and chooses among the remaining values

the one with the highest timestamp. Since all voucher sets contain a correct node,

the value it returns was indeed written by a client. M-Consistency guarantees that

this procedure will select a value at least as recent as the last completed write.

M-Availability guarantees that all reads terminate (although they may fail to read

a value if a write is concurrent with the read; in this case they return the special
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value ⊥). A safe register can be built using this version of select(. . .), with 4f + 1

nodes [100].

If the model is changed so that digital signatures are available, and if clients

are not Byzantine, then the same protocol can be used to build a regular register,

using a dissemination quorum system. Here, quorums are only required to intersect

in a single correct server. Clients must sign their value before passing them to the

write(∆) function. When reading, nodes then select, among the values returned by

Q-RPC(. . .), the highest timestamped value that has a valid client signature. Since

servers cannot fake digital signatures, this guarantees that the value was written by

a client. This construction implements a regular register

Definition 2. A quorum system Q is a dissemination quorum system for a fail-

prone system B if the following properties are satisfied.

D-Consistency ∀Q1, Q2 ∈ Q ∀B ∈ B : (Q1 ∩ Q2) 6⊆ B

D-Availability ∀B ∈ B ∃Q ∈ Q : B ∩ Q = ∅
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Chapter 3

Minimal Cost Quorums and

Registers

3.1 Introduction

Using replication to provide fault-tolerance can be costly. In this section we establish

the minimal replication for Byzantine fault-tolerant registers and design a protocol

that matches the bound. We then adapt this protocol to tolerate Byzantine clients.

A replicated system is hardly any more reliable than an unreplicated system

if a single failure can cause the whole system to fail. There are several possible

causes for a single point of failure. If the machines are all connected to the same

power source, for example, then loss of power can bring down the whole service.

Single points of failure can occur in software as well: if all the machines are running

an operating system that has a bug causing it to crash when a certain malformed

network packet arrives, then an adversary can bring down all the machines simulta-

neously. To avoid software being a single point of failure, the software on each node
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should ideally fail independently, meaning that the probability pi(x) of machine i

failing for an input x is not correlated with the probability that another machine

j fails on the same input. Formally, if pi is the probability that machine i will

fail when fed the next input, then if machines i and j fail independently then the

probability that both will fail should be pipj. Independence of failure is extremely

difficult to achieve in practice: different operating systems sometimes have code in

common, and even different teams implementing the same program tend to make

the same sort of mistakes [77]. Luckily, independence of failures is not required:

even with some correlation between the failures, a replicated system can be more

reliable than a single implementation. Systems should be designed in such a way to

minimize the correlation between failures, by using components that are as diverse

as possible. This diversity is costly, so it is useful to design replicated systems that

need as few machines as possible to tolerate a given number of failures (or, equiv-

alently, design systems that can tolerate as many failures as possible for a given

number of machines).

In this chapter we show two results that pertain to reducing the number of

nodes in a Byzantine storage system: (i) we show the minimal number of nodes that

are necessary for implementing safe, regular or atomic registers, and (ii) we show

protocols matching this lower bound. The two key metrics that we consider are (i)

the number of nodes necessary and (ii) whether digital signatures are available (we

say that the data is self-verifying) or not (generic data). We describe the model in

more detail in Section 3.2.1.

Tables 3.1 and 3.2 summarize our findings concerning the minimal number

of nodes required to build an asynchronous Byzantine fault-tolerant register that

can provide safe or stronger semantics. The bounds hold even for protocols that
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Semantics Generic data Self-verifying data

safe 4f + 1 [100] 3f + 1 [100]

regular - 3f + 1 [100]

atomic - 3f + 1 [31]

Table 3.1: Best known asynchronous register protocols before our research.

Semantics Generic data Self-verifying data

safe 3f + 1 3f + 1

regular 3f + 1 3f + 1

atomic 3f + 1 3f + 1

Table 3.2: Tight lower bound on the number of nodes required for safe or stronger
asynchronous registers.

assume clients are correct. Our results show that the lower bound is 3f +1 even for

the simplest case we consider (safe semantics with self-verifying data) and we show

that the bound can be matched even for the most complex case we consider (atomic

semantics with generic data).

Our new protocol that meets the lower bound is called Listeners.1 The

Listeners protocol2 reduces the number of nodes and improves consistency semantics

compared to previous protocols.

Like other quorum protocols, Listeners guarantees correctness by ensuring

that reads and writes intersect in a sufficient number of nodes. Most existing quorum

protocols access a subset of nodes on each operation for two reasons: to tolerate node

faults and to reduce load. Listeners’ fault-tolerance and load properties are similar

to those of existing protocols. In particular, Listeners can tolerate f faults, including

f non-responsive nodes. In its minimal-node configuration it sends read and write

requests to 3f + 1 nodes, just like most existing protocols that contact 3f + 1 (out

of 4f + 1) nodes.

1In [106], we introduced the Listeners protocol under the name Generalized SBQ-L)
2We sometimes use “Listeners” instead of “The Listeners protocol” for brevity. Similarly, we

sometimes call other protocols simply by their name.
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3.2 Preliminaries

3.2.1 Model

Following the literature [9, 22, 100, 101, 103], we assume a system consisting of an

arbitrary number of clients and a set U of data nodes such that the number n = |U |

of nodes is fixed. We defined quorums systems in Section 2.3. Recall that a quorum

system is a non-empty set of subsets of nodes, each of which is called a quorum.

Nodes can be either correct or faulty. A correct node follows its specification; a

faulty node can arbitrarily deviate from its specification (a Byzantine failure). We

use a fail-prone system B ⊆ 2U , as described in Section 2.3.

The set of clients of the service is disjoint from U and clients communicate

with nodes over point-to-point channels that are authenticated,3 reliable, and asyn-

chronous. In addition to asynchronous links, the system is asynchronous i.e. there

is no bound on computation time and there is no synchronized clock. We discuss the

implications of assuming reliable communication under a Byzantine failure model

in detail in Section 3.6.6. Initially, we restrict our attention to node failures and

assume that clients are correct. We relax this assumption in Section 3.5.

We use the definitions of Section 2.2 for safe, regular and atomic semantics.

3.3 Lower Bound for Registers

In this section, we prove lower bounds on the number of nodes required to implement

safe registers (the weakest registers defined by Lamport). The bound is 3f + 1

nodes and it applies to any fault-tolerant storage protocol, regardless of whether

it uses non-determinism, cryptography, or non-quorum communication patterns.

3Note that authenticated channels can be implemented without using digital signatures, for
example if every pair of nodes share a secret key.
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This bound is tight because it is matched by our Listeners protocol, presented in

Section 3.4. It is natural to wonder whether more nodes may be needed to provide

stronger guarantees than safe semantics (such as regular or atomic). We show that

this is not the case because our Listeners protocol provides atomic semantics, the

strongest semantics defined by Lamport.

We prove that 3f + 1 nodes are necessary to implement safe registers that

tolerate f Byzantine failures. We show that if only 3f nodes are available, then any

protocol must violate either safety or liveness. If a protocol always waits for 2f + 1

or more nodes to answer for all read operations, it is not live because f crashed

nodes will cause the reader to wait forever. But if a live protocol ever relies on

2f or fewer nodes to service a read request, it is not safe because it could violate

safe semantics. We use the definition below to formalize the intuition that any such

protocol will have to rely on at least one faulty node.

Definition 3. A message m is influenced by a node s iff the sending of m causally

depends [82] on some message sent by s.

We extend the definition of influence to operations: an operation o is influ-

enced by a node s iff the end event of o causally depends on some message sent by

s.

Definition 4. A reachable quiet system state is a state that can be reached by

running the protocol with the specified fault model and in which no read or write is

in progress.

Lemma 1. For all live write protocols using 3f nodes, for all sets S of 2f nodes,

for all reachable quiet system states, there exists at least one execution in which a

write is influenced only by nodes in a set S′ such that S′ ⊆ S.
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Proof. Suppose that the f nodes S̄ outside of S crash. Since the protocol is live, it

must not rely on a reply from S̄, even indirectly, so by definition the write is not

influenced by S̄.

Note that executions that is not influenced by S̄ can also take place if the

nodes in S̄ do not crash since crashed nodes cannot be distinguished from slow

nodes. Note also that Lemma 1 can easily be extended to the read protocol.

Lemma 2. For all live read protocols using 3f nodes, for all sets S of 2f nodes, for

all reachable quiet system states, there exists at least one execution in which a read

is only influenced by nodes in a set S′ such that S′ ⊆ S.

Thus, if there are 3f nodes, all read and write operations must at some point

depend on 2f or fewer nodes in order to be live. We now show that if we assume

a protocol to be live it cannot be safe by showing that there is always some case

where the read operation does not satisfy the safe semantics.

Lemma 3. Consider a live read protocol using 3f nodes. There exist executions for

which this protocol does not satisfy safe semantics.

Proof. Informally, this read protocol sometimes decides on a value after consulting

only with 2f nodes. We prove that this protocol is not safe by constructing a

scenario in which safe semantics are violated.

Because the protocol is live, for each write operation there exists at least one

execution ew that is influenced by 2f or fewer nodes (by Lemma 1). Without loss

of generality, we number the influencing nodes 0 to 2f − 1. Immediately before the

write starts in ew, the nodes have states a0 . . . a3f−1 (“state α”) and immediately

afterwards they have states b0 . . . b2f−1, a2f . . . a3f−1 (“state β”). Further suppose

that the shared variable had value “A” before the write and has value “B” after the
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write. If the system is in state α then reads must return the value A; in particular

this holds for the reads that influence fewer than 2f +1 nodes. Lemma 2 guarantees

such reads exist since the read protocol is live by assumption. Consider such a

read whose execution we call e. Execution e receives messages that are influenced

by nodes f to 3f − 1 and returns a value for the read based on messages that are

influenced by these 2f or fewer nodes; in this case, it returns A.

Now consider what happens if execution e were to occur when the system is

in state β. Suppose also that nodes f to 2f−1 are faulty and behave as if their states

were af . . . a2f−1. This is possible because they have been in these states before.

Note that servers 2f . . . 3f +1 remain in states a2f . . . a3f+1. In this situation, states

α and β are indistinguishable for execution e and therefore the read will return A

even though the correct answer is B.

Theorem 1. No Byzantine-tolerant safe register implemented using 3f or fewer

nodes is live.

Proof. Lemmas 2 and 3 show that in the conditions given, no read protocol with

3f nodes can be live and safe. This includes protocols that do not communicate

with all the nodes, so protocols with fewer than 3f nodes cannot be live and safe,

either.

3.4 Optimal Protocols and Listeners

3.4.1 Overview of Results

Section 3.3 proves that the minimal number of nodes for safe registers is 3f + 1. In

the case of self-verifying data, this bound is achieved by Malkhi and Reiter [101]
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and by Castro and Liskov [31]. The latter protocol does not require reliable links

and can tolerate faulty clients, but it makes some synchrony assumptions.

Our Listeners protocol [106] achieves this bound, even in the case of generic

data and in an asynchronous environment. Figure 3.1 presents the client side of

the Listeners protocol for generic data. Table 3.3 lists the variables’ initial values.

Our pseudocode sometimes uses the current [ ] array as a set; when accessed that

way it naturally represents the set of values stored in the current [ ] array. We show

the protocol for the fail-prone model. For the threshold model, Q is all subsets of

q nodes, where q = ⌈n+f+1
2 ⌉ and A is all subsets of ⌈n+f+q

2 ⌉ nodes. To tolerate f

Byzantine faults in this model, Listeners needs only 3f + 1 nodes. Listeners does

not tolerate Byzantine clients; we extend it in Section 3.5 to a version that does.

3.4.2 Gateway Quorum Systems

The key behind Listeners is a new quorum construction that takes into account not

only which nodes answer the initial query, but also the set of nodes to which the

query was sent.

Let Q be a dissemination quorum. Let A be a gateway quorum system,

defined as a quorum system that has the property below.

G-Consistency ∀A1, A2 ∈ A ∀B ∈ B ∃Q ∈ Q : (Q ⊆ A1 ∩ A2) ∧ (Q ∩ B = ∅)

Informally, this property means that any two elements of A intersect in

a correct quorum (e.g. a quorum consisting entirely of correct nodes) from Q.

Gateway quorums get their name from the fact that they describe the sets of nodes

to which we communicate to reach an underlying quorum Q ∈ Q. It follows from G-

Consistency that every element of A contains a correct quorum from Q, a property

we call G-Availability.
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W1 write(D) :
W2 send (“QUERY TS”) to all nodes in some A ∈ A
W3 loop :
W4 receive answer (“TS”, ts) from node s
W5 current[s] := ts
W6 until ∃Q ∈ Q : Q ⊆ current[ ] // a quorum answered
W7 max ts := max{current[ ]}
W8 my ts := min{t ∈ Cts : max ts < t ∧ last ts < t}

// my ts ∈ Cts is larger than all answers and previous timestamp
W9 last ts := my ts
W10 send (“STORE”, D, my ts) to all nodes in some A ∈ A
W11 loop :
W12 receive answer (“ACK”,my ts) from node s ∈ A
W13 S := S ∪ {s}
W14 until ∃Qw ∈ Q : Qw ⊆ S // a quorum answered

R1 (D, ts) = read() :
R2 send (“READ”) to all nodes in some A ∈ A.
R3 loop :
R4 receive answer (“VALUE”,D, ts) from node s // (possibly several answers per node)
R5 if ts > largest[s].ts : largest[s] := (ts, D)
R6 if s 6∈ S : // we call this event an “entrance”
R7 S := S ∪ {s}
R8 T := the f + 1 largest timestamps in largest[ ]
R9 for all isvr ∈ U , for all jtime 6∈ T : delete answer[isvr, jtime]
R10 for all isvr ∈ U :
R11 if largest[isvr].ts ∈ T : answer[isvr, largest[isvr].ts] := largest[isvr]
R12 if ts ∈ T : answer[s, ts] := (ts, D)
R13 until ∃D′, ts′, Qr : Qr ∈ Q ∧ (∀i : i ∈ Qr : answer[i, ts′] = (ts′, D′))

// i.e., loop until a quorum of nodes agree on a (ts,D) value
R14 send (“READ COMPLETE”) to all nodes in A
R15 return (D′, ts′)

Figure 3.1: Listeners, client protocol

G-Availability ∀A ∈ A ∀B ∈ B ∃Q ∈ Q : (Q ⊆ A) ∧ (Q ∩ B = ∅)

3.4.3 The Protocol

In lines W1 through W8, the write(D) function queries a quorum of nodes in order

to determine the new timestamp. The writer then sends its timestamped data to all

nodes at line W10 and waits for acknowledgments at lines W11 to W14. The read()

function queries a gateway quorum A ∈ A of nodes in line R2 and waits for messages

in lines R3 to R13. An unusual feature of this protocol is that nodes send more than

one reply if writes are in progress. For each read in progress, a reader maintains a
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variable initial value notes
f Size of the largest failure scenario

Cts Set of timestamps for client c The sets used by different clients are disjoint
last ts 0 Largest timestamp written by a particular node. This

is the only variable that is maintained between func-
tion calls (“static” in C).

largest[ ] ∅ A vector storing the largest timestamp received from
each node and the associated data

answer[ ][ ] ∅ Sparse matrix storing at most f + 1 data and times-
tamps received from each node

S ∅ The set of nodes from which the client has received an
answer

Table 3.3: Client variables

matrix of the different answers and timestamps from the nodes (answers [ ][ ]). The

read decides on a value at line R13 once the reader can determine that a quorum

Qr ∈ Q of nodes vouch for the same data item and timestamp, and a notification

is sent to the nodes at line R14 to indicate the completion of the read. A näıve

implementation of this technique could result in the client requiring an unbounded

amount of memory; instead, as we see in Theorem 3, the protocol only retains at

most f +2 answers from each node, where f is the size of the largest failure scenario.

This protocol differs from previous Byzantine quorum system protocols be-

cause of the communication pattern it uses to ensure that a reader receives a suf-

ficient number of sound and timely values. A sound value was written by a client.

A timely value is recent enough to match the required semantics. A reader receives

different values from different nodes for two reasons. First, a node may be faulty

and supply incorrect or old values to a client. Second, correct nodes may receive

concurrent read and write requests and process them in different orders.

Traditional quorum systems use a fixed number of rounds of messages but

communicate with quorums that are large enough to guarantee that intersections of

read and write quorums contain enough sound and timely answers for the reader

to identify a value that meets the consistency guarantee of the system (e.g., using a
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majority rule). Rather than using extra nodes to disambiguate concurrency, Listen-

ers uses extra rounds of messages when nodes and clients detect writes concurrent

with reads. Intuitively, other protocols take a “snapshot” of the situation—the Lis-

teners protocol looks at the evolution of the situation in time: it views a “movie”,

and so it has more information available to disambiguate concurrent writes.

As we mentioned before, Listeners uses more messages than some other pro-

tocols. Other than the single additional “READ COMPLETE” message sent to

each node at line R14, however, the additional messages are only sent when writes

are concurrent with a read.

Figure 3.1 shows the protocol for clients. Server nodes follow simpler rules:

they only store a single timestamped data version, replacing it whenever they receive

a “STORE” message with a newer timestamp from a client (channels are authen-

ticated, so nodes can determine the sender). When receiving a read request, they

send their timestamp and data. Nodes in Listeners differ from previous protocols in

what we call the Listeners communication pattern: after sending the first message,

nodes keep a set of clients who have a read in progress. Later, if they receives a

“STORE” message, then, in addition to the normal processing, they echo the con-

tents of the store message to the “listening” readers – including messages with a

timestamp that is not as recent as the data’s current one but more recent than the

data’s timestamp at the start of the read. This listening process continues until the

node receives a “READ COMPLETE” message from the client indicating that the

read has completed. For simplicity we create a conceptual initial write operation

that puts the initial value on the nodes.

This protocol requires a minimum of 3f + 1 nodes and provides atomic se-

mantics with writes. We prove its correctness in the next section.
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3.4.4 Correctness

Unlike previous quorum protocols, Listeners’ read protocol does not just read a

snapshot, but instead remains in communication with nodes until it has gathered

enough information. That is why our quorum constraints contain not only a quorum

system Q describing the nodes that answered the first read or write message, but

also the set A describing the set of nodes to which information was sent. These

nodes may receive this information later and forward it to the reader that is still

listening.

Theorem 2. The Listeners protocol provides atomic semantics.

Lemma 4. The Listeners protocol never violates regular semantics.

Proof. Consider a read. Let Qw be the quorum of nodes (not necessarily all correct)

that have seen the latest completed write.4 The read completes only after it gathers

a quorum Qr of identical responses (line R13). The D-Consistency property of Q

ensures that the two quorums intersect in a correct node. Since correct nodes only

replace their value with higher-timestamped ones, the read will return a value with a

timestamp at least as large as that of the latest completed write. In other words, the

read will be correctly ordered after the latest completed write. The value returned

from the read was written by a client (it is sound) since correct nodes only accept

sound data and the reader gets the same value from a quorum of nodes, at least one

of which must be correct.

Having shown that Listeners satisfies regular semantics, we now prove atom-

icity of the Listeners protocol. The serialized order of the writes is that of the

timestamps (this is a total order since no two clients’ Cts overlap). To prove this,

4Qw exists since there is at least one completed write and each completed write affects a quorum.
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we show that after a write for a given timestamp ts1 completes (meaning, of course,

that the write(. . .) function executes to completion), no read can decide on a value

with an earlier timestamp.

Lemma 5 (Atomicity). The Listeners protocol never violates atomic semantics.

Proof. Suppose a write with timestamp ts1 has completed: a quorum Qr ∈ Q of

nodes agree on this timestamp (line R13). Even if the faulty and untimely nodes send

the same older reply ts0, they cannot form a quorum (more formally: (U−Qr)∪B 6∈

Q). We prove this by contradiction: the D-Consistency property must hold between

all pairs of quorums, but if O = (U − Qr) ∪ B were a quorum, then D-Consistency

would not hold for O and Qr. The D-Consistency property is shown below.

∀Qr, Q2 ∈ Q ∀B ∈ B : Qr ∩ Q2 6⊆ B

Suppose that O were a quorum. We compute the intersection of O and Qr.

O ∩ Q1 = ((U − Qr) ∩ Qr) ∪ (B ∩ Qr) = B ∩ Qr ⊆ B

Since O is not a quorum, no correct client will accept the older reply ts0.

Similarly, suppose that at some global time t1 some client c reads timestamp ts1

and therefore (line R13) a quorum Qr ∈ Q of nodes agree on this timestamp. Since

the faulty and remaining machines cannot form a quorum, it follows that any read

that starts after t1 has to return a timestamp of at least ts1. Therefore, writes are

ordered by their timestamp (which is consistent with real-time): Listeners never

violates atomic semantics.

Lemma 6 (Liveness). Both read() and write(. . .) eventually terminate.
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Proof. Write. All calls to write(. . .) eventually return because the G-Availability

property guarantees that a quorum of correct nodes will answer the “QUERY TS”

and “STORE” messages (lines W6 and W14).

Read. We say that an entrance happens every time the reader receives the first reply

from a node (line R6). Note that there are at most n entrances. Nodes that answer

are listed in the set S and the largest [ ] array contains the largest-timestamped

answer from each node in S. The f earlier answers are stored in answer [ ].

Consider the last entrance. Let tsmax be the largest largest [ ].ts associated

with a correct node. largest [ ] contains the largest timestamps received, so the client

calling read() has not received nor discarded any data item with timestamp larger

than tsmax from a correct node. tsmax ∈ T because T contains the f + 1 largest

timestamps in largest [ ] (line R8). Since all clients are correct, all correct nodes in

some A ∈ A will eventually see the tsmax write and echo it back to the reader. None

of these messages were discarded by the reader, and none will be (since T does not

change after the last entrance). The G-Consistency property of A guarantees that

there are enough correct nodes for the echoes to eventually form a quorum and the

read will be able to complete (line R13).

STORE, QUERY TS. The node’s store(. . .) and query ts(. . .) functions termi-

nate because they have no loops and do not call any blocking functions.

READ. The node’s read() function terminates because the client’s read() termi-

nates: since the client is correct, at this point it sends “READ COMPLETE” to

all nodes involved. Links are reliable, and when nodes receive this message their

read() terminates.

Theorem 3 (Finite memory). The reader protocol uses only a finite amount of

space.
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Proof. All structures except answer[ ] have finite size. The answer[ ] array is in-

dexed by node and timestamp. It only contains answers from nodes in S and

timestamps in T (lines R9-R12). S has size at most n and T has size at most f + 1,

so answer[ ] has finite size: it contains at most n(f + 1) elements. Since readers

may also keep a copy of the value from each node in the latest[ ] structure, it follows

that each reader keeps at most f + 2 answers per node.

3.4.5 Listeners Protocol Summary

The Listeners protocol provides an asynchronous atomic register using the optimal

number of nodes, without requiring digital signatures. It demonstrates that registers

built without digital signatures do not necessarily need to use more nodes than those

that require digital signatures.

3.5 Optimal Protocol for Byzantine Clients

The Listener protocol can tolerate Byzantine nodes but it is susceptible to Byzantine

clients. In many environments, client machines are more vulnerable to failures

because they typically run more software than nodes and are maintained by end

users instead of professional staff. A protocol that does not take Byzantine clients

into account does not bound the amount of damage that a single Byzantine client

can inflict: the client might for example put the service into a “poisoned” state that

prevents correct clients from accessing the service [110]. The Listeners protocol

suffers from this problem: if a Byzantine client writes a different value to every

node (a “poisonous write”), then read operations from correct clients will be unable

to terminate because they cannot gather a quorum of identical answers.
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We therefore now present the Byzantine Listeners protocol, a variant of the

Listeners protocol that can tolerate Byzantine clients.

3.5.1 The Byzantine Listeners Protocol

The Byzantine Listeners protocol, just like Listeners, provides an asynchronous

atomic register with only the minimal number of nodes (3f + 1) and does not re-

quire digital signatures. Byzantine Listeners is wait-free [67], meaning that clients

are guaranteed an answer even if other clients are slow or crash. Byzantine Listeners

can also handle Byzantine clients, in the following sense. The protocol associates

operations with clients. It allows an administrator to remove authorizations from

clients, for example after some client has been observed behaving improperly. The

protocol guarantees that if a client c is removed, then eventually no operation asso-

ciated with c will take place, even if other Byzantine clients and nodes remain.

The intuition behind the Byzantine Listeners protocol is that the value writ-

ten comes with the authenticator (K,J) that proves that the value was suggested

by a client. During writes, nodes will forward the value along with (K,J) to other

nodes, so that (i) the write is guaranteed to complete eventually even if the client

stops before finishing and (ii) the protocol’s handling of (K,J) ensures that Byzan-

tine nodes cannot fabricate writes unilaterally: all written values need to be gen-

erated by some client. For the authenticator (K,J), we avoid expensive digital

signatures and instead use message authentication codes. But MACs are less pow-

erful than signatures since a Byzantine node can craft what looks like a correct

MAC to one node but looks incorrect to another node. The protocol uses additional

forwarding to transcend this limitation: if two correct nodes communicate directly

without going through a Byzantine node, then they will be able to recognize each
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variable contents
MAXQ Size of the largest quorum (constant)
maci(x) Shorthand for the vector: hash(x, keyi,j) for each node j
mac2i (x) Shorthand for the tuple: (maci(x), maci(maci(x)))

mi maci(tsi, hash(D), last ts, c)
M A set: (tsi, mi) for each node i in some quorum
K A set: mac2i (ts, hash(D), c) for each node i in some quorum
J A sparse array: if present, J [i] = maci(ts, hash(D), c, K)

start-listening[c] The value of ts0 when the node received a read request from client c.
Tc The set of timestamps assigned to client c

MAXM Maximum number of messages waiting to be forwarded (constant)
Twait An estimate for the message delivery time (constant)

sendQ{msg} An associative array of at most MAXM messages matched to tuples (ttl, J, sent).

Table 3.4: Variables in the Byzantine listeners protocol

other’s MAC as valid.

Figures 3.2, 3.3 and 3.4 show pseudocode for Byzantine Listeners. The

read() code similar to that of the Listeners protocol: the only difference is that

reads() return not only the data and timestamp but also the identity of the client

who wrote the data. We include the reader code in Figure 3.2 for convenience. Our

pseudocode uses the notation sendQ{msg} for the associative array sendQ .

An earlier version of the Byzantine Listeners appears in [110]. This earlier

version differs in requiring digital signatures to tolerate Byzantine clients.

3.5.2 Correctness

When tolerating Byzantine clients, we provide the Byznearizable [102] semantics

defined by Malkhi, Reiter, and Lynch. To explain it, we first introduce a few terms

that they use.

A history is a possibly infinite sequence of invocations and response events,

each assigned to a single client (an invocation means that an operation (in our case,

read() or write(D)) was called, a response means that the operation returned).

A history is sequential if it is a sequence of alternating invocations and matching

responses. A client subhistory H|p is the subsequence of H that only includes
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W1 write(D) on client c :
W2 send (“QUERY TS”,hash(D), last ts) to all nodes in some A ∈ A
W3 loop :
W4 receive (TS, ts, ms) from node s
W5 if (ms.c == c ∧ ms.last ts == last ts) : current[s] := (ts, ms)
W6 until ∃Q ∈ Q : Q ⊆ current[ ] // a quorum answered
W7 M := {ms : s ∈ Q}
W8 max ts := max{current[s].ts : s ∈ Q}
W9 my ts := min{t ∈ Tc : max ts < t ∧ last ts < t}

// my ts ∈ Cts is larger than all answers and previous timestamps
W10 last ts := my ts
W11 send (“PROPOSE TS”, my ts, hash(D), last ts, M) to all nodes in A
W12 loop :
W13 receive (“TS OK”,my ts, ks) from node s
W14 until ∃Q′ ∈ Q : Q ⊆ {ks} // a quorum answered
W13 K := {ks : s ∈ Q′}
W14 send (“STORE”, my ts, D, c, K, ∅, MAXQ) to all nodes in some A ∈ A
W15 loop :
W16 receive answer (“ACK”,my ts) from node s ∈ A
W17 S := S ∪ {s}
W18 until ∃Qw ∈ Q : Qw ⊆ S // a quorum answered

R1 (D,ts,c) = read() :
R2 send (“READ”) to all nodes in some A ∈ A.
R3 loop :
R4 receive answer (“VALUE”,D, ts) from node s // (possibly several answers per node)
R5 if ts > largest[s].ts : largest[s] := (ts, D, c)
R6 if s 6∈ S : // we call this event an “entrance”
R7 S := S ∪ {s}
R8 T := the f + 1 largest timestamps in largest[ ]
R9 for each isvr ∈ U , for each jtime 6∈ T : delete answer[isvr, jtime]
R10 for each isvr ∈ U :
R11 if largest[isvr].ts ∈ T : answer[isvr, largest[isvr].ts] := largest[isvr]
R12 if ts ∈ T : answer[s, ts] := (ts, D, c)
R13 until ∃D′, ts′, c′, Qr : Qr ∈ Q ∧ (∀i : i ∈ Qr : answer[i, ts′] = (ts′, D′, c′))

// i.e., loop until a quorum of nodes agree on a (ts,D,c) value
R14 send (“READ COMPLETE”) to all nodes in A
R15 return (D′, ts′, c)

Figure 3.2: Byzantine Listeners client protocol
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S1 store(ts, D, c, K,J, ttl) on node s, from process p :
S2 if quorumVouches(ts, D, c, K, J) : // write D
S3 send (“ACK”,ts) to c
S4 for each listening client j
S5 if ( start-listening[j]≤ ts ) then send (“VALUE”, ts, c, D) to j
S6 if ((ts, c, D) > (ts0, c0, D0)) :
S7 (ts0, c0, D0) := (ts, c, D) // store the new value
S8 ttl := MAXQ
S9 if vouchable(ts, D, c, K, J) ∧ ttl > 0 : // forward D
S10 msg := (ts, D, c,K)
S11 sendNow := (sendQ{msg} = ∅)
S12 sendQ{msg}.ttl := max(ttl, sendQ{msg}.ttl)
S13 sendQ{msg}.J [s] := macs(ts, hash(D), c, K)
S14 sendQ{msg}.sent := not sendNow
S15 for each node i 6= s // merge J with buffered message
S16 if sendQ{msg}.J [i] = ∅ : sendQ{msg} := J [i]
S17 if (sendNow) :
S18 send (“STORE”, msg, sendQ{msg}.J, sendQ{msg}.ttl − 1) to all nodes

D1 dequeue() on node s :
// called automatically whenever sendQ is full or it has been non-empty for time Twait

D2 for each msg in sendQ :
D3 if not sendQ{msg}.sent :
D4 send (“STORE”, msg, sendQ{msg}.J, sendQ{msg}.ttl − 1) to all nodes
D5 sendQ := ∅

T1 query ts(hD, last ts) on node s from client c :
T2 if not authorized(c) : return
T3 send (“TS”, ts0, mac2s(ts0, hD, last ts, c)) to c

P1 propose ts(ts, hD, last ts, M) on node s from client c :
P2 if not authorized(c) : return
P3 if not consistent(ts, last ts, c, M) : return
P4 let M ′ be the set of elements M.mq ∈ M that satisfy :

M.mq[s] = macq(M.tsq , hD, last ts, c)[s]
P5 if ∃B ∈ B : M ′ ⊆ B : return
P6 send (“TS OK”, ts, mac2s(ts, hD, c)) to c

Figure 3.3: Byzantine Listeners server store protocol
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Q1 quorumVouches(ts, D, c, K,J) on node s :
// true if a quorum vouches that (ts, D) comes from client c

Q2 if ∃Q ∈ Q : ∀q ∈ Q, either
(i) Kq[s] == mac2q(ts, hash(D), c)[s]
or (ii) J [q][s] == macq(ts, hash(D), c, K)[s]

then return true
Q3 return false

V1 vouchable(ts, D, c, K,J) on node s : // true if D comes from a client
V2 if either

(i) Ks[s][1] == macs(ts, hash(D), c)[s]
or (ii) J [s][s] == macs(ts, hash(D), c, K)[s]

then return true
V3 V := {v : J [v][s] = macv(ts, hash(D), c,K)[s]} // set of valid MACs
V4 if ∀B ∈ B : V 6⊆ B : return true
V5 return false

C1 consistent(ts, last ts, c, M) :
C2 if 6 ∃Q ∈ Q : Q ⊆ M : return false
C3 max ts := max{mi.ts : mi ∈ M}
C4 his ts := min{t ∈ TC : max ts < t ∧ last ts < t}
C5 return (ts == his ts)

Figure 3.4: Helper functions for Byzantine Listeners, server store protocol

invocations and responses for client p. A history is well-formed if for each client

p, H|p is sequential. We use HC to denote the set of well-formed histories that

can be induced when C is the set of correct nodes. N is the set of all nodes. A

history H induces an irreflexive partial order <H on the operations in H as follows:

a <H b ⇐⇒ the response to operation a precedes the invocation of operation b in

H (i.e. a happens before b). We say that history H legal if it obeys the specification

of an atomic register.

Definition 5. Let C be the set of correct nodes. A history H ∈ HC is Byznearizable

if there exists some legal sequential history H ′ ∈ HN such that

1. H|p = H ′|p for all p ∈ C,

2. <H⊆<H′, and

3. if every p 6∈ C eventually stops, then for each p 6∈ C, H ′|p is finite.
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Let X.ts denote the timestamp associated with operation X: either the

timestamp returned by X (if it is a read()), or the timestamp written by X (if

it is a write) . . .). We define X.D and X.c likewise.

We now prove that the Byzantine Listeners protocol provides Byznearizable

atomic semantics. To show this we construct the linearized order → of the operations

and show that this order is consistent with real time (Theorem 4). We construct this

order as follows: each operation op ∈ {write(D), read()} from client c corresponds

to some timestamp ts and some data D. In the case of read() they are the return

value. In the case of write(D), ts is the timestamp my ts used when writing value

D.

Let ord(X) = (X.ts,X.D,X.c,X.op) for any operation X. We say that for

operations A and B on correct nodes, A → B ⇐⇒ ord(A) < ord(B). We use

lexicographical ordering in the comparison, meaning that two operations with the

same timestamp are ordered by the data; if the data are also the same then reads are

ordered before writes, and, failing that, operations are sorted based on the identity

of the client. Since correct clients never reuse timestamps, → defines a total order

on the operations from correct clients (this is order <H from the Byznearizability

definition).

After showing that → is consistent with real-time, we show that if there

are no Byzantine clients then Byzantine listeners implements an atomic register

(Lemma 13) and that its write and read operations are live (Lemma 15 and Lemma 17),

even in the presence of Byzantine clients.

Finally, we show that Byzantine Listeners has what we call cleanup prop-

erties: all values are tagged with the identity of the client who wrote the value

(Lemma 18) and after a Byzantine client c is removed from the system, eventually
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no value tagged with c is written (Lemma 20). So just as Byznearizable semantics

requires, if all the Byzantine clients are removed, then eventually only operations

from correct clients are executed. Naturally, values tagged with c that were written

in the past might remain if they are not overwritten, and values written by cor-

rect nodes might be influenced by incorrect values from c. The cleanup properties

only guarantee that the removed nodes are eventually prevented from executing

operations on the register.

Correct behavior for operations from correct clients

The proof that ordering → is consistent with real-time for operations from correct

clients involves four Lemmas, which show that ordering is maintained across all

combinations of reads and writes. Recall that each node p stores what it believes is

the most recent (timestamp,data) pair in variables p.ts0 and p.D0.

Definition 6. We say that a timestamp-value pair (ts,D) is stable once there is

quorum Q ∈ Q of nodes such that each correct node p in Q has (p.ts0, p.D0) ≥

(ts,D).

Lemma 7. Once a pair is stable, it remains stable forever.

Proof. This follows directly from the fact that correct nodes only increase their

timestamp-value pair, never decrease it (lines S6-S7).

Lemma 8. If write W from a correct client ends with writing (ts,D), then (ts,D)

is stable.

Proof. The protocol allows writes to end only after the client receives an acknowl-

edgment from some quorum Qw ∈ Q (line W18). Since W ended, all the correct

nodes in Qw have send the acknowledgement. These correct nodes store (ts,D) or
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a newer value before answering any other request (lines S6-S7), so (ts,D) is stable

by definition.

Lemma 9. If a read R from a correct client ends, reading (ts,D), then (ts,D) is

stable.

Proof. The read operation returns a value (D, ts, c) after it receives matching an-

swers from a quorum Qr ∈ Q (line R13).

Lemma 10. If pair (ts,D) is stable before a write W from a correct client starts,

then (W.ts,W.D) > (ts,D).

Proof. The writer picks a timestamp that is larger than all timestamps from the

quorum Q of answers it got for its “QUERY TS” message. Since (ts,D) is stable,

all correct nodes in some quorum Q′ have values of at least (ts,D). By D-consistency,

quorums Q and Q′ intersect in at least one correct node. Therefore, W.ts > ts.

Lemma 11. If pair (ts,D) is stable before a read R from a correct client starts,

then (R.ts,R.D) ≥ (ts,D).

Proof. Since (ts,D) is stable, all correct nodes in some quorum Q′ have values of at

least (ts,D). The read operation returns a value (D, ts, c) after it receives matching

answers from a quorum Qr ∈ Q. By D-Consistency, quorums Q′ and Qr intersect

in a correct node. Correct nodes’ values only increase, so (R.ts,R.D) ≥ (ts,D).

Combining the previous lemmas, we see that ordering → is consistent with

real-time for operations from correct clients.

Theorem 4. Ordering → is consistent with real-time for operations from correct

clients.
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Proof. Consider two operations by correct nodes O and O′ such that O happens

before O′. After O returns, (O.ts,O.D) is stable (Lemma 8 if O is a write, Lemma 9

if it is a read). Since (O.ts,O.D) is stable, (O.ts,O.D) ≤ (O′.ts,O′.d) (Lemma 10 if

O′ is a write, Lemma 11 otherwise). Since in addition, correct clients do not reuse

timestamps, ord(O) < ord(O′). Therefore, O → O′.

The next step is to show that if there are no Byzantine clients, then the

values returned by the operations correspond to atomic semantics.

Lemma 12. If correct client’s call to read() returns (D, ts, c) and c is a correct

client, then c has sent a “PROPOSE TS” message with timestamp ts and hash(D).

Proof. We show that a call to read() can only return (D, ts, c) if client c sent a

message “PROPOSE TS” with ts and hash(D). In other words, faulty servers

cannot change the value of the register, even if they collude and share their secret

keys.

In order for a read to return (D, ts, c), a quorum of nodes must have stored

(D, ts, c) in line S7 (as that is the only instruction that changes what nodes store).

All quorums contain at least a correct node (D-Consistency). Correct nodes only

store a value if quorumVouches(. . .) returns true (line S2), which in turn implies

that a quorum of nodes (including at least one correct node) put a MAC indicating

that it vouches that the value, timestamp pair comes from client c. Client c therefore

participated in the write by sending a “PROPOSE TS” message with both hash(D)

and ts.

Lemma 13. If there are no Byzantine clients then Byzantine Listeners implements

an atomic register, assuming it is live.
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Proof. This lemma follows from the previous lemmas: timestamps are consistent

with real-time (Theorem 4), and if several write(. . .) completed before a call to

read(), then the returned timestamp will be at least as large as the latest com-

pleted write(. . .)’s timestamp (since timestamps from completed writes are stable,

by Lemma 8, and read() cannot return a smaller timestamp than any stable times-

tamp, by Lemma 11).

Atomic semantics indicates that if a read() R returns data that was written

by write(. . .) W , then there should not exist any write(D′) W ′ s.t. W → W ′ →

R and D 6= D′. This property follows directly from our construction of ord: if

R returned the data written by W then ord(R) = (W.ts,W.D,write(),W.c). If

ord(W ) < ord(W ′) < ord(R) then W ′ must have written data W.D with timestamp

W.ts.

Finally, Lemma 12 shows that faulty nodes cannot initiate write(. . .) oper-

ations: a client must be involved. If there is no Byzantine client, then every value

D returned by read() comes from a preceding write(D).

Next we show that all operations eventually complete, regardless of whether

Byzantine clients are present.

Lemma 14. All dissemination quorums have the double cover property.

Double cover ∀Q ∈ Q ∀B1, B2 ∈ B : (Q − B1) 6⊆ B2

Proof. Consider a dissemination quorum Q with a matching fail-prone system B.

Fix Q ∈ Q, B1, B2 ∈ B. By D-Availability, ∃Q1 : Q1 ∩ B1 = ∅. By D-Consistency,

Q ∩ Q1 6⊆ B2. In other words, ∃x ∈ Q ∩ Q1 : x 6∈ B2.
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Since Q1 and B1 are disjoint, Q ∩Q1 ⊆ Q− B1. So x ∈ Q −B1 but x 6∈ B2.

In other words, Q − B1 6⊆ B2.

Lemma 15. The Byzantine Listeners write protocol eventually terminates, even in

the presence of Byzantine clients.

Proof. We consider only operations from correct clients. The first loop in write(D)

on correct clients completes by the G-Availability property: it sends a message to

a set A ∈ A of nodes, so there will be a correct quorum of nodes Q0 ⊂ A that can

answer. The second loop in write(D) completes for the same reason: it sends a

message to a set A ∈ A and waits for a quorum of answers. All correct nodes will

answer because the test for consistent and M will pass as the nodes reproduce the

client’s computation. Let Q′ be the quorum of nodes whose answers are gathered

by the writer to create K.

The third loop sends the “STORE” message to all nodes in A (line W14).

The correct nodes in A will answer as soon as quorumVouches(. . .) returns true

(line S3). This may hold initially, in which case we are done because A contains a

quorum of correct nodes. It may also be the case that quorumVouches(. . .) does

not return true right away. However, the function vouchable(. . .) will return true

for every correct node in Q′ since it will recognize its message authentication code

in K (line V2). Consider one such correct node, a0. This node adds its message

authentication code to J and then forwards the message to all nodes (line S18 or

D4). Links are reliable so all nodes will receive the message, including correct node

a1 ∈ Q′ (a1 6= a0). The vouchable(. . .) function will return true for node a1 because

condition (i) of line V2 is true: the message was not modified in transit so a1 will

recognize its own message authentication code in K. Node a1 will then add its MAC

to J and forward it to all nodes, including correct node a2 ∈ Q′ (a2 6= a1, a0). This
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process continues until aq, the last correct node in Q′. All these messages have a

positive value for ttl since MAXQ ≥ |Q′|. Node aq also adds its MAC to J . At this

point, all the correct nodes in the quorum Q′ have added their MAC to J . Node

aq then forwards the message to all nodes, including correct node ar ∈ Q0. By the

double cover property (Lemma 14), vouchable(. . .) is true for ar because the set of

correct nodes in Q′ is not a subset of any failure scenario, so line V4 returns true.

The message is forwarded again, until it has been received by a quorum of correct

nodes (e.g. Q0). At this point, the message is forwarded again to all nodes, in

particular to the nodes in Q0. For these nodes, quorumVouches(. . .) will return

true because test (ii) in line Q2 passes. They will therefore send an ACK to the client

(line S3). The client is therefore guaranteed to leave the loop of lines W15-W18.

Before we can show that all read operations complete, we show that if a

correct node stores some value, then a quorum of correct nodes will store it as well.

Lemma 16. If a correct node s executes line S7 for (ts, c,D), then eventually all

correct nodes execute line S7 for (ts, c,D).

Proof. If a correct node s executes line S7, storing (ts, c,D), then quorumVouches(. . .)

returned true on line S2. That means that there is a quorum Q of nodes that vouch

for the fact that data (ts,D) comes from client c, either because their MAC is

in K, or because their MAC is in J . If quorumVouches(. . .) returns true, then

vouchable(. . .) returns true as well (since the condition in V2 is implied by the one

in Q2). Since the ttl is positive, node s will forward the “STORE” message to all

nodes (line S18 or D4).

Consider a correct node a1 ∈ Q that receives the “STORE” message from

s. Function vouchable(. . .) will return true for a1 because it will recognize its own

message authentication code in K or J (line V2). Node a1 will add its signature to
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J and forward the message to all nodes, including correct node a2 ∈ Q. This process

repeats until all correct nodes in Q have added their MAC to J . The message is not

dropped since ttl = MAXQ ≥ |Q|. Afterwards, J contains enough MACs to not be

covered by any failure scenario (by the double cover property), so the test in line V4

will return true. So every correct node that receives this message (unmodified since

we are considering only the forwarding between correct nodes) will add its MAC to

J . The process continues until J contains MACs from a quorum of correct nodes so

that quorumVouches(. . .) holds. That message is forwarded to all, and all correct

nodes then execute line S7 for (ts, c,D).

Lemma 17. The Byzantine Listeners protocol satisfies liveness, even in the presence

of Byzantine clients.

Proof. Lemma 15 shows that writes satisfy liveness, so only reads remain. There is

a single loop in read(), where the reader waits for a quorum of answers with the

same timestamp and data. We say that an entrance happens every time the reader

receives the first reply from a node (line R6). Note that there are at most n entrances

because there are only n nodes. Nodes that answer are listed in the set S and the

largest [ ] array contains the largest-timestamped answer from each node in S. The

f earlier answers are stored in answer [ ]. Consider the last entrance. Let tsmax

be the largest largest[ ].ts associated with a correct node s. largest [ ] contains the

largest timestamps received, so the client has not received nor discarded any data

item with timestamp larger than tsmax from a correct node. tsmax ∈ T because T

contains the f + 1 largest timestamps in largest [ ] (line R8).

The reader waits until it receives a quorum of answers matching tsmax. By

Lemma 16 we know that, since a correct node wrote tsmax, all correct nodes even-

tually will. When they do, the correct nodes in A will forward their value to the
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reader (lines S4-S5). By G-Availability we know that the correct nodes in A form

at least one quorum, so the read will complete.

We have shown that operations from correct clients are safe and live despite

Byzantine nodes, and that Byzantine clients cannot compromise liveness. Byzn-

earizable semantics allows ghost operations to be inserted. A ghost operation is one

whose effects can be observed (so it appears in the Byznearized order) even though

the operation was not explicitly requested by a client. In the case of a register, all

ghost operations are writes (since unrequested reads cannot be observed). In our

protocol, operations are associated with a client. We show that Byzantine clients

cannot trigger ghost operations from correct clients, and we show that if Byzantine

clients are stopped then eventually no ghost operation is invoked at all.

Correct behavior for operations from Byzantine clients

Definition 7. We say that a write W is associated with client c if a read R such

that W is the latest completed write relative to R would return (D, ts, c).

Lemma 18. If there is a write with timestamp ts associated with client c, then client

c has sent a “PROPOSE TS” message with timestamp ts. Similarly, if there is a

write with data D associated with client c then client c has sent a “PROPOSE TS”

message with hash(D).

Proof. Suppose that some write W with timestamp ts and data D is associated with

client c. By definition, there is some operation R that would return (D, ts, c). The

conclusion follows by Lemma 12.

Lemma 19. Byzantine clients cannot trigger ghost writes from correct clients.
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Proof. By definition, a write for D from a correct client c is a ghost write if client

c did not call write(D). Correct clients do not send a “PROPOSE TS” message

with hash(D) if write(D) is not called, so by Lemma 18 there will be no write for

D associated with the correct client.

Nodes maintain a set of authorized clients. The intent is that this set will

be modified by an administrator: removing an element from the set will prevent

that client from interacting with the system. The following lemma shows how this

mechanism helps the administrator fight Byzantine nodes after they have been iden-

tified (the mechanism for identifying Byzantine behavior is out of the scope of this

protocol).

Lemma 20. If client c is removed from the authorized set at some point then there

is a point in time from which no write associated with c occurs.

Proof. If c is not authorized then correct nodes will not answer its “PROPOSE TS”

messages (line T2), so c cannot initiate new write(. . .) operations. If c is removed

from the authorized set, then (since in a finite amount of time clients can only send a

finite number of messages) c has sent a finite number of “PROPOSE TS” messages

before being removed from the set, so it can only initiate a finite number of writes.

Each of these writes eventually complete, and then no other write associated with

c can occur.

Theorem 5. The Byzantine Listeners protocol provides Byznearizable atomic se-

mantics.

Proof. The relation → totally orders the writes and it is consistent with real-time

for operations from correct clients (Theorem 4). Byzantine Listeners, if there is no

Byzantine client, satisfies the safety properties of an atomic register (Lemma 13).
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This register behaves as if all writes happened in the order described by →, so

if read() R returns value D then that value was written by the latest write(. . .)

W such that W → R. Byzantine Listeners also satisfies the liveness properties

(Lemma 15). Since the register is atomic without Byzantine clients and since the

clean-up property holds (Lemmas 18–20), Byzantine Listeners provides Byzneariz-

able atomic semantics.

Common-case performance

Byzantine Listener’s write operation is optimized so that in the common case, writes

complete in 31
2 round-trips despite Byzantine clients and nodes.

Lemma 21. If the sendQ buffer never fills up completely and all messages are

delivered within time Twait, then all writes from correct clients complete in 31
2 round-

trips despite Byzantine clients and nodes.

Proof. The first two messages, “QUERY TS” and “PROPOSE TS”, are answered

immediately. The third message, “STORE”, is sent to all nodes in some A ∈

A, which includes (by G-Availability) a quorum Q of correct nodes. These nodes

recognize their own message authentication code in K, add a MAC to J , and forward

the message to all nodes (including nodes in Q). Nodes in Q receive this forwarded

message. Since sendQ contains an earlier version of the message, they do not send

it immediately but instead wait as they receive more messages. Since messages are

delivered within time Twait, nodes will receive the messages from all other nodes

in Q. At this point they forward the message to all nodes (including themselves).

quorumVouches(. . .) returns true as J contains a quorum of valid MACs, so the

nodes store the data and send an acknowledgment to the client. The client therefore

44



receives the necessary quorum of answers to “STORE” after one round-trip and one

forwarding of the message between nodes.

3.6 Practical Considerations

We now turn to concerns that may arise when using Listeners or Byzantine Listeners

in practice.

3.6.1 Resource Exhaustion

Byzantine clients can call write(. . .) or send messages to the nodes, reducing the

capacity that is available for correct clients. This limitation is fundamental, because

we cannot always distinguish Byzantine clients from correct ones. The Byzantine

Listeners protocol handles this problem to a point because if a client is identified as

Byzantine, it can be removed from the system. Also, the ttl field on all “STORE”

messages is decremented every time the message is forwarded, ensuring that these

messages are forwarded a finite number of times. However, the protocol can suffer

greatly before the client is identified as Byzantine, because a faulty reader might not

notify nodes that the read has completed, thereby forcing these nodes to continue

that read operation forever. The root of the problem is that readers can cause

potentially unbounded work at the nodes (the processing of a nonterminating read()

request) at the cost of only constant work (a single faulty read() request). This

imbalance makes this form of Byzantine behavior particularly damaging. Two things

can be done to address resource exhaustion: (i) limit the amount of time nodes

allocate to a given request or (ii) limit the number of messages that nodes send in

response to a given request.
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The first approach is to limit the amount of time nodes allocate to a given

request, based on a simple time-out. Because our model is purely asynchronous,

this solution in theory risks violating liveness. In practice, this liveness issue is

tolerable because links are timely most of the time, so it is reasonable for the nodes

to terminate read() unilaterally after some time-out. In the new protocol, clients

also use a time-out, and if the read() has not completed when the time-out fires,

the reader aborts the read() and starts anew. Because of the asynchronous nature

of the network, it is possible that correct readers, too, are cut off. This does not

affect the safety of the protocol, but the liveness is now only guaranteed if there

is a an interval during which messages are timely enough for the read to complete.

The designer’s choice of when nodes should interrupt reads influences how long that

interval has to last. A longer time-out means that aborted reads are less likely,

and a shorter time-out reduces the load that Byzantine clients might impose on the

nodes.

Instead of a time-out on nodes, it is possible for nodes to stop a read() after

having forwarded some constant number of messages. This measure is similar to

the time-out in that it reduces the impact of Byzantine clients but at the risk of

aborting legitimate reads in periods where many writes are concurrent. A potential

benefit of this variant is that the maximal amount of work incurred answering read

requests is known ahead of time.

When several instances of the protocol are used in parallel to provide several

registers, it is useful to restrict each reader to a constant number of parallel reads

(this can be checked unilaterally by the nodes). This solution reduces the damage a

Byzantine client can inflict but time-outs (or a bound in number of answers) should

also be in place; otherwise, a faulty reader can still cause unnecessary traffic by
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sending a read() request for some variable that is often written.

3.6.2 Additional Messages

The write protocol always requires the same number of messages, regardless of the

level of concurrency. Listeners’ write operation requires 4q messages, where q is the

number of nodes in a gateway quorum A ∈ A. This is the same number of messages

as used by Malkhi and Reiter’s quorum protocols [100].

The behavior of Listeners’ read operation depends on the number of con-

current writes. The MR read protocol [100] exchanges a maximum of 2q messages

for each read. Listeners requires up to 3q messages when there is no concurrency.

In particular, line R14 adds a new round of messages. Additional messages are

exchanged when there is concurrency because the nodes echo all concurrent write

messages to the reader. If c writes are concurrent with a particular read then that

read will use 3q + cq messages.

For some systems, there is little or no concurrency in the common case [18,

56]. Even with additional messages in the case of concurrency, the latency increase

is not as severe as one may fear, because most of these message exchanges are unidi-

rectional. Thus, the Listeners protocol will not wait for 3q + cq message roundtrips.

This is apparent in the experimental results of the next section.

3.6.3 Experimental Evaluation of Overhead

Listeners uses additional messages compared to previous protocols to reduce the

number of nodes and improve consistency semantics. These messages are not a

performance bottleneck, however: the overhead is limited to one message per node
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for each read when no write is concurrent with the read; otherwise, the number of

additional messages per node is proportional to the number of concurrent writes.

We construct a simple prototype to measure the overhead of the extra mes-

sages used to deal with concurrency in Listeners. The prototype is written in C++,

stores data in main memory, and communicates using TCP. We implemented the

f-threshold version of Listeners.

Our testbed consists of 3 servers and 6 client machines, 5 of which act as

writers and 1 as a reader. The reader machine is a SUN Ultra10 with a 440Mhz

UltraSPARC-IIi processor running SunOS 8.5. The other machines are Dell Dimen-

sion 4100 with a 800Mhz PentiumIII processor running Debian Linux 2.2.19. The

network connecting these machines is a 100Mbits/s switched Ethernet.

In this experiment, we vary the number of writers and, therefore, the level of

concurrency. Writers repeatedly write 1000 bytes of data to all servers. The reader

measures the average time for 20 consecutive reads, and the servers are instrumented

to measure the number of additional messages sent during the Listeners phase.

Figure 3.5 shows the read latency in milliseconds as a function of the number

of active writers. Each point represents the average duration of 20 reads.

We find, as expected, that increasing concurrency has a measurable but

modest effect on the latency of the reads.

3.6.4 Load and Throughput

The throughput benefits of using quorums can be measured using the load fac-

tor [119]. We must explain a few terms before we can define the load factor.
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Figure 3.5: Read latency (ms)

Given a quorum system Q, an access strategy w is a probability distribution

on the elements of Q: i.e.,
∑

Q∈Q w(Q) = 1. w(Q) is the probability that quorum

Q will be chosen when the service is accessed. Load is then defined as follows:

Definition 8. Let an access strategy w be given for a quorum system Q = {Q1, ..., Qm}

over a universe U of nodes. For a node u ∈ U , the load induced by w on u is

lw(u) =
∑

{Qi:u∈Qi} w(Qi). The load induced by a strategy w on a quorum system

Q is

Lw(Q) = max
u∈U

{lw(u)}.

The load factor (or just load) on a quorum system Q is

L(Q) = min
w

{Lw(Q)},

where the minimum is taken over all strategies.
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protocol read load write load n semantics Byz. clients signatures

f-masking [100] 1
n
⌈n+2f+1

2
⌉ 4f + 1 safe no no

Grid [100]
(2f+2)

√
n−(2f+1)
n

(3f + 1)2 safe no no

f-dissemination [100] 1
n
⌈n+f+1

2
⌉ 3f + 1 regular yes yes

Listeners 1
n
⌈ 3n+3f+1

4
⌉ 3f + 1 atomic no no

Byzantine Listeners 1
n
⌈ 3n+3f+1

4
⌉ 1 3f + 1 atomic yes no

Table 3.5: Comparison of register protocols

For example, in a universe U of three nodes, where Q is the set of all subsets

of U of size 2, the load factor on U is 2
3 (the random access strategy induces this

load factor). Adding servers to reduce the load of a system from 1 to x multiplies

the throughput by 1/x.

Table 3.5 shows the load factor and other information for Listeners, Byzan-

tine Listeners, and previous work. The third column indicates the number of nodes

needed to tolerate f Byzantine nodes, the fourth gives the semantics of the regis-

ter that the protocol implements, the fifth indicates whether the protocol tolerates

Byzantine clients, and the sixth indicates whether the protocol requires digital sig-

natures. In order to tolerate Byzantine clients, Byzantine Listeners instructs nodes

to forward “STORE” messages to each others. The message is forwarded to every

node, resulting in a write load factor of 1.

Listeners and Byzantine Listeners have a higher load than the other proto-

cols, but in return offer stronger semantics and use the minimal number of nodes

(3f + 1) to tolerate f Byzantine nodes. They do not need digital signatures and

Byzantine Listeners can tolerate Byzantine clients.

Even though a low load means that the register’s throughput can increase

if servers are added, adding servers is rarely an effective method for increasing

throughput. Consider for example the f-dissemination protocol: to go from a load
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of 0.75 to 0.6, the number of nodes must grow from n = 4 to n = 10. We must

more than double the number of nodes to get a 25% increase in throughput (0.75 ∗

(1/1.25) = 0.6)! The Grid protocol has a better load, but requires at least 16 nodes

to tolerate a single Byzantine node. Purchasing nodes that are more powerful (i.e.

have a faster processor and more memory) is a more practical approach to increasing

throughput. Another option, if the system comprises several registers, is to run each

register on a different set of nodes.

3.6.5 Live Lock

In a system such as Listeners or Byzantine Listeners, calls to read() and write(. . .)

must complete even if the system is under a heavy load. Writes cannot starve in

either protocol, because their execution is independent of concurrent reads. Reads,

however, can be starved if an infinite number of writes are in progress and if the

nodes always choose to service the writes before sending the “VALUE” messages.

There is an easy way to guarantee read starvation does not happen. When

serving a write request while a read is in progress, nodes queue a “VALUE” message

(Figure 3.3, line S5). Liveness of both read() and write(. . .) is guaranteed, pro-

vided nodes send these “VALUE” messages before processing the next “QUERY TS”

message (the order in which nodes go through messages was previously unspecified).

The client running read() will therefore eventually receive the “VALUE” messages it

needs to complete even if an arbitrary number of writes are concurrent with read().

Another related concern is that of latency: can reads become arbitrarily

delayed? In the asynchronous model, there is no bound on the duration of reads.

However, if we assume writes never last longer than w units of time, there are z

concurrent writes, and there are n nodes, then we can show a bound on latency.
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In the worst case (taking failures into account) reads will be delayed by no more

than min(z ∗ w,n ∗ w). This result follows because in the worst case f nodes are

faulty and return very high timestamps so that only one row of answer [ ][ ] contains

answers from correct nodes. Also, in the worst case each entrance (line R6) occurs

just before the monitored write can be read. The second term follows from the

maximal number of entrances, n.

3.6.6 Engineering an Asynchronous Reliable Network

The standard model for Byzantine quorum systems has been reliable asynchronous

links, and we have followed that model. There are difficulties in implementing this

model. If physical links are unreliable, then the abstraction of reliable links can

be created by buffering messages that are sent and using a retransmission protocol.

If the recipient is subject to Byzantine failures, then a faulty receiver can omit

acknowledgments and thus prevent the sender from ever deleting buffered messages.

This is clearly a problem since memory is finite. Nonetheless, one can engineer a

reasonable approximation of an asynchronous reliable network abstraction when one

can (i) restrict the failures to which the system or the network layer is vulnerable

or (ii) restrict the workload so that infinite buffering is not a concern. To illustrate

when a reliable network abstraction can be built, we provide a few examples of both

types of restriction below.

Restricting failures. If nodes fail only by crashing and restart afterwards, then

implementing a reliable network abstraction may not be a large concern, because

there exist reasonable engineering approaches to avoid the need for infinite memory

while providing a reasonable approximation of reliable asynchronous messaging. For
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example, several reliable messaging systems5 [117, 75] store unacknowledged mes-

sages on an on-disk log. It may be safe in practice to assume that it is extremely

unlikely that the log will overflow by assuming (i) a large log, (ii) a reasonable bound

on crash or partition durations, and (iii) that a machine will acknowledge received

messages after the repair of a crash or partition. Although such an approach may be

theoretically unsatisfying (it implicitly assumes a bound on the duration of failures

and therefore is no longer, strictly speaking, an asynchronous system), this approach

seems common in practice.

Restricting network failures. In some systems, even though the software run-

ning on nodes can fail arbitrarily, the hardware in the network components ensures

that acknowledgments are sent. This hardware may be less vulnerable to failures.

Examples include “System/Storage Area Networks” (SANs) (such as Fibre Chan-

nel [137]), networks for Massively Parallel Processors (MPPs) (such as the Thinking

Machines CM5 and Cray T3D), networks with built-in redundancy and automatic

fail-over (such as Autonet [141]), and networks with automatic link-level retrans-

mission [129]. A second, related, approach to bounding memory consumption by

assuming a restricted model of network failures is to construct a network protocol

without relying on acknowledgments to free network retransmission buffers. For ex-

ample, consider the case where the primary cause of message loss is bit errors from

transient electronic interference, where each packet has a probability p of arriving

at its destination. A sender that retransmits a message a constant number of times

or with sufficient forward error control redundancy [29] may in this case regard the

packet as successfully sent, even if no acknowledgments are received; such a sys-

5Even though these are not technically a network abstraction, they provide send(. . .) and
receive(. . .) operations that behave as if the underlying network were reliable.
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tem may still use acknowledgments to reduce the number of retransmissions in the

common case of a responsive sender. A third approach that insulates the network

from some failures is to rely on protection across software modules. For example,

in some systems the network drivers may be a protected kernel subsystem and may

be considered less vulnerable to Byzantine failures than higher-level protocols.

Restricting the workload. Rather than restricting network failures, some sys-

tems approximate reliable asynchronous messaging with finite buffers by assuming

a restricted workload. If the request rate is low and the retransmission buffer large

(e.g., on disk as in MQS [117] for example), then a system may reasonably buffer

all sent messages regardless of whether they have been acknowledged. An example

of a system where such an assumption is natural is a system that already maintains

a persistent log of all transactions for another purpose such as auditing.

3.7 Related Work

Although both Byzantine failures [54] and quorums systems [59] have been studied

for a long time, interest in quorum systems for Byzantine failures is relatively recent.

The subject was first explored by Malkhi and Reiter [100, 101]. They showed how

to use quorums to build a regular register with 3f +1 nodes (with digital signatures)

or a safe register with 4f + 1 nodes (without).

Bazzi [22] explored Byzantine quorums in the synchronous model with re-

liable channels. In that model it is possible to build atomic registers with fewer

nodes (f + 1 for self-verifying data, 2f + 1 otherwise). This result is not directly

comparable to ours since it uses a different model.
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Bazzi [23] defines non-blocking quorum system as a quorum system in which

the writer does not need to identify a live quorum but instead sends a message to

a quorum of nodes without concern with whether these nodes are responsive. Ac-

cording to this definition, all the protocols presented here use non-blocking quorum

systems.

Several papers [23, 103, 119] study the load of Byzantine quorum systems,

a measure of how increasing the number of nodes influences the amount of work

of each individual node. A key conclusion of this previous work is that the lower

bound for the load factor of quorum systems is O( 1√
n
). Our work instead focuses

on reducing the number of nodes necessary to tolerate a given fault threshold (or

failure scenarios).

Phalanx [101] builds shared data abstractions and provides a mutual exclu-

sion service, both of which can tolerate Byzantine failure of nodes. Phalanx can

provide safe semantics despite Byzantine clients and unreliable links, using digital

signatures and 4f + 1 nodes.

Castro and Liskov [31] present a replication algorithm that requires 3f + 1

nodes and, unlike most of the work presented above, can tolerate unreliable network

links and faulty clients. Their protocol uses synchrony assumptions and cryptogra-

phy to produce self-verifying data, and it provides linearizability. It is fast in the

common case (in the sense that in the absence of failures, their NFS implementation

completed the Andrew benchmark within 3% of an unreplicated system). Our work

shows that safe semantics cannot be provided using fewer nodes.

Attiya, Bar-Noy and Dolev [11] implement an atomic single-writer multi-

reader register over asynchronous links, while restricting themselves to crash failures

only. Their failure model and writer count are different from ours. When imple-
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menting finite-size timestamp, their protocol uses several rounds. The similarity

stops there, however, because they make no assumption of network reliability and

therefore cannot leverage unacknowledged messages the way the Listeners protocol

does.

Our idea of using information from concurrent writes through the listeners

pattern has inspired other researcher Goodson et al. [61] to provide an atomic reg-

ister without signatures. Their protocol uses erasure codes to write large data effi-

ciently and can tolerate crash and Byzantine failures (the hybrid failure model [152]),

but when tolerating only Byzantine failures it requires 4f +1 nodes instead of 3f +1

in our case.

Bazzi and Ding [21] use the same technique to provide an atomic register

without signatures. Their variant has a lower load than our protocol (in the sense

that a smaller fraction of nodes need to service requests) but requires 4f + 1 nodes.

Both protocols use information from concurrent writes, but instead of for-

warding information from concurrent operations they keep a history of all current

and past writes. While in theory this approach requires infinite storage, in practice

this appears not to be an issue [149].

3.8 Conclusion

This chapter examines Byzantine fault-tolerant registers in an asynchronous setting.

The first contribution is the proof of a tight bound on the number of nodes: we show

that 3f + 1 nodes are necessary to provide even safe register semantics.

The other two contributions are protocols that match the lower bound of

3f + 1 nodes and provide atomic semantics. The first, Listeners, assumes correct

clients and the second, Byzantine Listeners, tolerates Byzantine clients but sends
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more messages than the first. Neither protocol requires self-verifying data. The pro-

tocols derive from quorum systems but use an original communication pattern, the

Listeners. The protocols use the fail-prone error model but they can be adapted to

the f-threshold model. Previous protocols for the same model [100] required 4f + 1

nodes, did not tolerate Byzantine clients, and provided only regular semantics. Sev-

eral protocols [31, 100, 101, 111, 130] use digital signatures to reduce the number

of nodes. It was therefore surprising to us that we were able to employ this same

minimum number of servers without using digital signatures. Instead, our proto-

cols send additional messages if concurrent writes are in progress, and Byzantine

Listeners uses MACs.
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Chapter 4

Non-Confirmable Semantics for

Cheaper Registers

4.1 Introduction

In the previous chapter we have seen that the minimal number of nodes to build a

safe asynchronous register that can tolerate f Byzantine failures is 3f + 1. This is

a good deal amount of replication, so it is natural to wonder under what conditions

it is possible to use fewer replicas.

In this chapter we show that it is possible to build fault-tolerant asynchronous

registers using only 2f + 1 nodes instead of 3f + 1 (a reduction of up to 33%). To

create these cheaper registers, we remove the requirement that a writer know when

its write(. . .) completes. Of course, the write(. . .) function still returns and our

writes are still guaranteed to complete eventually—the only change is that these two

events are distinct, and the writer is not necessarily informed when the write(. . .)

completes. We call the resulting semantics non-confirmable.
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The benefit of the new semantics is a reduced cost: we show that the minimal

number of nodes to achieve non-confirmable safe registers in the asynchronous model

that can tolerate f Byzantine failures is 2f + 1. We show that this bound is tight

by presenting a new variant of Listeners that matches our lower bound. In addition,

the new protocol can provide stronger semantics than just non-confirmable safe: it

implements a non-confirmable regular register using the optimal number of nodes

(2f + 1).

Non-confirmable semantics are sufficient when either (i) the writer does not

need to know when the write completes, or (ii) an application-level mechanism lets

the writer know that its value was read. An example of the first case is a sensor that

periodically writes some data to shared memory (it does not need to know when the

write ends); an example of the second case is several nodes communicating through

shared memory: receiving a response means that a prior communication has been

received—there is no need for a separate confirmation mechanism built into the

shared memory. These acknowledgments cannot always be added: in the case of

two nodes communicating through a shared memory, for example, if the first node

were to wait for this acknowledgment, then a crash of the second node would cause

the first node to violate liveness.

4.2 Non-Confirmable Semantics Defined

If a protocol defines write completion so that completion can be determined locally

by a writer and all writes eventually complete, we call the protocol confirmable. This

definition is intuitive and therefore implicitly assumed in most previous work. These

protocols typically implement their write(. . .) function so that it only returns after

the write operation has completed. Note that confirmable protocols may also choose
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to implement a non-blocking write operation and provide a separate mechanism

(e.g., a barrier) to let the client determine when a write completes.

If instead a protocol’s write completion predicate depends on the global

state in such a way that completion cannot be determined by a client—although all

writes still eventually complete—then we call the protocol non-confirmable. Non-

confirmable protocols do not support blocking writes. The SBQ protocol [111],

for example, is non-confirmable: writes complete when a quorum of correct servers

have finished processing the write. This completion event is well-defined but clients

cannot always determine when it happens.

4.3 Lower Bounds

We prove lower bounds for non-confirmable protocols. The minimum number of

servers for safe semantics is 2f + 1, as opposed to 3f + 1 for confirmable protocols.

To prove that it is impossible to implement a non-confirmable safe register

using 2f nodes in the asynchronous model, we show that under these assumptions

any protocol must violate either safety or liveness. Recall that U is the set of nodes.

Lemma 22. For all live read protocols using 2f servers, for all sets S of f servers

and for all reachable quiet system states, there exists at least one execution in which

a read is only influenced by all servers in a set S′ such that S′ ⊆ S.

Proof. By contradiction: suppose there exists a live protocol P using 2f servers, a

set S of f servers and a reachable quiet system state in which all executions of the

read protocol are not only influenced by the servers in any S′ : S′ ⊆ S, but are also

influenced by some other server x 6∈ S. Since |U−S| = f , it is possible for all servers

in U − S are faulty. In that case, x is faulty and may crash (since x is in U − S).

Since P is influenced by x and x crashed, that execution of P is not live.
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Lemma 23. Consider a live read protocol using 2f servers. There exist executions

for which this protocol does not satisfy safe semantics.

Intuitively, whenever the reader relies on only f servers it will be fooled if all

these servers are faulty. We show this through a more formal explanation below.

Proof. Consider the initial state of the system in which the individual servers have

states a0 . . . a2f−1 and the shared variable has value A. We call this “state A”.

Consider now an execution e of the read protocol in state “A” that is only influenced

by a subset of the servers 0 . . . f−1 (Lemma 22 proves that e exists). This execution

correctly returns the value A for the shared variable.

Imagine a later snapshot of the same system, when no operation is in progress.

The individual servers now have states b0 . . . b2f−1 and the shared variable has value

B. We call this “state B”. A correct read should return the value B. Suppose that

servers 0 through f − 1 are faulty and behave as if they were in states a0 . . . af−1,

and suppose that a new read starts, only influenced by servers 0 . . . f − 1 (again,

Lemma 22 proves that this read exists). The reader will receive the exact same

answers in state B as the previous reader did in state A. Because the two executions

are indistinguishable, the new read will return the incorrect value A.

Theorem 6. In the reliable authenticated asynchronous model with Byzantine fail-

ures, no live protocol can implement a shared register using 2f servers.

Proof. The last two lemmas show that in the conditions given, no read protocol can

be live and safe.

Note that the proof of Lemma 23 is not limited to the f -threshold model

and makes no assumption of deterministic behavior from the protocol. The proof

also covers protocols that use integrity checks in their messages since faulty servers
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W1 write(D) :
W2 send (“QUERY TS”) to all servers in some A ∈ A
W3 loop :
W4 receive answer (“TS”, ts) from server s
W5 current[s] := ts
W6 until ∃Q ∈ Q : Q ⊆ current[ ] // a quorum answered
W7 max ts := max{current[ ]}
W8 my ts := min{t ∈ Cts : max ts < t ∧ last ts < t}

// my ts ∈ Cts is larger than all answers and previous timestamp
W9 last ts := my ts
W10 send (“STORE”, D, my ts) to all servers in some A ∈ A

R1 (D, ts) = read() :
R2 send (“READ”) to all servers in some A ∈ A
R3 loop :
R4 receive answer (“VALUE”,D, ts) from server s // (possibly several answers per server)
R5 if ts > largest[s].ts : largest[s] := (ts, D)
R6 if s 6∈ S : // we call this event an “entrance”
R7 S := S ∪ {s}
R8 T := the f + 1 largest timestamps in largest[ ]
R9 for each isvr, for each jtime 6∈ T : delete answer[isvr, jtime]
R10 for each isvr :
R11 if largest[isvr].ts ∈ T : answer[isvr, largest[isvr].ts] := largest[isvr]
R12 if ts ∈ T : answer[s, ts] := (ts, D)
R13 until ∃D′, ts′, Qr : Qr ∈ Q ∧ (∀i : i ∈ Qr : answer [i, ts′] = (ts′, D′))

// i.e., loop until a quorum of servers agree on a (ts,D) value
R14 send (“READ COMPLETE”) to all servers in A
R15 return (D′, ts′)

Figure 4.1: Non-Confimable Listeners, client protocol

have all the necessary information to create the messages they send (e.g. signatures

from other nodes).

4.4 Non-Confirmable Listeners Protocol

The confirmable Listeners protocol of Chapter 3 requires at least 3f + 1 servers. In

this section we show how this number can be reduced to 2f + 1 if the protocol is

made non-confirmable. Figure 4.1 shows the pseudocode for the Non-Confirmable

Listeners protocol. This protocol is based on the Listeners protocol of Figure 3.1.

Since in a non-confirmable protocol the writer is not required to know when

the write completes, we can delete lines W11 to W14 of the write(. . .) function from
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the Listeners protocol (Figure 3.1), in which the writer waits for acknowledgments.

The “STORE” messages sent earlier (at line W10) are guaranteed to reach their

destination because we assume that the channels are reliable.

Weakening the semantics to non-confirmable allows us to modify not only

the protocol, but also the quorum construction. Using this different quorum con-

struction will allow us to reduce the number of nodes needed to tolerate f Byzantine

nodes. The quorum construction still still contains a gateway quorum system for

A, but Q does not need to be a dissemination quorum anymore: instead it can be

a regular quorum system (i.e. quorums can intersect in a single node). Recall that

a gateway quorum system satisfies:

G-Consistency ∀A1, A2 ∈ A ∀B ∈ B ∃Q ∈ Q : (Q ⊆ A1) ∩ (A2 ∧ Q ∩ B = ∅)

This quorum construction is sufficient because eliminating the acknowledg-

ments eliminates a constraint on the overlap of quorums. The Listeners proto-

col requires the quorum intersection because readers must be able to identify the

correct value as soon as write(. . .) (i.e. as soon as a quorum acknowledges the

“STORE” message). In non-confirmable Listeners, instead, writes can complete af-

ter the write(. . .) method returns, so we are only constrained by the intersection

between the quorum of nodes queried by the reader and the quorum of correct nodes

that are guaranteed eventually to receive the “STORE” message. As a result, we

can reduce the number of nodes needed to tolerate f Byzantine failures: if B is

all subsets of f servers, then Q is all subsets of size q for q = ⌈n+1
2 ⌉ servers and

A all subsets of ⌈n+f+q
2 ⌉ servers. To tolerate f Byzantine faults in this model,

Non-Confirmable Listeners needs only 2f + 1 nodes.
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Recall that in non-confirmable protocols, the write(. . .) function does not

determine when the write has completed: instead, the completion must be specified

separately. We therefore specify that the write completes when some quorum Q ∈

Q of correct servers are done processing the “STORE” message. Note that this

definition ensures that write completion cannot be unduly delayed by the actions of

faulty servers: they cannot delay writes any more than crashed servers would. The

G-Availability property guarantees that such a quorum will be found eventually.

This protocol requires only 2f + 1 servers and provides non-confirmable reg-

ular semantics. As shown in Theorem 6, fewer servers do not suffice, so we conclude

that 2f + 1 is the optimal number of servers for non-confirmable protocols.

We do not have a non-confirmable protocol for atomic semantics. Pierce [125]

presents a general technique to transform regular protocols into ones that sat-

isfies atomic semantics, but unfortunately this technique does not apply to non-

confirmable protocols.

4.5 Correctness

Theorem 7. The non-confirmable Listeners protocol is live and provides non-

confirmable regular semantics.

Lemma 24. The non-confirmable Listeners protocol never violates regular seman-

tics.

Proof. When a read R completes, the reader decides on a value that has been

vouched for by a quorum Qr ∈ Q of servers (line R13). Since we defined writes to

complete when a quorum of correct servers have received the “STORE” message

(Section 4.4), by definition there is a quorum Q of correct servers that have seen
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the latest completed write with respect to R. By definition of quorums, Q and Qr

intersect in at least one server s. This server is correct and it has seen the latest

completed write.

Since s is correct, it follows the protocol and therefore sends to R the value

of the completed write, the value of a write with a higher timestamp, or both. As

a result, subsequent reads will never return a value older than the latest completed

write.

Lemma 25. The Non-Confirmable Listeners protocol is live.

Proof. The beginning of the proof for liveness is identical to the proof for the con-

firmable case in Section 3.4.4, showing that all operations eventually terminate. The

proof of the read operation needs to be adapted slightly. In the last step, showing

that the reader will eventually receive sufficiently many echoes, the quorum size must

be modified as follows. The write protocol eventually reaches all correct servers in

some A ∈ A. The read operation contacts a quorum A2 of servers and the intersec-

tion of the two quorums contains (by G-Availability) a quorum Q of correct servers.

These will send the correct answers required for completion.
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Chapter 5

Dynamic Quorums

5.1 Introduction

Most Byzantine quorum system (BQS) protocols set two parameters—N , the set of

servers in the quorum system, and f , the resilience threshold denoting the maximum

number of servers that can be faulty1—and treat them as constants throughout the

life of the system. The rigidity of these static protocols is clearly undesirable.

Fixing f forces the administrator to select a conservative value for this re-

silience threshold: one that can tolerate the worst case-failure scenario. Usually, this

worst-case scenario will be relatively rare; however, since the value of f determines

the size of the quorums, in the common case quorum operations will be forced to

access unnecessarily large sets, with obvious negative effects on performance.

Fixing N not only prevents the system administrator from retiring faulty or

obsolete servers and substituting them with correct or new ones, but also greatly

reduces the advantages of any technique designed to change f dynamically. For a

1The previous chapters consider generalized fault structures, offering a more general way of
characterizing fault-tolerance than a threshold. However, such structures remain static.
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given Byzantine quorum protocol, N must be chosen to accommodate the maximum

value fmax of the resilience threshold, independent of the value of f that the system

uses at a given point in time. Hence, in the common case the degree of replication

required to tolerate fmax failures is wasted.

In this chapter we propose a methodology for transforming static Byzantine

quorum protocols into dynamic ones where both N and f can change, growing and

shrinking as appropriate2 during the life of the system. We have successfully applied

our methodology to several Byzantine quorum protocols [61, 100, 101, 111, 126]. The

common characteristic of these protocols is that they only use the Q-RPC primi-

tive [100] for communication. A Q-RPC contacts a responsive quorum of servers and

collects their answers, making it a natural building block for implementing quorum-

based read and write operations. Our methodology is simple and non-intrusive: all

that it requires to make a protocol dynamic is to substitute each call to Q-RPC with

a call to a new primitive, called DQ-RPC for dynamic Q-RPC. DQ-RPC maintains

the properties of Q-RPC that are critical for the correctness of Byzantine quorum

protocols, even when N and f can change.

The main difficulty in defining DQ-RPC to minimize changes to existing pro-

tocols comes from proving that read and write operations performed on the dynamic

version of a protocol maintain the same consistency semantics of the operations per-

formed on the static version of the same protocol. In the static case, these proofs

rely on the intersection properties of the responsive quorums contacted by Q-RPCs.

Unfortunately, these proofs do not carry easily to DQ-RPC. When N changes, it is

no longer possible to guarantee quorum intersection: given any two distinct times t1

and t2, the set of machines in N at t1 and t2 may be completely disjoint. We address

2We focus on the mechanisms necessary for supporting dynamic quorums systems (i.e. a quorum
system that can change at runtime). A discussion of the policies used to determine when to adjust
N and f is outside the scope of this chapter. Some examples of such policies are given in [8, 78].
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this problem by taking a fresh look at what makes Q-RPC-based static protocols

work.

Traditionally, the correctness of these protocols relies on properties of the

quorums themselves, such as intersection. Instead, we focus our attention on the

properties of the data that is retrieved by quorum operations such as Q-RPC. In

particular, we identify two such properties, soundness and timeliness. Informally,

soundness states that the data that clients gather from the servers was previously

written; timeliness requires this data to be as recent as the last written value.

We call these properties transquorum properties, because they do not explicitly

depend on quorum intersection. We prove that transquorum properties are sufficient

to guarantee the consistency semantics provided by each of the protocols that we

consider. Now, all that is needed to complete our transition from static to dynamic

protocols is to show an instance of a quorum operation that satisfies the transquorum

properties even when f and N are allowed to change: we conclude the chapter by

showing that DQ-RPC is such an operation.

The rest of the chapter is organized as follows. We cover related work and

system model, respectively, in Section 5.2 and Section 5.3. We specify the transquo-

rum properties in Section 5.4 and show in Section 5.5 that our DQ-RPC satisfies

the transquorum properties before concluding. Sections with additional detail have

been placed between the conclusion and the end of this chapter.

5.2 Related Work

Alvisi et al. [9] are the first to propose a dynamic BQS protocol. They let quorums

grow and shrink depending on the value of f , which is allowed to range dynamically

3Partial-atomic semantics guarantees that reads either satisfy atomic semantics or abort [126].
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name tolerates signatures client failures semantics
(crash,Byz)

crash (f, 0) no crash atomic
U-dissemination [111] (0, b) yes crash atomic
hybrid-d [61] (f, b) yes crash atomic
U-masking [126] (0, b) no correct partial-atomic3

hybrid-m [61] (f, b) no correct partial-atomic3

Phalanx [101] (0, b) server only Byzantine partial-atomic3

hybrid Phalanx (f, b) server only Byzantine partial-atomic3

Table 5.1: List of quorum protocols that can be made dynamic using DQ-RPC

within an interval [fmin, ..., fmax]. This flexibility, however, comes at a cost: because

their protocol does not allow N to change, it requires 2(fmax − fmin) more servers

than an equivalent static protocol to tolerate a maximum of fmax failures.

The Agile store [78] modifies the above protocol by introducing a special,

fault-free node that monitors the set of servers in the quorum system. The monitor

tries to determine which are faulty and to inform the clients, so that they can find

a responsive quorum more quickly. In the Agile store, servers can be removed from

N , but not added. Therefore, if the monitor mistakenly identifies a node as faulty

and removes it from N , the system’s resilience is reduced: the system tolerates fmax

Byzantine faulty servers only as long as the monitor never makes such mistakes.

The Rosebud project [132] shares several of our goals. Rosebud envisions a

dynamic peer to peer system, where servers can fail arbitrarily, the set of servers

can be modified at run-time, and clients use quorum operations to read and write

variables. When we originally published our dynamic quorum system, only a pre-

liminary design document for Rosebud was available [133]. The authors have since

published a full description [132]. Rosebud differs from out work in that it is a spe-

cific dynamic system rather than a framework for transforming static protocols into

dynamic ones. Rosebud allows N to change only at pre-set intervals. In contrast,
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we allow operations to continue even as N is changing, and we allow N (and f)

to change at any time. Perhaps the most important difference lies in the timing

assumptions: our protocol is purely asynchronous whereas Rosebud relies on weak

synchrony assumptions not only for the liveness of its embedded replicated state

machine, but also for safety ([131], Section 3.6, second paragraph).

Several quorum-based protocols allow to change N and f but only tolerate

crash failures. Rambo and Rambo II [98, 135] provide the same interface as our

protocols: read, write and reconfigure. They guarantee atomic semantics in an

unreliable asynchronous network despite crash failures.

In GeoQuorums [46] the world is split into n focal points and servers are

assigned to the nearest (geographically) focal point. The system provides atomic

semantics as long as no more than f focal points have no servers assigned to them.

Servers can join and leave; however, neither n nor f can change with time.

Abraham et al. [2] target large systems, such as peer-to-peer, where it is

important for clients to issue reads and writes without having to know the set of all

servers, and it is important for servers to join and leave without having to contact

all servers. Their probabilistic quorums meet these goals (for example, clients only

need to know O(
√

n) servers), provide atomic semantics with high probability, and

can tolerate crash failures of the servers.

View-oriented group communication systems provide a membership service

whose task is to maintain a list of the currently active and connected members of a

group [36]. The output of the membership service is called a view. If we consider the

set of servers in the quorum system as a group, then in our protocol the membership

service is trivially implemented by an administrator, who is solely responsible for

steering the system from view to view (see Section 5.5.1).
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An interesting property of our protocol is that it allows processes that are

outside the quorum systems —i.e. the clients in our protocol—to query servers

within the quorum system to learn the current view. Note that our clients do not

learn about views from the membership service, but rather indirectly, through the

servers. Nonetheless, our protocol guarantees that, despite Byzantine failures of

some of the servers, a correct client will only accept views created by the adminis-

trator and will never accept as current a view that is obsolete (see Section 5.5.1).

5.3 System Model

Our system consists of a universe U of servers. Only a subset N of these servers are

commissioned at any point in time. We use n to denote the number of servers in

N . Servers can join or leave N at any point in time, i.e. both N and n can change

during execution. To prevent Sybil attacks [47], we require strong identities: each

server has an identity that cannot be forged and there is an external mechanism

for specifying which identities can participate (for example, the identity must bear

a signature from the administrator). Servers can be either correct or faulty. A

correct server follows its specification; a faulty server can arbitrarily deviate from

its specification. We do not assume that decommissioned servers (U−N) are correct:

they may all be faulty. The set of clients of the service is disjoint from U . Clients

perform read and write operations on the variables stored in the quorum system.

We assume that these operations return only when they complete (i.e. we consider

confirmable operations [111]).

Our dynamic quorum protocols maintain the same assumptions about client

failures of their static counterparts. Clients communicate with servers over point-to-

point, authenticated, asynchronous fair channels. A fair channel guarantees that a
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message sent an infinite number of times will reach its destination an infinite number

of times. We allow channels to drop, reorder, and duplicate messages.

5.4 A New Basis for Determining Correctness

The first step in our transition to dynamic quorum protocols is to establish the

correctness of the static protocols we consider (shown in Table 5.1) on a basis that

does not rely on quorum intersection. To do so, we observe that at the heart of all

these protocols lies the Q-RPC primitive [100]. Our approach to extend quorum

protocols to the case where servers are added and removed (and thus quorums may

not intersect anymore) is to define correctness in terms of the properties of the

data returned by quorum-based operations such as Q-RPC. In this section, we first

specify two properties that apply to the data returned by Q-RPC; then, we prove

that these properties are sufficient to ensure correctness. In Section 5.5 we will

show that it is possible to implement Q-RPC-like operations that guarantee these

properties even when quorums do not intersect.

5.4.1 The Transquorum Properties

In the protocols listed in Figure 5.1, quorum-based operations such as Q-RPC are

the fundamental primitives on top of which read and write operations are built. Not

all Q-RPCs are created equal, however. Some Q-RPC operations change the state

of the servers (e.g. when the message passed as an argument contains information

that the servers should store), others do not. Some Q-RPCs need to return the

latest data actually written in the system, others only need to return data that

is not obsolete, whether it was written or not. To capture this diversity, we use

two properties, timeliness and soundness. We call them transquorum properties
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read()
1. Q := Q-RPC(“READ”)

// Q: set of 〈ts, writer id, data〉writer

2. r := φ(Q)
// returns largest valid value

3. Q := Q-RPC(“WRITE”,r )
4. return r.data

write(D)
1. Q := Q-RPC(“GET TS”)
2. ts := max{Q.ts} + 1
3. m := 〈ts ,writer id ,D〉writer
4. Q := Q-RPC(“WRITE”,m)

read()
1. Q := TRANS-QR(“READ”)

// Q: set of 〈ts, writer id, data〉writer

2. r := φ(Q)
// returns largest valid value

3. Q := TRANS-QW(“WRITE”,r )
4. return r.data

write(D)
1. Q := TRANS-QT (“GET TS”)
2. ts := max{Q.ts} + 1
3. m := 〈ts ,writer id ,D〉writer
4. Q := TRANS-QW(“WRITE”,m)

Figure 5.1: U-dissemination protocol (fail-stop clients). On the left: Q-RPC. On
the right: TRANS-Q.

because, as we will see in Section 5.5, they do not require quorum intersection to

hold. Intuitively, timeliness says that any read value must be as recent as the last

written value, while soundness says that any read value must have been written

before. Q-RPC operations return data that reflect the state of the servers at a given

point in time, so the concepts of timeliness and soundness apply to them. Note

that not all Q-RPCs need to be both timely and sound. For example, Q-RPCs used

to gather the current timestamps associated with the value stored by a quorum of

servers need not be sound—all that is required is that the returned timestamps be

no smaller than the timestamp of the last write.

We then define three sets W, R, and T of Q-RPC-like quorum operations.

Each Q-RPC-like operation in a protocol belongs to zero or more of these sets.

Let w → r (w “happens before” r) indicate that quorum operation w ended

(returned) before the quorum operation r started (in real time). Further, let o be

an ordering function that maps each quorum operation to an element of an ordered
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set M. We define the transquorum properties as follows:

(timeliness) ∀w ∈ W,∀r ∈ R ∪ T , o(r) 6= ⊥ :

w → r =⇒ o(w) ≤ o(r)

(soundness) ∀r ∈ R, o(r) 6= ⊥ :

∃w ∈ W s.t. r 6→ w ∧ o(w) = o(r)

In this chapter we always choose o so that when applied to a Q-RPC-like

operation x, it returns both a timestamp and the data that is associated with x (i.e.

either read or written). This allows us to use the timeliness property to ensure that

readers get recent timestamps and the soundness property to ensure that reads get

data that has been written.

5.4.2 Proving Correctness with Transquorums

Transquorum properties suffice to prove that the protocols listed in Figure 5.1 cor-

rectly provide the consistency semantics that they advertise. We present the com-

plete set of proofs in the Appendix. For conciseness, in this chapter we limit ourselves

to the first three protocols in the figure. All three protocols have the same client

code, shown on the left in Figure 5.1 and all three guarantee atomic semantics. The

server code in all these is also identical: servers simply store the highest timestamped

data they receive and send back to the client the data or its timestamp (in reply

to READ or GET TS requests, respectively). The protocols differ in the size of the

quorums they use and in the degree of fault-tolerance they provide: U-dissemination

protocols [110] (a variant for fair channels of the dissemination protocol presented
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in [100]) can tolerate b Byzantine faulty servers, crash can tolerate f fail-stop faulty

servers, and hybrid-d can tolerate both b Byzantine failures and f fail-stop failures

(f + b failures in total). To simplify our discussion, since the three client proto-

cols are identical, we will only discuss the U-dissemination protocol here; all we

say also applies to the crash and hybrid-d protocols as well, except that the crash

protocol does not use any signatures. Another simplification is that we show the

transformation on the non-optimized version of the U-dissemination protocol. Read

operations can in fact be shortened to a single message round-trip in the common

case by skipping the write-back when it is not necessary (see Section 5.5.4).

Dissemination protocols with transquorums

To illustrate that we only rely on the transquorum properties and not on the specific

implementation of Q-RPC, we replace all Q-RPC calls in the protocol (Figure 5.1)

with an “abstract” function TRANS-Q that we postulate has the transquorum prop-

erties. TRANS-Q takes the same arguments and returns the same type of values as

Q-RPC.

The U-dissemination protocol on the right of Figure 5.1 uses TRANS-Q as its

low-level quorum communication primitive. We have annotated each call to indicate

which set it belongs to (R,W, or T ).

Operations of this form are assigned this order, set

r : TRANS-Q(“READ”) o(r) = φ(rret) R
w : TRANS-Q(“WRITE”, ts, w id,D) o(w) = (warg.ts, warg.w id,warg .D) W
t : TRANS-Q(“GET TS”) o(t) = (max(tret) + 1,⊥,⊥)4 T

Figure 5.2: The o mapping

4We do not explicitly require this value to be larger than any timestamp previously sent by this
client because we do not allow clients to issue multiple concurrent writes.
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Notation 〈a〉b denotes that a is signed by b. Note that data is signed before

being written and verified before being read. The function φ(Q) returns the largest

value in the set Q that has a valid client signature using lexicographical ordering.

Values are triples (ts, writer id,D), so φ selects the largest valid timestamp, using

writer id and then D to break ties.

We assign each TRANS-Q quorum operation to one of the sets (R,W or T )

and define the ordering o(x) for each quorum operation x. This assignment is shown

in Figure 5.2 and is fairly intuitive: operations that change the server state have been

assigned to W and the ordering function consists either of what is being written, or

of what the caller extracts from the set of responses to its query. Operations that

determine the value to be read are assigned to R and the remaining operations are

assigned to T . More precisely, to define o(x) we observe that any quorum operation

x has two parts: the arguments passed to x and the value that x returns. We use

the notation xarg to refer to the arguments passed to the x operation, and xret to

indicate the value returned by x (always a set).

We want to show that the U-dissemination protocol with TRANS-Q oper-

ations offers atomic semantics. Atomic semantics requires all readers to see the

same ordering of the writes and furthermore that this order be consistent with the

order in which writes were made. Note that atomic semantics is concerned with

user-level (or, simply, user) reads and writes, not to be confused with the quorum-

level operations (or, simply, quorum operations) such as Q-RPC and TRANS-Q. We

use lowercase to denote quorum-level operations, and uppercase to denote user-level

operations (e.g. R or W ). Similarly, we use mapping o to denote the ordering con-

straint that the transquorum properties impose on quorum operations, and mapping

O to denote the ordering constraints imposed by the definition of atomic semantics
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on user read and write operations.

Atomic semantics can be defined precisely as follows.

Definition 9. Every user read R returns the value that was written by the last user

write W preceding R in the ordering “<”. “<” is a total order on user writes, and

W → X =⇒ W < X and X → W =⇒ X < W for any user write W and user read

or user write X.

To show that U-Dissemination is atomic we construct the ordering “<” with

O, which maps every user read and write operation to an element of some ordered

set M′: X < X ′ ⇐⇒ O(X) < O(X ′).

We are now ready to prove our first theorem, showing that we can replace

Q-RPC with any operation that satisfies the transquorum properties without com-

promising the semantics of the U-dissemination protocol of Figure 5.1. For simplic-

ity, the initial state of the servers corresponds to a write for the empty value ∅, so

every read is preceded by some write.

Lemma 26. Ordering relation “<” has the following properties: (i) W → X =⇒

W < X and (ii) X → W =⇒ X < W for any user write W and user read or user

write X.

Proof. We build the ordering O for user reads and writes from the ordering o of the

quorum operations that are invoked within these user operations.

The simplest choice would be to set O(X) = o(x) for some quorum operation

x that is called as part of the user-level operation X. Unfortunately, we need to

take one extra step to make sure that user reads get ordered after the user write

whose value they read.

Let last o(X) be the value assigned through the o mapping to the last quorum

operation in the (read or write) user-level operation X. For a user write operation
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W , we define O(W ) to be the pair (last o(W ), 0). For a user read operation R, we

define O(R) to be the pair (last o(R), 1). The second element in these pairs ensures

that user read operations are ordered after the user write whose value they return.

We now show that condition (i) holds. Suppose first that W → X. The

U-dissemination protocol is confirmable, so W → X means that W returns before

X starts, and w → x for all quorum operations w of W and x of X. W ends with

a W operation (see Figure 5.1) and X starts with a quorum operation t ∈ R ∪ T ,

so, by timeliness, last o(W ) ≤ o(t). If X is a user read then O(X)’s second element

is 1, so O(W ) < O(X). If X instead is a user write then last o(X) > o(t) and

therefore O(W ) < O(X) still holds.

To show (ii), suppose now that X → W . The last quorum operation of X

(regardless of whether it is a user read or write) is a W operation. The first quorum

operation of W , t, is a T operation. By timeliness, last o(X) ≤ o(t). The write W

then fills in the last two elements of o(t) with its writer id and data D, resulting

in a value that is strictly larger than o(t). This value is then passed to the last

quorum operation in W , ensuring that last o(W ) > o(t). Since last o(X) ≤ o(t)

and o(t) < last o(W ), it follows that O(X) < O(W ).

Lemma 27. Ordering relation “<” is a total order on user writes.

Proof. By construction of “<”, any two writes W1 and W2 can be compared. To

show that < is a total order, we need to also show that O(W1) = O(W2) =⇒ W1 =

W2.

Assume O(W1) = O(W2). W1 and W2 cannot be performed by different

writers, because the o value includes the writer id, which is different for each writer.

And if W1 and W2 are performed by the same writer they cannot be distinct. If they
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were, because user writes are confirmable it would either follow that W1 → W2 (and,

by (1) O(W1) < O(W2), or, symmetrically, that W2 → W1 and O(W2) < O(W1).

Lemma 28. All user reads R return a value written by some user write W , and

R 6→ W .

Proof. The value that is returned by read R is the third element in the first quorum

operation r ∈ R in R. By soundness, this value was passed to some quorum oper-

ation in W. Both user-level write and user-level read operations call a W quorum

operation, but we observe that (Figure 5.1) the user-level read calls it with a value

that it first gets from a R quorum operation. We can therefore use soundness re-

peatedly to show that there must have been some quorum operation w ∈ W inside

a user-level write operation W such that o(r) = o(w) and r 6→ w. This proves the

first part of the lemma. Since r did not happen before w, it is also impossible that

R happened before W (since the latter would imply the former). This proves the

second part of the lemma.

Lemma 29. All reads R return the value that was written by the last write W

preceding R in the “<” ordering.

Proof. Lemma 28 shows that the value returned by R was written by some write

W such that R 6→ W . By construction of O, we have O(W ) = (last o(W ), 0) =

(last o(R), 0) < (last o(R), 1) = O(R), so W precedes R in the “<” ordering. By

definition, for any write W ′ that is ordered after W in “<” we know that O(W ′) >

O(W ). Since the pairs for O(W ) and O(W ′ have the same second element, the first

element in O(W ′) must be larger than the first in O(W ). Hence, since O(R) and

O(W ) have the same first element, it follows that W ′ is ordered in “<” after R.

Therefore W is the last write preceding R in the “<” ordering.
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Theorem 8. The U-dissemination protocol provides atomic semantics if (i) the

TRANS-Q operations have the transquorums properties for the function o defined

in Figure 5.2, and (ii) for all r ∈ R : o(r) 6= ⊥.

Proof. The four lemmas together prove that U-dissemination with transquorums is

atomic (Definition 9). The three requirements of the definition are: (i) Every user

read R returns the value that was written by the last user write W preceding R

in the ordering “<” (shown by Lemma 29), (ii) “<” is a total order on user writes

(shown by Lemma 27), and (iii) W → X =⇒ W < X and X → W =⇒ X < W for

any user write W and user read or user write X (shown by Lemma 26).

5.5 Dynamic Quorums

The transquorum properties allow us to reason about quorum protocols without be-

ing forced to use quorums that physically intersect. In this section, we leverage this

result to build DQ-RPC, a quorum-level operation that satisfies the transquorum

properties but also allows both the set of servers and the resilience threshold to be

adjusted.

We must first introduce some way to describe how our system evolves over

time, as N and f change.

5.5.1 Introducing Views

We use the well-established term view to denote the set N that defines the quorum

system at each point in time. Views are totally ordered and each view is character-

ized by a set of attributes. For now we consider the following attributes for view

number t: the set of servers N(t) and the resilience threshold f(t). No two views

have the same number. In general, view attributes include enough information to
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compute the quorum size q(t). The responsibility to steer the system from view to

view is left with an administrator, who can begin a view change by invoking the

newView(. . .) command.

The administrator is an abstraction that can be implemented in several ways.

It can be a person, a replicated state machine, or a person interacting with the

system through a replicated state machine. Having a person involved has advantages

because some tasks are difficult to automate, such as deciding to increase f when

anticipating future threats or changing N by buying and installing new machines.

When the administrator calls newView(. . .), the view information stored

at the servers is updated. We say that a view t starts when any server receives

a view change message for view t (for example because the administrator called

newView(t, . . . )). A view t ends when a quorum q(t) of servers have processed a

message indicating that some later view u is starting. Between starting and ending,

the view is active. A view may start before the previous view has ended, i.e. there

may exist multiple active views at the same time; our protocol makes sure that the

register semantics (e.g. atomic) are maintained despite view changes, even if client

operations happen concurrently with them.

The newView(. . .) function has the property that after newView(t) re-

turns, all views older than t have ended and view t has started. At this point the

administrator can safely turn off server machines that are not in view t.

Obviously, we must restrict who can call the newView. . .) function. In our

system, this is solely the privilege of the administrator. If the administrator is mali-

cious then we cannot provide any guarantee (for example, a malicious administrator

could start a view containing no server to deny service to all clients). However, the

system can tolerate crash failures of the administrator (or, when the administrator is
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a person, the system can tolerate a sudden stop of activity from the administrator).

We say that a server is correct in some view t if it follows the protocol from

the beginning of time until view t ends. Otherwise, it is faulty in view t. Note

that a server may be correct in some view t and faulty in a later view u. However,

faulty servers will never be considered correct again. If some server recovers from a

failure (for example by reinstalling the operating system after a disk corruption), it

takes on a new name before joining the system. The notion of resilience threshold

is also parameterized using view numbers. For example, a static U-dissemination

protocol requires a minimum of n ≥ 3f + 1 servers: this requirement now becomes

|N(t)| ≥ 3f(t) + 1 for each view t. Our system assumes that, between the start and

the end of view t, at most f(t) of the servers in N(t) are faulty. Since views can

overlap, sometimes a conjunction of such conditions must hold at the same time.

5.5.2 A Simplified DQ-RPC

We begin with a simplified version of DQ-RPC that, while suffering from serious

limitations, allows us to present more easily several of the key features of DQ-RPC—

the full implementation of DQ-RPC is presented in Section 5.5.3.

The easiest way to implement DQ-RPC is to ensure that different views never

overlap, i.e. that at any point in time there exists at most one active view. If the

administrator copies the data to the new view during a change, we can maintain the

transquorum properties. Since we know that the protocols in Figure 5.1 are correct

for a static quorum system, we can simply make sure to evolve the system through,

as it were, a sequence of static quorum systems. We can do so as follows.

• Replies from servers are tagged with a view number
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simplified-DQ-RPC(D) :
1. repeat :
2. send D to activeServers()
3. gather responses in replies0

4. replies := {r ∈ replies0 : r.sender ∈ activeServers()}
5. until ∃t ,mt : mt ∈ replies ∧ mt.tag.t = t

∧|{r ∈ replies : r.tag.t = t}| ≥ q(|mt.tag.N |,mt.tag.f )
6. return {r ∈ replies : r.tag.t = t}

// t is the current view associated with this operation

Figure 5.3: Simplified Dynamic quorum RPC

• Once a client accumulates q(t) responses tagged with view t, the DQ-RPC

returns these responses.

Our simplified DQ-RPC computes two things: a view t (that we call DQ-

RPC’s current view) and a quorum of q(t) responses. It returns the set of responses,

and t can be determined by looking at r.tag.t from any response r in the set.

Pseudocode for the simplified DQ-RPC is shown in Figure 5.3. The function

q(n, f) computes the quorum size based on the number of servers n and the resilience

threshold f . The activeServers() function gives the list of servers in active views

(views that have started but not ended—there is only one such view at a time

in the Simplified DQ-RPC but we will lift this restriction later). Variable replies

keeps track of all replies from active servers. Simplified DQ-RPC loops until it gets

q(|N(t)|, f(t)) messages tagged with the same view t (message mt is one of these

messages). We write m.tag for the view meta-information tagged onto message m.

These tags contain three fields: the set of servers N , the resilience threshold f and

the view number t. These tags are attached to every message, servers forward them

along with the data that was written. If we assume that clients have some external,

infallible way of knowing which servers are in an active view (the activeServers()
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function) then the above simple scheme is sufficient: DQ-RPC sends its messages

to servers in an active view and it makes sure that it only picks active views as its

current view5.

Showing how DQ-RPC can determine which views are active is the subject

of the rest of this section.

View changes

To determine whether a view is active, it is important to specify how the system

starts (and ends) views.

To initiate a view change, the administrator’s computer first tells a quorum

of machines in the old view that their view has ended. These machines immediately

stop accepting client requests. Clients can thus no longer read from the old view

since they will not be able to gather a quorum of responses; they will continue

retransmitting until they get answers from the new view). The administrator then

performs a user-level read on the machines from the old view to obtain some value v.

Finally, the administrator tells all the machines in the new view that the new view

is starting, and provides them with the initial value v. At this point, the machines

in the new view start accepting client requests.

Naturally, it is not always possible for the administrator to make sure it has

contacted all the new machines: if some server is faulty then it could choose not to

acknowledge, causing the administrator to block forever. In our simplified DQ-RPC

we remove this problem by simply assuming that the administrator has some way

to contact all the servers. We will see in Section 5.5.3 how the full DQ-RPC ensures

that all view changes terminate.

5It is necessary to pick an active view: after some DQ-RPC writes data to the latest view,
reads to a view that has ended would return old data since different views may have no servers in
common.
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A delicate point to consider when performing a view change is that, after

view t ends, so does the constraint that at most f(t) of the machines in view t can

be faulty. For example, if the view was changed to remove some decommissioned

servers, it is natural to expect that the semantics of the system from then on does

not depend on the behavior of the decommissioned servers.

And yet, the decommissioned machines know something about the previous

state of the system. If they all became faulty (as it may happen, since they are

no longer under the administrator’s watchful eye) they would be able to respond to

queries from clients that are not yet aware of the new servers and fool them into

accepting stale data, violating atomic semantics. An analogous situation is depicted

in Figure 5.4: horizontal lines represent servers, and time flows to the right. The

Figure shows a view change where servers are added and f is increased to 4, the size

of the original view. If the servers in the original view all fail, they could fool clients

into believing that the view change never took place. To prevent faulty servers

from being able to fool clients into accessing a view that has ended,the view change

protocol must ensure that no client can read or write to a view after that view has

ended. Our forgetting protocol implements this property.

...

newView
f=1 f=4

if faulty, can these servers
pretend that the reconfiguration

 never took place?

Figure 5.4: Example of view change
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Safe View Certification through “Forgetting” The simplified DQ-RPC re-

quires the client to receive a quorum of responses with view t’s tag before it returns

that value and considers view t current. If the servers are correct, then this ensures

that no DQ-RPC chooses t as current after t ends (recall that views end once a

quorum of their servers have left the view).

The forgetting protocol ensures that this property holds despite Byzantine

failure of the servers. The key insight behind the forgetting protocol is that the

bound f(t) still holds on view t when the forgetting protocol is run, so all then-

correct servers will correctly forget as requested. Clients tag their queries with a

nonce e. Server i tags its response with two pieces of information: 1) server i’s

view certificate 〈i,meta, pub〉admin, signed by the administrator and 2) a signature

for the nonce 〈e〉priv, proving that server i possesses the private key associated

with the public key in the view certificate. The key pair pub, priv is picked by the

administrator. In the certificate, meta contains the meta information for the view,

namely the view number t, the set of servers N and the resilience threshold f . The

quorum size q can be computed from these parameters.

When servers leave view t, they discard the view certificate and private key

that they associated with that view. The challenge is to ensure that even if they

become faulty later, they cannot recover that private key and thus cannot vouch for

a view that they left. We now discuss how our protocol addresses this issue.

The private key is only transmitted when the administrator informs the server

of the new view. Our network model allows the channel to duplicate and delay

this message, which may therefore be received after the server has left the view.

To prevent a decommissioned server that was correct when leaving view t from

recovering the private key we encrypt the message using a secret key that changes
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for every view.

The administrator’s view change message for view t to server i has the fol-

lowing form:

(NEW VIEW, t, oldN, encrypt
(
(〈i,meta, pub〉admin , priv), kt

i

))

We use the notation encrypt(x, k) for the result of encrypting data x using the

secret key k. The view secret key kt
i is shared by the administrator and server i for

view t. It is computed from the previous view’s key using a one-way hash function:

kt
i := h(kt−1

i ). The administrator and server i are given k0
i at system initialization.

When correct servers leave a view t, they discard view t’s certificate, private

key priv and view key kt
i . As a result they will be unable to vouch for view t

later even if they become faulty and gather information from duplicated network

messages. This ensures that clients following the simplified DQ-RPC protocol will

not pick view t as its current view after t ends.

Finding the current view

In the previous section we have seen how clients can identify old views. We now

need to make sure that the clients will be able to find the current view, too.

If the set of servers that the client contacts to perform its DQ-RPC intersects

with the current view in one correct server i, then the client will receive up to date

view information from i and will be able to find the current view.

If that is not the case, then the client can consult all of the servers in U , look-

ing for a list of the servers in the current view that is published by the administrator

(of course, the client would start from some well-known sites in U that have been

assigned this task). These sites provide hints, in the sense that they cannot induce
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a client in error because our certified tags ensure safety: even if the information

the client retrieves from one of these sites is obsolete, the client will never pick as

current a view that has ended. Therefore it suffices that the client eventually learn

of an active view from one of the sites in U .

In the case of a local network, clients could also broadcast a query to find

the servers currently in N . This solution has the advantage of simplicity but it can

be expensive if the servers are not all in the same subnet.

Summary

Clients only accept responses if they all have valid tags for the same view. Until

they accept a response, clients keep re-sending their request (for read or write) to

the servers. Clients use the information in the tags to locate the most recent servers,

and periodically check well-known servers if the servers do not respond or do not

have valid tags. Tags are valid if their view certificate has a valid signature from

the administrator and the tag includes a signature of the client-supplied nonce that

matches the public key in the certificate.

Replacing Q-RPC with this simplified DQ-RPC in a dissemination quorum

protocol from Figure 5.1 results in a dynamic protocol that maintains all the prop-

erties listed in the figure.

However, simplified DQ-RPC has two significant limitations. First, it re-

quires the administrator’s newView(. . .) command to wait for a reply from all the

servers in the new view, which may never happen if some servers in the new view are

faulty. Second, it does not let DQ-RPCs (and, implicitly, user-level read and write

operations issued by clients) complete during a view change: instead the operations

are delayed until the view change has completed. We address both limitations in
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the next section.

5.5.3 The Full DQ-RPC for Dissemination Quorums

DQ-RPC(msg) :
1. Sender sender := new Sender(msg)
2. static ViewTracker g vt := new ViewTracker()
3. repeat :
4. sender .sendTo(g vt .get().N)
5. (Q , t) := g vt .consistentQuorum(sender .getReplies())
6. if running for too long : g vt .consult()
7. until Q 6= ∅

// t is the current view associated with this operation
8. return Q // sender stops sending at this point

Figure 5.5: Dynamic quorum RPC

The full DQ-RPC for dissemination quorums follows the same pattern as its

simplified version: it sends the message repeatedly until it gets a consistent set of

answers, and it picks a current view in addition to returning the quorum of responses.

DQ-RPC uses the technique described in the previous section to determine whom to

send to, but it can decide on a response sooner than the simplified DQ-RPC because

it can identify consistent answers without requiring all the responses to be tagged

with the same view. The full DQ-RPC also runs a different view change protocol

that terminates despite faulty servers.

We split the implementation of DQ-RPC into three parts. The main DQ-

RPC body (Figure 5.5) takes a message and sends it repeatedly (lines 3–7) to the

servers believed to constitute the current view. The client’s current view changes

with the responses that it gets; if no responses are received for a while, then DQ-

RPC consults well-known sources for a list of possible servers (line 6). The repetitive
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sending is handled by the sender object, and the determination of the current view

is done by the ViewTracker instance (Figure 5.9). The client exits when it receives

a quorum of consistent answers. In the simplified protocol, answers were consistent

if they all had the same tag. In this section we develop a more efficient notion of

consistent responses.

The sender is given a message and a destination and it repeatedly sends the

message to the destination. The destination can be changed using the sendTo(. . .)

method and the replies are accessed through getReplies(. . .) (the code for the

Sender class is shown in Figure 5.6).

The ViewTracker class (Figure 5.9) acts like a filter: The client only reads

the replies from sender that ViewTracker considers consistent (Figure 5.5, line

5). The ViewTracker looks at the messages and keeps track of the most recent

view certificate it sees. As we saw in the forgetting protocol, messages are tagged

with a signed view certificate and a signed nonce. Messages that do not have a

correct signature for the nonce are not considered as vouching for the view (line 3

of ViewTracker.consistentQuorum(. . .)). However, even if the nonce signature

is invalid, ViewTracker will use valid view certificates to learn which servers are

part of the latest view (line 5 of ViewTracker.receive(. . .)). The most recent

view certificate can be accessed through the get() method. The ViewTracker

can also get new candidates from U with the consult(. . .) method. Finally, the

ViewTracker has the responsibility of deciding when a set of answers is consistent

through the consistentQuorum(. . .) method.
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Sender variables

m message the message that is to be transmitted

m destinations the set of destination addresses

m thread a resend thread (initially not running)

m replies set of (sender, reply, meta) triples

m recentReply set of senders who sent a reply in the most recent view

m delay delay until the next retransmission (initially 1 second)

constructor Sender(msg) :
1. m message := msg

Sender.sendTo(Dests) :
1. m destinations := Dests
2. if m thread is not running :
3. create m thread // the worker thread m thread will call run()

Sender.run() :
1. m message.nonce = a new nonce
2. while (true) :
3. m recentReply = senders in m replies with meta that has the same

view number as g vt .get()
4. asynchronously send m message to each element of

m destinations - m recentReply
5. wait m delay seconds
6. m delay := m delay * 2
7. while ((j ,r ,s):=g vt.receive(m message.nonce))

// received valid reply (r,s) from server j
8. if j ∈ m destinations :
9. m replies := m replies ∪ (j , r , s)

Sender.getReplies() :
1. return m replies

Figure 5.6: Sender class for dynamic quorum RPC
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Introducing generations

Our dynamic protocols only require the minimal number of servers to tolerate f

faults: 3f + 1 (as established in Chapter 3). The price for this minimal replication

is that every time new servers are added, the data must be copied to them.

When more machines are available, it is possible to use the additional replicas

to speed up view changes. We offer this capability by introducing a new parameter,

spread. When the spread parameter m is non-zero, quorum operations involve more

servers than strictly necessary. This margin still allows quorums to intersect when

a few new servers are added, allowing these view changes to proceed quickly. As a

result, there are now two different kinds of view changes: one in which data must

be copied, and one in which no copy is necessary. In the second case, we say that

the old and new views belong to the same generation. Each view is tagged with a

generation number g that is incremented at each generation change.

These two parameters, m and g, are stored in the view meta-data alongside

with N , f and t.

The additional servers do not necessarily need to be used to speed up view

changes. Using a smaller m with a given n makes the quorums smaller and reduces

the load on the system. The parameter m therefore allows the administrator to

trade-off low load against quick view changes.

Intra-Generation: When Quorums Still Intersect When clients write using

the DQ-RPC operation, their message is received by a quorum of responsive servers.

The size of the quorum depends on the parameters of the current view t (recall that

t is also determined in the course of a DQ-RPC). The quorum size depends on the

failure assumptions made by the protocol. For a U-dissemination Byzantine protocol
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that tolerates b faulty servers, the quorum size is q(n, b,m) = ⌈(n + b + 1)/2 + m/4⌉.

In the absence of view changes, our quorums intersect in b+1+m/2 servers.

If m new (blank) servers are added to the system, then our quorums intersect in

b+1 servers (q(n, b,m)+q(n+m, b,m)−(n+m) = b+1), which is still sufficient for

correctness: one of the servers is correct and the reader will recognize the signature

on the correct data. Thus, up to m servers can be added to the system before data

must be copied to any of the new servers.

Similarly, if m of the servers that were part of a write quorum are removed,

new quorums will still intersect in b+1 servers and the system will behave correctly:

q(n, b, 0) + q(n − m, b,m) − n = n + b + 1 + m/4 − m/2 + m/4 − n = b + 1)

Finally, if b is increased or reduced by up to m (causing the quorums to grow or

shrink accordingly), new quorums will still intersect the old ones in b + 1 servers:

q(n, b,m) + q(n, b + m,m) − n = n + b + 1 + m/2 + 2m/4 − n = b + 1 + m and

q(n, b,m)+ q(n, b−m,m)−n = n+ b+1−m/2+2m/4−n = b+1. More generally,

if after a write a servers are added, d servers are removed, b is changed to b′, and m

is changed to m′, then the quorums will still intersect in a correct servers as long as

a+d+c ≤ (m+m′)/2, where c = |b′−b|. To establish this inequality, we compute the

intersection: q(n, b,m)+q(n+a−d, b′,m′)−(n+a) = (n+b+1)/2+m/4+(n+a−d+

b′)/2+m′/4−(n+a) = (b+b′)/2+1+(m+m′)/4−(a+d)/2. If a+d ≤ (m+m′)/2−c,

then the intersection has size at least (b + b′)/2 + 1 + |b − b′|/2 = max(b, b′) + 1.

If a view change were to break this inequality, then the value must be copied

to some of the new servers before the view change completes: we say that the old

and new views are in different generations.
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View changes: closing the generation gap

The copying of data across generations is done as part of the view change protocol.

Unlike the view change protocol that is associated with simplified DQ-RPC, the full

view change protocol terminates.

Recall, view changes are initiated by the administrator when some machines

need to be added, removed, or moved, or when the resilience f or the spread m

have to be changed. The newView(. . .) method first determines whether the new

view will be in the same generation as the previous one, using the relation in Sec-

tion 5.5.3. It then computes the key pairs and certificates for the new view. Finally

the administrator encodes the certificates using the appropriate secret key and sends

them to all servers in t, re-sending when appropriate and waiting for a quorum of

responses.

Figure 5.7: Server s, transitions for the dissemination protocol

Every server switches state according to the diagram in Figure 5.7. Figure 5.8

shows the matching pseudocode for servers in dissemination quorums. What server

s does when receiving a “NEWVIEW” message depends on whether the new view

belongs to the same generation as s’s current view. In case of generation change

(and if s belongs to the new view), s piggybacks that message on top of a read it

performs on a quorum from the old view. Server s then updates its value to what it
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mainLoop() :
1. receive message from machine i
2. response := result of calling the non-private function with the same name

as the first element of message, if any (⊥ otherwise).
3. reply to i with (m viewCert , 〈message.nonce〉m priv, response)

write(ts,D) :
1. if (m ts<ts) then (m ts ,m D) := (ts ,D)
2. return “WRITE-ACK”

read() :
1. return (m ts ,m D)

newView(t , oldN , encryptedBody ) :
// encryptedBody is of the form encrypt

(
(〈i,meta, pub〉admin , priv), kt

i

)

1. newK := ht−m meta.t (m k)
2. (cert , priv ) := decrypt(encryptedBody, newK)
3. if (cert.meta.N does not include this server) :
4. // limbo
5. (m cert ,m priv ,m k) := (cert , priv ,newK )
6. return “OK”
7. if (cert.meta.g == m cert.meta.g) :
8. // intra-generation view change (ready state)
9. (m cert ,m priv ,m k) := (cert , priv ,newK )
10. return “OK”
11. // inter-generation view change (joining state)
12. (newTS ,newD) := φ(Q-RPC(“READ+NEWVIEW”, cert)) to the servers in oldN
13. if m ts < newTS : (m ts ,m D) := (ts ,D)
14. (m cert ,m priv ,m k) := (cert , priv ,newK ) // ready state now
15. return “OK”

read+NewView(cert) :
1. if (m cert.meta.t < cert.meta.t ∧ cert has a valid signature) :
2. (m cert ,m priv) := (cert ,⊥)
3. return (m ts ,m D)

Figure 5.8: Server protocol for dissemination quorums
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read (if it is newer than the value s currently stores) and updates its view certificate.

If s is part of the new view but there is no generation change, then the s just updates

its view information as per the forgetting protocol. If s is not part of the new view,

then it updates its view certificate, too. In that case s will not be able to vouch for

the new view, since it has no valid view certificate for it, but it will still be able to

direct clients to the current servers.

Servers are in the limbo state initially and after leaving the view. They are

in the joining state while they copy information from the older view, and they are in

the ready state otherwise. Servers process client requests in all three states. Servers

in the joining state use the view certificate for the old view (if they have it) until

they are ready.

The administrator’s newView(. . .) waits for a quorum of new servers to

acknowledge the view change and then it posts the new view to at least one server

in U and returns. At this point, the administrator knows that the data stored in the

machines that were removed from the view are not needed anymore and therefore

the old machines can be powered off safely.

There may still be some machines in the joining stage at this point. These

machines do not prevent operations from completing because DQ-RPC operations

only need f + 1 servers in the new generation to complete, and any dissemination

quorum contains at least f + 1 correct servers.

When newView(. . .) returns, the old view has ended and the new view has

started and matured, meaning that at least one correct server is done processing

the view change message for it. This means that reads and writes to the new view

will succeed and reads and writes to the old view will be redirected to the new view

(either by the old servers or after consultation of the well-known locations).
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(meta) ViewTracker.get() :
// returns the latest view meta-data

1. return m maxMeta

ViewTracker.consult() :
// ask well-known servers for the latest meta-data

1. Choose a server j at random from U , biased to favor
the well-known view publishers

2. send (“CONSULT”,m maxMeta) to j

ViewTracker.receive(nonce) :
// used by the Sender object when gathering replies

1. if there is no message waiting : return false
2. receive (msg ,meta) from sender
3. if not validCertificate(meta) : goto 1 // faulty server
4. if meta.t > m maxMeta.t :
5. m maxMeta := meta
6. if not validTag(meta, nonce) : goto 1 // faulty or limbo server
7. if msg == “CONSULT-ACK” : goto 1
8. return (sender ,msg ,meta)

(messages , view) ViewTracker.consistentQuorum(messageTriples ) :
// returns a consistent quorum of messages (if any) and the current view

1. msgInQuorun := {m ∈ messageTriples : m.sender ∈ m maxMeta.N }
2. if |msgInQuorun | < q(|m maxMeta.N |,m maxMeta.f ,m maxMeta.m) :
3. return (∅,⊥) // fail if there is no consistent quorum of messages
4. recentMessages := {m ∈ msgInQuorum : m.meta.g == m maxMeta.g}
5. if |recentMessages | < m maxMeta.f + 1 : return (∅,⊥)

// fail if the view is not mature
6. return (msgInQuorun ,m maxMeta)

Figure 5.9: ViewTracker class

The protocol as presented here requires the administrator to be correct. If

the administrator crashes after sending the new view message to a single faulty

new server, the new server can cause the servers in the old view to join the limbo

state without informing the new servers that they are supposed to start serving. In
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Section A.2 we show a variant that tolerates crashes in the sense that if the adminis-

trator machine crashes at any point during the view change and never recovers then

read and write operations will still succeed even though it is not possible to change

views anymore. If the administrator crashes and then recovers, then view changes

can proceed normally. The basic idea is that the servers in the old view make sure

that a quorum of servers in the new view is informed of the view change before they

let the old view end.

DQ-RPC satisfies transquorums for dissemination quorums

We can now prove that DQ-RPC satisfies the transquorum properties, so Dynamic

U-Dissemination provides atomic semantics.

Lemma 30. The view t chosen by a DQ-RPC operation is concurrent with the

DQ-RPC operation.

Proof. The view being concurrent means that it started and has not ended. We show

each in turn. The view t is chosen in ViewTracker’s findConsistentQuorum(. . .)

method, which takes as input messages returned by ViewTracker’s receive(. . .)

method (Figure 5.9). The receive(. . .) method only returns messages that have a

valid certificate signed by the administrator (receive(. . .), line 3). These signatures

cannot be faked. If view t is chosen, then a message was received that bore a valid

certificate for view t, signed by the administrator. By definition, then, view t has

started.

If view t has ended, then the correct servers in a quorum Q0 of q(N(f), f(t),m(t))

servers have processed the view change message and discarded the view meta-

information associated with view t. The forgetting protocol ensures that the servers

in Q0 that discarded the meta-information are not able to recover it. By quorum
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intersection6, the quorum of q(t) replies in t selected by DQ-RPC to vouch for view

t intersects the quorum Q0 in at least one server s that was correct in t. Only mes-

sages with a valid tag are accepted (receive(. . .), line 6, Figure 5.9) and a server

can only generate a valid tag for view t if it has the meta-information for view t.

If DQ-RPC chooses view t, then s must have been able to generate a valid tag.

Therefore, view t has not ended.

Lemma 31. All reads succeed. That is, there is no DQ-RPCT or DQ-RPCR oper-

ation x such that φ(x) = ⊥.

Proof. The φ(Q) function returns the largest valid element of Q. DQ-RPC

replies contain at least f + 1 responses tagged with the latest generation (line

5 of consistentQuorum(. . .), Figure 5.9). Servers always forward the highest-

timestamped data they have received (write(. . .), line 1, Figure 5.8), so all DQ-RPC

replies contains at least one non-⊥ reply from a correct server that can be chosen

by φ.

We now show that DQ-RPC provides the transquorum properties.

Lemma 32. All T operations in the dissemination DQ-RPC are timely.

Proof. Lemma 31 shows that for any DQ-RPCR operation r, φ(r) 6= ⊥. Since o(r) =

φ(r) (Figure 5.2), it follows directly that o(r) 6= ⊥. So, according to the definition

of timeliness, we must prove: ∀w ∈ W,∀r ∈ R ∪ T : w → r =⇒ o(w) ≤ o(r).

Our proof proceeds by case analysis on the views associated with operations r and

w. The three possible cases are: (i) w and r belong to the same generation, (ii) w

belongs to the generation preceding r’s, or (iii) w belongs to a generation older than

r’s. It is not possible for w to belong to a generation that comes after r if w → r:

6It is safe to use quorum intersection here, since Q0 and q(t) are quorums of the same view t.

99



DQ-RPCs decide on a view whose generation is vouched for by at least f +1 servers

with data (Figure 5.9, consistentQuorum(. . .), line 5). That means that one of

these servers is correct. Correct servers only install a generation after all previous

generation have ended (Figure 5.8, newView(. . .), line 14), so r cannot pick an

earlier generation.

If w and r picked views that are in the same generation then the two quorums

intersect in at least one correct server. Since w → r, servers never decrease the

timestamp they store, and the first element of o(r) is at least the timestamp of the

data written by w (for both R and T operations), it follows that o(w) ≤ o(r).

If w picked a view t that is in the generation that immediately precedes

the generation v to which r’s view belongs, then we consider the last view u in t’s

generation. As shown in the previous paragraph, reads from a quorum q(u) in u

will result in a timestamp that is at least as large as o(w). Such a read occurs when

a server transitions to the ready state in v’s generation, and all correct servers that

enter v’s generation therefore have a timestamp at least as recent as o(w). The read

r waits until it knows that view v is mature, so at least one correct server answered

the DQ-RPC r after installing view v. Since that server is correct, its reply is

valid. Since that reply has a timestamp at least as recent as o(r) and dissemination

quorums pick the largest valid reply, it follows that o(w) ≤ o(r).

If w picked a view that happens several generations before r then we can

use induction, using the previous paragraph’s reasoning several times to show that

o(w) ≤ o(r).

This covers all the possible ordering for generations, so ∀w ∈ W,∀r ∈ T :

w → r =⇒ o(w) ≤ o(r).

Lemma 33. All R operations in the dissemination DQ-RPC are sound.
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Proof. No dissemination operation returns ⊥ (Lemma 31), so we show ∀r ∈ R :

∃w ∈ W s.t. r 6→ w ∧ o(w) = o(r). Since o(r) picks the largest valid value and

digital signatures cannot be faked, o(r) can only return a value that was written

previously, so one for which a w operation exists. Since the value was written

previously, the write must happen before the read or concurrently with it.

Lemma 34. The DQ-RPC protocol in Figure 5.5 provides the transquorum prop-

erties for the ordering function o of Figure 5.2.

Proof. This lemma follows directly from Lemmas 32 and 33.

Theorem 9. U-dissemination based on DQ-RPC provide atomic semantics.

Proof. This follows directly from the fact that U-dissemination is atomic if the tran-

squorum properties hold (Theorem transquorumimpliesatomic-redux) and that DQ-

RPC for dissemination quorums provides the transquorum properties (Lemma 34).

5.5.4 Optimizations

Single-Roundtrip Reads

Both the U-dissemination and U-masking protocols (and their hybrid counterparts)

can be sped up by skipping the writeback (Figure 5.1, read(), line 3) in the case of

unanimous reads, i.e. reads in which responses in the quorum agree. This idea is

not new but it is interesting since it leads to single-roundtrip reads in the common

case where no operation is concurrent with the read.

For single-roundtrip reads the TRANS-QR operations must have the prop-

erty that ∀r1, r2 ∈ R : unanimous(r1) ⇒ o(r1) ≤ o(r2). This property holds for
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quorum intersection (since an unanimous read means that the service state is sim-

ilar to what it would be after writing that value), and it also holds for both our

dissemination and masking DQ-RPC implementations.

Reducing Transmissions

The protocol, as described in Section 5.5.2, piggybacks view information onto each

message sent by the servers. Also, clients verify all of these messages. Since in most

cases the view will be the same as it was in the previous exchange, optimizations

can be used to decrease both the amount of data that needs to be transmitted and

the computations necessary to verify that information.

Servers send the view information along with the administrator certificate

and signed nonce. To optimize for the common case while retaining the forgetting

property described in Section 5.5.2, servers could omit the view information and

instead just send the view number t. If the client knows about that view then it has

all the necessary data to verify the signature. If it does not, then the client sends a

request to the server to retrieve the complete view information.

Another opportunity arises in the choice of quorums. Instead of using the

same quorums for the view’s meta-information as for the data, we can use quorums

of different size for read and write operations (we call them asymmetric quorums).

This is beneficial because view meta-data is read more often than it is written. These

asymmetric quorums use the smallest possible read quorums (2f + 1 since the view

meta-information is self-verifying) and the largest possible write quorums (n − f).

The current approach in ViewTracker is to verify that (1) there is a dissemination

(resp. masking) quorum of responses such that no member claims that the current

view has ended and (2) enough responses are in the same generation as the current
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view. The first point can be changed to (1) there is a read quorum of responses such

that no member claims that the current view has ended. Reads naturally still need

to gather a dissemination (resp. masking) quorum of responses in order to read the

variable, but with this change it is not necessary anymore that all the responses be

tagged with view information. The client can then indicate in its queries whether

the server should include a view certificate in its reply.

Another natural optimization is that in the few cases where servers still need

to send the view meta-information to clients, the servers can send the difference

between their information and the one the client knows instead of sending the whole

thing.

Proactive Recovery

Proactive recovery is a technique in which machines are periodically refreshed to a

known good state. This reduces the number of machines that are faulty at the same

time and thus reduces the risk that the system will fail because more than f servers

are faulty.

Proactive recovery requires us to remove a server, refresh it (for example by

rebooting it), and then bring it back in the system under a different name. Our

dynamic quorums are particularly well suited for proactive recovery because we can

add and remove servers with little overhead, and client operations can complete

even if they span several different views.

Faster Reads and Writes

It is possible to speed up quorum operations by slightly weakening the conditions

under which the DQ-RPC function returns. The correctness of the protocol only

requires that DQ-RPC selects as its current view t one that is concurrent with
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(messages, view) ViewTracker.consistentQuorum(messageTriples) :
1. find qrm ⊆ messageTriples such that
2. let mt := largest-timestamped element of qrm
3. ∀m ∈ qrm : m.sender ∈ mt.meta.N , and
4. |qrm | = q(|mt.meta.N |,mt.meta.f ,mt.meta.m),
5. and |{m ∈ qrm : validTag(m) ∧ m.meta.g = mt.meta.g}| ≥ mt.meta.f + 1
6. if no such qrm exists : return (∅,⊥)
7. return (qrm,mt.meta)

Figure 5.10: Optimized consistentQuorum(. . .)

the DQ-RPC. The DQ-RPC we show in this chapter always picks the most recent

concurrent view that is knows of. This sometimes causes DQ-RPC to wait for

messages unnecessarily. Consider the case where q + 1 responses are received. The

first response is in view t + 1 and all the others are in view t. In that situation

it would be perfectly reasonable to pick the last q responses as the result of the

DQ-RPC operation, but our simplified operation will wait until it gets a q responses

in view t + 1.

The change impacts ViewTracker (Figure 5.9). Instead of keeping track of

the most recent view certificate it sees (m maxS), ViewTracker must now inspect

each set of responses to see if there exists some view that can be considered current.

consistentQuorum(. . .) is replaced with the code of Figure 5.10.

This code is slightly harder to read than the original, but it still picks a

current view that is concurrent with the DQ-RPC and it allows DQ-RPC to complete

sooner in the case outlined above. The termination condition here is strictly weaker

than before, so there is no situation where this DQ-RPC would be slower than the

original one.

The get() method should also be modified to include more servers than just
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the last view, for example the union of the two most recent views (safety and liveness

hold as long as servers from the last view are included, but allowing more servers

increases the chances of speeding up a read or write operation).

Faster Generation Changes

Our protocols’ ability to add servers when necessary relies on the fact that the

data will be copied to the new servers. The DQ-RPC and view change protocols

make sure that the protocol semantics are maintained despite the copying. However,

copying data takes time. There are some cases where we can speed up generation

changes.

Consider first the case where some servers of the new view are also part of

the old view. It would be unwise for them to just keep whatever data they have, for

the data they are storing could be untimely and the new view may require them to

hold timely data (for example if the quorum size changes). In most cases, however,

the data on the server is timely and we can avoid the copy by using conditional

reads. In a conditional read, the server issuing the read indicates the timestamp of

the data that it has. If the respondent does not have data that is newer than the

indicated timestamp then it sends a response with empty data (but the timestamp

and view certificates are still included when appropriate). If the respondent has

newer data then it sends it as usual. As a result, servers that are already timely do

not need to transfer the data across the network and they can join the new view

much more quickly.

Conditional reads yield their full power when used in combination with our

second optimization. Recall that the spread parameter allows new servers to join

the system without having to receive a copy of the data first (intra-generation view
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changes). These servers normally participate in the protocol and refresh their data

in the next generation change. We can choose, instead, to have the new (blank)

servers read the current value of the data in the background (perhaps using TCP

Nice [155]). When it comes time for the generation change, the servers can use

conditional reads: if they already have the right data then they can move to the

new view instantly.

5.6 Conclusions

We present a methodology that transforms several existing Byzantine protocols for

static quorum systems [61, 100, 101, 111, 126] into corresponding protocols that op-

erate correctly when the administrator is allowed to add or remove servers from the

quorum system, as well as to change its resilience threshold. Performing the trans-

formation does not require extensive changes to the protocols: all that is required

is to replace calls to the Q-RPC primitive used in static protocols with calls to DQ-

RPC, a new primitive that in the static case behaves like Q-RPC but can handle

operations across quorums that may not intersect while still guaranteeing consis-

tency. Our methodology is based on a novel approach for proving the correctness of

Byzantine quorum protocols: through our transquorum properties, we specify the

characteristics of quorum-level primitives (such as Q-RPC) that are crucial to the

correctness of Byzantine quorum protocols and proceed to show that it is possible

to design primitives, such as DQ-RPC, that implement these properties even when

quorums don’t intersect. We hope that designers of new quorum protocols will be

able to leverage this insight to easily make their own protocols dynamic.
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Chapter 6

Separating Agreement from

Execution for State Machine

Replication

6.1 Introduction

In previous chapters we focused on quorums and registers and saw how useful they

can be. However, there are limits to what can be achieved with quorums and

registers when clients can fail. Consider for example the simple program below

which attempts to use a shared register R to implement a counter.

1. increment() {
2. x := R.read()
3. R.write( x + 1 )
4. }

Figure 6.1: An illustration of the limitations of registers
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There are situations were increment() does not behave as one might expect.

Specifically, if the initial value of the register is 0 and two users run increment()

concurrently, then one would expect the final value of R to be 2. Unfortunately

it is possible for the final value to be 1 (if the second client runs increment() to

completion in between lines 2 and 3 from the first client). Although read and write

operations on registers are atomic, sequences of these operations are not—so the

two clients’ calls to increment() can be interleaved, causing unintended results.

In this chapter we turn our attention to a more powerful primitive, the

replicated state machine [82, 84, 139], a universal construction that can make any

operation (including increment()) atomic and fault-tolerant.

Recent work has demonstrated that Byzantine fault-tolerant (BFT) state ma-

chine replication is a promising technique for using redundancy to improve integrity

and availability [127], and that it is practical in that it adds modest latency [31], can

proactively recover from faults [32], and can make use of existing software diversity

to exploit opportunistic n-version programming [130].

Unfortunately, two barriers limit widespread use of BFT state machine repli-

cation to improve reliability. First, asynchronous BFT replicated state machines

require more than three-fold replication to work correctly (see [27] for the proof in

the case of a fair scheduler and [49] for the proof in the case of eventual synchrony);

tolerating just a single faulty replica requires at least four replicas. Even with op-

portunistic n-version programming and falling hardware costs, this replication cost

is significant, so reducing the replication required would significantly increase the

practicality of BFT replication.

Second, even though BFT state machine replication allows correct clients to

access the service despite some failures (thus improving reliability), it also makes
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it easier for an unauthorized client to access the service, hurting confidentiality. In

particular, although either increasing the number of replicas or making the imple-

mentations of replicas more diverse reduces the chance that an attacker can compro-

mise enough replicas to bring down a service, each replica also increases the chance

that at least one replica has an exploitable bug—and in state machine replication

all data are stored on all replicas so an attacker need only compromise the weakest

replica in order to endanger the confidentiality of all data stored on the service.

In this chapter, we explore a new BFT replication architecture that addresses

both limitations. The key principle of this architecture is to separate agreement from

execution. State machine replication relies on first agreeing on a linearizable order

of all requests [82, 84, 139] and then executing these requests on all state machine

replicas. Existing BFT state machine systems tightly couple these two functions, but

cleanly separating agreement and execution yields three fundamental advantages.

First, our architecture reduces replication costs because the new architecture

can tolerate faults in up to half of the state machine replicas responsible for executing

requests. While our system still requires 3f +1 agreement replicas to order requests

using f -resilient Byzantine agreement, it only requires a simple majority of correct

execution replicas to process the ordered requests. This distinction is crucial, because

execution replicas are likely to be much more expensive than agreement replicas

both in terms of hardware—because of increased processing, storage, and I/O—

and, especially, in terms of software. By reducing the number of execution replicas,

we reduce the hardware cost by reducing the number of times the same request is

processed, the number of I/O requests, and the number of application state copies

that must be kept. We also reduce the software and maintenance cost, because

fewer versions of the application are needed. When n-version (or opportunistic n-
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version) programming is used to eliminate common-mode failures across replicas, the

agreement nodes are part of a generic library that may be reused across applications,

further reducing software cost. Finally, since agreement nodes are simpler, it may be

possible to verify their correctness formally so that only a single version is needed.

Second, decoupling agreement from execution leads to agreement replicas

that are cheaper than execution replicas and can therefore be used more liberally.

In this chapter, we show that additional replicas allow agreement to complete in two

communication steps in the common case instead of three (we say the protocol is

two-step). More precisely, we prove that the minimal number of agreement replicas

that must be added for agreement to be two-step despite t actual failures is 2t (for

a total of 3f + 2t + 1). We show a new consensus protocol (FaB Paxos) that is

optimal in that it uses the minimal number of agreement nodes to reach two-step

agreement.

Third, separating agreement from execution leads to a practical and general

Privacy Firewall architecture to protect confidentiality through Byzantine replica-

tion. In existing state machine replication architectures, a voter co-located with

each client selects from among replica replies. Voters are co-located with clients to

avoid introducing a new single point of failure when integrity and availability are

goals [139], but when confidentiality is also a goal, existing architectures allow a

malicious client to observe confidential information leaked by faulty servers. We do

not assume servers that cannot be compromised so voting must take place, and we

aim to ensure that clients can only see data they are allowed to see. In our system,

therefore, we delegate the voting role to a redundant set of Privacy Firewall nodes.

These nodes filter out incorrect replies before they reach the the agreement nodes,

so that even compromised execution nodes (that have access to confidential informa-
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tion) cannot leak it to an attacking client. We restrict the physical communication

links to prevent faulty execution nodes from bypassing the Privacy Firewall and

communicating directly with a client.

A challenge of separating agreement and execution is that some communica-

tion formerly implicit because of the co-location of agreement and execution nodes

must now be made explicit. Moreover, these messages can now be lost by unreliable

links where, formerly, communication was reliable since source and destination were

colocated, so special care needs to be taken for retransmissions. We face signifi-

cant challenges to guaranteeing confidentiality with the Privacy Firewall because

of nondeterminism in some applications and in the network, because an adversary

can potentially influence nondeterministic outputs to achieve a covert channel for

leaking information. For the applications we examine, agreement nodes can resolve

application nondeterminism obliviously, without knowledge of the inputs or the ap-

plication state, and therefore without leaking confidential information. However,

more work is needed to determine how broadly this approach can be applied. For

nondeterminism that stems from the asynchrony of our system model and unrelia-

bility of our network model (e.g., reply timing, message order, and retransmission

counts), we show that our system provides output symbol set confidentiality, which

is similar to possibilistic non-interference [114] from the programming languages lit-

erature. We also outline ways to restrict network nondeterminism, but future work

is needed to understand the vulnerability of systems to attacks exploiting network

nondeterminism and the effectiveness of techniques to reduce this vulnerability.

We prototype our Privacy Firewall to evaluate experimentally its perfor-

mance. Overall, we find it competitive with previous systems [31, 32, 130] even

though these systems offer no fault-tolerant privacy guarantee. For example with
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respect to latency, our system is 16% slower than BASE [130] for the modified

Andrew-500 benchmark with the Privacy Firewall. The comparison is less clear-

cut with respect to processing overhead and overall system cost, however. On one

hand, our architecture allows reduction in the number of execution servers and the

resources consumed to execute requests. On the other hand, when the Privacy Fire-

wall is used, the system must pay for the extra firewall nodes and for a relatively

expensive threshold signature operation (though the latter cost can be amortized

across multiple replies by signing bundles containing multiple replies). Overall, ap-

plications with little processing and small aggregate load (thus small bundle size)

make the relative overhead of the Privacy Firewall higher, and in the opposite situ-

ation the Privacy Firewall’s relative overhead is smaller.

The main contribution of this chapter is to present the first study to apply

systematically the principle of separation of agreement and execution to (1) reduce

the replication cost, (2) reduce the number of communication steps for agreement

in the common case, and (3) enhance confidentiality properties for general Byzan-

tine replicated services. Although in retrospect this separation is straightforward,

all previous general BFT state machine replication systems have tightly coupled

agreement and execution, have paid unneeded replication costs, and have increased

system vulnerability to confidentiality breaches.

In Section 6.2, we describe our system model and assumptions. Then, Sec-

tion 6.3 describes how we separate agreement from execution, and Section 6.4 shows

how to modify agreement so it completes in fewer communication steps in the com-

mon case. In Section 6.5, we determine the minimal number of communication steps

for a given number of agreement nodes. We construct an optimal protocol matching

this lower bound in Sections 6.6 and 6.7. We show in Section 6.8 how to build
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a replicated state machine with the two-step agreement cluster, and Section 6.9

presents performance optimizations. Section 6.10 describes the Privacy Firewall

architecture. Section 6.11 describes and evaluates our Privacy Firewall prototype.

Finally, Section 6.12 puts related work in perspective, and Section 6.13 summarizes

our conclusions.

6.2 System Model and Assumptions

Consider a distributed asynchronous system [82]. Our protocols maintains the safety

properties of the replicated state machine regardless of timing, crash failures, mes-

sage omission, message reordering, and message alterations that do not subvert our

cryptographic assumptions defined below. It is well known [54] that consensus can-

not be solved in the asynchronous model with an adversarial scheduler. Therefore

our system makes the relatively weak bounded fair links assumption for progress.

Safety is maintained even if this assumption does not hold. Define a bounded fair

links network as a network that provides two guarantees. First, it provides the

fair links guarantee: a message sent infinitely often to a correct receiver is received

infinitely often. Second, there exists some delay T such that if a message is retrans-

mitted infinitely often to a correct receiver according to some schedule from time t0,

then the receiver receives the message at least once before time t0 +T ; note that the

participants in the protocol need not know the value of T . This assumption appears

reasonable in practice assuming that network partitions are eventually repaired.

We assume a Byzantine fault model for machines, and a strong adversary

that can coordinate faulty nodes in arbitrary ways. However, we restrict this weak

assumption about machine faults with two strong assumptions. First, we assume

that some bound on the number of faulty servers is known; for example a given
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configuration might assume that at most f of n servers are faulty. Second, we

assume that no machine can subvert the assumptions about cryptographic primitives

described in the following paragraphs.

Our protocol assumes cryptographic primitives with several important prop-

erties. We assume a cryptographic authentication certificate that allows a subset

containing k nodes out of a set S of nodes to operate on message X to produce an

authentication certificate 〈X〉S,D,k that any node in some set of destination nodes D

can regard as proof that k distinct nodes in S said [28] X. To provide a range of per-

formance and privacy trade-offs, our protocol supports three alternative implemen-

tations of such authentication certificates that are conjectured to have the desired

properties if a bound is assumed on the adversary’s computational power: public

key signatures [128], message authentication code (MAC) authenticators [33, 154],

and threshold signatures [43].

In order to support the required cryptographic primitives, we assume that

correct nodes know their private keys (under signature and threshold signature

schemes) or shared secret keys (under MAC authenticator schemes) and that if a

node is correct then no other node knows its private keys. Further, we assume that

if both nodes sharing a secret key are correct, then no other node knows their shared

secret key. We assume public keys are distributed so that all intended recipients of

messages know the public keys needed to verify messages they receive. We make

the standard cryptographic assumption that only the holder of the private key can

sign a message in a way that the signatures matches the public key, that only the

holder of the private key can decrypt a message encrypted with the public key, and

that messages encrypted with a shared key can only be decrypted with that key.

Note that in practice, public key and threshold signatures are typically im-
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plemented by computing a cryptographic digest of a message and signing the digest,

and MACs are implemented by computing a cryptographic digest of a message and

a secret. We assume that a cryptographic digest of a message X produces a fixed-

length collection of bits D(X) such that it is computationally infeasible to generate

a second message X ′ with the same digest D(X ′) = D(X) (collision-resistance) and

such that it is computationally infeasible to calculate X given D(X) (D is one-way).

Because digest values are of fixed length, it is possible for multiple messages to have

the same digest value, but the length is typically chosen to be large enough to make

this probability negligible over an execution of the protocol. Several existing digest

functions such as SHA256 [142] are believed to have these properties, assuming a

computationally bounded adversary.

To allow servers to buffer information regarding each client’s most recent

request, we assume a finite universe of authorized clients that send authenticated

requests to the system. For signature-based authenticators, we assume that each

server knows the public keys of all authorized clients. For MAC-based authentica-

tors, we assume each client/server pair shares a secret key and that if both machines

are correct, no other node knows the secret key. For simplicity, our description as-

sumes that a correct client sends a request, waits for the reply, and sends its next

request, but it is straightforward to extend the protocol to allow each client to have k

outstanding requests. The system tolerates an arbitrary number of Byzantine-faulty

clients in that non-faulty clients observe a consistent system state regardless of the

actions of faulty clients. Note that a faulty client can issue disruptive requests that

the system executes (in a consistent way). To limit such damage, applications typ-

ically implement access control algorithms that restrict which actions can be taken

by which clients.
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Figure 6.2: High level architecture of (a) traditional Byzantine fault-tolerant state
machine replication, (b) separate Byzantine fault-tolerant agreement and execution,
and (c) separate optimization of the execution cluster.

The basic system replicates applications that behave as deterministic state

machines. Given a current state C of the state machine and an input I, all non-

faulty copies of the state machine transition to the same subsequent state C ′. We

also assume that all correct state machines have a checkpoint() function that

operates on the state machine’s current state and produces sequence of bits B.

State machines also have a restore(B) function that operates on a sequence of bits.

If a correct machine executes checkpoint() to produce some value B , then any

correct machine that executes restore(B) will then be in state C . We discuss how

to abstract nondeterminism and minor differences across different state machine

replicas [130] in Section 6.3.1.
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6.3 Separating Agreement from Execution

Figure 6.2(a) illustrates a traditional Byzantine fault tolerant state machine archi-

tecture that combines agreement and execution [31, 32, 130]. In such systems, clients

send authenticated requests to the 3f +1 servers in the system, where f is the max-

imum number of faults the system can tolerate. The servers then use a three-phase

protocol to generate cryptographically verifiable proofs that assign unique sequence

numbers to requests. Each server then executes requests in sequence-number order

and sends replies to the clients. A set of f + 1 matching replies represents a reply

certificate that a client can regard as proof that the request has been executed and

that the reply is correct.

Figure 6.2(b) illustrates our new architecture that separates agreement and

execution. The observation that enables this separation is that the agreement phase

of the traditional architecture produces a cryptographically-verifiable proof of the

ordering of a request. This agreement certificate can be verified by any server, so it

is possible for execution nodes to be separate from agreement nodes.

Figure 6.2(c) illustrates the first of the three enhancements enabled by the

separation of execution and agreement: it allows us to separately optimize the agree-

ment and execution clusters (the agreement cluster is the set of all agreement nodes).

In particular, it takes a minimum of 3f + 1 servers to reach agreement in an

eventually synchronous system that can suffer f Byzantine faults [49]. But, once

incoming requests have been ordered, a simple majority of correct servers suffices to

mask Byzantine faults among execution servers—2g+1 replicas can tolerate g faults.

Note that the agreement and execution servers can be separate physical machines,

or they can share the same physical machines.

Reducing the number of state machine execution replicas needed to tolerate

117



a given number of faults can reduce both software and hardware costs of Byzantine

fault-tolerance: as we discuss in Section 6.1, fewer execution replicas means reduced

hardware, software, and maintenance costs.

In the remainder of this section we explain in detail how we separate agree-

ment from execution and reduce the number of execution nodes.

6.3.1 Inter-Cluster Protocol

We first provide a cluster-centric description of the protocol among the client, agree-

ment cluster, and execution cluster. Here, we treat the agreement cluster and exe-

cution cluster as opaque units that can reliably take certain actions and save certain

state. In Sections 6.3.2 and 6.3.3 we describe how individual nodes within these

clusters act to ensure this behavior.

Client behavior

To issue a request, a client sends a request certificate to the agreement cluster. In

our protocol, request certificates have the form 〈“REQUEST”, o, t, c〉c,A,1 where o

is the operation requested, t is the timestamp, and c is the client that issued the

request; the message is certified by the client c to agreement cluster A and one

client’s certification is all that is needed.1 A correct client issues monotonically

increasing timestamps; if a faulty client’s clock runs backwards, its own requests

may be ignored, but no other damage is done.

After issuing a request, a client waits for a reply certificate certified by at

least g + 1 execution servers. In our protocol a reply certificate has the form:

〈“REPLY”, v, n, t, c, E , r〉E,c,g+1 where v was the view number in the agreement clus-

ter when it assigned a sequence number to the request, n is the request’s sequence

1Note that our message formats and protocol closely follow Castro and Liskov’s [31, 32].
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number, t is the request’s timestamp, c is the client’s identity, r is the result of the

requested operation, and E is the set of execution nodes of which at least g +1 must

certify the message to c.

If after a timeout the client has not received the complete reply certificate,

it retransmits the request to all agreement nodes. Castro and Liskov suggest two

useful optimizations to reduce communication [33]. First, a client initially sends

a request to the agreement server that was the primary during the view v of the

most recent reply received; retransmissions go to all agreement servers. Second, a

client’s request can designate a specific agreement node to send the reply certificate

or can contain the token ALL, indicating that all agreement servers should send.

The client’s first transmission designates a particular server, while retransmissions

designate ALL.

Agreement cluster behavior

The agreement cluster’s job is to order requests, send them to the execution cluster,

and relay replies from the execution cluster to the client. The agreement cluster

acts on two messages—the intra-cluster protocols discussed later will explain how

to ensure that these actions are taken reliably.

First, when the agreement cluster receives a valid client request certificate

〈“REQUEST”, o, t, c〉c,A,1 the cluster proceeds with three steps, the first of which is

optional.

1. Optionally, check cachec for a cached reply certificate with the same client

c and a timestamp that is at least as large as the request’s timestamp t. If

such a reply is cached, send it to the client and stop processing the request.

cachec is an optional data structure that stores the reply certificate for the
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most recent request by client c. cachec is a performance optimization only,

required for neither safety nor liveness, and any cachec entry may be discarded

at any time.

2. Generate an agreement certificate that binds the request to a sequence

number n. In our protocol, the agreement certificate is of the form

〈“COMMIT”, v, n, d,A〉A,E,2f+1 where v and n are the view and sequence num-

ber assigned by the agreement three phase commit protocol, d is the digest

of the client’s request (d = D(m)), and the certificate is authenticated by at

least 2f + 1 of the agreement servers A to the execution servers E .

Note that if the request’s timestamp is no larger than the timestamp of a

previous client request, then the agreement cluster still assigns the request a

new sequence number. The execution cluster will detect the old timestamp t,

assume such requests are retransmissions of earlier requests, and treat them

as described below.

3. Send the request certificate and the agreement certificate to the execution

cluster.

Second, when the agreement cluster receives a reply certificate

〈“REPLY”, v, n, t, c, E , r〉E,c,g+1 it relays the certificate to the client. Optionally,

it may store the certificate in cachec.

In addition to these two message-triggered actions, the agreement cluster

performs retransmission of requests and agreement certificates if a timeout expires

before it receives the corresponding reply certificate. Unlike the traditional architec-

ture in Figure 6.2(a), communication between the agreement cluster and execution

cluster is unreliable. And, although correct clients should repeat requests when they
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do not hear replies, it would be unwise to depend on (untrusted) clients to trigger

the retransmissions needed to fill potential gaps in the sequence number space at

execution nodes. For each agreement certificate, the timeout is set to an arbitrary

initial value and then doubled after each retransmission (increasing the timeout is

necessary to ensure that the timeout is eventually longer than the actual message

delivery time). To bound the state needed to support retransmission, the agreement

cluster has at most P requests outstanding in the execution pipeline and does not

generate agreement certificate n until it has received a reply with a sequence number

of at least n − P . Choosing P larger than the number of clients makes it possible

to add a fairness mechanism that ensures that no client is starved.

Execution cluster behavior

The execution cluster implements application-specific state machines to process re-

quests in the order determined by the agreement cluster. The intention is that all

the correct replicas in the execution cluster have the same state Q, and that af-

ter a request r1 is executed all the correct replicas have the same state Q1 as a

correct node executing r1 would. This state includes not only the result of execut-

ing the client requests but also additional information necessary for retransmissions

of replies. Links are unreliable, so a reply to some client c may be lost and the

client’s retransmission protocol can cause a request r to be seen again even though,

unbeknownst to the client, r has already been executed. To support exactly-once

semantics, execution nodes must not execute r again. Instead, they send the con-

tents of Replyc, the last reply certificate sent to client c. Execution nodes store one

such certificate for each client.

When the execution cluster receives a valid request 〈“REQUEST”, o, t, c〉c,A,1
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and a valid agreement certificate 〈“COMMIT”, v, n, d,A〉A,E,2f+1 for that request,

the cluster waits until all requests with sequence numbers smaller than n have been

received and executed. Then, if the request’s sequence number exceeds by one the

highest sequence number executed so far, the cluster takes one of the following three

actions.

1. If the request’s timestamp exceeds the timestamp of the reply in Replyc, then

the cluster executes the new request, updates Replyc, and sends the reply

certificate to the agreement cluster.

2. If the request’s timestamp equals Replyc’s timestamp, then the request is

a client-initiated retransmission of an old request, so the cluster generates,

caches, and sends a new reply certificate containing the cached timestamp t′,

the cached reply body r′, the request’s view v, and the request’s sequence

number n.

3. If the request’s timestamp is smaller than Replyc’s timestamp, then the cluster

must acknowledge the new sequence number so that the agreement cluster can

continue to make progress, but it should not execute the lower-timestamped

client request; therefore, the cluster acts as in the second case and generates,

caches, and sends a new reply certificate containing the cached timestamp t′,

the cached reply body r′, the request’s view v, and the request’s sequence

number n.

The above three cases are relevant when the execution cluster processes a new

sequence number. If, on the other hand, a request’s sequence number is not larger

than the highest sequence number executed so far, the execution cluster assumes

the request is a retransmission from the agreement cluster, and it retransmits the
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client’s last reply certificate from Replyc; this reply is guaranteed to have a sequence

number at least as large as the request’s sequence number.

Note that in systems not using the Privacy Firewall architecture described in

Section 6.10, a possible optimization is for the client to send the request certificate

directly to both the agreement cluster and the execution cluster and for the execution

cluster to send reply certificates directly to both the agreement cluster and the client.

Non-determinism

State machines replicated by the system must be deterministic to ensure their replies

to a given request match and that their internal states do not diverge. However,

many important services include some nondeterminism when executing requests.

For example, in the network file system NFS, different replicas may choose different

file handles to identify a file [130] or attach different last-access timestamps when a

file is read [33]. To address this issue, we extend the standard technique [33, 130]

of resolving nondeterminism which has the agreement phase select and sanity-check

any nondeterministic values needed by a request. To separate more cleanly (generic)

agreement from (application-specific) execution, our agreement cluster is responsible

for generating nondeterministic inputs that the execution cluster deterministically

maps to any application-specific values it needs.

For the applications we have examined, the agreement cluster simply includes

a timestamp and a set of pseudo-random bits in each agreement certificate; similar

to the BASE protocol, the primary proposes these values and the other agreement

nodes (i) sanity-check them and (ii) refuse to agree to unreasonable timestamps.

Then, the abstraction layer [130] at the execution nodes executes a deterministic

function that maps these inputs to the values needed by the application. We believe
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that this approach will work for most applications, but future work is needed to

determine if more general mechanisms are needed.

6.3.2 Internal Agreement Cluster Protocol

Above, we describe the high-level behavior of the agreement cluster as it responds to

request certificates, reply certificates, and timeouts. Here we describe the internal

details of how nodes in our system behave to meet these requirements.

For simplicity, our implementation uses Rodrigues et al.’s BASE (BFT with

Abstract Specification Encapsulation) library [130], which implements a replicated

Byzantine state machine by receiving, sequencing, and executing requests. We treat

BASE as a Byzantine agreement module that handles the details of three-phase com-

mit, sequence number assignment, view changes, checkpoints, and garbage collecting

logs [33, 130]. In particular, clients send their requests to the BASE library on the

agreement nodes to bind requests to sequence numbers. But when used as our agree-

ment library, the BASE library does not execute requests directly against the appli-

cation state machine, which is in our execution cluster. Instead, we install a message

queue (described in more detail below) as the BASE library’s local state machine,

and the BASE library “executes” a request by calling msgQueue.insert(request

certificate, agreement certificate). From the point of view of the existing BASE li-

brary, when this call completes, the request has been executed. In reality, this call

enqueues the request for asynchronous processing by the execution cluster, and the

replicated message queues ensure the request is eventually executed by the execu-

tion cluster. Our system makes four simple changes to the existing BASE library

to accommodate this asynchronous execution.

1. Whereas the original library sends the result of the local execution of a request
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to the client, the modified library does not send replies to clients; instead, it

relies on the message queue to do so.

2. To ensure that clients can eventually receive the reply to each of their requests,

the original BASE library maintains a cache of the last reply sent to each

client and sends the cached value when a client retransmits a request. But

when the modified library receives repeated requests from a client, it does not

send the locally stored reply since the locally stored reply is the result of the

enqueue operation, not the result of the executing the body of the client’s

request. Instead, it calls msgQueue.retryHint(request certificate), telling

the message queue to send the cached reply or to retry the request.

3. BASE periodically generates consistent checkpoints from its replicas’ inter-

nal state so that buffered messages can be garbage collected while ensuring

that nodes that have fallen behind or that have recovered from a failure can

resume operation from a checkpoint [31, 32, 130]. In order to achieve a con-

sistent checkpoint at some sequence number n across message queue instances

despite their asynchronous internal operation, the modified BASE library calls

msgQueue.sync() after inserting message n. This call returns after bringing

the local message queue state to a consistent state as required by the BASE

library’s checkpointing and garbage collection algorithms.

4. The sequence number for each request is determined according to the order in

which it is inserted into the message queue.

Message queue design

Each node in the agreement cluster has an instance of a message queue as its local

state machine. Each message queue instance stores maxN , the highest sequence
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number in any agreement certificate received, and pendingSends, a list of request

certificates, agreement certificates, and timeout information for requests that have

been sent but for which no reply has been received. Optionally, each instance may

also store cachec, the reply certificate for the highest-numbered request by client c.

When the library calls msgQueue.insert(request certificate, agreement cer-

tificate), the message queue instance stores the certificates in pendingSends, updates

maxN , and multicasts both certificates to all nodes in the execution cluster. It then

sets a per-request timer to the current time plus an initial time-out value. As an

optimization, when a message is first inserted, only the current primary needs to

send it to the execution cluster; in that case, all nodes retransmit if the timeout

expires before they receive the reply. In order to bound the state needed by exe-

cution nodes for buffering recent replies and out of order requests, a pipeline depth

P bounds the number of outstanding requests; an msgQueue.insert(. . .) call for

sequence number n blocks (which prevents the node from participating in the gen-

eration of sequence numbers higher than n) until the node has received a reply with

a sequence number at least n − P .

When an instance of the message queue receives a valid reply certified by g+1

execution cluster nodes, it deletes from pendingSends the request and agreement

certificates for that request and for all requests with lower sequence numbers; it also

cancels the retransmission timer for those requests. The message queue instance

then forwards the reply to the client. Optionally, the instance updates cachec to

store the reply certificate for client c.

When the modified BASE library calls msgQueue.retryHint(request cer-

tificate) for a request r from client c with timestamp t, the message queue instance

first checks to see if cachec contains a reply certificate with a timestamp of at least
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t. If so, it sends the reply certificate to the client. Otherwise, if a request and

agreement certificate with matching c and t are available in pendingSends, then

the queue resends the certificates to the execution cluster. Finally, if neither the

cache nor the pendingSends contains a relevant reply or request for this client-

initiated retransmission request, the message queue uses BASE to generate a new

agreement certificate with a new sequence number for this old request and then calls

msgQueue.insert(. . . ) to transmit the certificates to the execution cluster.

When the retransmission timer expires for a message in pendingSends, the

instance resends the request and agreement certificates and updates the retransmis-

sion timer to the current time plus twice the previous timeout interval.

Finally, when the modified BASE library calls msgQueue.sync(), the mes-

sage queue stops accepting insert(. . .) requests or generating new agreement cer-

tificates and waits to receive a reply certificate for a request with sequence number

maxN or higher. Once it processes such a reply (pendingSends is therefore empty),

the sync() call returns and the message queue begins accepting insert(. . .) calls

again. Note that cache may differ across servers and is not included in checkpoints.

6.3.3 Internal Execution Cluster Protocol

Above, we described the high-level execution cluster’s behavior in response to re-

quest and agreement certificates. Here, we describe execution node behaviors that

ensure these requirements are met.

Each node in the execution cluster maintains the application state, a pending

request list of at most P received but not yet executed requests (where P is the

maximum pipeline depth of outstanding requests by the execution cluster), the

largest sequence number maxN that has been executed, and a table reply where
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replyc stores the node’s piece of its most recent reply certificate for client c. Each

node also stores the most recent stable checkpoint, which is a checkpoint across the

application state and the table reply that is certified by at least g + 1 execution

nodes. Nodes also store zero or more newer checkpoints that have not yet become

stable.

When a node receives a valid request certificate certified by a client c and a

valid agreement certificate certified by at least 2f +1 agreement nodes, it stores the

certificates in the pending request list. Then, once all requests with lower sequence

numbers have been received and processed, the node processes the request. If the

request has a new sequence number (i.e., n = maxN + 1), the node takes one of

two actions: (1) if t > t′ (where t is the request’s timestamp and t′ is the timestamp

of the reply in replyc), then the node handles the new request by updating maxN ,

executing the new request, generating the node’s share of the full reply certificate,

storing the partial reply certificate in replyc, and sending the partial reply certificate

to all nodes in the agreement cluster; or (2) if t ≤ t′, then the node handles the

client-initiated retransmission request by updating maxN and generating, caching,

and sending a new partial reply certificate containing the cached timestamp t′, the

cached reply body r′, the request’s view v, and the request’s sequence number n. On

the other hand, if the request has an old sequence number (i.e., n ≤ maxN), then

the node simply resends the partial reply certificate in replyc, which is guaranteed

to have a sequence number at least as large as the request’s sequence number.

Liveness and retransmission

To eliminate gaps in sequence numbers caused by the unreliable communication

between the agreement and execution clusters, the system uses a two-level retrans-
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mission strategy. For a request with sequence number n, retransmissions by the

agreement cluster ensure that eventually at least one correct execution node receives

and executes request n, and an internal execution cluster retransmission protocol

ensures once that happens, all correct execution nodes eventually learn of request

n or of some stable checkpoint newer than n. In particular, if an execution node

receives request n but not request n − 1, it multicasts to other nodes in the execu-

tion cluster a retransmission request for the request with missing sequence number.

When a node receives such a message, it replies with the specified request and agree-

ment certificates unless it has a stable checkpoint with a higher sequence number,

in which case it sends the proof of stability for that checkpoint (see below.)

Checkpoints and garbage collection

Execution nodes periodically construct checkpoints in order to garbage collect pend-

ing request logs. Note that the inter-cluster protocol is designed so that garbage

collection in the execution cluster requires no additional coordination with the agree-

ment cluster and vice versa. Execution nodes generate checkpoints at prespecified

sequence numbers (e.g., after executing request n where n mod CP FREQ = 0).

Nodes checkpoint both the application state and their replyc list of replies to clients,

but they do not include their pending request list in checkpointed state. As in pre-

vious systems [31, 32, 130], to reduce the cost of producing checkpoints, nodes can

make use of copy on write and incremental cryptography [24].

After generating a checkpoint, execution servers assemble a proof of stability

for it. When server i produces checkpoint C for sequence number n, it computes a

digest of the checkpoint d = D(C) and attest to its view of the checkpoint to the rest

of the cluster by multicasting 〈“CHECKPOINT”, n, d〉i,E,1 to all execution nodes.
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Once a node receives g + 1 such messages, it assembles them into a full checkpoint

certificate:〈“CHECKPOINT”, n, d〉E,E,g+1

Once a node has a valid and complete checkpoint certificate for sequence

number n, it can garbage collect state by discarding older checkpoints, discarding

older checkpoint certificates, and discarding older agreement and request certificates

from the pending request log.

6.3.4 Correctness

Agreement Cluster

Lemma 35. The agreement cluster only generates agreement certificates for valid

client requests.

Proof. Correct nodes in the agreement cluster check the validity of the client request

before assigning a sequence number. An invalid message can receive at most f

signatures (from faulty agreement nodes), not enough for an agreement certificate.

Lemma 36. The agreement cluster never assigns the same sequence number to two

different client requests.

Proof. The protocol running on BASE assigns a new sequence number to every

client request. Byzantine nodes in the agreement cluster could assign a sequence

number that is out of sequence, but they are not numerous enough to form a valid

agreement certificate.

Lemma 37. Every request from a correct client is eventually assigned a sequence

number.

130



Proof. Clients retransmit their requests until they receive a reply certificate. Re-

ply certificates are only generated for requests with a sequence number, so clients

retransmit until their request is assigned a sequence number. Since links are fair

and clients are retransmitting to all agreement nodes, at least one of these nodes

is correct and will eventually accept the request. At this point, the BASE protocol

guarantees that the request will be assigned a sequence number.

Execution Cluster

Lemma 38. Correct nodes in the execution cluster process requests in sequence

order.

Proof. There is no gap in the sequence numbers generated by the agreement cluster,

and the execution cluster protocol requires all lower-numbered requests to have been

processed before processing on a new request can begin.

Lemma 39. Once the agreement cluster assigns a sequence number to a request,

the execution cluster will eventually receive and execute the request.

Proof. The message queue used by the agreement cluster ensures that the message

is resent until a reply vouched by f + 1 execution nodes is received. This ensures

that a single correct execution node has executed the request. The replicated state

machine protocol guarantees that if one correct node executes a request, eventually

all the correct nodes will.

System

Informally, the system should behave (from the point of view of the client) in the

same way as a single correct execution node, so in particular it should go through
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the same states Q as a possible execution from the single correct node. The lemma

below expresses these requirements formally.

Lemma 40. A client receives a reply 〈“REPLY”, v, n, t, c, E , r〉E,c,g+1 only if all of

the following four conditions hold.

• earlier the client issued a request 〈“REQUEST”, on, t, c〉c,A,1,

• the reply value r reflects the output of state machine in state Qn−1 executing

request operation on,

• there exists some sequence of operations O such that state Qn−1 is the state

reached by starting at initial state Q0 and sequentially executing each request

oi (0 ≤ i < n) in O as the ith operation on the state machine, and

• a valid reply certificate for any subsequent request reflects a state in which the

execution of oi is the i’th action by the state machine (0 ≤ i ≤ n).

Proof. The reply is signed by at least one correct execution node. The first condi-

tion holds because correct execution nodes only answer valid requests, and the client

name and timestamp of the reply will match those of the request. The second and

third conditions hold because correct execution nodes execute requests in sequence

number order (Lemma 38). The fourth condition holds because valid reply certifi-

cates can only be generated if at least one of the replying nodes is correct, and the

state of that correct node will reflect the execution of the client’s request.

Lemma 41. If a client c sends a request with timestamp t, where t exceeds any

timestamp in any previous request by c, and c repeatedly sends that request and no

other request until it receives a reply, then eventually c will receive a valid reply for

that request.
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Figure 6.3: Trade-off when optimizing the agreement cluster: (a) minimal number
of nodes for minimal cost or (b) two-step consensus at the cost of additional nodes.

Proof. Since links are fair, continually resending the request ensures that a correct

agreement node will eventually receive it. Since the request is valid and has a

new timestamp, the agreement cluster will assign a new sequence number to the

request (Lemma 35). The request will then be eventually executed (Lemma 39).

Every correct agreement node resends until it receives a reply, and correct execution

nodes resend their reply if they receive the request again. So, eventually all correct

agreement nodes receive the reply, and they will forward it to the client.

6.4 Fast Byzantine Consensus

We now focus our attention on the agreement cluster (Figure 6.3). Since the agree-

ment replicas are simple and cheap, we look into adding agreement replicas to reach

consensus in two communication steps in the common case instead of three steps in

previous consensus protocols (we say that the protocol is two-step).
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At the heart of the agreement cluster is the Consensus protocol [62]. In the

Consensus protocol, all nodes have an initial value. When the protocol ends, all

correct nodes must learn the same value v and v must be the initial value from some

node (instead of learn, some use the term decide). The Consensus protocol can be

generalized so that not all nodes propose a value (only proposers) and not all nodes

learn a value (only learners). Nodes can assume several roles. The Paxos-style

definition of consensus [84], shown below, uses these roles.

CS1 Only a value that has been proposed may be chosen.

CS2 Only a single value may be chosen.

CS3 Only a chosen value may be learned by a correct learner.

CL1 Some proposed value is eventually chosen.

CL2 Once a value is chosen, correct learners eventually learn it.

In the next few sections we show the following two results for an asynchronous

Byzantine consensus protocol that must be able to tolerate f Byzantine failures.

1. The minimal number of agreement replicas for two-step consensus despite t

actual failures is 3f + 2t + 1 when all nodes can propose and learn.

2. The new Parameterized Fast asynchronous Byzantine Paxos protocol (Param-

eterized FaB Paxos) matches this lower bound in the common case. Parame-

terized FaB Paxos also avoids digital signatures in the common case.
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6.5 Lower Bound on Two-Step Consensus

We show that 3f + 2t + 1 is the minimal number of processes for parameterized

two-step consensus that can tolerate f Byzantine failures and completes in two

communications steps in the common case despite t failures, when all the nodes

can propose and learn. Our proof does not label nodes as proposers, acceptors, or

learners, since we focus on the case where all nodes can play all roles.

The proof proceeds by constructing two executions that are indistinguishable

although they should learn different values. We now define these notions precisely.

Consider a system of n processes that communicate through a fully connected

network. Process execution consists of a sequences of events, which can be of three

types: local, send, and deliver. We call the sequence of events exhibited by a process

its local history.

Execution of the protocol proceeds in asynchronous rounds. In a round, each

correct process (i) sends a message to every other process, (ii) waits until it receives

a (possibly empty) message sent in that round from n−f distinct processes (ignoring

any extra messages), and (iii) performs a (possibly empty) sequence of local events.

We say that the process takes a step in each round. During an execution, the system

goes through a series of configurations, where a configuration C is an n-vector that

stores the state of every process. We also talk about the state of a set of processes,

by which we mean a vector that stores the state of the processes in the set.

This proof depends on the notion of indistinguishability. The notions of view

and similarity help us capture this precisely.

Definition 10. Given an execution ρ and a process pi, the view of pi in ρ, denoted by

ρ|pi, is the local history of pi together with the state of pi in the initial configuration

of ρ.
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Definition 11. Let ρ1 and ρ2 be two executions, and let pi be a process that is

correct in ρ1 and ρ2. Execution ρ1 is similar to execution ρ2 with respect to pi,

denoted as ρ1
pi∼ ρ2, if ρ1|pi = ρ2|pi.

If an execution ρ results in all correct processes learning a value v, we say

that v is the consensus value of ρ, which we denote c(ρ). For the remainder of this

section we only consider executions of consensus that result in all correct processes

learning a value.

Lemma 42. Let ρ1 and ρ2 be two executions, and let pi be a process which is correct

in ρ1 and ρ2. If ρ1
pi∼ ρ2, then c(ρ1) = c(ρ2).

Proof. Since we are only considering executions of consensus that result in all correct

processes learning a value, c(ρ1) and c(ρ2) are well-defined. The correct process

pi cannot distinguish between ρ1 and ρ2, so it will learn the same value in both

executions. Consensus requires that all correct learners learn the consensus value,

so c(ρ1) = c(ρ2).

Definition 12. Let F be a subset of the processes in the system. An execution ρ is

F-silent if in ρ no process outside F delivers a message from a process in F .

Definition 13. Let a two-step execution be an execution in which all correct pro-

cesses learn by the end of the second round. A consensus protocol is (t,2)-step if it

can tolerate f Byzantine failures and if for every initial configuration I and every

set F of at most t processes (t ≤ f), there exists a two-step execution of the protocol

from I that is F-silent. If the protocol is (f ,2)-step then we simply say that it is

two-step.

Definition 14. Given a (t,2)-step consensus protocol, an initial configuration I is

(t,2)-step bivalent if there exist two disjoint sets of processes F0 and F1, (|F0| ≤ t
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and |F1| ≤ t) an F0-silent two-step execution ρ0 and an F1-silent two-step execution

ρ1 such that c(ρ0) = 0 and c(ρ1) = 1.

Lemma 43. For every (t,2)-step consensus protocol with n > 2f there exists a

(t,2)-step bivalent initial configuration.

Proof. Consider a (t,2)-step consensus protocol P . For each i, 0 ≤ i ≤ n, let

Ii be the initial configuration in which the first i processes propose 1, and the

remaining processes propose 0. By the definition of (t,2)-step, for every Ii and

for all F such that |F| ≤ t there exists at least one F-silent two-step execution

ρi of P . By property CS1 of consensus, c(ρ0) = 0 and c(ρn) = 1. Consider now

F0 = {pj : 1 ≤ j ≤ t}. There must exist two neighbor configurations Ii and Ii+1

and two F0-silent two-step executions ρi and ρi+1 such that c(ρi) 6= c(ρi+i) and ρi+1

is the lowest-numbered execution with consensus value 1. Note that i ≥ t, since

both ρi and ρi+1 are F0-silent and the consensus value they reach cannot depend

on the value proposed by the silent processes in F0. We claim that one of Ii and

Ii+1 is (t,2)-step bivalent. To prove our claim, we set x = min(i + t, n) and define

F1 as the set {pj : x + 1 − t ≤ j ≤ x}. Note that, by construction, F0 and F1 are

disjoint and (i+1) ∈ F1. Since P is two-step, there must in turn exist two two-step

executions πi and πi+1 that are F1-silent, where πi starts from configuration Ii and

πi+1 starts from Ii+1. The only difference between configurations Ii and Ii+1 is the

value proposed by pi+1, which is silent in πi and πi+1, since it belongs to F1. Hence,

all processes outside of F1 (at least one of which is correct) have the same view in

πi and πi+1, and c(πi) = c(πi+1). Since c(ρi) 6= c(ρi+1) and c(πi) = c(πi+1), either

Ii or Ii+1 has two two-step executions that lead to different consensus values. This

is the definition of a (t,2)-step bivalent configuration.
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s1 s2ρ0 s3 s4 s5

s1 s2 s3 t5ρs t4

ρc s1 s2 t5t4

ρt s1 s2 t5t4

ρ1 t5t4

t3

t3t2t1

similar with respect to p3

similar with respect to p3

similar with respect to p1

similar with respect to p1

Figure 6.4: Contradiction sketch: The figure represents a system with too few
(3f + 2t) processes. Each row represents an execution, and the boxes represent
sets of processes. Dotted boxes contain Byzantine nodes. The first execution (ρ0)
learns 0, and the last learns 1. Each execution is similar to the next, leading to the
contradiction.

Figure 6.4 shows a sketch of the idea at the core of the proof: with only 3f+2t

processes we can construct two executions (ρ0 and ρ1) that are indistinguishable,

even though they learn different values.

Theorem 10. Any (t,2)-step Byzantine fault-tolerant consensus protocol requires

at least 3f + 2t + 1 processes.

Proof. By contradiction. Suppose there exists a (t,2)-step fault-tolerant consensus

protocol P that (i) tolerates up to f Byzantine faults, (ii) is two-step despite t

failures, and (iii) requires only 3f + 2t processes. We partition the processes in five

sets, p1 . . . p5.

By Lemma 43 there exist a (t,2)-step bivalent configuration Ib and two two-

step executions ρ0 and ρ1, respectively F0-silent and F1-silent, such that c(ρ0) = 0

and c(ρ1) = 1. We name the sets of processes so that F0 = p5 and F1 = p1 (so p1

and p5 have size t). The remaining sets have size f .
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We focus on the state of p1, . . . , p5 at the end of the first round, where the

state of pi is a set of local states, one for each process in pi. In particular, let si

and ti denote the state of pi at the end of the first round of ρ0 and ρ1, respectively.

pi has state si (respectively, ti) at the end of any execution that produces for its

nodes the same view as ρ0 (respectively, ρ1). It is possible for some processes to be

in an s state at the end of the first round while at the same time others are in a

t state. Consider now three new (not necessarily two-step) executions of P , ρs, ρt,

and ρc, that at the end of their first round have p1 and p2 in their s states and p4

and p5 in their t states. The state of p3 is different in the three executions: in ρs,

p3 is in state s3; in ρt, p3 is in state t3; and in ρc, p3 crashes at the end of the first

round. Otherwise, the three executions are very much alike: all three executions

are p3-silent from the second round on—in ρc because p3 has crashed, in ρs and ρt

because all processes in p3 are slow. Further, all processes other than those in p3

send and deliver the same messages in the same order in all three executions, and

all three executions enter a period of synchrony from the second round on, so that

in each execution consensus must terminate and some value must be learned. We

consider three scenarios, one for each execution.

ρs scenario: In this scenario, the f nodes in p4 are Byzantine: they follow the

protocol correctly in their messages to all processes but those in p3. The messages

that nodes in p4 send to p3 in round two are consistent with p4 being in state s4,

rather than t4. Further, in the second round of ρs the messages from p5 to p3 are

the last to reach p3 (and are therefore not delivered by p3), and all other messages

are delivered by p3 in the same order as in ρ0. The view of p3 at the end of the

second round of ρs is the same as in the second round of ρ0; hence nodes in p3 learn

0 at the end of the second round of ρs (it must learn then because ρ0 is two-step).
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Since nodes in p3 are correct and for each node p ∈ p3 ρs
p∼ ρ0, then c(ρs) = c(ρ0)

and all correct processes in ρs eventually learn 0.

ρt scenario: In this scenario, the f nodes in p2 are Byzantine: they follow the

protocol correctly in their messages to all processes but those in p3. In particular,

the messages that nodes in p2 send to p3 in round two are consistent with p2 being

in state t2, rather than s2. Further, in the second round of ρt the messages from p1

to p3 are the last to reach p3 (and are therefore not delivered by p3), and all other

messages are delivered by p3 in the same order as in ρ1. The view of p3 at the end

of the second round of ρt is the same as in the second round of ρ1; hence nodes in

p3 learn 1 at the end of the second round of ρt. Since nodes in p3 are correct and

for each node p ∈ p3, ρt
p∼ ρ1, then c(ρt) = c(ρ1) and all correct processes in ρt

eventually learn 1.

ρc scenario: In this scenario, the f nodes in p3 have crashed, and all other pro-

cesses are correct. Since ρc is synchronous from round two on, every correct process

must eventually learn some value.

Consider now a process p in p1 that is correct in ρs, ρt, and ρc. By con-

struction, ρc
p∼ ρt, and therefore c(ρc) = c(ρt) = c(ρ1) = 1. However, again by

construction, ρc
p∼ ρs, and therefore c(ρc) = c(ρs) = c(ρ0) = 0. Hence, p in ρc must

learn both 0 and 1: this contradicts CS2 and CS3 of consensus, which together

imply that a correct learner may learn only a single value.

6.6 Fast Byzantine Consensus Protocol

We now present FaB Paxos (for Fast asynchronous Byzantine Paxos), a two-step

Byzantine fault-tolerant consensus protocol that requires 5f+1 processes—since FaB
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variable initial comment
Globals
p, a, l Number of proposers, acceptors, learners
f Number of Byzantine failures tolerated
Proposer variables
Satisfied ∅ Set of proposers that claim to be satisfied
Learned ∅ Set of learners that claim to have learned
Acceptor variables
accepted (⊥,⊥) Value accepted and the corresponding proposal number
i The acceptor number
Learner variables
accepted[j] (⊥,⊥) Value and matching proposal number acceptor j says it accepted
learn[j] (⊥,⊥) Value and matching proposal number learner j says it learned
learned (⊥,⊥) Value learned and the corresponding proposal number

Figure 6.5: Variables for the FaB Paxos pseudocode

Paxos is two-step regardless of the number of actual failures (up to f), it matches the

lower bound proven in the previous section. More precisely, In FaB Paxos we assign

three roles to the nodes: acceptors, proposers and learners. FaB Paxos requires

a ≥ 5f + 1 acceptors, p ≥ 3f + 1 proposers, and l ≥ 3f + 1 learners; as in Paxos,

each process in FaB Paxos can play one or more of these three roles. We describe

FaB Paxos in stages: we start by describing a simple version of the protocol that

relies on relatively strong assumptions, and we proceed by progressively weakening

the assumptions and refining the protocol accordingly.

6.6.1 The Common Case

We first describe how FaB Paxos works in the common case, when there is a unique

correct leader, all correct acceptors agree on its identity, and the system is in a

period of synchrony (i.e. a period during which messages are reliably delivered,

messages are delivered and processed within some time bound, and all clocks run at

the same rate).

FaB Paxos is very simple in the common case, as can be expected by a proto-

col that terminates in two steps. Figure 6.5 shows the variables used, and Figure 6.6

shows the protocol’s pseudocode. The pnumber variable (proposal number) indi-

cates which process is the leader; in the common case, its value will not change.
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1. leader.onStart():
2. // proposing (PC is null unless recovering)
3. send (“PROPOSE”,value, pnumber, PC) to all acceptors
4. until |Satisfied | >= ⌈(p + f + 1)/2⌉
5.
6. proposer.onLearned(): from learner l
7. Learned := Learned ∪ {l}
8. if |Learned | >= ⌈(l + f + 1)/2⌉ then
9. send (“SATISFIED”) to all proposers
10.
11. proposer.onStart():
12. wait for timeout
13. if |Learned | < ⌈(l + f + 1)/2⌉ then
14. leader-election.suspect(
15. leader-election.getRegency() )
16.
17. proposer.onSatisfied(): from proposer x
18. Satisfied := Satisfied ∪ {x}
19.
20. acceptor.onPropose(value,pnumber,progcert): from leader
21. if not already accepted then
22. accepted := (value, pnumber) // accepting
23. send (“ACCEPTED”,accepted) to all learners
24.
25. learner.onAccepted(value,pnumber ): from acceptor ac
26. accepted[ac] := (value, pnumber)
27. if there are ⌈a + 3f + 1)/2⌉ acceptors x
28. such that accepted[x] == (value, pnumber) then
29. learned := (value, pnumber) // learning
30. send (“LEARNED”) to all proposers
31.
32. learner.onStart():
33. wait for timeout
34. while (not learned) send (“PULL”) to all learners
35.
36. learner.onPull(): from learner ln
37. If this process learned some pair (value, pnumber) then
38. send (“LEARNED”,value, pnumber) to ln
39.
40. learner.onLearned(value,pnumber): from learner ln
41. learn[ln] := (value, pnumber)
42. if there are f + 1 learners x
43. such that learn[x] == (value, pnumber) then
44. learned := (value, pnumber) // learning

Figure 6.6: FaB pseudocode (excluding recovery)

The code starts executing in the onStart() methods. In the first step, the leader

proposes its value to all acceptors (line 3). In the second step, the acceptors accept

this value (line 22) and forward it to the learners (line 23). Learners learn a value

v when they observe that ⌈(a + 3f + 1)/2⌉ acceptors have accepted the value (line
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27). In the common case, a value will be learned before the timeout at line 12 is

triggered. We will use that code later; the leader election interface is given in Fig-

ure 6.7. FaB Paxos avoids digital signatures in the common case because they are

computationally expensive. Adding signatures would reduce neither the number of

communication steps nor the number of servers since FaB Paxos is already optimal

in these two measures.

Correctness We defer the full correctness proof for FaB Paxos until after the

recovery protocol in Section 6.6.4—in the following we give an intuition of the cor-

rectness argument.

Let correct acceptors only accept the first value they receive from the leader

and let a value v be chosen if ⌈(a + f + 1)/2⌉ correct acceptors have accepted it.

These two requirements are sufficient to ensure CS1 and CS2: only a proposed value

may be chosen and there can be at most one chosen value since at most one value can

be accepted by a majority of correct acceptors. The last safety clause (CS3) requires

correct learners to learn only a chosen value. Since learners wait for ⌈(a+3f +1)/2⌉

identical messages and at most f of those come from faulty acceptors, it follows that

the value was necessarily chosen.

6.6.2 Fair Links and Retransmissions

In our discussion of the common case, we have assumed synchrony. While this is

a reasonable assumption in the common case, our protocol must also be able to

handle periods of asynchrony. We next weaken our network model to consider fair

asynchronous authenticated links (see Section 6.2). Now, consensus may take more

than two communication steps to terminate, e.g. when all messages sent by the

leader in the first round are dropped.
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Our end-to-end retransmission policy is based on the following pattern: the

caller sends its request repeatedly, and the callee sends a single response every time

it receives a request. When the caller is satisfied by the reply, it stops retransmitting.

We alter the pattern slightly in order to accommodate the leader election protocol:

other processes must be able to determine whether the leader is making progress,

and therefore the leader must make sure that they, too, receive the reply. To that

end, learners report not only to the leader but also to the other proposers (Figure 6.6,

line 30). When proposers receive enough acknowledgments, we say they are satisfied.

Satisfied proposers notify the leader (line 9). The leader only stops resending when

it receives ⌈(p + f + 1)/2⌉ such notifications (line 4). If proposers do not hear from

⌈(l + f + 1)/2⌉ learners after some time-out period, they start suspecting the leader

(line 13). If ⌈(p+f+1)/2⌉ proposers suspect the leader, then a new leader is elected.2

The retransmission policy therefore ensures that in periods of synchrony the leader

will retransmit until it is guaranteed that no leader election will be triggered. Note

that the proposers do not wait until they hear from all learners before becoming

satisfied (since some learners may have crashed). It is possible therefore that the

leader stops retransmitting before all learners have learned the value. To ensure

that eventually all correct learners do learn the value, lines 32–44 of the protocol

require all correct learners still in the dark to pull the value from their peers.

6.6.3 Recovery Protocol

Recovery is initiated when the leader election protocol elects a new leader. Although

we can reuse existing leader election protocols as-is, it is useful to discuss the prop-

erties of leader election. The output of leader election is a regency number r. This

2We do not show the election protocol, because existing leader election protocols can be used
here without modification, e.g. the leader election protocol in [33].
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1. int leader-election.getRegency()
2. // return the number of the current regent (leader is regent % p)
3. // if no correct node suspects it then the regency continues.
4.
5. int leader-election.getLeader()
6. return getRegency() % p
7.
8. void leader-election.suspect(int regency)
9. // indicates suspicion of the leader for regency.
10. // if a quorum of correct nodes suspect the same regency r,
11. // then a new regency will start
12.
13. void leader-election.consider(proof )
14. // consider outside evidence that a new leader was elected

Figure 6.7: Interface for leader election protocol

number never decreases, and proposer r mod p is the leader. Each node in the sys-

tem has an instance of a leader-election object, and different instances may initially

indicate different regents. The leader-election object takes as input suspicion about

node failures (Figure 6.7, line 8). If no more than f nodes are Byzantine and at

least 2f +1 nodes participate in leader election, then leader election guarantees that

if no correct node suspects the current regent, then eventually (i) all leader-election

objects will return the same regency number and (ii) that number will not change.

Leader election also guarantees that if a quorum of correct nodes (⌈(p + f + 1)/2⌉

nodes out of p) suspects regent r, then the regency number at all correct nodes

will eventually be different from r. Finally, leader election generates a proof r when

it elects some regent r. If proof r from a correct node is given to a leader-election

object o, then o will elect regency r′, r ≤ r′.

The interface to leader election is shown in Figure 6.7. getRegency() re-

turns the current regency number, and getLeader() converts it to a proposer num-

ber. Nodes indicate their suspicion by calling suspect(r). When leader-election

elects a new leader, it notifies the node through the onElected(regency,proof r)

callback (not shown). If necessary, proof r can then be given to other leader-election
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objects through the consider(proof r) method.

When proposers suspect the current leader is faulty, they trigger an election

for a new leader that then invokes the recovery protocol. Two scenarios require

special care.

First, some value v may have already been chosen: the new leader must then

propose the same v to maintain CS2. Second, a previous malicious leader may have

performed a poisonous write [110], i.e. a write that prevents learners from reading

any value—for example, a malicious leader could propose a different value to each

acceptor. If the new leader is correct, consensus in a synchronous execution should

nonetheless terminate.

In our discussion so far, we have required acceptors to only accept the first

value they receive (Figure 6.6, line 21–22). If we maintained this requirement, the

new leader would be unable to recover from a poisonous write. We therefore allow

acceptors to accept multiple values. Naturally, we must take precautions to ensure

that CS2 still holds.

Progress certificates and the recovery protocol

If some value v was chosen, then in order to maintain CS2 a new correct leader

must not propose any value other than v. In order to determine whether some

value may have been chosen, the new leader queries acceptors for their states. It

can gather at most a − f replies. We call this set of replies a progress certificate.

The progress certificate serves two purposes. First, it allows a new correct leader

to determine whether some value v may have been chosen, in which case the leader

proposes v. We say that a correct leader will only propose a value that the progress

certificate vouches for—we discuss in the next subsection how a progress certificate
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vouches for a value. Second, the progress certificate allows acceptors to determine

the legitimacy of the value proposed by the leader, so that a faulty leader can not

corrupt the state after some value was chosen. In order to serve the second purpose,

we require the replies in the progress certificate to be signed.

A progress certificate PC must have the property that if some value v was

chosen, then PC only vouches for v (since v is the only proposal that maintains

CS2). PC must also have the property that it always vouches for at least one value,

to ensure progress despite poisonous writes.

In the recovery protocol, the newly elected correct leader α first gathers

a progress certificate by querying acceptors and receiving a − f signed responses.

Then, α decides which value to propose: If the progress certificate vouches for some

value v, then α proposes v. Otherwise, α is free to propose any value. To propose

its value, α follows the normal leader protocol, piggybacking the progress certificate

alongside its proposal to justify its choice of value. The acceptors check that the

new proposed value is vouched for by the progress certificate, thus ensuring that the

new value does not endanger safety.

As in Paxos, acceptors who hear of the new leader (when the new leader gath-

ers the progress certificate) promise to ignore messages with a lower proposal number

(i.e. messages from former leaders). In order to prevent faulty proposers from dis-

placing a correct leader, the leader election protocol provides a proof-of-leadership

token to the new leader (typically, a collection of signed “election” messages).

Constructing progress certificates

A straightforward implementation of progress certificates would consist of the cur-

rently accepted value, signed, from a− f acceptors. If these values are all different,
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then no value was chosen: in this case the progress certificate can vouch for any

value since it is safe for the new leader to propose any value.

Unfortunately, this implementation falls short: a faulty new leader could use

such a progress certificate twice to cause two different values to be chosen. Further,

this can happen even if individual proposers only accept a given progress certificate

once. Consider the following situation. We split the acceptors into four groups; the

first group has size 2f+1, the second has size f and contains malicious acceptors, and

the third and fourth have size f . Suppose the values they have initially accepted are

“A”,“B”,“B”, and “C”, respectively. A malicious new leader λ can gather a progress

certificate establishing that no value has been chosen. With this certificate, λ can

first sway f acceptors from the third group to accept “A” (by definition, “A” is now

chosen), and then, using the same progress certificate, persuade the acceptors in the

first and fourth group to change their value to “B”—“B” is now chosen. Clearly,

this execution violates CS2.

We make three changes to prevent progress certificates from being used twice.

First, we allow a proposer to propose a new value only once while it serves as a leader.

Specifically, we tie progress certificates to a proposal number, whose value equals the

number of times a new leader has been elected.

Second, we associate a proposal number to proposed values. Acceptors now

accept a value for a given proposal number rather than just a value. Where before

acceptors forwarded just the accepted value (to help learners learn, or in response

to a leader’s query), now they forward both the accepted value and its proposal

number—hence, progress certificates now contain (value, proposal number) pairs.

Learners learn a value v if they see that ⌈(a + 3f + 1)/2⌉ acceptors accepted

value v for the same proposal number. We say that value v is chosen for pn if
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101. leader.onElected(newnumber,proof ) :
102. // this function is called when leader-election picks a new regency
103. // proof is a piece of data that will sway leader-election at the
104. // other nodes.
105. pnumber := newnumber // no smaller than the previous pnumber
106. if (not leader for pnumber) : return
107. repeatedly send (“QUERY”,pnumber ,proof ) to all acceptors
108. until get (“REP”, 〈valuej , pnumber〉j) from a − f acceptors j
109. PC := the union of these replies
110. if PC vouches for (v′, pnumber) : value := v′

111. onStart()

113. acceptors.onQuery(pn,proof ) : from leader
114. leader-election.consider(proof )
115. if (leader-election.getRegency() 6= pn) :
116. return // ignore bad requests
117. send (“REP”, 〈value,pn〉i) to leader-election.getLeader()

118. acceptor.onPropose(value,pnumber,progcert ) : from proposer
119. if pnumber 6= leader-election.getRegency() :
120. return // only listen to current leader
121. if accepted (v, pn) and pn == pnumber :
122. return // only once per prop. number
123. if accepted (v, pn) ∧ v 6= value ∧
124. progcert does not vouch for (value, pnumber) :
125. return // only change with progress certificate
126. accepted := (value, pnumber) // accepting
127. send (“ACCEPTED”,accepted) to all learners

Figure 6.8: FaB Paxos recovery pseudocode

⌈(a + f + 1)/2⌉ correct acceptors have accepted that value for proposal number pn.

We say that value v is chosen if there is some proposal number pn so that v is chosen

for pn.

Third, we change the conditions under which acceptors accept a value (Fig-

ure 6.8). In addition to ignoring proposals with a proposal number other than the

current regency (line 119), acceptors only accept one proposal for every proposal

number (line 121) and they only change their accepted value if the progress certifi-

cate vouches for the new value and proposal number (lines 123–125).

We are now ready to define progress certificates concretely. A progress certifi-

cate contains signed replies (vi, pn) from a − f acceptors (Figure 6.8, line 108). An

acceptor’s reply contains that acceptor’s currently accepted value and the proposal
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number of the leader who requested the progress certificate.

Definition 15. A progress certificate {〈v0, pn〉s0 , . . . , 〈va−f , pn〉sa−f
} vouches for

value v at proposal number pn if there is no value vi 6= v that appears ⌈(a−f +1)/2⌉

times in the progress certificate.

A consequence of this definition is that if some specific pair (v, pn) appears

at least ⌈(a−f +1)/2⌉ times in the progress certificate, then the progress certificate

vouches only for value v at proposal pn. If there is no such pair, then the progress

certificate vouches for any value as long as its proposal number matches the one

in the progress certificate. As we prove in the next section, progress certificates

guarantee that if v is chosen for pn, then all progress certificates with a proposal

number following pn will vouch for v and no other value.

Let us revisit the troublesome scenario of before in light of these changes.

Suppose, without loss of generality, that the malicious leader λ gathers a progress

certificate for proposal number 1 (λ is the second proposer to become leader). Be-

cause of the poisonous write, the progress certificate allows the leader to propose

any new value. To have “A” chosen, λ sends a new proposal (“A”, 1) together

with the progress certificate first to the acceptors in the first group and then to the

acceptors in the third group. Note that the first step is critical to have “A” chosen,

as it ensures that the 3f + 1 correct acceptors in the first and third group accept

the same value for the same proposal number.

Fortunately, this first step is also what prevents λ from using the progress

certificate to sway the acceptors in the first group to accept “B”. Because they have

last accepted the pair (“A”, 1), when λ presents to the acceptors in the first group

the progress certificate for proposal number 1 for the second time, they will refuse

it (Figure 6.8, line 121).
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6.6.4 Correctness

We now prove that, for executions that are eventually synchronous [49], FaB Paxos

solves consensus. Recall that a value v is chosen for proposal pn iff ⌈(a + f + 1)/2⌉

correct acceptors accept v for proposal pn. As mentioned at the beginning of this

section, we assume that a > 5f , p > 3f , and l > 3f .

Theorem 11 (CS1). Only a value that has been proposed may be chosen.

Proof. To be chosen, a value must be accepted by a set of correct acceptors (by

definition), and correct acceptors only accept values that are proposed (Figure 6.8,

line 118).

We prove CS2 (only a single value may be chosen) by way of the following

two lemmas.

Lemma 44. For every proposal number pn, at most one value is chosen.

Proof. Correct acceptors only accept one value per proposal number (line 121). In

order for a value to be chosen for pn, the value must be accepted by at least a

majority of the correct acceptors (by definition). Hence, at most one value is chosen

per proposal number.

Lemma 45. If value v is chosen for proposal pn, then every progress certificate for

proposal number pn′ > pn will vouch for v and no other value.

Proof. Assume that value v is chosen for proposal pn; then, by definition, at least

c = ⌈(a + f + 1)/2⌉ correct acceptors have accepted v for proposal pn. Let PC

be a progress certificate for proposal number pn′ > pn. All correct acceptors that

accepted v for pn must have done so before accepting PC, since no correct acceptor

would accept v for proposal pn if it had accepted PC with pn′ > pn (line 119 and the
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fact that the regency number never decreases). Consider the a − f pairs contained

in PC. Since these pairs are signed (line 117), they cannot have been manufactured

by the leader; hence, at least a− f + c−a = ⌈(a− f +1)/2⌉ of them must be signed

by acceptors that accepted v for pn. By definition, then, PC vouches for v and no

other value.

Theorem 12 (CS2). Only a single value may be chosen.

Proof. Consider the smallest proposal number pn for which a value is chosen. By

lemma 44, a unique value v is chosen for pn. By lemma 45, no later progress

certificate can be constructed that vouches for a value other than v, so none of the

correct acceptors that accepted v will change to accept a different value in later

proposals. Since these correct acceptors form a majority, no other value can be

chosen.

Theorem 13 (CS3). Only a chosen value may be learned by a correct learner.

Proof. Suppose that a correct learner learns value v for proposal pn. There are two

ways for a learner to learn a value in FaB Paxos.

• ⌈(a + 3f + 1)/2⌉ acceptors reported having accepted v for proposal pn (line

27). At least ⌈(a + f + 1)/2⌉ of these acceptors are correct, so by definition v

was chosen for pn.

• f + 1 other learners reported that v was chosen for pn (line 42). One of these

learners is correct—so, by induction on the number of learners, it follows that

v was indeed chosen for pn.

We say that a value is stable if it is learned by ⌈(l−f +1)/2⌉ correct learners.
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Lemma 46. Some value is eventually stable.

Proof. The system is eventually synchronous and in these synchronous periods, lead-

ers that do not create a stable value are eventually suspected by all correct proposers

(Figure 6.6, line 13). In this situation, the leader election protocol elects a new

leader. Byzantine learners or proposers cannot prevent the election: even if the

f faulty learners pretend to have learned a value, the remaining correct proposers

form a quorum and thus can trigger an election (see Section 6.6.3).

Since the number of proposers p is larger than f , eventually either some value

is stable or a correct leader α is elected. In a period of synchrony, Byzantine pro-

posers alone cannot trigger an election to replace a correct leader (see Section 6.6.3).

We show that if α is correct then some value will be stable.

The correct leader will gather a progress certificate (Figure 6.8, line 108)

and propose a value to all the acceptors. By construction, all progress certificates

vouch for at least one value—and correct acceptors will accept a value vouched by a

progress certificate. Since α is correct, it will propose the same value to all acceptors

and all a − f correct acceptors will accept the proposed value. Given that a > 3f ,

⌈(a + f + 1)/2⌉ ≤ a − f , so by definition that value will be chosen.

The end-to-end retransmission protocol (Figure 6.6, line 4) ensures that α

will continue to resend its proposed value at least until it hears from ⌈(l + f + 1)/2⌉

learners that they have learned a value—that is, until the value is stable (line 8).

Theorem 14 (CL1). Some proposed value is eventually chosen.

Proof. By Lemma 46 eventually some value is stable, i.e. ⌈(l+f +1)/2⌉ > f correct

learners have learned it. By CS3 a correct learner only learns a value after it is

chosen. Therefore, the stable value is chosen.
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Our proof for CL1 only relies on the fact that the correct leader does not

stop retransmission until a value is chosen. In practice, it is desirable for the leader

to stop retransmission once a value is chosen. Since l > 3f , there are at least

⌈(l + f + 1)/2⌉ correct learners, so eventually all correct proposers will be satisfied

(line 8) and the leader will stop retransmitting (line 4).

Theorem 15 (CL2). Once a value is chosen, correct learners eventually learn it.

Proof. By Lemma 46, some value v is eventually stable, i.e. ⌈(l− f + 1)/2⌉ ≥ f + 1

correct learners eventually learn the value.

Even if the leader is not retransmitting anymore, the remaining correct learn-

ers can determine the chosen value when they query their peers with the “pull”

requests (lines 34 and 36–38) and receive f + 1 matching responses (line 42). So

eventually, all correct learners learn the chosen value.

6.7 Parameterized FaB Paxos

Previous Byzantine consensus protocols require 3f + 1 processes and may complete

in three communication steps when there is no failure; FaB Paxos requires 5f + 1

processes and may complete in two communication steps despite up to f failures—

the protocol uses the additional replication for speed. In this section, we explore

scenarios between these two extremes: when fewer than 5f+1 processes are available

or when it is not necessary to ensure two-step operation even when all f processes

fail.

We generalize FaB Paxos by decoupling replication for fault-tolerance from

replication for speed. The resulting protocol, Parameterized FaB Paxos (Figure 6.9)

spans the whole design space between minimal number of processes (but no guar-
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201. leader.onStart() :
202. // proposing (PC is null unless recovering)
203. repeatedly send (“PROPOSE”,value, number, PC) to all acceptors
204. until |Satisfied | >= ⌈(p + f + 1)/2⌉
205.
206. leader.onElected(newnumber,proof ) :
207. pnumber := newnumber // no smaller than previous pnumber
208. if (not leader for pnumber) : return
209. repeatedly send (“QUERY”,pnumber, proof) to all acceptors
210. until receive (“REP”, 〈valuej , pnumber, commit proofj , j〉j) ) from
211. a − f acceptors j
212. PC := the union of these replies
213. if ∃ v’ s.t. vouches-for(PC, v′, pnumber) : value := v′

214. onStart()
215.
216. proposer.onLearned() : from learner l
217. Learned := Learned ∪ {l}
218. if |Learned | >= ⌈(l + f + 1)/2⌉ :
219. send (“SATISFIED”) to all proposers
220.
221. proposer.onStart():
222. wait for timeout
223. if |Learned| < ⌈(l + f + 1)/2⌉ :
224. suspect the leader
225.
226. proposer.onSatisfied(): from proposer x
227. Satisfied := Satisfied ∪ {x}
228.
229. acceptor.onPropose(value,pnumber,progcert ) : from leader
230. if pnumber 6= leader-election.getRegency() :
231. return // only listen to current leader
232. if accepted (v, pn) and ((pnumber <= pn) or ((v 6= value)
233. and not vouches-for(progcert,value,pnumber ))) :
234. return // only change with progress certificate
235. accepted := (value, number) // accepting
236. send (“ACCEPTED”,accepted) to all learners
237. // i is the number of this acceptor
238. send 〈“ACCEPTED”,value, pnumber, i〉i to all acceptors
239.
240. acceptor.onAccepted(value,pnumber,j ) : signed by acceptor j
241. if pnumber> tentative commit proof [j].pnumber :
242. tentative commit proof [j] := 〈“ACCEPTED”,value, pnumber, j〉j
243. if valid(tentative commit proof,value,leader-election.getRegency()) :
244. commit proof := tentative commit proof
245. send (“COMMITPROOF”,commit proof ) to all learners

Figure 6.9: Parameterized FaB Paxos with recovery (part 1)
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247. acceptors.onQuery(pn,proof ) : from proposer
248. leader-election.consider(proof )
249. if (leader-election.getRegency() 6= pn) :
250. return // ignore bad requests
251. leader := leader-election.getLeader()
252. send (“REP”, 〈accepted.value, pn, commit proof, i〉i) to leader
253.
254. learner.onAccepted(value,pnumber ) : from acceptor ac
255. accepted[ac] := (value, pnumber)
256. if there are ⌈(a + 3f + 1)/2⌉ acceptors x
257. such that accepted[x] == (value, pnumber) :
258. learn(value,pnumber) // learning
259.
260. learner.onCommitProof(commit proof ) : from acceptor ac
261. cp[ac] := commit proof
262. (value, pnumber) := accepted[ac]
263. if there are ⌈(a + f + 1)/2⌉ acceptors x
264. such that valid(cp[x], value, pnumber) :
265. learn(value,pnumber) // learning
266.
267. learner.learn(value,pnumber) :
268. learned := (value, pnumber) // learning
269. send (“LEARNED”) to all proposers
270.
271. learner.onStart() :
272. wait for timeout
273. while (not learned) send (“PULL”) to all learners
274.
275. learner.onPull() : from learner ln
276. if this process learned some pair (value, pnumber) :
277. send (“LEARNED”,value, pnumber) to ln

278. learner.onLearned(value,pnumber) : from learner ln
279. learn[ln] := (value, pnumber)
280. if there are f + 1 learners x
281. such that learn[x] == (value, pnumber) :
282. learned := (value, pnumber) // learning
283.
284. valid(commit proof,value,pnumber ) :
285. c := commit proof
286. if there are ⌈(a + f + 1)/2⌉ distinct values of x such that
287. (c[x].value == value) ∧ (c[x].pnumber == pnumber)
288. : return true
289. else return false
290.
291. vouches-for(PC,value,pnumber ) :
292. if there exist ⌈(a − f + 1)/2⌉ x such that
293. all PC[x].value == d
294. ∧ d 6= value
295. : return false
296. if there exists x, d 6= value such that
297. valid(PC[x].commit proof, d, pnumber)
298. : return false
299. return true

Figure 6.9: Parameterized FaB Paxos with recovery (part 2)
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antee of two-step executions) and two-step protocols (that require more processes).

This trade-off is expressed through the new parameter t (0 ≤ t ≤ f). Parameterized

FaB Paxos requires 3f + 2t + 1 processes, is safe despite up to f Byzantine failures

(it is live as well in periods of synchrony), and all its executions are two-step in the

common case despite up to t Byzantine failures: the protocol is (t,2)-step. FaB

Paxos is just a special case of Parameterized FaB Paxos, with t = f .

Several choices of t and f may be available for a given number of ma-

chines. For example, if seven machines are available, an administrator can choose

between tolerating two Byzantine failures and slowing down after the first failure

(f = 2, t = 0) or tolerating only one Byzantine failure but maintaining two-step

operation despite the failure (f = 1, t = 1).

The key observation behind this protocol is that FaB Paxos maintains safety

even if n < 5f + 1 (provided that n > 3f). It is only liveness that is affected by

having fewer than 5f+1 acceptors: even a single crash may prevent the learners from

learning (the predicate at line 27 of Figure 6.6 would never hold). In order to restore

the liveness property even with 3f < n < 5f +1, we merge a traditional BFT three-

phase-commit [33] with FaB Paxos. While merging the two, we take special care

to ensure that the two features never disagree as to which value should be learned.

The Parameterized FaB Paxos code does not include any mention of the parameter

t: if there are more than t failures, then the two-step feature of Parameterized FaB

Paxos may never be triggered because there are not enough correct nodes to send

the required number of messages.

First, we modify acceptors so that, after receiving a proposal, they sign it

(including the proposal number) and forward it to each other so each of them can

collect a commit proof. A commit proof for value v at proposal number pn consists
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of ⌈(a + f + 1)/2⌉ statements from different acceptors that accepted value v for

proposal number pn (function valid(. . .), line 284). The purpose of commit proofs

is to give evidence for which value was chosen. If there is a commit proof for value v

at proposal pn, then no other value can possibly have been chosen for proposal pn.

We include commit proofs in the progress certificates (line 252) so that newly elected

leaders have all the necessary information when deciding which value to propose.

The commit proofs are also forwarded to learners (line 245) to guarantee liveness

when more than t acceptors fail.

Second, we modify learners so that they learn a value if enough acceptors

have a commit proof for the same value and proposal number (line 263).

Finally, we redefine “chosen” and “progress certificate” to take commit proofs

into account.

We now say that value v is chosen for proposal number pn if ⌈(a + f + 1)/2⌉

correct acceptors have accepted v in proposal pn or if ⌈(a + f + 1)/2⌉ acceptors

have (or had) a commit proof for v and proposal number pn. Learners learn v when

they know v has been chosen. The protocol ensures that only a single value may be

chosen.

Progress certificates still consist of a−f entries, but each entry now contains

an additional element: either a commit proof or a signed statement saying that

the corresponding acceptor has no commit proof. A progress certificate vouches for

value v′ at proposal number pn if all entries have proposal number pn, there is no

value d 6= v′ contained ⌈(a − f + 1)/2⌉ times in the progress certificate, and the

progress certificate does not contain a commit proof for any value d 6= v′ (function

vouches-for(. . .), line 291). The purpose of progress certificates is, as before, to

allow learners to convince acceptors to change their accepted value.
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These three modifications maintain the properties that at most one value

can be chosen and that, if some value was chosen, then future progress certificates

will vouch only for it. This ensures that the changes do not affect safety. Liveness

is maintained despite f failures because there are at least ⌈(a + f + 1)/2⌉ correct

acceptors, so, if the leader is correct, then eventually all of them will have a commit

proof, thus allowing the proposed value to be learned. The next section develops

these points in more detail.

6.7.1 Correctness

The proof that Parameterized FaB Paxos implements consensus follows the same

structure as that for FaB.

Theorem 16 (CS1). Only a value that has been proposed may be chosen.

Proof. To be chosen, a value must be accepted by a set of correct acceptors (by

definition), and correct acceptors only accept values that are proposed (line 229).

The proof for CS2 follows a similar argument as the one in Section 6.6.4. We

first consider values chosen for the same proposal number, then we show that once

a value v is chosen, later proposals also propose v. Parameterized FaB Paxos uses

a different notion of chosen, so we must show that a value, once chosen, remains so

if no correct node accepts new values.

Lemma 47. If value v is chosen for proposal number pn, then it was accepted by

⌈(a + f + 1)/2⌉ acceptors in proposal pn.

Proof. The value can be chosen for two reasons according to the definition: either

⌈(a + f + 1)/2⌉ correct acceptors accepted it (in which case the lemma follows

directly), or because ⌈(a + f + 1)/2⌉ acceptors have a commit proof for v at pn. At
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least one of them is correct, and a commit proof includes answers from ⌈(a+f+1)/2⌉

acceptors who accepted v at pn (lines 243 and 286–289).

Corollary 1. For every proposal number pn, at most one value is chosen.

Proof. If two values were chosen, then the two sets of acceptors who accepted them

intersect in at least one correct acceptor. Since correct acceptors only accept one

value per proposal number (line 232), the two values must be identical.

Corollary 2. If v is chosen for proposal pn and no correct acceptor accepts a

different value for proposals with a higher number than pn, then v is the only value

that can be chosen for any proposal number higher than pn.

Proof. Again, the two sets needed to choose distinct v and v′ would intersect in at

least a correct acceptor. Since by assumption these correct acceptors did not accept

a different value after pn, v = v′.

Lemma 48. If v is chosen for pn then every progress certificate PC for a higher

proposal number pn′ either vouches for no value, or vouches for value v.

Proof. Suppose that the value v is chosen for pn. The higher-numbered progress

certificate PC will be generated in lines 209–212 by correct proposers. We show that

all progress certificates for proposal numbers pn′ > pn that vouch for a value vouch

for v (we will show later that in fact all progress certificates from correct proposers

vouch for at least one value).

The value v can be chosen for pn for one of two reasons. In each case, the

progress certificate can only vouch for v.

First, v could be chosen for pn because there is a set A of ⌈(a + f + 1)/2⌉

correct acceptors that have accepted v for proposal pn. The progress certificate for
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pn′, PC, consists of answers from a − f acceptors (line 210). These answers are

signed so each answer in a valid progress certificate come from a different acceptor.

Since acceptors only answer higher-numbered requests (line 249; regency numbers

never decrease), all nodes in A that answered have done so after having accepted

v in proposal pn. At most f acceptors may be faulty, so PC includes at least

⌈(a− f + 1)/2⌉ answers from A. By definition, it follows that PC cannot vouch for

any value other than v (lines 292–295).

Second, v could be chosen for pn because there is a set B of ⌈(a + f + 1)/2⌉

acceptors that have a commit proof for v for proposal pn. Again, the progress

certificate PC for pn′ includes at least ⌈(a − f + 1)/2⌉ answers from B. Up to f

of these acceptors may be Byzantine and lie (pretending to never have seen v), so

PC may contain as few as ⌈(a− 3f + 1)/2⌉ commit proofs for v. Since a > 3f , PC

contains at least one commit proof for v, which by definition is sufficient to prevent

PC from vouching for any value other than v (lines 296–297).

Lemma 49. If v is chosen for pn then v is the only value that can be chosen for

any proposal number higher than pn.

Proof. In order for a different value v′ to be chosen, a correct acceptor would have

to accept a different value in a later proposal (Corollary 2). Correct acceptors only

accept a new value v′ if it is accompanied with a progress certificate that vouches

for v′ (lines 232–234). The previous lemma shows that no such progress certificate

can be gathered.

Theorem 17 (CS2). Only a single value may be chosen.

Proof. Putting it all together, we can show that CS2 holds (by contradiction). Sup-

pose that two distinct values, v and v′, are chosen. By Corollary 1, they must have
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been chosen in distinct proposals pn and pn′. Without loss of generality, suppose

pn < pn′. By Lemma 49, v′ = v.

Theorem 18 (CS3). Only a chosen value may be learned by a correct learner.

Proof. Suppose that a correct learner learns value v after observing that v is chosen

for pn. There are three ways for a learner to make that observation in Parameterized

FaB Paxos.

• ⌈(a + 3f + 1)/2⌉ acceptors reported having accepted v for proposal pn (line

256). At least ⌈(a + f + 1)/2⌉ of these acceptors are correct, so by definition

v was chosen for pn.

• ⌈(a + f + 1)/2⌉ acceptors reported a commit proof for v for proposal pn (lines

263–265). By definition, v was chosen for pn.

• f +1 other learners reported that v was chosen for pn (lines 280–282). One of

these learners is correct—so, by induction on the number of learners, it follows

that v was indeed chosen for pn.

Lemma 50. All valid progress certificates vouch for at least one value.

Proof. The definition allows for three ways for a progress certificate PC to vouch

for no value at all. We show that none can happen in our protocol.

First, PC could vouch for no value if there were two distinct values v and

v′, each contained ⌈(a− f + 1)/2⌉ times in the PC. This is impossible because PC

only contains a − f entries in total (line 211).

Second, PC could vouch for no value if it contained two commit proofs for

distinct values v and v′. Both commit proofs contain ⌈(a+f +1)/2⌉ identical entries

(for v and v′ respectively) from the same proposal (lines 286–287). These two sets
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intersect in a correct proposer, but correct proposers only accept one value per

proposal number (line 232). Thus, it is not possible for PC to contain two commit

proofs for distinct values.

Third, there could be some value v contained ⌈(a − f + 1)/2⌉ times in PC,

and a commit proof for some different value v′. The commit proof includes values

from ⌈(a + f + 1)/2⌉ acceptors, and at least ⌈(a − f + 1)/2⌉ of these are honest so

they would report the same value (v′) in PC. But ⌈(a− f + 1)/2⌉ is a majority and

there can be only one majority in PC, so that scenario cannot happen.

Recall that a value is stable if it is learned by ⌈(l−f +1)/2⌉ correct learners.

We use Lemma 46, which shows that some value is eventually stable, to prove CL1

and CL2.

Theorem 19 (CL1). Some proposed value is eventually chosen.

Theorem 20 (CL2). Once a value is chosen, correct learners eventually learn it.

Proof. The proofs for CL1 and CL2 are unchanged. They still hold because although

the parameterized protocol makes it easier for a value to be chosen, it still has the

property that the leader will resend its value until it knows that the value is stable

(lines 203–204, 216–219). A value that is stable is chosen (ensuring CL1) and it has

been learned by at least ⌈(l − f + 1)/2⌉ correct learners (ensuring CL2 because of

the pull subprotocol on lines 267–282).

6.8 Three-Step State Machine Replication

Fast consensus translates directly into fast state machine replication: in general,

state machine replication requires one fewer round with FaB Paxos than with a

traditional three-round Byzantine consensus protocol.
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A straightforward implementation of Byzantine state machine replication on

top of FaB Paxos requires only four rounds of communication—one for the clients

to send requests to the proposers; two (rather than the traditional three) for the

learners to learn the order in which requests are to be executed; and a final one,

after the learners have executed the request, to send the response to the appropriate

clients. FaB can accommodate existing leader election protocols (e.g. [33]).

The number of rounds of communication can be reduced down to three us-

ing tentative execution [33, 76], an optimization used by Castro and Liskov for their

PBFT protocol that applies equally well to FaB Paxos. As shown in Figure 6.10,

learners tentatively execute clients’ requests as supplied by the leader before con-

sensus is reached. The acceptors send to both clients and learners the information

required to determine the consensus value, so clients and learners can at the same

time determine whether their trust in the leader was well put. In case of conflict,

tentative executions are rolled back and the requests are eventually re-executed in

the correct order.

FaB Paxos loses its edge over PBFT, however, in the special case of read-only

requests that are not concurrent with any read-write request. In this case, a second

optimization proposed by Castro and Liskov allows both PBFT and FaB Paxos to

service these requests using just two rounds.

The next section shows further optimizations that reduce the number of

learners and allow nodes to recover.
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Figure 6.10: FaB Paxos state machine with tentative execution.

6.9 Optimizations

6.9.1 2f + 1 Learners

Parameterized FaB Paxos (and consequently FaB Paxos, its instantiation for t = f)

requires 3f + 1 learners. We now show how to reduce the number of learners to

2f +1 without delaying consensus. This optimization requires some communication

and the use of signatures in the common case, but still reaches consensus in two

communication steps in the common case.

In order to ensure that all correct learners eventually learn, Parameterized

FaB Paxos uses two techniques. First, the retransmission part of the protocol ensures

that ⌈(l+f+1)/2⌉ learners eventually learn the consensus value (line 218) and allows

the remaining correct learners to pull the learned value from their up-to-date peers

(lines 267–282).

To adapt the protocol to an environment with only 2f + 1 learners, we

first modify retransmission so that proposers enter the satisfied state with f + 1

acknowledgments from learners—retransmission may now stop when only a single

correct learner knows the correct response.

Second, we have to modify the “pull” mechanism because now a single correct

learner must be able to convince other learners that its reply is correct. We therefore
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strengthen the condition under which we call a value stable (line 204) by adding

information in the acknowledgments sent by the learners. In addition to the client’s

request and reply obtained by executing that request, acknowledgments must now

also contain f + 1 signatures from distinct learners that verify the same reply.

After learning a value, learners now sign their acknowledgment and send that

signature to all learners, expecting to eventually receive f + 1 signatures that verify

their acknowledgment. Since there are f + 1 correct learners, each is guaranteed

to be able to eventually gather an acknowledgment with f + 1 signatures that will

satisfy the leader’s stability test. Thus, after the leader determines that its proposal

is stable, at least one of the learners that sent a valid acknowledgment is correct

and will support the pull subprotocol: learners query each other, and eventually

all correct learners receive the valid acknowledgment and learn the consensus value.

This exchange of signatures takes an extra communication step, but this step is not

in the critical path: it occurs after learners have learned the value.

The additional messages are also not in the critical path when this consensus

protocol is used to implement a replicated state machine: the learners can execute

the client’s operation immediately when learning the operation, and can send the

result to the client without waiting for the f +1 signatures. Clients can already dis-

tinguish between correct and incorrect replies since only correct replies are vouched

for by f + 1 learners.

6.9.2 Rejoin

By allowing repaired servers (for example, a crashed node that was rebooted) to

rejoin, the system can continue to operate as long as at all times no more than f

servers are either faulty or rejoining. The rejoin protocol must restore the replica’s
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state, and as such it is different depending on the role that the replica plays.

The only state in proposers is the identity of the current leader. Therefore, a

joining proposer queries a quorum of acceptors for their current proof-of-leadership

and adopts the largest valid response.

Acceptors must never accept two different values for the same proposal num-

ber. In order to ensure that this invariant holds, a rejoining acceptor queries the

other acceptors for the last instance of consensus d, and it then ignores all instances

until d + k (k is the number of instances of consensus that may run in parallel).

Once the system moves on to instance d + k, the acceptor has completed its rejoin.

The state of the learners consists of the ordered list of operations. A rejoining

learner therefore queries other learners for that list. It accepts answers that are

vouched by f + 1 learners (either because f + 1 learners gave the same answer, or

in the case of 2f + 1 Parameterized FaB Paxos a single learner can show f + 1

signatures with its answer). Checkpoints could be used for faster state transfer as

has been done before [33, 84].

6.10 Privacy Firewall

Traditional BFT systems face a fundamental tradeoff between increasing availabil-

ity and integrity on the one hand and strengthening confidentiality on the other.

Increasing diversity across replicas (e.g., increasing the number of replicas or increas-

ing the heterogeneity across implementations of different replicas [10, 77, 96, 156])

improves integrity and availability because it reduces the chance that too many

replicas simultaneously fail. Unfortunately, it also increases the chance that at least

one replica contains an exploitable bug. If an attacker manages to compromise one
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Figure 6.11: Illustration of confidentiality filtering properties of (a) traditional
BFT architectures, (b) architectures that separate agreement and execution, and
(c) architectures that separate agreement and execution and that add additional
Privacy Firewall nodes.

replica in such a system, the compromised replica may send confidential data back

to the attacker.

Compounding this problem, as Figure 6.11(a) illustrates, traditional repli-

cated state machine architectures delegate the responsibility of combining the state

machines’ outputs to a voter at the client. Fate sharing between the client and the

voter ensures that the voter does not introduce a new single point of failure; to quote

Schneider [139], “the voter—a part of the client—is faulty exactly when the client

is, so the fact that an incorrect output is read by the client due to a faulty voter is

irrelevant” because a faulty voter is then synonymous with a faulty client. But a

Byzantine client can ignore the voter and talk directly with a compromised replica.

Solving this problem seems difficult. If we move the voter away from the

client, we lose fate sharing, and the voter becomes a single point of failure. It is

not clear how to replicate the voter to eliminate this single point of failure without

miring ourselves in endless recursion (“Who votes on the voters?”).
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As illustrated by Figure 6.11(b), the separation of agreement from execution

provides the opportunity to reduce a system’s vulnerability to compromising confi-

dentiality by having the agreement nodes filter incorrect replies before sending reply

certificates to clients. It now takes a failure of both an agreement node and an exe-

cution node to compromise privacy if we restrict communications so that (1) clients

can communicate with agreement nodes but not execution nodes and (2) request

and reply bodies are encrypted so that clients and execution nodes can read them

but agreement nodes cannot. In particular, if all agreement nodes are correct, then

the agreement nodes can filter replies so that only correct replies reach the client.

Conversely, if all execution nodes are correct, then faulty agreement nodes can send

information to clients, but not information regarding the confidential state of the

state machine.

Although this simple design improves confidentiality, it is not entirely satis-

fying. First, it can not handle multiple faults: a single fault in both the agreement

and execution clusters can allow confidential information to leak. Second, it allows

an adversary to leak information via a covert channel, for instance by manipulating

membership sets in agreement certificates.

In the rest of this section, we describe a general confidentiality filter architecture—

the Privacy Firewall. If the agreement and execution clusters have a sufficient num-

ber of working machines, then a Privacy Firewall of h + 1 rows of h + 1 filters per

row can tolerate up to h faults while still providing availability, integrity, and con-

fidentiality. We first define the protocol, then explain the rationale behind specific

design choices. Finally, we state the end-to-end confidentiality guarantees provided

by the system, highlight the limitations of these guarantees, and discuss ways to

strengthen these guarantees.
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6.10.1 Protocol Definition

Figure 6.11(c) shows the organization of the privacy firewall. We insert filter nodes

F between execution servers E and agreement nodes A to pass only information

sent by correct execution servers. Filter nodes are arranged into an array of h + 1

rows of h + 1 columns; if the number of agreement nodes is at least h + 1, then the

bottom row of filters can be merged with the agreement nodes by placing a filter on

each server in the agreement cluster. Information flow is controlled by restricting

communication to only the links shown in Figure 6.11(c). Each filter node has a

physical network connection to all filter nodes in the rows above and below but no

other connections. Request and reply bodies are encrypted so that the client and

execution nodes can read them but agreement nodes and firewall nodes cannot.

Each filter node maintains maxN , the maximum sequence number in any

valid agreement certificate or reply certificate seen, and staten, information relating

to sequence number n. Staten contains null if request n has not been seen, contains

seen if request n has been seen but reply n has not, and contains a reply certificate

if reply n has been seen. Nodes limit the size of staten by discarding any entries

whose sequence number is below maxN − P where P is the pipeline depth that

bounds the number of requests that the agreement cluster can have outstanding

(see Section 6.3.1).

When a filter node receives from below a valid request certificate and agree-

ment certificate with sequence number n, it ignores the request if n < maxN − P .

Otherwise, it first updates maxN and discards entries in state with sequence num-

bers smaller than maxN−P . Finally it sends one of two messages. If staten contains

a reply certificate, the node multicasts the stored reply to the row of filter nodes or

agreement nodes below. But, if staten does not yet contain the reply, the node sets
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staten = seen and multicasts the request and agreement certificates to the next row

above. As an optimization, nodes in all but the top row of filter nodes can unicast

these certificates to the one node above them rather than multicasting.

Although request and agreement certificates flowing up can use any form

of certificate including MAC-based authenticators, filter nodes must use threshold

cryptography [43] for reply certificates they send down. When a filter node in

the top row receives g + 1 partial reply certificates signed by different execution

nodes, it assembles a complete reply certificate authenticated by a single threshold

signature representing the execution nodes’ split group key. Then, after a top-row

filter node assembles such a complete reply certificate with sequence number n or

after any other filter node receives and cryptographically validates a complete reply

certificate with sequence number n, the node checks staten. If n < maxN −P then

the reply is too old to be of interest, and the node drops it; if staten = seen, the

node multicasts the reply certificate to the row of filter nodes or agreement nodes

below and then stores the reply in staten; or if staten already contains the reply or

is empty, the node stores reply certificate n in staten but does not multicast it down

at this time.

The protocol described above applies to any deterministic state machine. We

describe in Section 6.3.1 how agreement nodes pick a timestamp and random bits

to obliviously transform non-deterministic state machines into deterministic ones

without having to look at the content of requests. Note that this approach may allow

agreement nodes to infer something about the internal state of the execution cluster,

and balancing confidentiality and non-determinism in its full generality appears

hard. To prevent the agreement cluster from even knowing what random value

is used by the execution nodes, execution nodes could cryptographically hash the
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input value with a secret known only to the execution cluster; we have not yet

implemented this feature. Still, a compromised agreement node can determine the

time that a request enters the system, but as Section 6.10.3 notes, that information

is already available to agreement nodes.

6.10.2 Design Rationale

The Privacy Firewall architecture provides confidentiality through the systematic

application of three key ideas: (1) redundant filters to ensure filtering in the face

of failures, (2) elimination of non-determinism to prevent explicit or covert commu-

nication through a correct filter, and (3) restriction of communication to enforce

filtering of confidential data sent from the execution nodes.

Redundant filters

The array of h + 1 rows of h + 1 columns ensures the following two properties as

long as there are no more than h failures: (i) there exists at least one correct path

between the agreement nodes and execution nodes consisting only of correct filters

and (ii) there exists one row (the correct cut) consisting entirely of correct filter

nodes.

Property (i) ensures availability by guaranteeing that requests can always

reach execution nodes and replies can always reach clients. Observe that availability

is also necessary for preserving confidentiality, because a strategically placed rejected

request could be used to communicate confidential information by introducing a

termination channel [136].

Property (ii) ensures a faulty node can either access confidential data or

communicate freely with clients but not both. Faulty filter nodes above the correct
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cut might have access to confidential data, but the filter nodes in the correct cut

ensure that only replies that would be returned by a correct server are forwarded.

And, although faulty nodes below the correct cut might be able to communicate

any information they have, they do not have access to confidential information.

Eliminating non-determinism

Not only does the protocol ensure that a correct filter node transmits only correct

replies (vouched for by at least g + 1 execution nodes), it also eliminates nondeter-

minism that an adversary could exploit as a covert channel by influencing nonde-

terministic choices.

The contents of each reply certificate is a deterministic function of the re-

quest and sequence of preceeding requests. The use of threshold cryptography makes

the encoding of each reply certificate deterministic and prevents an adversary from

leaking information by manipulating certificate membership sets. The separation of

agreement from execution is also crucial for confidentiality: agreement nodes out-

side the Privacy Firewall assign sequence numbers so that the non-determinism in

sequence number assignment cannot be manipulated as a covert channel for trans-

mitting confidential information.

In addition to these restrictions to eliminate non-determinism in message

bodies, the system also restricts (but as Section 6.10.3 describes, does not completely

eliminate) non-determinism in the network-level message retransmission. The per-

request state table allows filter nodes to remember which requests they have seen

and send at most one (multicast) reply per request message. This table reduces the

ability of a compromised node to affect the number of copies of a reply certificate

that a downstream firewall node sends.
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Restricting communication

The system restricts communication by (1) physically connecting firewall nodes only

to the nodes directly above and below them and (2) encrypting the bodies of requests

and replies. The first restriction enforces the requirement that all communication

between execution nodes and the outside world flow through at least one correct

firewall. The second restriction prevents nodes below the correct cut of firewall

nodes from accumulating and revealing confidential state by observing the bodies

of requests and replies.

6.10.3 Filter Properties and Limitations

There are h + 1 rows of firewall nodes, so there exists a row, the correct cut, that

consists entirely of correct firewall nodes. All information sent by the execution

servers pass through the correct cut,3 and the correct cut provides output set confi-

dentiality in that any sequence of outputs of our correct cut is also a legal sequence

of outputs of a correct unreplicated implementation of the service accessed via an

asynchronous unreliable network that can discard, delay, replicate, and reorder mes-

sages. More formally, suppose that C is a correct unreplicated implementation of a

service, S0 is the abstract [130] initial state, I is a sequence of input requests, and O

the resulting sequence of output replies transmitted on an asynchronous unreliable

network to a receiver. The network can delay, replicate, reorder, and discard these

replies; thus the receiver observes an output sequence O′ that belongs to a set of

output sequences O, where each O′ in O includes only messages from O.

The correct cut of our replicated system is output set confidential with re-

spect to C, so given the same initial abstract state S0 and input I its output O′′

3We are of course only considering the information that the adversary can capture, namely
information sent over network links.
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also belongs to O. The output set confidentiality property is guaranteed because the

correct firewall nodes only let messages through if they have a valid signature from

the execution cluster. This signature can only be created by combining threshold

signatures from more than f execution nodes—so a correct execution node must

have sent this answer, and correct execution nodes execute requests in the same

order as C and return the same responses (Lemma 40). Also, every reply from

these correct nodes will reach the correct cut because there are h+1 columns in the

Privacy Firewall, so one of them consists entirely of correct nodes that will forward

the messages from the execution cluster to the correct cut.

Because our system replicates arbitrary state machines, the above definition

describes confidentiality with respect to the behavior of a single correct server’s state

machine. The definition does not specify anything about the internal behaviors of

or the policies enforced by the replicated state machine, so it is more flexible and

less strict than the notion of non-interference [136], which is sometimes equated

with information flow security in the literature and which informally states that the

observable output of the system has no correlation to the confidential information

stored in the system. Our output set confidentiality guarantee is similar in spirit to

the notion of possibilistic non-interference [114], which characterizes the behavior of

a nondeterministic program by the set of possible results and requires that the set

of possible observable outputs of a system be independent of the confidential state

stored in the system.

A limitation is that although agreement nodes do not have access to the

body of requests, they do need access to the identity of the client (in order to buffer

information about each client’s last request), the arrival times of the requests and

replies, and the encrypted bodies of requests and replies. Faulty agreement or filter
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nodes in our system could leak information regarding traffic patterns. For example,

a malicious agreement node could leak the frequency that a particular client sends

requests to the system or the average size of a client’s requests. Techniques such

as forwarding through intermediaries and padding messages can reduce a system’s

vulnerability to traffic analysis [34], though forwarding can add significant latencies

and significant message padding may be needed for confidentiality [150].

Also note that although output set confidentiality ensures that the set of out-

put messages is a deterministic function of the sequence of inputs, the nondetermin-

ism in the timing, ordering, and retransmission of messages might be manipulated

to create covert channels that communicate information from above the correct cut

to below it (known as timing channels [44]). For example, a compromised node

directly above the correct cut of firewalls might attempt to influence the timing or

sequencing of replies forwarded by the nodes in the correct cut by forwarding replies

more quickly or less quickly than its peers, sending replies out of order, or varying

the number of times it retransmits a particular reply. Given that any resulting out-

put sequence and timing is a “legal” output that could appear in an asynchronous

system with a correct server and an unreliable network, it appears fundamentally

difficult for firewall nodes to completely eliminate such channels.

It may, however, be possible to systematically restrict such channels by en-

gineering the system to make it more difficult for an adversary to affect the timing,

ordering, and replication of symbols output by the correct cut. The use of the state

table to ensure that each reply is multicast at most once per request received is an

example of such a restriction. This rule makes it more difficult for a faulty node to

encode information in the number of copies of a reply sent through the correct cut

and approximates a system where the number of times a reply is sent is a determin-
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istic function of the number of times a request is sent. But, with an asynchronous

unreliable network, this approximation is not perfect—a faulty firewall node can still

slightly affect the probability that a reply is sent and therefore can slightly affect

the expected number of replies sent per request (e.g., not sending a reply slightly

increases the probability that all copies sent to a node in the correct cut are dropped;

sending a reply multiple times might slightly reduce that probability). Also note

that for simplicity the protocol described above does not use any additional heuristic

to send replies in sequence number order, though similar processing rules could be

added to make it more difficult (though not impossible in an asynchronous system)

for a compromised node to cause the correct cut to have gaps or reorderings in the

sequence numbers of replies it forwards.

Restricting the nondeterminism introduced by the network seems particularly

attractive when a firewall network is deployed in a controlled environment such as

a machine room. For example, if the network can be made to deliver messages

reliably and in order between correct nodes, then the correct cut’s output sequence

can always follow sequence number order. In the limit, if timing and message-

delivery nondeterminism can be completely eliminated, then covert channels that

exploit network nondeterminism can be eliminated as well. We conjecture that

a variation of the protocol can be made perfectly confidential if agreement nodes

and clients continue to operate under the asynchronous model but execution and

firewall nodes operate under a synchronous model with reliable message delivery and

a time bound on state machine processing, firewall processing, and message delivery

between correct nodes. This protocol variation extends the state table to track when

requests arrive and uses this information and system time bounds to restrict when

replies are transmitted. As long as the time bounds are met by correct nodes and
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links between correct nodes, the system should be fully confidential with respect

to a single correct server in that the only information output by the correct cut of

firewall nodes is the information that would be output by a single correct server. If,

on the other hand, the timing bounds are violated, then the protocol continues to

be safe and live and provides output set confidentiality.

6.10.4 Optimality

We show that the number of nodes in the Privacy Firewall is minimal, even if one

were to consider a different topology. In the following proof, we model the Privacy

Firewall as a graph with two additional nodes, A and E. The graph with A and E

forms a single connected component.

Lemma 51. If the Privacy Firewall is safe despite h Byzantine failures, then the

shortest path from A to E through the Privacy Firewall has length at least h + 1.

Proof. If the shortest path through the Privacy Firewall has length h or less, then

all the nodes in the path may be Byzantine and they may forward confidential

information from an execution node, violating the safety requirement.

Lemma 52. If the Privacy Firewall is live despite h Byzantine failures, then there

is no set C of nodes of size h or less such that removing C from the graph would

disconnect A from E.

Proof. If the size of C is h or less, then if these nodes are Byzantine then they can

block all messages between A and E, violating liveness of the Privacy Firewall.

Theorem 21. The smallest Privacy Firewall that is both safe and live has (h + 1)2

nodes.
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Proof. Label each node with its minimal distance to A. Let m be the length of

the shortest path from A to E. The set Cl of nodes that have the same label l

(0 ≤ l < m) would disconnect A from E, because for every choice of l (0 ≤ l < m),

all paths from A to E contain a node with label l (that path must contain a node

with label 1 and a node with label m − 1, and the successor of node i on that path

must have label i + 1 or lower).

Each node has only one label, so the different Cl do not overlap. Each Cl

must have size at least h+1 (Lemma 52). The value of m is at least h+1 (Lemma 51).

So there are at least h+1 non-overlapping sets of size at least h+1: the graph must

include at least (h + 1)2 nodes.

6.11 Evaluation

In this section, we experimentally evaluate the latency, overhead, and throughput

of our prototype system under microbenchmarks. We also examine the system’s

performance acting as a network file system (NFS) server.

6.11.1 Prototype Implementation

We have constructed a prototype system that separates agreement and replication

and that optionally provides a Privacy Firewall. As described above, our prototype

implementation builds on Rodrigues et al.’s BASE library [130].

Our evaluation cluster comprises seven 933Mhz Pentium-III and two 500MHz

Pentium-III machines, each with 128MB of memory. The machines run Redhat

Linux 7.2 and are connected by a 100 Mbit ethernet hub.

Note that three aspects of our configuration would not be appropriate for

production use. First, both the underlying BASE library and our system store
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important persistent data structures in memory and rely on replication across ma-

chines to ensure this persistence [17, 31, 35, 95]. Unfortunately, the machines in our

evaluation cluster do not have uninterruptible power supplies, so power failures are

a potentially significant source of correlated failures across our system that could

cause our current configuration to lose data. Second, our Privacy Firewall architec-

ture assumes a network configuration that physically restricts communication paths

between agreement machines, privacy filter machines, and execution machines. Our

current configuration uses a single 100 Mbit ethernet hub and does not enforce these

restrictions. We would not expect either of these differences to affect the results we

report in this section. Third, to reduce correlated failures, the nodes should be run-

ning different operating systems and different implementations of the agreement,

privacy, and execution cluster software. We only implemented these libraries once,

and we use only one version of the application code.

6.11.2 Latency

Past studies have found that Byzantine fault tolerant state machine replication adds

modest latency to network applications [31, 32, 130]. Here, we examine the same

latency microbenchmark used in these studies. Under this microbenchmark, the

application reads a request of a specified size and produces a reply of a specified

size with no additional processing. We examine request/reply sizes of 40 bytes/40

bytes, 40 bytes/4 KB, and 4 KB/40 bytes.

Figure 6.12 shows the average latency (all run within 5%) for ten runs of

200 requests each. The bars show performance for different system configurations

with the algorithm/machine configuration/authentication algorithm indicated in the

legend. BASE/Same/MAC is the BASE library with 4 machines hosting both the
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Figure 6.12: Latency for null-server benchmark for three request/reply sizes.

agreement and execution servers and using MAC authenticators; Separate/Same/-

MAC shows our system that separates agreement and replication with agreement

running on 4 machines and with execution running 3 of the same set of machines and

using MAC authenticators; Separate/Different/MAC moves the execution servers to

3 machines physically separate from the 4 agreement servers; Separate/Different/-

Thresh uses the same configuration but uses threshold signatures rather than MAC

authenticators for reply certificates; finally, Priv/Different/Thresh adds an array of

Privacy Firewall servers between the agreement and execution cluster with a bottom

row of 4 Privacy Firewall servers sharing the agreement machines and an additional

row of 2 firewall servers separate from the agreement and execution machines.

The BASE library imposes little latency on requests, with request latencies

of 0.64ms, 1.2ms, and 1.6ms for the three workloads. Our current implementations

of the library that separates agreement from replication has higher latencies when

running on the same machines—4.0ms, 4.3ms, and 5.3ms. The increase is largely

caused by two inefficiencies in our current implementation: (1) rather than using
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the agreement certificate produced by the BASE library, each of our message queue

nodes generates a piece of a new agreement certificate from scratch, (2) in our

current prototype, we do a full all-to-all multicast of the agreement certificate and

request certificate from the agreement nodes to the execution nodes, of the reply

certificate from the execution nodes to the agreement nodes, and (3) our system

does not use hardware multicast. We have not implemented the optimizations of

first having one node send and having the other nodes send only if a timeout occurs,

and we have not implemented the optimization of clients sending requests directly to

the execution nodes. However, we added the optimization that the execution nodes

send their replies directly to the clients. Separating the agreement machines from

the execution machines adds little additional latency. But, switching from MAC

authenticator certificates to threshold signature certificates increases latencies to

18ms, 19ms, and 20ms for the three workloads. Adding two rows of Privacy Firewall

filters (one of which is co-located with the agreement nodes) adds a few additional

milliseconds.

As expected, the most significant source of latency in the architecture is

public key threshold cryptography. Producing a threshold signature takes 15ms and

verifying a signature takes 0.7ms on our machines. Two things should be noted to

put these costs in perspective. First, the latency for these operations is comparable

to I/O costs for many services of interest; for example, these latency costs are similar

to the latency of a small number of disk seeks and are similar to or smaller than

wide area network round trip latencies. Second, signature costs are expected to

fall quickly as processor speeds increase; the increasing importance of distributed

systems security may also lead to widespread deployment of hardware acceleration

of encryption primitives. The FARSITE project has also noted that technology
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trends are making it feasible to include public-key operations as a building block for

practical distributed services [4].

6.11.3 Throughput and Cost

Although latency is an important metric, modern services must also support high

throughput [157]. Two aspects of the Privacy Firewall architecture pose challenges

to providing high throughput at low cost. First, the Privacy Firewall architec-

ture requires a larger number of physical machines in order to physically restrict

communication. Second, the Privacy Firewall architecture relies on relatively high-

overhead public key threshold signatures for reply certificates. Two factors mitigate

these costs.

First, although the new architecture can increase the total number of ma-

chines, it also can reduce the number of application-specific machines required.

Application-specific machines may be more expensive than generic machines both in

terms of hardware (e.g., they may require more storage, I/O, or processing resources)

and in terms of software (e.g., they may require new versions of application-specific

software.) Thus, for many systems we would expect the application costs (e.g., the

execution servers) to dominate. Like router and switch box costs today, agreement

node and privacy filter boxes may add a relatively modest amount to overall system

cost. Also, although filter nodes must run on (h + 1)2 nodes (and this is provably

the minimal number to ensure confidentiality), even when the Privacy Firewall ar-

chitecture is used, the number of machines is relatively modest when the goal is to

tolerate a small number of faults. For example, to tolerate up to one failure among

the execution nodes and one among either the agreement or privacy filter servers, the

system would have four generic agreement and privacy filter machines, two generic
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privacy filter machines, and three application-specific execution machines. Finally,

in configurations without the Privacy Firewall, the total number of machines is

not necessarily increased since the agreement and execution servers can occupy the

same physical machines. For example, to tolerate one fault, four machines can act

as agreement servers while three of them also act as execution replicas.

Second, a better metric for evaluating hardware costs of the system than

the number of machines is the overhead imposed on each request relative to an

unreplicated system. On the one hand, by cleanly separating agreement from exe-

cution and thereby reducing the number of execution replicas a system needs, the

new architecture often reduces this overhead compared to previous systems. On the

other hand, the addition of Privacy Firewall filters and their attendant public key

encryption add significant costs. Fortunately, these costs can be amortized across

batches of requests. In particular, when load is high the BASE library on which

we build bundles together requests and executes agreement once per bundle rather

than once per request. Similarly, by sending bundles of requests and replies through

the Privacy Firewall nodes, we allow the system to execute public key operations

on bundles of replies rather than individual replies.

To put these two factors in perspective, we consider a simple model

that accounts for the application execution costs and cryptographic processing

overheads across the system (but not other overheads like network send/receive.)

The relativeCost of executing a request is the cost of executing the request on a

replicated system divided by the cost of executing the request on an unreplicated

system. For our system and the BASE library, the relativeCost is:

relativeCost =
numExec · procapp + overheadreq + overheadbatch

numPerBatch

procapp
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Figure 6.13: Estimated relative processing costs including application processing
and cryptographic overhead for an unreplicated system, privacy firewall system,
separate agreement and replication system, and BASE system for batch sizes of 1,
10, and 100 requests/batch.

The cryptographic processing overhead has three flavors: MAC-based authentica-

tors, public threshold-key signing, and public threshold-key verifying. To tolerate

1 fault, the BASE library requires 4 execution replicas, and it does 8 MAC op-

erations per request4 and 36 MAC operations per batch. Our architecture that

separates agreement from replication requires 3 execution replicas and does 7 MAC

operations per request and 39 MAC operations per batch.5 Our Privacy Firewall ar-

chitecture requires 3 execution replicas and does 7 MAC operations per request and

39/3/6 MAC operations/public key signatures/public key verifications per batch.

Given these costs, the lines in Figure 6.13 show the relative costs for BASE

(dot-dash lines), separate agreement and replication (dotted lines), and Privacy

4Note that when authenticating the same message to or from a number of nodes the work of computing
the digest on the body of a message can be re-used for all communication partners [31, 32]. For the small
numbers of nodes involved in our system, we therefore charge 1 MAC operation per message processed by
a node regardless of the number of sources it came from or destinations it goes to.

5Our unoptimized prototype does 44 MAC operations per batch both with and without the Privacy
Firewall.
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Figure 6.14: Microbenchmark response time as offered load and request bundling
varies.

Firewall (solid lines) for batch sizes of 1, 10, and 100 requests/batch. The (unrepli-

cated) application execution time varies from 1ms per request to 100ms per request

on the x axis. We assume that MAC operations cost 0.2ms (based on 50MB/s secure

hashing of 1KB packets), public key threshold signatures cost 15ms (as measured on

our machines for small messages), and public key verification costs 0.7ms (measured

for small messages.)

Without the Privacy Firewall overhead, our separate architecture has a lower

cost than BASE for all request sizes examined. As application processing increase,

application processing dominates, and the new architectures gain a 33% advantage

over the BASE architecture. With small requests and without batching, the Privacy

Firewall does greatly increase cost. But with batch sizes of 10 (or 100), process-

ing a request under the Privacy Firewall architecture costs less than under BASE

replication for applications whose requests take more than 5ms (or 0.2ms).

The simple model discussed above considers only encryption operations and
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application execution and summarizes total overhead. We now experimentally eval-

uate the peak throughput and load of our system. In order to isolate the overhead of

our prototype, we evaluate the performance of the system when executing a simple

Null server that receives 1 KB requests and returns 1 KB replies with no additional

application processing. We program a set of clients to issue requests at a desired

frequency and vary that frequency to vary the load on the system.

Figure 6.14 shows how the latency for a given load varies with bundle size.

When bundling is turned off, throughput is limited to 62 requests/second, at which

point the execution servers are spending nearly all of their time signing replies.

Doubling the bundle size to 2 approximately doubles the throughput. Bundle sizes

of 3 or larger give peak throughputs of 160-170 requests/second; beyond this point,

the system is I/O limited and the servers have idle capacity. For example, with a

bundle size of 10 and a load of 160 requests/second, the CPU utilization of the most

heavily loaded execution machine is 30%. Note that our current prototype uses a

static bundle size, so increasing bundle sizes increases latency at low loads. The

existing BASE library limits this problem by using small bundles when load is low

and increasing bundle sizes as load increases. Our current prototype uses fixed-sized

bundles to avoid the need to adaptively agree on bundle size; we plan to augment

the interface between the BASE library and our message queues to pass the bundle

size used by the BASE agreement cluster to the message queue.

6.11.4 Network File System

For comparison with previous studies [31, 32, 130], we examine a replicated NFS

server under the modified Andrew500 benchmark, which sequentially runs 500 copies

of the Andrew benchmark [31, 70]. The Andrew benchmark has 5 phases: (1)
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Phase No Replication BASE Firewall

1 7 7 19
2 225 598 1202
3 239 1229 862
4 536 1552 1746
5 3235 4942 5872

TOTAL 4244 8328 9701

Figure 6.15: Andrew-500 benchmark times in seconds.

Phase BASE faulty server faulty ag. node

1 12 19 33
2 1426 1384 1553
3 1196 1010 1102
4 1755 1898 2180
5 5374 6050 7071

TOTAL 9763 10361 11939

Figure 6.16: Andrew-500 benchmark times in seconds with failures.

recursive subdirectory creation, (2) copy source tree, (3) examine file attributes

without reading file contents, (4) reading the files, and (5) compiling and linking

the files.

We use the NFS abstraction layer by Rodrigues et al. to resolve nondeter-

minism by having the primary agreement node supply timestamps for modifications

and file handles for newly opened files. We run each benchmark 10 times and re-

port the average for each configuration. In these experiments, we assume hardware

support in performing efficient threshold signature operations [144].

Figure 6.15 summarizes these results. Performance for the benchmark is

largely determined by file system latency, and our firewall system’s performance

is about 16% slower than BASE. Also note that BASE is more than a factor of

two slower than the no replication case; this difference is higher than the difference

reported in [130] where a 31% slowdown was observed. We have worked with the
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authors of [130] and determined that much of the difference can be attributed to

different versions of BASE and Linux used in the two experiments.

Figure 6.16 shows the behavior of our system in the presence of faults. We

obtained it by stopping a server or an agreement node at the beginning of the

benchmark. The table shows that the faults only have a minor impact on the

completion time of the benchmark.

6.12 Related work

6.12.1 Separating Agreement from Execution

We use Rodrigues et al.’s BASE replication library [130] as the foundation of our

agreement protocol, but depart significantly from their design in one key respect: our

architecture explicitly separates the responsibility of achieving agreement on the or-

der of requests from the processing the requests once they are ordered. Significantly,

this separation allows us to reduce by one third the number of application-specific

replicas needed to tolerate f Byzantine failures and to address confidentiality to-

gether with integrity and availability.

In [85], Lamport deconstructs his Paxos consensus protocol [84] by explicitly

identifying the roles of three classes of agents in the protocol: proposers, acceptors,

and learners. He goes on to present an implementation of the state machine approach

in Paxos in which “each server plays all the roles (proposer, acceptor, and learner)”.

We employ a similar deconstruction of the state machine protocol: in Paxos parlance,

our clients, agreement servers, and execution servers are performing the roles played,

respectively, by proposers, acceptors, and learners. However, our acceptors and

learners are physically, and not just logically, distinct. We show how to apply this

principle to BFT systems to reduce replication cost and to provide confidentiality.
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Baldoni, Marchetti, and Tucci-Piergiovanni advocate a three-tier approach

to replicated services, in which the replication logic is embedded within a software

middle-tier that sits between clients and end-tier application replicas [19]. Their

goals are to localize to the middle tier the need of assuming a timed-asynchronous

model [42], leaving the application replicas to operate asynchronously, and to enable

the possibility of modifying on the fly the replication logic of end-tier replicas (for

example, from active to passive replication) without affecting the client.

Our system also shares some similarities with the systems [25, 122] using

stateless witness to improve fault-tolerance. However, our system differs in two

respects. First, our system is designed to tolerate Byzantine faults instead of fail-

stop failures. Second, our general technique replicates arbitrary state machines

instead of specific applications such as voting and file systems.

To guarantee progress, the agreement protocol needs 2f +1 nodes to partici-

pate. For load balancing, these nodes are normally chosen at random from the pool

of 3f + 1 agreement nodes. Li and Tamir [91] use this observation to improve on

our work so that the same 2f +1 agreement nodes are chosen (a preferred quorum),

and the remaining f can be idle and reduce their power consumption. Naturally,

the idle nodes need to be involved in case of failure, but these are relatively rare.

Lamport goes further, proposing a replicated state machine protocol that has the

same properties but where f of the agreement nodes (called witnesses) can have even

lower processing and storage requirements than the other agreement nodes [89].

6.12.2 Two-step Consensus

The two earlier protocols that are closest to FaB Paxos are the FastPaxos protocol

by Boichat and colleagues [26], and Kursawe’s Optimistic asynchronous Byzantine
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agreement [81]. Both protocols share our basic goal: to optimize the performance

of the consensus protocol when runs are, informally speaking, well-behaved.

The most significant difference between FastPaxos and FaB Paxos lies in

the failure model they support: in FastPaxos processes can only fail by crashing,

while in FaB Paxos they can fail arbitrarily. However, FastPaxos only requires 2f +1

acceptors, compared to the 3f +2t+1 necessary for FaB Paxos. A subtler difference

between the two protocols pertains to the conditions under which FastPaxos achieves

consensus in two communication steps: FastPaxos can deliver consensus in two

communication steps during stable periods, i.e. periods where no process crashes or

recovers, a majority of processes are up, and correct processes agree on the identity

of the leader. The conditions under which we achieve gracious executions are weaker

than these, in that during gracious executions processes can fail, provided that the

leader does not fail. As a final difference, FastPaxos does not rely, as we do, on

eventual synchrony but on an eventual leader oracle; however, since we only use

eventual synchrony for leader election, this difference is superficial.

Kursawe’s elegant optimistic protocol assumes the same Byzantine failure

model that we adopt and operates with only 3f +1 acceptors, instead of 3f +2t+1.

However, the notion of well-behaved execution is much stronger for Kursawe’s pro-

tocol than for FaB Paxos. In particular, his optimistic protocol achieves consensus

in two communication steps only as long as channels are timely and no process

is faulty: a single faulty process causes the fast optimistic agreement protocol to

be permanently replaced by a traditional pessimistic, and slower, implementation

of agreement. To be fast, FaB Paxos only requires gracious executions, which are

compatible with process failures as long as there is a unique correct leader and all

correct acceptors agree on its identity.
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There are also protocols that use failure detectors to complete in two com-

munication steps in some cases. Both the SC protocol [138] and the later FC pro-

tocol [73] achieve this goal when the failure detectors make no mistake and the

coordinator process does not crash (their coordinator is similar to our leader). FaB

Paxos differs from these protocols because it can tolerate unreliable links and Byzan-

tine failures. Other protocols offer guarantees only for certain initial configurations.

The oracle-based protocol by Friedman et al. [55], for example, can complete in a

single communication step if all correct nodes start with the same proposal (or, in a

variant that uses 6f +1 processes, if at least n−f of them start with the same value

and are not suspected). FaB Paxos differs from these protocols in that it guarantees

learning in two steps regardless of the initial configuration.

In a paper on lower bounds for asynchronous consensus [86], Lamport con-

jectures in “approximate theorem” 3a the existence of a bound N > 2Q + F + 2M

on the minimum number N of acceptors required by 2-step Byzantine consensus,

where: (i) F is the maximum number of acceptor failures despite which consensus

liveness is ensured; (ii) M is the maximum number of acceptor failures despite which

consensus safety is ensured; and (iii) Q is the maximum number of acceptor fail-

ures despite which consensus must be 2-step. Lamport’s conjecture is more general

than ours—we do not distinguish between M and F—and more restrictive—unlike

us, Lamport does not consider Byzantine learners but instead assumes that they

can only crash. This can be limiting when using consensus for the replicated state

machine approach: the learner nodes execute the requests, so their code is compar-

atively more complicated and more likely to contain bugs that result in unexpected

behavior. Lamport’s conjecture does not technically hold in the corner case where

no learner can fail.6 Dutta, Guerraoui and Vukolić have recently derived a compre-

6The counterexample can be found in Appendix B.1.
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hensive proof of Lamport’s original conjecture under the implicit assumption that

at least one learner may fail [48]. In a later paper [87], Lamport gives a formal proof

of a similar theorem for crash failures only. He shows that a protocol that reaches

two-step consensus despite t crash failures and tolerates f crash failures requires at

least f + 2t + 1 acceptors. In Section 6.7 we show that in the Byzantine case, the

minimal number of processes is 3f + 2t + 1.

After the initial publication of our results, Lamport has shown that in the

case of crash failures, it was possible to reach consensus within two communication

steps in the common case, even taking into account the initial message from the

client (e.g. when consensus is used in a replicated state machine) [88]. The protocol

we show in this chapter requires a third communication step in this setup, but it

can tolerate Byzantine failures.

6.12.3 Confidentiality

Most previous efforts to achieve confidentiality despite server failures restrict the

data that servers can access. A number of systems limit servers to basic “store”

and “retrieve” operations on encrypted data [4, 80, 100, 105, 113, 134] or on data

fragmented among servers [58, 74]. The COCA [159] online certification author-

ity uses replication for availability, and threshold cryptography [43] and proactive

secret sharing [69] to digitally sign certificates in a way that tolerates adversaries

that compromise some of the servers. In general, preventing servers from accessing

confidential state works well when servers can process the fragments independently

or when servers do not perform any significant processing on the data. Our archi-

tecture provides a more general solution that can implement arbitrary deterministic

state machines.
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Secure multi-party computation (SMPC) [30] allows n players to compute

an agreed function of their inputs in a secure way even when some players cheat.

Although in theory it provides a foundation for achieving Byzantine fault-tolerant

confidentiality, SMPC in practice can only be used to compute simple functions such

as small-scale voting and bidding because SMPC relies heavily on computationally

expensive oblivious transfers [51].

Firewalls that restrict incoming requests are a common pragmatic defense

against malicious attackers. Typical firewalls prevent access to particular machines

or ports; more generally, firewalls could identify improperly formatted or otherwise

illegal requests to an otherwise legal machine and port. In principle, firewalls could

protect a server by preventing all bad requests from reaching it (a request is bad if

it causes a server to behave unexpectedly, e.g. by exploiting a bug in the imple-

mentation). An interesting research question is whether identifying all bad requests

is significantly easier than building bug-free servers in the first place. The Privacy

Firewall is inspired by the idea of mediating communication between the world and

a service, but it uses redundant execution to filter mismatching (and presumptively

wrong) outgoing replies rather than relying on a priori identification of bad incoming

requests.

6.13 Conclusion

The main contribution of this chapter is to present the first study to apply systemat-

ically the principle of separation of agreement and execution to BFT state machine

replication to (1) reduce the replication cost, (2) reduce the number of commu-

nication steps for agreement in the common case, and (3) enhance confidentiality

properties for general Byzantine replicated services.
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Separating agreement from execution allows us to build a system that uses

the proven minimal number of nodes for agreement and execution, respectively.

Although in retrospect this separation is straightforward, all previous general BFT

state machine replication systems have tightly coupled agreement and execution,

and have paid unneeded replication costs.

In traditional state machine architectures, the cost of additional replication

is prohibitive. However, separating the cheaper agreement replicas from the more

expensive execution replicas allows us to explore scenarios with additional agree-

ment replicas. We find that adding 2t replicas allows agreement to complete in two

communication steps (instead of three previously) in the common case despite t fail-

ures. We call that property two-step despite t failures and prove that it is impossible

to be two-step despite t failures with any fewer nodes. We present Parameterized

FaB Paxos, a new Byzantine-tolerant consensus protocol that is two-step despite t

failures. Parameterized FaB Paxos is optimal in the number of nodes.

Separating agreement from execution allows us to build the Privacy Firewall

and insert it in the middle, where it can filter out confidential information. The

Privacy Firewall provides new confidentiality guarantees: it guarantees that, even

if an adversary compromises some of the execution nodes, the messages sent to the

client will be identical to messages that an uncompromised service would have sent.

We prove a lower bound on the number of nodes that are needed for these guarantees

and show that the Privacy Firewall meets the lower bound.
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Chapter 7

Cooperative Services and the

BAR Model

7.1 Introduction

In the previous chapters, we assumed a bound on the set B of nodes that deviate

from the given protocol. We now explore an environment where this assumption

may not be appropriate: cooperative services. In a cooperative service, nodes from

multiple administrative domains collaborate in some way that is beneficial to each

node, without a central authority controlling the nodes’ actions. Some nodes can

still deviate from the protocol because of hardware or software failures or because

of malicious manipulation. But nodes can also deviate from the protocol for a new

reason: freed from the central authority’s oversight, the humans using the software

(the users) can interfere with its configuration or even replace it with different

software in order to maximize their benefit or minimize their costs. Selfish behavior

has been investigated by economists for some time [63, 97, 123]. It has also been
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observed in distributed computer systems, in the context of network congestion [71]

and “free riding” [3, 72] on file-sharing systems [60, 93]. For example, 66% of users

on the Gnutella network share no file at all. Selfish behavior can lead to the well-

known tragedy of the commons [63, 97], in which the actions best for individuals are

detrimental to the system as a whole.

Existing models fall short when applied to cooperative services. The Byzan-

tine fault-tolerance (BFT) model [90], which we used in the previous chapters, is not

appropriate for cooperative services because it limits the number of deviating nodes

(i.e. nodes that deviate from the protocol). All BFT protocols impose some bound

on the set of Byzantine nodes, and no such protocol can give useful guarantees for

the case where all nodes are Byzantine. In fact, there are problems for which the

Byzantine model can only handle a smaller fraction of faulty nodes. For example,

in the case of Byzantine consensus in the eventually synchronous model [49], it is

well-known that no protocol can tolerate even a third of Byzantine nodes [49]. In

cooperative services, especially if there is more at stake than free copies of music or

video files, it is conceivable that every node will deviate from the protocol (because

of the actions of the selfish users that are controlling them).

A number of researchers have studied systems in which all nodes are mod-

elled as profit-maximizers [63, 97, 112, 123]. This approach, although it handles

selfish behavior, is not appropriate for cooperative services either, because it is brit-

tle in the face of Byzantine failures. Since Byzantine deviations may go against a

node’s best interest, they are not covered by this model. For example, the AS7007

incident [115]—where a misconfigured router announced that it was the best path

to most of the Internet and disrupted global connectivity for over two hours—

demonstrates the damage a single faulty node can cause in a system that is not
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Byzantine-tolerant. A cooperative service must be able to tolerate arbitrary behav-

ior from some nodes.

In this chapter we introduce the Byzantine Altruistic Rational (BAR) model.

This model combines the advantages of Byzantine fault-tolerance and rational-

tolerance: it can tolerate both rational misbehavior and Byzantine nodes. Unlike

the Byzantine model, the BAR model allows one to build protocols in which all

the nodes may deviate (rationally), and unlike a model that considers only rational

nodes, BAR yields protocols that can tolerate some malicious nodes.

Given the potential for nodes to develop subtle tactics, it is not sufficient to

verify experimentally that a protocol tolerates a collection of attacks identified by

the protocol’s creator. Instead, just as for Byzantine-tolerant protocols [90], it is

necessary to design protocols that provably meet their goals, no matter what strate-

gies nodes may concoct within the scope of the adversary model. After introducing

the BAR model, we show an example of a BAR-Tolerant protocol and prove it

correct.

7.2 The BAR Model

Consider a set N of n nodes; each node knows N and can identify the nodes it

communicates with (either through authenticated links or through shared secrets).

Each node i is given a suggested protocol σi. There is no central authority, so the

user controlling node i might replace σi with some other protocol σ′
i. Some of the

nodes may be broken and deviate from σi in ways that are not necessarily beneficial

for the user.

The Byzantine Altruistic Rational (BAR) model addresses these considera-

tions by classifying nodes into the following three categories.
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• Byzantine nodes may deviate arbitrarily from the suggested protocol for any

reason. They may be misconfigured, compromised, malfunctioning, mispro-

grammed, or they may just be optimizing for an unknown utility function

that differs from the utility function used by rational nodes—for instance, by

ascribing value to harm inflicted on the system or its users.

• Altruistic nodes follow their suggested protocol exactly. Intuitively, altruistic

nodes correspond to correct nodes in the fault-tolerance literature. Altruistic

nodes may reflect the existence of Good Samaritans and “seed nodes” in real

systems. However, in the BAR model, nodes that crash cannot be classified

as altruistic.1

• Rational nodes reflect self-interest and seek to maximize their benefit accord-

ing to one of a known set U of utility functions. Rational nodes will deviate

from the suggested protocol if and only if doing so increases their estimated

utility from participating in the system. The utility function must account for

a node’s costs (e.g., computation cycles, storage, incoming and/or outgoing

network bandwidth, power consumption, or threat of financial sanctions [92])

and benefits (e.g., access to remote storage [20, 41, 92, 104], network capac-

ity [99], or computational cycles [143]) for participating in a system.

Nodes that deviate from the protocol (other than by crashing) have been

considered Byzantine in the past. Tolerating Byzantine failures is costly and some-

times even infeasible, as we have seen. The BAR model allows us to model some

of these deviating nodes using a stronger model in which it is possible to design

protocols for situations were the Byzantine model would not apply (for example,

when all nodes deviate because doing so is in their benefit). The BAR model is

1If needed, the BAR model could be expanded to allow for crashing altruistic nodes.
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accurate [140] in the sense that rational behavior has been observed to take place,

and we show that the BAR model is tractable in the sense that useful protocols

can be designed for it. There may be other behaviors that are currently modeled as

Byzantine that would benefit from a stronger, accurate, and tractable new model:

addressing these behaviors is outside of the scope of this dissertation.

Under BAR, the goal is to provide guarantees similar to those from Byzan-

tine fault-tolerance to “all rational and altruistic nodes” as opposed to “all correct

nodes.” We distinguish two classes of protocols that meet this goal.

• Incentive-Compatible Byzantine Fault-Tolerant (IC-BFT) protocols: A proto-

col is IC-BFT if it tolerates Byzantine nodes and if it is in the best interest of

all rational nodes to follow the protocol exactly. An IC-BFT protocol therefore

must define the optimal strategy for a rational node.

• Byzantine Altruistic Rational Tolerant (BAR-Tolerant) protocols: A protocol

is BAR-Tolerant if it tolerates Byzantine and rational nodes, even if the ratio-

nal nodes deviate from the protocol. Note that all IC-BFT protocols are also

BAR-Tolerant.

7.3 Game Theory Background

Our work draws from the field of game theory [57]. Game theory aims to explain

the actions of rational or self-interested nodes by modeling their interaction as a

game. In these games, each node i chooses a strategy σi that represents that node’s

actions. The vector ~σ = (σ0, . . . , σn−1) that assigns a strategy to each node is called

a strategy profile. The game defines a function that takes the n nodes’ strategies as

input and outputs an outcome. The utility function ui indicates the payoff that node
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Figure 7.1: From suggested program to utility

i receives for that particular outcome. The utility for node i can be written as the

function ui(outcome(σ0, . . . , σn−1)), which we abbreviate ui(~σ). We use ~σ ⊖ σ′
j to

represent the strategy profile where each node i follows strategy σi, except for node

j that follows strategy σ′
j . Similarly, in ~σ ⊖ σ′

X each node i 6∈ X follows strategy

σi and each node j ∈ X follows strategy σ′
j. In game theory, all players choose the

strategy that maximizes their payoff over the course of the game.

A strategy profile ~σ is a Nash Equilibrium [120] if no node r can improve its

utility ur by modifying its strategy unless another node also changes strategy. When

individual utility functions are public knowledge, nodes can verify that a given ~σ is a

Nash Equilibrium. Nash Equilibrium and its variants [12, 50, 64] play an important

role in our fault models and protocol design as a starting point for our concept of

Byzantine Nash Equilibrium.

7.4 Linking Game Theory and the BAR Model

The game theoretic concept of strategy corresponds, in cooperative services, to

the protocol that nodes are running. The result of the outcome function is the

execution trace as these protocols interact. Nodes then derive their utility from this
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trace, as illustrated in Figure 7.1. The utility function could, for example, take into

account the number of computed digital signatures or the number of transmitted:

information about both is available in the trace.

In game theory, cooperative solutions are sometimes not achievable in the

context of one-shot games but can be achieved in infinite horizon games [16]—

repeated games where the number of times the game is going to be played is un-

known. Intuitively, repeated games can be structured so that nodes always follow

the protocol in order to avoid punishment in the next repetition of the game; since

the game has an infinite horizon, there is always a “next repetition” where pun-

ishment could take place. In order to be similarly always able to leverage a threat

of future punishment, we assume an infinite-horizon game where each node partici-

pates only if the node gains a net benefit from its participation. Although assuming

an infinite horizon game may appear somewhat unrealistic, in practice it may suffer,

in order for the game to be solvable, that (i) the game is long, (ii) there is a small

probability of the game ending after each instance, so the horizon is unknown, or

(iii) for a node’s real-world owner to risk punishment even after the game for bad

behavior during a finite game [57].

7.4.1 Byzantine Nash Equilibrium

In our setup, each node i is given a protocol σi for consideration. We call σi node i’s

suggested protocol; it is the initial strategy of that node. Given a desired property

P , our goal is to find a protocol σ that satisfies P when σ is given as the suggested

protocol to each node in a cooperative service (or, more generally, to find a protocol

profile ~σ with the same property; a protocol profile may assign a different protocol

to each node).
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The approach we follow is to build IC-BFT protocols: if σ is such that

rational nodes never see a benefit in deviating (and therefore choose not to deviate),

and if P holds despite deviations from the Byzantine nodes, then the protocol σ will

maintain the property P in a cooperative service.

We must first specify the circumstances under which a rational node would

deviate from the suggested protocol. In this chapter, we consider rational nodes

that do not collude. In fact, we consider rational nodes that only deviate from

the protocol if doing so increases their estimated utility, under the assumption that

the other non-Byzantine nodes in the system follow the specified protocol. We also

assume that rational nodes only consider protocols that terminate2 (we denote this

set of protocols with Σ). Even though we assume that the rational nodes do not

collude, we can still tolerate a number of colluding nodes; they are simply classified

as Byzantine.

Given that rational nodes only deviate if there is a unilateral benefit in

doing so, one could think that “~σ = (σ, . . . , σ) is a Nash Equilibrium” is a sufficient

condition for the protocol to be IC-BFT. Although that is the correct intuition,

the concept of Nash Equilibrium is not sufficient for cooperative services. We need

to introduce two concepts: the estimated utility and partial history. We introduce

them by way of a toy example.

Consider a two-player infinitely repeated game. The game we use here is for

illustration purposes only. Nodes take turn playing the role of sender. The sender

can pick between 3 messages to send: “G”, “Y”, “R”. The protocol specifies that

the sender should always send “G”. Non-sender nodes have two actions: Take or

Ignore. The protocol specifies that non-sender node r should play “T” if the sender

2Recall that the protocol is repeated, so an infinite horizon game and terminating protocols are
not mutually exclusive.
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Figure 7.2: The RYG game

sent “G”, otherwise r must play “I”. A sender node always gets 50 points of utility

if it sends “G”, and 0 otherwise. Figure 7.2 shows the utility for non-sender nodes

and the game tree for one instance of the protocol.

Suppose that a rational node r is playing the RYG game with a Byzantine

node s. Suppose that the suggested strategy profile ~σ = (σ, σ) specifies that the

sender should always play “G”, and the recipient should always play “T” in response

to “G” and “I” otherwise. It is not known in advance how the Byzantine nodes s

will deviate (if at all) from ~σ, so, in the presence of Byzantine nodes, more than

one outcome is possible given a suggested strategy profile ~σ. Thus, node r cannot

compute the utility ur(outcome(σ, σ)) directly. To distill this uncertainty down to

a single number, we define the estimated utility function ûr. In this toy example,

the estimated utility is computed from considering the worst that the Byzantine

node can do. For example, the estimated utility of instances where the Byzantine

node s is the sender is 0, because the Byzantine node could play “R”. The key
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point of the estimated utility is that it distils the uncertainty of the behavior of

the Byzantine nodes down to a single number. Later in this chapter we build a

Terminating Reliable Broadcast protocol (TRB); the estimated utility we use for

TRB is introduced in Section 7.4.2.

The protocol σ is a Nash Equilibrium because no node r can increase its

estimated utility by unilaterally deviating from σ. However, there are situations

where it is rational for node r to deviate from the protocol. Consider the case

where the Byzantine node s is sender, and plays “Y”. This situation is represented

by the vertex labeled “Y” in Figure 7.2. Each vertex in the figure represents a

partial execution; we call it a partial history. The partial history represented by

“Y” indicates a situation where node 2 (r) has received message “Y” from node 1

(s). At the partial history “Y”, node r knows that it will receive 60 points of utility

if it plays “T” and 6 points of utility if it plays “I”. It is rational for node r to play

“T”. This behavior is different from what σ would have required r to do, which is

to play “I” in answer to anything other than “G”.

The Byzantine Nash Equilibrium condition requires that there is no partial

history where rational nodes would be able to increase their estimated utility by de-

viating from the protocol. As the example illustrates, this is a stronger requirement

than Nash Equilibrium.3

The set Kr is the set of all possible partial histories for r that (i) are consistent

with the well-known assumptions made in the protocol (e.g. that at most f nodes

are Byzantine), and (ii) are consistent with the protocol σr in the sense that for

every Kr ∈ Kr, when r receives a message it reacts by following σr. We are now

3The reader familiar with game theory may recognize that requiring the equilibrium to hold for
all partial histories is similar to the concept of subgame perfection. Subgame perfection only applies
when there is no uncertainty about the game, so it does not apply in the context of cooperative
services.
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ready to formally define our equilibrium condition.

Definition 16. The strategy profile ~σ = (σ0, . . . , σn−1) (σi ∈ Σ ∀0 ≤ i < n) is a

Byzantine Nash Equilibrium if and only if:

∀j,∀ûj ∈ Û ,∀Kj ∈ Kj ,∀σ′ ∈ Σ : ûj(~σ ⊖ σ′
j ,Kj) ≤ ûj(~σ,Kj)

We say that the strategy σ is a Byzantine Nash Equilibrium if ~σ = (σ, . . . , σ)

is a Byzantine Nash Equilibrium.

Informally, a strategy σ is a Byzantine Nash Equilibrium if no node j can

increase its estimated utility by deviating from the suggested strategy σ for any of

the estimated utility functions that rational nodes may have (represented by Û) and

regardless of what it may have seen other nodes do (represented by Kj).

Definition 17. Given a fail-prone system B that describes the sets of nodes that

may be Byzantine and a rational system R that similarly describes the sets of nodes

that may be rational, and given the set U of utility functions that rational nodes

use, we say that a protocol profile ~σ that satisfies some property P is IC-BFT if the

following two conditions hold.

1. ∀B ∈ B: ~σ satisfies P despite nodes in B being Byzantine, and

2. ~σ is a Byzantine Nash Equilibrium.

We say that the protocol σ is IC-BFT if ~σ = (σ, . . . , σ) is IC-BFT.

7.4.2 Estimating the Utility

We now present our choice of û for the protocols in this chapter. Our starting point

is the utility function u: if we have sufficient information to determine the actions of
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each node—including the Byzantine nodes—then we can compute the outcome and

consequently we can compute u directly. The formula below shows how j computes

its estimated utility.

uj(~σ ⊖ σ′
j ⊖ φB,Kj , k

b) = uj(outcome(~σ ⊖ σ′
j ⊖ φB,Kj , k

b))

Where:

• ~σ is the suggested strategy profile.

• σ′
j is the protocol that node j follows.

• B is the set of nodes that are actually Byzantine (this information is not

necessarily available to j).

• φB is the set of protocols that each Byzantine node will follow. Again, node j

does not have this information.

• Kj is the partial history of node j

• kb is the number of the last instance of the protocol that we are evaluating the

utility over (the protocol does not stop then, just our accounting). kb must

naturally be at least as large as the last instance in Kj .

This function takes node j’s partial history Kj into account because the

protocol σ′
j may require node j to behave differently depending on what it has

observed in the past. For example, after observing that some node x is Byzantine,

σ′
j may indicate that j should not send further messages to x. The argument kb

allows us to compute the utility over several successive instances of the game. This

compounding is necessary because the utility may be different for certain instances.
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For example, a node may only receive a benefit on some instances: this is the case in

the TRB example that we discuss in Section 7.5, where nodes only receive a benefit

when they have the role of sender. The formula below shows how the estimated

utility for node j is computed from knowledge that is available to j.

ûj(~σ ⊖ σ′
j ,Kj) = min

B∈B(Kj)
︸ ︷︷ ︸

(1)

min
φB

︸︷︷︸

(2)

lim
s̄→∞

1

s̄
︸ ︷︷ ︸

(3)

uj(~σ ⊖ σ′
j ⊖ φB ,Kj , s̄)

The rightmost term is the function u we have seen earlier. Term (3) allows us

to compute the average utility over an infinite game. Term (2) represents node j’s

risk aversion with respect to which protocol φB the Byzantine nodes will actually

follow. Node j computes everything to the right of term (2) for every possible

protocol φB and then choose the minimal value.4 Term (1) represents node j’s

risk aversion with respect to which nodes are Byzantine: node j maximizes the

worst-case utility over all sets B consistent with the previous observations Kj.

7.5 An Example

In this section we show that Lamport’s classic Terminating Reliable Broadcast pro-

tocol [90] (LTRB) (Figure 7.3) fails if the nodes are rational. We show how to

transform it into a BAR-Tolerant protocol that can handle both Byzantine and

rational nodes.

In TRB, a distinguished node—the sender—initiates a broadcast. We call

the broadcasted value the proposal. TRB guarantees four properties:

4Even though there is an infinite number of protocols that Byzantine nodes could follow, node
j can compute the worst that the Byzantine node can do to it because (for a given σ′

j) there is a
finite number of possible interactions between the Byzantine nodes and j (since σ′

j terminates).
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• Validity: if the sender is correct and broadcasts a message m, then every

correct node eventually delivers m;

• Agreement: all correct nodes deliver the same message;

• Integrity: all correct nodes deliver only one message; and

• Termination: every correct node eventually delivers some message.

Our goal is to derive a protocol that guarantees the same properties when

“correct” is changed to “correct or rational”.

7.5.1 LTRB is Byzantine-Tolerant

LTRB is a synchronous protocol that proceeds in rounds. In every round, nodes

first send messages, then receive messages and process them. Each message that

is sent in a round is received in the same round. LTRB implements TRB despite

up to f Byzantine nodes. LTRB assumes message authentication, i.e. a mechanism

by which correct nodes can apply unforgeable signatures to the messages they send

(we denote with m:p the result of node p applying its signature to message m; the

abstraction of signatures can in practice be achieved with high probability using e.g.

RSA [128]). We consider a situation where the protocol is run not just once but

continuously, and each node in turn takes the role of sender.

In the protocol, correct nodes only consider messages that are valid, ignoring

the rest. A message received in round i is valid if and only if it has the form

m:p0:p1 :, . . . , :pi where m is the message’s value, p0 is the sender, and all the pj

(0 ≤ j ≤ i) are distinct. We assume that a correct node that receives a valid

message can extract from it the value it carries. Formally, we say that node r
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Initialization for process p :
1. if p == sender and wishes to broadcast m :
2. extracted := relay := {m}
3. else : extracted := relay := ∅

Round i, 1 ≤ i ≤ f + 1 :
4. for each s ∈ relay : send s:p to all but sender
5. receive round i messages from all processes
6. relay := ∅
7. for each valid msg m:p0: . . . :pi−1 received :
8. if m 6∈ extracted :
9. extracted := extracted ∪ {m}
10. relay := relay ∪ {s}

End of round f + 1 :
11. if ∃m s.t. extracted == {m} : deliver m
12. else : deliver SF

Figure 7.3: Round-based version of Lamport’s consensus protocol for arbitrary fail-
ures with message authentication.

extracts message m:p0:. . .:pi−1 to mean that r adds m to its extracted set in round

i.

The protocol runs for f + 1 rounds. In the first round, the sender signs the

value m it wants to broadcast and sends it to all the other nodes. A correct node

t that receives a valid message s from the sender in round 1 extracts the value and

adds it to its extracted set. Node t then applies its signature to s and relays it to

all other nodes in round 2. In subsequent rounds, t extracts the value from each

valid message it receives. Whenever it extracts a value for the first time, t applies

its signature to the corresponding message and relays the message to all other nodes

in the following round.

At the end of round f + 1, node t uses the following delivery rule: if it has

extracted exactly one value, then t delivers that value; otherwise, t concludes that

the sender is faulty and delivers the default value SF. It is not hard to show that
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LTRB satisfies Validity, Agreement, Integrity, and Termination [90].

7.5.2 LTRB is not BAR-Tolerant

If nodes act rationally to maximize their own benefit, then LTRB’s safety proper-

ties are violated. We must emphasize that this is not the environment for which

Lamport’s TRB protocol was initially designed, so it should not come as a surprise

that LTRB is not BAR-Tolerant. Seeing exactly how the protocol fails is enlighten-

ing, however, both because it provides insight into how the BAR model differs from

the Byzantine model and because it will guide us toward a modified protocol that

achieves BAR-Tolerance.

When moving to the BAR model, we must specify a utility function for the

rational nodes to indicate what may motivate them to deviate from the protocol.

We show that LTRB is not BAR-Tolerant with respect to two reasonable

utility functions. Both utility functions consider sending and signing messages as

costs. They differ in their benefits: with the first utility function, a rational node x

benefits in all instances of TRB where x is the sender and the four TRB properties

are satisfied. With the second utility function, x benefits in each TRB instance in

which the four TRB properties are satisfied, independent of who is the sender. We

call the second utility function safety-aligned.

To show that LTRB is not BAR-Tolerant with respect to both utility func-

tions, we first show that a rational node may increase its estimated utility by devi-

ating from the LTRB protocol. Second, we show that if all rational nodes deviate,

then the safety properties of LTRB are violated.

We start by formally defining the first utility function. We say that the

utility ux for some node x at the end of executing an instance of LTRB (where x
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follows protocol σx) is αb − κ, where:

• α is a positive constant (representing the benefit).

• b (“broadcast”) is 0 when x does not have the role of sender. Otherwise, b is

1 if protocol σx followed by node r is such that Validity, Agreement, Integrity,

and Termination hold when x is the sender, despite up to f Byzantine failures,

if the other non-Byzantine nodes follow LTRB.

• κ represents the cost (in our example the cost is non-negative).

κ is equal to βs+γt, where s is the number of times that x signed a message

and t is the total number of bytes in messages sent by x. β and γ are positive

constants that represent, respectively, the relative costs of signing messages and

transmitting bytes. For simplicity, we assume that all signatures have the same size

ηs, all numbers that are sent have the same size ηn, and the sender’s proposal value

is always padded to the same size ηp. Note that there exist choices for the constants

α, β, γ that cause estimated utility ûx to be at most 0 regardless of what node x

does. This corresponds to situations where the cost of running the protocol exceeds

the benefit and no rational node chooses to participate. The set of utility functions

U contains an instance of the function αb − (βs + γt) for each choice of α, β and γ

for which ûr is positive. All rational nodes use a utility function from U .

Having specified the utility function, the next step is to show that a rational

node can increase its estimated utility by deviating from the protocol. In other

words, the protocol is not a Byzantine Nash Equilibrium (so it is not IC-BFT,

either).

The simplest proof that LTRB is not IC-BFT is to consider the deviation

σ′ where a rational node x simply does nothing unless it is the sender. Rational
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node x gets the same benefit in this case as it would when running LTRB (since b is

only influenced by the instances where x is the sender), but its costs are significantly

reduced (since it skips some instances of the protocol). So, LTRB is not a Byzantine

Nash Equilibrium since rational nodes have an incentive to deviate. If every node

follows deviation σ′, then we have an instance of the tragedy of the commons: either

Agreement is violated when the sender delivers its proposal and the deviating nodes

deliver SF, or Integrity is violated when the deviating nodes fail to deliver any value

at the end of the protocol.

Safety-aligned utility functions do not guarantee BAR-Tolerance

Having shown that LTRB is not BAR-Tolerant with respect to the first utility

function, we turn to the second utility function we mentioned earlier, the one that is

safety-aligned. One could think that if every rational node only considers deviations

that maintain safety (as is the case with safety-aligned utility functions), then safety

would always be maintained. We show that this is not the case.

Define the safety-aligned utility function u′ for TRB as follows: node x’s

estimated utility still has the format u′
x = αb − (βs + γt), and s and t are defined

as before; we change b so that it is 1 if protocol σx followed by node x is such that

Validity, Agreement, Integrity, and Termination hold at every instance, despite up

to f Byzantine failures, if the other non-Byzantine nodes follow LTRB (regardless

of whether x is the sender). Otherwise, b is 0.

The “Lazy TRB” (LLTRB) protocol of Figure 7.4 allows rational nodes to

increase their utility (when using the safety-aligned utility function u′). They get

the same benefit, but their costs are reduced. We say that a rational node that is

following LLTRB is lazy. The LLTRB protocol differs from LTRB in that a lazy
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Initialization for process p :
1. let R := set of all nodes except p or the sender.
2. if |R| > f + 1 : R := a subset of R of size f + 1
3. if p == sender and wishes to broadcast m :
4. extracted := relay := {m}
5. else : extracted := relay := ∅

Round i, 1 ≤ i ≤ f + 1 :
6. if i == f + 1 : R := all processes except sender and p
7. for each s ∈ relay : send s:p to all processes in R
8. receive round i messages from all processes
9. relay := ∅
10. for each valid msg m:p0: . . . :pi−1 received :
11. if m 6∈ extracted :
12. extracted := extracted ∪ {m}
13. relay := relay ∪ {s}

End of round f + 1 :
14. if ∃m s.t. extracted == {m} : deliver m
15. else : deliver SF

Figure 7.4: A lazy version of Lamport’s protocol. Rational nodes only follow this
protocol if f > 0 ∧ n > f + 2; otherwise they follow LTRB.

node q does not send messages to all other nodes, but only to f + 1 other nodes.

The intuition is that the message will reach at least one non-Byzantine node that

follows LTRB, and that node will relay the message in q’s place.

LLTRB is identical to LTRB unless f > 0 and n > f + 2. The following

lemma shows that lazy node q can correctly conclude that, as long as every other

non-Byzantine node follows the Lamport protocol, Agreement cannot be violated

by its decision to take a free ride in round 1. The intuition is that the lazy node q

relies on other nodes to forward the round 1 messages in its place.

Lemma 53. If one node follows LLTRB, the remaining non-Byzantine nodes fol-

low LTRB and a non-Byzantine node extracts m, then every non-Byzantine node

eventually extracts m.

Proof. If f = 0 or n ≤ f + 2 then LLTRB and LTRB are identical. In this case the
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conclusion holds directly since Agreement holds for LTRB. We therefore focus on

the case where f > 0 and n > f + 2.

Let i be the earliest round in which some altruistic or lazy node q extracts

m. There are two cases that we consider: q can be the sender, or not.

If q is the sender, then i = 0 (Figure 7.4, line 2). Node q is either lazy or not

(by assumption, q is not Byzantine). If it is not lazy, then it sends a valid message

to all nodes in round 1 (Figure 7.3, line 4) and then all the non-Byzantine recipients

extracts m (Figure 7.3, line 9, or Figure 7.4, line 12). If q is the sender and q is lazy,

then it sends a valid message to at least f + 1 nodes in round 1 (Figure 7.4, line 7).

There is at least one non-lazy and non-Byzantine recipient. It extracts m by the end

of round 1 (Figure 7.3, line 9) and then relays that value to all at the start of round

2 (Figure 7.3, lines 10 and 4) (there is a round 2 since f > 0). All non-Byzantine

nodes will then extract m. The lazy node l also extracts m: if l = q then it extracts

the value in round 0. Otherwise, it extracts it in round 1 after receiving it from the

sender. So, the conclusion holds if q is the sender.

Otherwise, non-sender node q extracted m in round i > 0. We show that

i ≤ f . Node q extracted m because it received a valid message m:p0: . . . :pi−1. By

the definition of valid message, all p0, . . . , pi−1 are distinct.

We show that nodes p0, . . . , pi−1 are all Byzantine. Suppose, for contradic-

tion, that there is some node pj that is not Byzantine (0 ≤ j < i). Since the

signature of a non-Byzantine process cannot be forged, it follows that pj signed and

relayed the message m:p0: . . . :pj in round j. Since pj is not Byzantine and it for-

warded the value, pj must have extracted m in round j < i (Figure 7.3, lines 9–10, or

Figure 7.4, lines 12–13), contradicting the assumption that i is the earliest round in

which a non-Byzantine process extracts m. Hence, if a message is forwarded before
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being extracted by a non-Byzantine node q, then the forwarding node is Byzantine.

There are at most f Byzantine nodes, so i must be at most f .

Having extracted m in round i ≤ f , non-sender node q will send a valid

message m:p0: . . . :pi−1:q in round i + 1 ≤ f + 1. Node q sends the message to all if

i == f . Otherwise nodes q sends the message to at least one non-Byzantine node

k, and k will have one more round in which to relay m to all nodes, unless it has

done so already.

Lemma 54. If one node follows LLTRB and the remaining non-Byzantine nodes

follow LTRB, then Agreement holds.

Proof. From Lemma 53 it follows that all non-Byzantine processes extract the same

set of values; hence, they all deliver the same message, proving Agreement.

Lemma 55. If one node follows LLTRB and the remaining non-Byzantine nodes

follow LTRB, then Validity and Integrity hold.

Proof. As before, we only need to consider the case f > 0 and n > f + 2, since

otherwise LLTRB and LTRB are identical.

Integrity holds trivially, since non-Byzantine nodes only deliver once.

If the sender is non-Byzantine and it broadcasts a message m with value v,

then at least one non-lazy non-Byzantine node receives m and extracts it in the first

round (since n > f +2). Non-Byzantine nodes only extract valid messages, and valid

messages include a signature from the sender. Since the sender only broadcasts a

single message, no non-Byzantine node will extract any value other than the one

contained in m. From Lemma 53, it follows that all non-Byzantine nodes extract

the same set of values, so they will deliver v.
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The term b in ur therefore has the same value whether r executes LTRB

or LLTRB. Every signature and every message that occur in LLTRB also occur in

LTRB, so running the LLTRB protocol incurs no more costs than running the LTRB

protocol. If f > 0 and n > f + 2, and if ~σ is the suggested strategy of every node

following LTRB, then û′
r(~σ ⊖ LLTRBr,Kr) < û′

r(~σ,Kr) for all Kr (trivially, since

the protocol ignores Kr): the LTRB protocol is not a Byzantine Nash Equilibrium

with respect to u′ because the lazy node r prefers to deviate rather than follow ~σ.

Lemma 56. If f > 0 and n > f + 2 and all rational nodes follow LLTRB, then

Agreement can be violated.

Proof. Consider the case where n = f + 4, all nodes are rational except node f + 2

that is Byzantine. The sender (node number f + 3) is rational, it signs and sends

m to the first f + 1 nodes (Figure 7.4, line 7) and delivers m since no node sends it

any message (Figure 7.4, line 1). The recipients of the sender’s message are rational

and they all relay the message to the first f + 2 nodes (excluding themselves) in

round 2 (there is a second round since f > 0). Node number f +2, being Byzantine,

does nothing, and also the other recipients take no action, since they have already

extracted m (Figure 7.4, line 11). The sender and the first f + 1 nodes deliver m

at the end, and the rational node number f + 4 delivers SF since it received no

message. Agreement is therefore violated.

The LTRB protocol exhibit the tragedy of the commons regardless of whether

the utility function is safety-aligned or not: safety is violated when all nodes behave

rationally and deviate from the suggested protocol to increase their estimated utility.
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7.5.3 TRB+ is BAR-Tolerant

We modify the LTRB protocol so that there is no incentive for rational nodes to

deviate unilaterally from the protocol. Our modified protocol requires n > 2f . We

use the utility function u, not safety-aligned utility function u′ (the results hold for

u′ as well since in our modified protocol safety holds in all instances: any deviation

that would increase u′ would increase u as well). Our new protocol, TRB+, is based

on three principles:

1. The protocol must specify a well-known pattern of messages: every time that

a node a expects a message from a node b, then node a can compute determin-

istically, from the information available to it, a set E such that the message

to be received is an element of E (as long as a and b follow the protocol, nat-

urally). The set E is then used to detect nodes that deviate from the pattern

of messages (this is a form of failure detector).

2. Nodes that are observed to deviate from this pattern of messages are subject

to punishment, defined as a course of action that decreases the utility of the

target.

3. The protocol must ensure that there is no benefit in unilateral deviations from

the protocol that stay within the required pattern of messages.

These three principles together ensure that there is no unilateral benefit in

deviating from the protocol. While every protocol can be said to have a pattern

of messages (with E being the universe of all possible messages), when following

the three principles the pattern of messages must be chosen carefully: in order

to facilitate the third principle, the pattern of messages must be as restrictive as

possible (i.e. the set E should be as small as possible).
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constant meaning

n number of nodes
f maximal number of Byzantine nodes
α benefit
β cost of sending a signature
γ cost of sending a byte
ηs size of a signature
ηp size of a proposal value
ηn size of a number

variable meaning

Gp set of nodes that p has not observed deviating
G[x, y] true unless x sends a penance when y is sender

k number of the instance of TRB+ that is executing
ξ amount of filler in the penance(. . .) message

⊥1,⊥2 constants of size ηp contained in the filler(. . .) message

Table 7.1: Variables and constants for TRB+

Table 7.1 and Figures 7.5 and 7.6 show variables and pseudocode for the

TRB+ protocol. We use m:x:y to denote the message m, signed by nodes x and y.

The function head(m:x:y) returns m, and the function tail(m:x:y) returns the two

signatures. If m = (a, b), then m[0] = a and m[1] = b. Nodes cannot sign on behalf

of other nodes, but we sometimes use the notation m′ == m:x when some node (not

necessarily x) is checking that the message m′ it received contains the value m and

a valid signature from x. The TRB+ protocol is similar to LTRB in that nodes sign

and forward values they extract, but we add filler(. . .) and penance(. . .) messages

to follow the three principles outlined above. The next few paragraphs go through

the three principles and explain how we modified LTRB to obtain TRB+.

Pattern of messages. We must modify the LTRB protocol because it does not

have a pattern of messages that is restrictive enough. In LTRB, a node must forward

every value that it extracts, but nodes do not know how many values other nodes

have extracted, so their set E must allow other nodes to forward a value, or not.
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Initialization for process p on instance k of the protocol :
1. Gp := {0 . . . (n − 1)} − p
2. G[x, y] := true for each x, y ∈ {0 . . . n − 1}

Round 1 for process p :
10. if p == sender :
11. send ((k, j):p, (k,msg):p) to every process j in Gp

12. deliver msg
13. else : // p 6= sender
14. if received (k,p):sender : ticket := (k, p):sender
15. else :
16. ticket := penance(p)
17. G[p, sender] := false
18. Gp := Gp − sender
19. if received (k,m):sender∧ |m| == ηp ∧ sender ∈ Gp :
20. extracted := {m}
21. relay := { (k,m):sender }
22. else :
23. extracted := relay := ∅
24. Gp := Gp − sender

Round i (2 ≤ i ≤ f + 1) for process p :
30. // 1. Send penance when necessary
31. if i == 2 : send ticket to all procs. in Gp − sender
32. // 2. Send two messages to all participants who have not deviated
33. for each s ∈ relay :
34. send s:p to all processes in Gp − sender
35. if |relay| < 1 : send filler(1, i, p) to all procs. in Gp − sender
36. if |relay| < 2 : send filler(2, i, p) to all procs. in Gp − sender
37. relay := ∅
38. // 3. Receive penances when necessary
39. if i == 2 :
40. for each process j ∈ Gp − sender :
41 G[j, sender] := G[j, sender] ∧ (received (k,j):sender from j)
42. if received neither (k,j):sender nor penance(j ) from j :
43. Gp := Gp − j // process j deviated from the protocol
44. // 4. Receive messages, check for deviation
45. for each process j ∈ Gp − sender :
46. if also received from j s1 and s2 s.t. valid(s1, i, j) ∧ valid(s2, i, j) ∧ head(s1) 6= head(s2),

and nothing else :
47. for each integer l s.t. 1 ≤ l ≤ 2 :
48. if interesting(sl, i, j) :
49. extracted := extracted ∪ {head(sl)}
50. if |relay | < 2 : relay := relay ∪ {sl}
51. else : Gp := Gp − j // process j deviated from the protocol

Postprocessing : // At the end of the last round, decide
60. if ∃m s.t. extracted == {m} : deliver m
61. else : // sender faulty
62. Gp := Gp − sender
63. deliver SF

Figure 7.5: TRB+, an IC-BFT protocol for Terminating Reliable Broadcast. The
protocol is run continuously. The sender for a given instance k of the protocol is
chosen round-robin.
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valid(m, i, j) :
100. if head(m)[0] 6= k : return false
101. if head(m)[1] 6= ⊥1 ∧ head(m)[1] 6= ⊥2

102. ∧ head(tail(m)) is a signature from sender
103. ∧ last signature on m is from j
104. ∧ tail(m) is a chain of i signatures :
105. return true
106. if m == filler(1, i, j) ∨ m == filler(2, i, j) : return true
107. return false

interesting(m, i, j) :
110. return (
111. head(m)[0]==k
112. ∧ head(m)[1] 6= ⊥1 ∧ head(m)[1] 6= ⊥2

113. ∧ head(tail(m)) is a signature from sender
114. ∧ last signature on m is from j
115. ∧ tail(m) is a chain of i distinct signatures
116. ∧ m does not contain our own signature
117. ∧ ∀x ∈ relay : head(x) 6= head(m) )

padding(l) :
120. return a sequence of zeroes of length l.

filler(pos, i, p) :
130. return ((k,⊥pos), padding(ηs(i − 1))):p

penance(j) :
140. g := |{x : G[j, x]}|
141. sender msg := 3ηn + 2ηs + ηp

142. nonsender msg := fηp + fηn + f(f + 3)ηs/2 + 2ηn + ηs

143. δ := n(ηn + ηs)
144. ξ := (sender msg + (n − 1) ∗ nonsender msg + δ)/g − ηn − ηs

145. return (k,padding(ξ)):j

Figure 7.6: Helper functions for TRB+

TRB+, instead, specifies a simple pattern: in every round, every node must send a

fixed number of messages whose contents are specified by the protocol.

The pattern of messages is the following: in the first round, only the sender

sends a message (Figure 7.5, line 11). The sender sends no message in subsequent

rounds. Every other node sends three messages in the second round (lines 31–36),

and two messages in each subsequent round (lines 33–36). To make the protocol

incentive compatible, nodes that fail to send the expected messages are punished

(more on this below).

Dolev and Strong observed [45] that once a node has extracted two distinct
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valid values, its decision is set to SF, independent of how many more distinct values

it extracts. Consequently, forwarding two values is sufficient for a TRB protocol.

This observation motivates our choice of forwarding exactly two values in every

round:5 two values are sufficient for TRB, and sending exactly two (instead of at

most two in Dolev-Strong’s protocol) allows us to create a more restrictive pattern

of messages. When nodes have extracted fewer than two values, they forward a

value in a special filler(. . .) message instead, so that they can remain in the pattern

of messages and avoid punishment.

Punishment for deviating from the pattern. Punishment in TRB+ comes

from the penance(. . .) messages. Each node p keeps a set Gp of the nodes that

have been following the pattern of messages so far. If node p observes that node x

deviates, then x is removed from Gp (lines 18, 24, 43, 51, and 62) and, as a result,

node p will not send the ticket message (sometimes simply called the ticket) to x

(line 11). The pattern of messages requires all nodes to forward a message (line 31):

either the ticket message (line 14) or, if they have not received it, the expensive

penance(. . .) message instead (line 16). If node x deviates in its interaction with

node p, then node p will not send a ticket to x and thus force x to send a more

expensive message. There is no cost to p for punishing x, so node p has no incentive

to withhold punishment. The constant ξ determines the size of the penance(. . .)

message. In Lemma 65 we compute ξ to make sure that the penance(. . .) message

is expensive enough to counterbalance any benefit obtained by deviating from the

pattern of messages.

5Note that on the second round non-Byzantine nodes send three messages, yet forward only two
values.
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No beneficial deviation inside the pattern. Part of making sure there is no

profitable deviation within the required pattern of messages is to require that the

two messages nodes send at every round (lines 33–36) cost the same, regardless of

how many values were extracted. Nodes that have extracted fewer than two values

are required to instead send a filler(. . .) message (line 130) which has the same cost

as forwarding an extracted value (in terms of number of signatures and number of

bytes) even though it does not contain the sender’s proposal but instead contains a

constant (⊥1 or ⊥2) of the same size. Both the forwarded value and the filler(. . .)

message have a single signature.

A subtle technical detail that comes as a consequence of the filler(. . .) mes-

sages is that we cannot apply the same optimization as Dolev and Strong’s proto-

col [45], where nodes relay messages only to those nodes whose signature does not

already appear on the message. The purpose of this optimization is to avoid sending

messages that would immediately be discarded: if the recipient r already signed a

value, r must have already extracted it so r has nothing to learn from the mes-

sage. This optimization, unfortunately, does not mix well with our requirement for

a strict pattern of messages. There are two ways to combine this optimization with

a pattern of messages: we could either allow recipients to expect sometimes only

a single message, or we could require the sender to send two messages always, but

send a filler(. . .) message rather than a message that the recipient will immediately

discard. Either choice violates the three principles. The first choice would allow a

node to benefit by deviating within the pattern, violating the third principle: a ra-

tional node would relay a single value even when it is supposed to relay two, and the

recipient would not punish the rational node since the exchange satisfies the pattern

of messages. The second choice also violates the third principle, although in a more
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subtle way. Consider a rational node r that has two values to relay. Suppose both

values are signed by node b, so that node r should send two filler(. . .) messages to b,

and the signed values to all other nodes. The protocol requires all of these messages

to be signed, so according to the protocol, node r should sign both values and the

two filler(. . .) messages, for a total of four signatures (all messages are distinct). In

this scenario, node r can benefit by deviating: r can sign the filler(. . .) messages

only (only two signatures), and send them to all nodes. Since the pattern of mes-

sages allows for the receipt of two filler(. . .) messages, there is again a benefit in

deviating within the pattern, violating the third principle. Since Dolev and Strong’s

optimization cannot be combined with our three principles, we do not apply it: in

TRB+ (as in LTRB), nodes sometimes relay messages even though these messages

will be discarded immediately by their recipients. The function interesting(. . . )

in Figure 7.6 checks whether a message should be discarded or whether its value

should be extracted. The function valid(. . . ) (Figure 7.6), instead, checks whether

the received message fits within the pattern of messages. Since we could not ap-

ply the optimization, some messages that fit within the pattern of messages will be

discarded immediately.

The TRB+ protocol is designed to be IC-BFT so that it can tolerate rational

nodes. The proof that rational nodes will choose to follow this protocol involves two

steps. First, we establish that the estimated utility from following the protocol

is positive by showing that, if all rational nodes follow the protocol, then TRB+

implements Terminating Reliable Broadcast, i.e. Validity, Agreement, Integrity, and

Termination are satisfied. Then, we establish that unilaterally deviating from the

protocol does not increase a rational node’s utility, i.e. the protocol is a Byzantine

Nash Equilibrium.
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Proving that the estimated utility is positive The first step to proving the

correctness of TRB+ when non-Byzantine nodes follow the protocol is to show that

non-Byzantine nodes do not shun each other.

Lemma 57. If nodes a and b both follow the TRB+ protocol, then a ∈ Gb and

b ∈ Ga.

Proof. Since the protocol is symmetric, we only need to show that a ∈ Gb. Node a

is added to Gb during initialization. We check every line that changes Gb and show

that a is never removed. The first such instance is lines 18 and 24: since a follows

the protocol, it will send the required messages on line 11. Line 43 is next; that line

is never executed because a sends the required messages on line 31. The next line

that modifies Gb is line 51. Since a follows the protocol, it sends the two required

messages on lines 33–36. Both message satisfy valid(. . .) by construction. Finally,

Gb could be changed at the end of the protocol, on line 62. This does not happen

because the protocol guarantees that SFis never delivered if the sender follows the

protocol.

Having shown that no node that follows the protocol shuns other nodes that

follow the protocol, the rest of the correctness proof is inspired by the proof for

Dolev and Strong’s protocol [45].

Lemma 58. If all but the f Byzantine nodes follow the protocol, and if a node

receives a valid message m that contains a signature from non-Byzantine node r,

then r has extracted m.

Proof. To show that non-Byzantine nodes only forward values that they extracted,

we look at the two only places where values are forwarded. First, a value can be

forwarded because it was put in the relay set at line 21. In this case, the relayed
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value was extracted on line 20. Second, a value can be forwarded though line 50. In

that case, again, the value was necessarily extracted (line 49).

Lemma 59. If all but the f Byzantine nodes follow the protocol, and if a non-

Byzantine node r adds message m to its relay set, then all non-Byzantine nodes

eventually extract m.

Proof. There are two cases: node r can add to its relay set on round i < f + 1, or

it can add to it on round i = f + 1.

In the first case, the protocol will execute at least one more round and since

r follows the protocol, it will send m:r to all other non-Byzantine nodes (line 34 and

Lemma 57). The function interesting(m:r) returns true for each node x that has

not yet extracted m since interesting(m) held at r: since x has not extracted m,

message m does not contain a signature from x (Lemma 58).

We show that the second case can only occur if some other non-Byzantine

node added m to its relay set on round j < f + 1. A valid message received on

round i contains i signatures (line 104). A valid message m received on round f +1,

therefore, contains at least one signature from a non-Byzantine node. It follows that

a non-Byzantine node extracted m in an earlier round (Lemma 58).

Lemma 60. If all but the f Byzantine nodes follow the protocol, and if a non-

Byzantine node r extract m, then all non-Byzantine nodes extract m, or extract two

distinct messages m′ and m′′ (or both).

Proof. Node r extracts m on line 49 or 20. If node r has extracted fewer than two

values at this point, then it will add m to its relay set (line 50 or 21) and therefore

the conclusion holds (by Lemma 59).
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If node r has already extracted two other values when it extracts m, then

these other values m′ and m′′ were relayed (since then |relay | < 2) and other non-

Byzantine nodes extracted them.

Lemma 61. If all but the f Byzantine nodes follow the protocol, then TRB+ sat-

isfies Validity.

Proof. If the sender is correct and broadcasts m then it sends it on round 1. Every

non-Byzantine node then extracts it at line 20.

The sender does not sign any other proposal value, so only messages with

proposal m are considered interesting(. . .). Therefore non-Byzantine nodes do not

extract any value other than m. All non-Byzantine nodes therefore only extract at

most one value.

We can then conclude from Lemma 60 that all non-Byzantine node extract

the same value, m, so they all deliver m.

Lemma 62. If all but the f Byzantine nodes follow the protocol, then TRB+ sat-

isfies Agreement.

Proof. It follows directly from Lemma 60 that if any non-Byzantine node extracts

more than one value, then all will. Further, if two non-Byzantine nodes extract

different values, then all non-Byzantine nodes extract at least two values. The only

possible outcomes therefore are: (i) no non-Byzantine node extracts a value, and

all deliver SF; (ii) all non-Byzantine nodes extract more than one value, and all

deliver SF; (iii) all non-Byzantine nodes extract the same value, m, in which case

all non-Byzantine nodes deliver m.

Lemma 63. If all but the f Byzantine nodes follow the protocol, then TRB+ sat-

isfies Integrity.
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Proof. Integrity specifies that non-Byzantine nodes deliver a single message. This

can be established directly by observing that deliver is only called once, at the end

of the last round (lines 60–63).

Theorem 22. TRB+ satisfies Validity, Agreement, Integrity, and Termination in

the presence of f Byzantine nodes if all other nodes follow the protocol.

Proof. The previous lemmas establish Validity (Lemma 61), Agreement (Lemma 62),

and Integrity (Lemma 63). Termination follows directly since there are no loops and

no blocking calls in the protocol.

Earlier we said that we only consider rational nodes with a utility function

that gives them a net benefit from participating in the protocol. For completeness,

we compute which value of α (as a function of β and γ) is necessary to ensure a ben-

efit. Recall that we are considering the first of the two utility functions introduced

in Section 7.5.2, where nodes only get a benefit when they have the role of sender.

The utility ur for node r is αb− (βs+ γt). When r does not have the role of sender,

b is 0. Otherwise, b is 1 if he protocol σr followed by node r is such that Validity,

Agreement, Integrity, and Termination hold when r is the sender, despite up to f

Byzantine failures, if the other non-Byzantine nodes follow LTRB. s is the number

of times that r signed a message and t is the total number of bytes in messages sent

by r.

Lemma 64. The estimated utility ûr of a rational node r following the TRB+

protocol is positive as long as α > TC(n − f − 1).

Proof. We compute the costs associated with n instances of TRB+. There are three

possible cases: (a) r is the sender, (b) r receives a ticket message, or (c) r does not

receive a ticket message. In the instance where r is the sender, it must sign the
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proposal message and the ticket for each node in Gr (line 14), so 1 + g signatures,

where g = |Gr|. To each of the g nodes that it doesn’t shun, r sends 3 numbers, 2

signatures, and a proposal. The cost to r on instances where it is sender is therefore

β(1 + g) + γg(3ηn + 2ηs + ηp).

In the g instances where r is not the sender and r receives a ticket message,

r must generate 2 signatures (one for each message it sends, either the value in

relay or the result of calling filler(. . .); lines 33–36). These two messages contain, in

round i, a proposal, a number, and i signatures. Note that the filler(. . .) message

has the same size as the relay message (line 130). These messages are sent to g − 1

nodes (the nodes in Gr minus sender ). There are f rounds, so the cost for signing

and sending these messages is z =
∑f+1

i=2 (2β + 2γ(ηp + ηn + iηs)(g− 1)). In addition

to this cost, r forwards the ticket message for an additional cost of γ(2ηn + ηs)

In the remaining n− g−1 instances where r is not the sender and r does not

receive a ticket message, node r sends the same messages to the other nodes as it did

if it had the ticket , for a cost of z, except that now the messages are sent to g nodes

instead of (g− 1) since sender 6∈ Gr. In addition, r sends the penance(. . .) message

to g nodes for a cost of βs + γg(ηn + ξ + ηs) (line 145). We are now in a position to

determine ξ (as a function of g) by computing the total cost and choosing ξ so that

the cost increases as g decreases.

The total cost over n instances, TC(g), is, after simplifying z:
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1 ∗
(
β(1 + g) + γg(3ηn + 2ηs + ηp)

)
(a)

+g ∗
(

2βf + 2γ(g − 1)(fηp + fηn + f(f + 3)ηs/2) (b)

+ γ(g − 1)(2ηn + ηs)
)

+(n − 1 − g) ∗
(

2βf + 2γg(fηp + fηn + f(f + 3)ηs/2) (c)

+ βs + γg(ηn + ξ + ηs)
)

The value of ξ is (3ηn + 2ηs + ηp)/(n − 1 − g) + δ/((n − 1 − g)g) − ηn − ηs,

with δ := (2ηn + ηs)n
2/4 (lines 140–144).

To ensure a net benefit in participating in the protocol, α must be larger

than TC(g) for all choices of g. As TC increases as g decreases (cf. Lemma 65), it

suffices to check that α is larger than TC for the case |Gr| = (n − f − 1).

Proving that there is no benefit in unilateral deviations To ensure that

rational nodes will choose to follow the protocol, we combine predictability (each

non-Byzantine node must send two messages) with accountability (nodes that fail

to do so face consequences).

We implement local accountability through a grim trigger scheme [57]. In a

grim trigger scheme, if a node x observes that some other node y does not cooperate,

then x reacts by never cooperating with y again. We implement this scheme in

TRB+ as follows. If a node p notices that some node q fails to send two distinct

valid messages to p in any round, then p removes q from p’s set Gp. Hence, p no
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Leaving the pattern of messages Lemma

Not participating at all 64
Sending fewer messages 66
Sending additional messages 67
Sending unexpected messages 68

Deviating within the pattern of messages Lemma

Sending an in-pattern message that is shorter than specified 69
Sending an in-pattern message with fewer signatures than specified 69
Resending an in-pattern message to avoid computing a signature 69
Deviating from operations that do not impact the messages sent 70

Table 7.2: Space of deviations

longer sends messages to q. Just like tit-for-tat [57], grim trigger is only effective for

iterative games with infinite horizons [15, 16]; in our case the protocol is executed

infinitely often, and the sender is selected in round-robin fashion. Once the turn

comes for p to be the sender, it will not send any message to q, including the

ticket message. Not having a ticket message forces q to either send a penance(. . .)

message in round 2, or not send messages that other nodes expect, resulting in more

nodes shunning q. The penance(. . .) message is designed to be more expensive

than sending all expected messages to p for n iterations of our protocol, so that it

is in node q’s best interest to send these messages rather than having to incur the

cost of the penance(. . .) message.

To show that no deviation from the protocol increases the estimated utility,

we examine all the possible deviations. The deviations are listed in Table 7.2. There

are two categories of deviations: detectable and non-detectable. The first category

contains all deviations that will be detected by at least one other node because the

perpetrator deviated from the pattern of messages. There are only three ways to

detectably deviate: not sending a message that should be sent, sending an additional

message that should not have been sent, or sending a message with contents that
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differ from what the recipient expects. We examine these three detectable deviations

in the next few lemmas. The high-level idea is that in each of these cases, the node

that detects the deviation will shun the deviating node and this shunning will reduce

the deviating node’s estimated utility because, as explained in Lemma 65, once a

node is shunned by another it must generate expensive penance(. . .) messages or

risk being shunned by even more nodes. Being shunned by all would of course bring

node r’s benefit to 0 since at that point it is impossible for node r to broadcast its

proposal.

Lemma 65. If rational node r unilaterally deviates by shunning a node that is not

known to be Byzantine, then node r’s estimated utility does not increase.

Proof. We prove that omitting messages reduces the utility by computing the amount

of filler ξ that should be in a penance(. . .) message as well as the number s of digi-

tal signature operations necessary to generate a penance(. . .) message. We choose

ξ and s such that the cost of the penance(. . .) messages that result from omitting

a messages is larger that the savings from not sending the omitted messages.

The protocol specifies that a node r not send messages to nodes outside of

its set Gr. Nodes are removed from Gr when they are observed to deviate from

the protocol. If node r does not send any message to some non-Byzantine node

x, then node x will shun r in return and, in particular, will not send it any ticket

message when it is sender (line 11, r 6∈ Gx). As a result, node r will have to send an

expensive penance(. . .) message to every node it does not shun (not sending the

penance(. . .) message to a node causes it to shun r). Since node x shuns r for any

omitted message, node r can omit all the messages that it would normally send to

x. These omitted messages result in some savings for r.
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To ensure that there is no incentive for node r to remove correctly-behaving

nodes from Gr, we show that the estimated utility û decreases as correctly-behaving

nodes are removed from Gr—even though a smaller Gr may mean that r sends fewer

penance(. . .) messages.

The total cost over n instances, TC(g) where g = |Gr|, was computed in

Lemma 64. It is:

1 ∗
(
β(1 + g) + γg(3ηn + 2ηs + ηp)

)
(a)

+g ∗
(

2βf + 2γ(g − 1)(fηp + fηn + f(f + 3)ηs/2) (b)

+ γ(g − 1)(2ηn + ηs)
)

+(n − 1 − g) ∗
(

2βf + 2γg(fηp + fηn + f(f + 3)ηs/2) (c)

+ βs + γg(ηn + ξ + ηs)
)

We see that the number of digital signatures increases as g decreases if s > 0 (term

(c)), so we can set s = 1. Remains to compute ξ so that the total number of

bytes sent increases as g decreases. We consider only the γ factors in TC(g). Let

sender msg = 3ηn +2ηs +ηp, nonsender msg = fηp +fηn +f(f +3)ηs/2+2ηn +ηs,

and cost penance = ηn + ξ + ηs. We see that (as long as ξ ≥ ηn):

TC(g) ≤ g ∗ sender msg + (n − 1)g ∗ nonsender msg + (n − 1 − 1)g ∗ cost penance

This cost would decrease as g decreases if cost penance were not a function of g. To

maintain the total cost to at least its initial level as g decreases, the following must
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hold:

(n−1−g)g∗cost penance ≥ (n−1−g)∗sender msg+(n−1)(n−1−g)∗nonsender msg

Solving for ξ: g(ηn + ξ + ηs) = sender msg + (n − 1) ∗ nonsender msg + δ, so

ξ = 1
g (sender msg +(n−1)∗nonsender msg)+ 1

gδ−ηn −ηs. To ensure that ξ > ηn,

we set δ = n(ηn + ηs). Our choice of ξ ensures that shunning non-Byzantine nodes

reduces the estimated utility.

Lemma 66. If rational node r unilaterally deviates by sending only a subset of the

required messages, then node r’s estimated utility does not increase.

Proof. If node r deviates by omitting even a single message, then the recipient x

will shun r; node r will then have to send penance(. . .) messages when x is the

sender. The effect is exactly the same as that described in Lemma 65, except with

potentially additional costs if r still sends some messages to x. If follows directly

that ûr decreases.

Lemma 67. If rational node r unilaterally deviates by sending additional messages,

then node r’s estimated utility does not increase.

Proof. Sending an additional message to a non-Byzantine node p incurs an addi-

tional bandwidth cost. The effect of the additional message is at best nothing (round

1), or at worst that the recipient p will remove the sender from Gp (later rounds,

see line 51), resulting in a reduced ûr.

Sending an unexpected message to a Byzantine node cannot improve that

Byzantine node’s worst-case behavior (if anything, it may help drive the system to

an even less pleasant outcome). Therefore, no rational node sends an additional

message to another node—Byzantine or not.
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The final detectable deviation is to send a message with contents that de-

tectably deviate from what is expected, so that it will not be accepted by the

recipient—meaning that it will not match what the recipient expects.

Lemma 68. If rational node r unilaterally deviates by sending a message that will

not be accepted, then node r’s estimated utility does not increase.

Proof. Sending such a message to a non-Byzantine node p always causes the sender

to be removed from Gp (lines 18 or 24 for the first round, lines 43 and 51 for

subsequent rounds). This removal directly results in a reduced estimated utility.

We have seen that no detectable deviation can increase node r’s estimated

utility. We now show that the same holds for non-detectable deviations. There are

two kind of non-detectable deviations: either sending a different message that is still

within the pattern of messages, or deviating from steps of the protocol that are not

related to the sending of messages.

Lemma 69. If rational node r unilaterally deviates by sending a message other than

what the protocol requires, yet that message is be accepted, then node r’s estimated

utility does not increase.

Proof. There is only one way for r to send a deviant message that is accepted: send

another message in the pattern of messages instead of the one that the protocol

requires. This can reduce cost if (i) the other message is shorter or requires fewer

digital signatures, or (ii) r can reuse a previous digital signature.

Except for penance(. . .) messages, at every step, all messages that can be

received in the pattern of messages have the same size and the same number of

signatures, so a non-detectable deviation cannot reduce either cost. Line 19 shows

that all proposals must be padded to the same size, line 46 shows that two proposals
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or filler(. . .) messages must be forwarded every round. Proposals and filler(. . .)

messages have the same cost: β + γ(ηn + ηp + iηs) at round i.

The pattern of messages allows for two different-sized message at the begin-

ning of the first round: node r must send either the ticket message it received from

the sender, or the penance(. . .) message. The ticket message is cheaper to send.

However, the ticket message includes a digital signature from the sender. Since node

r cannot forge signatures, the only way to stay in the pattern of messages if r did

not receive a ticket message is to send the penance(. . .) message.

We have seen that node r cannot reduce the number of bytes or digital

signatures it has to send. Next we show that it must generate afresh each of the

digital signatures that it must send. Each message is unique because messages grow

in length with each round, and each message is tagged with the instance number k.

No two messages are identical; in particular, the check at line 46 ensures that the

two forwarded messages are distinct. Signatures cannot be reused, so a rational node

r cannot increase its estimated utility by deviating from the protocol but sending

messages that are accepted.

The last possible deviation would be to change the behavior in a way that

does not affect the messages that are sent.

Lemma 70. If rational node r unilaterally deviates in a way that does not change

the messages that are sent, then node r’s estimated utility does not increase.

Proof. None of the actions outside of generating or sending messages result in any

cost for the nodes, so changing them will not decrease the estimated utility.

We are now in a position to prove that the TRB+ protocol is BAR-Tolerant.

Theorem 23. The TRB+ protocol is IC-BFT.
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Proof. We show that the TRB+ protocol satisfies the definition of IC-BFT (Defini-

tion 17).

1. TRB+ implements Terminating Reliable Broadcast despite up to f Byzantine

nodes (Theorem 22).

2. TRB+ is a Byzantine Nash Equilibrium. The lemmas above show that (i) ra-

tional nodes do not benefit from leaving the system rather than participating

in the protocol (Theorem 22 and Lemma 64), (ii) rational nodes do not ben-

efit from unilaterally deviating from the protocol in a way that is detectable

(Lemmas 65 to 68), and (iii) rational nodes do not benefit from unilaterally

deviating in a way that is not detectable (Lemmas 69 and 70). This covers all

possible unilateral deviations.

7.6 Related Work

Game theory not only describes games where the players have perfect knowledge,

but also games with imperfect knowledge. In a Bayesian game [57], for example,

each node is of a given type and that type determines its utility function. Nodes

do not know the type of the other nodes: instead, they only know a probability

distribution τi over the type profiles. For example, this distribution could encode

the fact that two thirds of the nodes are of type “A” and the remainder are of

type “B”, but the nodes do not know beforehand which nodes are “A” and which

are “B”. Different nodes could have different probability distributions, reflecting

unequal knowledge about the situation.
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In a Bayesian game, a strategy and probability distribution profile (~σ, ~τ) is

a Bayesian Nash Equilibrium [57] if no node r can improve its estimated utility

by modifying its strategy unless either another node also changes strategy, or τr

changes. In a Bayesian game, the estimated utility ûr is computed by taking the

probability distribution profile τr into account. If the node is risk-neutral, the

estimated utility is simply the expected utility. A risk-averse node may choose

instead to consider the minimum over the utilities it may receive depending on the

types of the other nodes. In our TRB+ protocol, nodes can be seen as having two

types: rational or Byzantine. Altruistic nodes do not need a separate type because

TRB+ is IC-BFT, so both rational and altruistic nodes follow the protocol. We can

then say that a protocol is a Byzantine Nash Equilibrium if it is a Bayesian Nash

Equilibrium for every possible τr that is consistent with our assumptions about

Byzantine failures.

The field of mechanism design [112] studies how to maximize the social wel-

fare, a function of the outcome that indicates how beneficial the outcome is to society

as a whole (instead of the individual players). In mechanism design, the designer

modifies the outcome function so that, when the rational nodes act to maximize their

individual utility, the resulting social welfare is also maximized. This approach is

useful in contexts where the protocol designer has control over what should happen

in response to the nodes’ actions, for example in auctions. There are similarities

between our approach to building BAR-Tolerant protocols and mechanism design,

but we differ on a fundamental point: in our approach to designing BAR-Tolerant

protocols, we cannot change the outcome function: the outcome observed by the

nodes is a direct result of their interactions, which in turn depend only on each

nodes’ s strategy. Since we cannot manipulate outcome, instead we manipulate the
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initial strategy σ that we propose to the nodes, with the goal of influencing their

final strategy choice.

Several researchers have begun to examine constructing incentive compatible

systems [5, 121, 146, 151]. There has been some success in applying mechanism

design to distributed systems in routing [6, 52, 53] and caching [37]. Unfortunately,

these efforts generally ignore Byzantine behavior and adopt a model where every

node is rational.

Another limitation of some previous work is that it aims for incentive com-

patibility in a loose sense of the term, by which a protocol simply includes some

level of incentive to encourage proper behavior. For example, BitTorrent [39] in-

cludes heuristics aimed at providing incentives, but researchers have identified ways

in which a rational node can circumvent these ad-hoc techniques [40, 147]. In con-

trast, in this dissertation we have made sure to apply the term incentive compatible

only to systems where each node’s strategy is optimal, so rational nodes have no

incentive to deviate from the protocol.

After our original publication of the BAR model [7], others have proposed

models that would be appropriate for cooperative services. Abraham et al. [1]

propose several equilibria from game theory that may apply to a distributed sys-

tems setting. They explore collusion with their k-resilient equilibrium concept, and

Byzantine deviations with their concepts of t-immune and (k, t)-robust equilibrium.

They differ from our model in that they consider finite games (rather than repeated

games), and their motivation for the non-rational nodes in their model is that some

nodes (which they call “altruistic”) will deviate from the protocol in ways that these

nodes believe are beneficial to the system as a whole. Our model, instead, separates

the notion of altruistic nodes (in our case these nodes follow a specially tailored
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protocol that is beneficial to the system) from non-rational nodes (the Byzantine

nodes, whose utility function is unknown and whose deviation may aim to help or

harm the system).

Moscibroda et al. [116] analyze the interaction of rational and Byzantine

nodes in the context of a specific one-shot game, the virus inoculation game. They

measure the “price of anarchy” and the “price of malice”, defined respectively as

the impact of having rational nodes (instead of all altruistic) and having Byzantine

and rational nodes (instead of all rational). Like us, they find that the presence of

Byzantine nodes can simplify the design of BAR-Tolerant protocol when the nodes

are risk-averse.
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Chapter 8

Conclusion

This dissertation answers several questions about how to build practical Byzantine

fault-tolerant systems. Byzantine fault-tolerance is attractive because it makes no

assumption about the behavior of faulty nodes. The three main areas we explored

are: (i) reducing the cost of BFT in terms of the number of nodes and number

of communication steps, (ii) using BFT to maintain confidentiality in addition to

availability and integrity, and (iii) using BFT in large distributed systems with

no central administrator (cooperative services). The dissertation only introduces

cooperative services and the BAR model; we have also [7] built a BAR-Tolerant

cooperative backup service, where nodes store backup data on each other and the

protocol ensures that there is no benefit from selfish behavior such as deleting data

stored on behalf of other nodes.

In this dissertation we make the following contributions.

• A new lower bound for the number of nodes needed to implement a safe register

that can tolerate f Byzantine failures: 3f + 1 (Section 3.3).
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• A new protocol, Listeners, that matches this lower bound without requiring

digital signatures and provides an atomic register (Section 3.4).

• A new protocol, Byzantine Listeners, that provides the same guarantees as

Listeners despite Byzantine clients (Section 3.5).

• A new semantics, non-confirmable safe (respectively, regular or atomic), that

can be achieved with fewer nodes than its confirmable counterpart with the

only drawback of not informing clients of when their writes complete (Sec-

tion 4.2).

• A new lower bound (2f + 1) for the number of nodes needed to implement

a non-confirmable safe register that can tolerate f Byzantine failures (Sec-

tion 4.3).

• A new protocol, Non-confirmable Listeners, that matches this lower bound

and provides non-confirmable regular semantics (Section 4.4).

• A new dynamic quorum primitive, DQ-RPC, that allows both the set of nodes

N and the number of tolerated failures f to change over time (Section 5.5).

• A new protocol, U-Dissemination with DQ-RPC, that provides atomic seman-

tics with a dynamic N and f and only needs 3f + 1 nodes (Section 5.4).

• A new way to think about state machine replication, by separating agreement

from execution (Chapter 6).

• A replicated state machine that requires only 2f+1 execution nodes to tolerate

f Byzantine nodes, instead of 3f + 1 previously (Section 6.3).
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• A new lower bound on two-step consensus: any asynchronous consensus pro-

tocol that tolerates f Byzantine failures and completes in two communica-

tion steps in the common case despite t Byzantine failures must use at least

3f + 2t + 1 nodes (Section 6.5).

• A new two-step consensus protocol, FaB Paxos, that matches the lower bound

(Section 6.6).

• A new protocol, the Privacy Firewall, that introduces new confidentiality guar-

antees to replicated state machines (Section 6.10).

• A new model, BAR, that accurately describes cooperative services (Section 7.2).

• A new protocol, TRB+, that implements terminating reliable broadcast de-

spite Byzantine, altruistic, and rational nodes—even in the absence of any

altruistic node (Section 7.5).

We have shown in this dissertation how to build asynchronous Byzantine

fault-tolerant replicated state machines and registers that provably use the minimal

number of nodes, and how to reach consensus in the minimal number of communica-

tion steps. We have then explored two faulty behaviors that, although theoretically

covered by the Byzantine model, are not handled by traditional BFT protocols.

The first such behavior comes from a hacker intent on stealing secrets. Al-

though both register and replicated state machine protocols maintain integrity and

availability in the face of this behavior, neither protects the confidentiality of the

data when even a single node is faulty. At the root of the tension between con-

fidentiality and fault-tolerance lies replication: each node has a copy of the data,

so increasing replication can weaken confidentiality by creating more copies of the

information that should be confidential. Both register and state machine protocols
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were designed to maintain integrity and agreement despite Byzantine failures, but

not to maintain confidentiality. We resolved this tension by designing a new pro-

tocol, the Privacy Firewall, that guarantees safety and output set confidentiality

despite f Byzantine nodes. We also determine the minimal number of nodes needed

to provide output set confidentiality and show that the Privacy Firewall meets this

lower bound.

The second behavior that is problematic for BFT protocols is that of nodes

controlled by a selfish user who wants his computer to use as few resources as

possible helping others. Our initial motivation for exploring this behavior was to

design a cooperative backup service: there, nodes may want to free up disk space

by deleting data that was entrusted to them. Although BFT protocols can tolerate

up to f such nodes, in a cooperative service there is no central administrator to

control the nodes, so it is possible that all nodes act selfishly. We move beyond the

Byzantine model and introduce the BAR model to describe these environments. To

show that it is possible to design interesting protocols in the BAR model, we derive

a new terminating reliable broadcast protocol and prove that it is a Byzantine Nash

equilibrium. The new protocol, in addition to the customary number of Byzantine

nodes allowed in solutions based on traditional Byzantine fault-tolerance, tolerates

also an arbitrary number of selfish nodes. Our cooperative backup service [7] (not

discussed in the thesis) requires 3f + 2 nodes to tolerate f Byzantine nodes and it

can tolerate an arbitrary number of selfish nodes. Even though each assumption is

a vulnerability, in the case of cooperative services, lack of assumptions is a liability.

244



Appendix A

Dynamic Quorums

A.1 Dissemination Protocol

A.1.1 Quorum Intersection Implies Transquorums

We have shown in Section 5.4.2 that U-dissemination provides atomic semantics for

any TRANS-Q operation that has the transquorums property. The proof also follows

for the hybrid dissemination protocol [152] since it follows the same schema. In this

section, we show that the traditional implementation of Q-RPC (using quorum

intersection) satisfies the transquorums property.

Both the u-dissemination and the crash protocol are special cases of the

hybrid dissemination protocol. All three use quorums of size
⌈

n+b+1
2

⌉
and requiree

at least 2f +3b+1 servers to tolerate f crash failures and b Byzantine failures from

the servers (a total of f + b failures). Any number of clients may crash. In the case

of the U-dissemination protocol, f is zero. In the case of the crash protocol, b is

zero.

The client protocol is shown in Figure 5.1. Servers store the highest-timestamped
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value they have received that has a valid signature (except for the crash protocol in

which signatures are not necessary).

There must be at least 2f +3b+1 servers. Servers do not communicate with

each other; clients use the Q-RPC operation to communicate with servers. The

Q-RPC operation sends a given message to a responsive quorum of servers.

Any two quorums intersect in 2q − n = b + 1 servers. At least one of these

servers, s, is not Byzantine faulty (and has not crashed).

We use the same ordering o as Section 5.4.2, namely W calls are ordered

according to their arguments, and R and T calls are ordered according to their

return value. No R quorum operation ever returns ⊥, so we do not need to consider

that case. We prove the timeliness and soundness conditions separately.

Lemma 71 (timeliness). For the quorum size and ordering described above: ∀w ∈

W∀r ∈ R ∪ T : w → r =⇒ o(w) ≤ o(r)

Proof. The quorum to which the value was written with w intersects with the quo-

rum from which r reads in one non-Byzantine server that has not crashed. That

server will report the timestamp that was written in w; since the server is not Byzan-

tine faulty that data has a valid signature. The φ function will therefore return a

value that is at least as large as o(w). The result of that function is equal to o(r).

Lemma 72 (soundness). For the quorum size and ordering described above: ∀r ∈

R : ∃w ∈ W s.t. r 6→ w ∧ o(w) = o(r)

Proof. Values selected through φ(Q-RPCR) have a valid signature (by definition of

φ). We know that valid values returned by R must come from a W operation since

only W quorum operations introduce new values. Since these signatures cannot be

faked, it follows that the W quorum operation w did not happen after after r.
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This proves that the dissemination protocols in Figure 5.1 are atomic when

using the traditional Q-RPC.

A.2 Fault-Tolerant Dissemination View Change

Let si := encrypt(|i,N, f,m, t, g, pub〉adm, priv, kt
i). The administrator sends

〈(N, f,m, t, g), s0 . . . sn−1〉admin to a responsive quorum of new servers and then a

responsive quorum of old servers.

New servers forward that message to the old servers, causing them to end

the old view. The old servers acknowledge right away but they also start a new

thread with which they send that message back to a responsive quorum of new

servers. The new servers proceed as before (Figure 5.7), namely they wait for an

acknowledgement from a quorum of old servers before joining the ready state in

which they acknowledge to the administrator and tag their responses with the new

view.

As a result, if a single correct old server ends view t then eventually a quorum

of new servers will have received the message for the new view t+1. That is enough

to guarantee that view t + 1 has matured, so reads in the new view will go through.

If on the other hand no old correct server ends view t then reads in view t will go

through. Since in the event of an administrator crash the old servers are not turned

off, in both cases the system will continue to process reads and writes and provide

atomic semantics. If the view change does not include a generation change then the

server transitions directly to the ready state.

The careful reader will have noticed that if a single faulty server in the old

view has the view certificate for the new view but no correct server in the new view

does (which may happen if faulty servers collude and the administrator crashes after
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sending its first message), the faulty old server can cause our implementation of DQ-

RPC to block because the clients will try to get answers from the new servers even

though the new servers do not process requests yet. However, the implementation

of DQ-RPC that we describe in the optimizations Section (5.5.4) does not have this

problem and will allow reads and writes to continue unhampered because the old

view has not ended and DQ-RPC can process its replies.

A.3 Generic Data

A.3.1 Masking Protocols with Transquorums

In this section we show that the U-masking protocol provides partial-atomic se-

mantics despite up to b Byzantine faulty servers. This protocol assumes that the

network links are asynchronous authenticated and fair. Clients are assumed to be

correct and the administrator machine may crash.

The U-masking protocol is shown in Figure A.1. The only change from its

original form [126] is that we have substituted TRANS-Q for Q-RPC operations.

Partial-atomic semantics: All reads R either return ⊥, or return a value

that satisfies atomic semantics.

Theorem 24. The U-masking protocol provides partial-atomic semantics if the Q-

RPC operation it uses has the transquorums properties for the function o defined

below.

Proof. We define o and O in the exact same way as we did for the dissemination

protocol in Section 5.4.2. Then we show the following three properties:

1. X → W =⇒ O(X) < O(W ) and W → X =⇒ O(W ) < O(X)
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2. O(W1) = O(W2) =⇒ W1 = W2

3. Read R returns either ⊥ or the value written by some W such that

(a) R 6→ W , and

(b) 6 ∃W ′ : O(W ) < O(W ′) < O(R)

The first two points show that O defines a total order on the writes and that

the ordering is consistent with “happens before”. The third point shows that reads

return the value of the most recent preceding write.

We prove that the protocols satisfy partial-atomic semantics by building an

ordering function O for the read and write operations that satisfies the requirements

for partial-atomic semantics.

Both read and write end with a W quorum operation w. The first quorum

operation in writes never returns ⊥. By the first property of transquorums, that

operation therefore has a timestamp that is at least as large as that of w. The

write operation then increases that timestamp further, ensuring that X → W =⇒

O(X) < O(W ). Our construction of the mapping O ensures that if a read happens

after a write, then that read gets ordered after the write. These two facts imply

property (1).

The o value includes the writer id, which is different for each writer - and

if the same writer performs two writes then (1) implies that they’ll have different

values. Therefore property (2) holds: O(W1) = O(W2) =⇒ W1 = W2. These two

properties together show that writes are totally ordered in a way that is compatible

with the happens before relation.

Next we show that non-aborted reads return the value of the preceding write

(property (3)). Soundness tells us that this value does not come from an operation
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that happened after R (3a). We know that the value returned by reads must come

from a write operation since only writes can introduce new values that are reported

by b+1 servers: so the value returned by a read R comes from some write W . Note

that O(R) and O(W ) have the same ts, writer id and D; they only differ in the

last element (so O(W ) < O(R)). Thus, any write W ′ > W will necessarily also be

ordered after R since O(W ′) > O(R) (3b).

If the Q-RPC operations have the non-triviality property that R quorum

operations that are concurrent with no other quorum operation never return ⊥, then

U-masking has the property that reads that are not concurrent with any operation

never return ⊥ either. This follows directly from the fact that if no operation is

concurrent with a read R then no quorum operation is concurrent with any of R’s

quorum operations. Our implementation of DQ-RPC has the non-triviality property.

A.3.2 DQ-RPC for Masking Quorums

In this section we show how to build the DQ-RPC and view change protocol for

masking quorums, when data is not signed. Only one line needs to change: line 5

of ViewTracker’s consistentQuorum (Figure 5.9), shown below.

if |recentMessages | < 2 ∗ m maxMeta.f + 1 : return (∅,⊥)

Thus read operations now wait until they get 2f +1 servers vouching for the

current generation instead of f +1. It follows that f +1 correct servers have entered

the new generation, so they will be able to countermand any old value proposed by

servers that have not finished the view change.

The view change protocol must be modified however, because as described

in Section 5.5.3 it relies on the fact that the servers’ read of the current value never

250



read() :
1. Q := TRANS-QR(”READ”) // reply is of the form (ts, writer id, data)
2. r := φ(Q)

// φ : the only non-countermanded value vouched by b + 1 servers, or ⊥
3. if r==⊥ : return ⊥
4. Q := TRANS-QW(“WRITE”,r )
5. return r.data

write(D) :
1. Q := TRANS-QT (”GET TS”)
2. ts := max{Q.ts} + 1
3. Q := TRANS-QW(“WRITE”,(ts ,writer id ,D))

Figure A.1: U-masking protocol for correct clients

fail. This is not true in the case of masking quorums, where reads may fail if some

write is concurrent with it.

helping but
safe to turn off

unweaned weaned

powered off

newView
we are not part of

newView
we are part of

newView
we are part of

finished reading
from previous view

or new view is
in same generation

or received wean
certificate

helping

newView
returns

Figure A.2: Server transitions for the masking protocol

Figure A.3 gives the view change protocol for the administrator. If clients

are correct then the function is guaranteed to eventually terminate. If no write is

concurrent with the view change then the administrator only goes through the loop
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newView() :
1. Give their view certificate to a quorum in the new view
2. Give info about the new view to a quorum in the old view
3. repeat :
4. a := read on old view
5. b := read on new view
6. until (a 6= ⊥ ∨ b 6= ⊥)
7. Generate wean certificate (“old view is gone now”)
8. Write max(a, b) to a quorum in the new view
9. Write the wean certificate to a quorum in the new view

Figure A.3: View change protocol for masking quorums

once. Once the newView operation returns, it is safe to turn off the machines in the

old view that are not part of the new view – we say that the new view is weaned.

In order to provide atomic semantics, we must ensure that reads reflect the

values written previously, and thus we must propagate data from the old view to

the new one. The view change protocol allows clients to query the new servers right

away, before the administrator copies any data. How can this work?

The key is that (as shown in Figure A.5) the new servers will get their data

from the old ones to service client requests. Once a new server has read some value

from the old servers it never needs to contact the old servers again since writes

are directed to the new ones (we say that the server is weaned). Once enough new

servers have data stored locally, it is possible to shut down the old servers – we must

just be careful that nothing bad happens to new servers that were in the middle of

reading from the old ones.

So the new servers, when they are asked for data that they don’t have,

first check whether the old servers are still available by checking whether a peer

server has a wean certificate (using the READ LOCAL call). If the server receives
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a wean certificate, it knows that there is no point in trying to contact the old

servers: the server then returns whatever local data it has, possibly ⊥. If there is no

wean certificate then the server forwards the request to the old servers. If the old

servers have been shut down in the mean time then this request may take forever;

that’s OK because the old servers are only turned off if the administrator completed

successfully, and in that case the waitForWean(. . .) function will eventually stop

any read thread that is stuck in this manner.

The waitForWean(. . .) function periodically queries the peers to see if they

have a wean certificate. This ensures that if the new view is weaned then eventually

all servers will know about it (or move on to an even more recent view).

When new unweaned servers receive a write request, they make sure that

the old view has ended, then store the data and acknowledge. But servers do not

consider themselves weaned as a result of a write. So when someone tries to read

that data, the servers will still try to contact the servers in the old view to make

sure the local data is recent enough.

The servers go through different states, as described in Figure A.2. A server

that is not part of the current view is in the helping state. In that state it responds to

queries but tags them with the most recent view certificate, thus directing clients to

more recent servers. When a server receives a new view certificate (and the server

is part of the new view), it moves on to the unweaned state. It accepts requests

from clients right away and starts waitForWean(. . .) in a parallel thread to detect

when the system becomes weaned. Read requests are forwarded to the old servers;

if a non-⊥ reply can be determined then that reply is stored locally before being

forwarded to the client and the server moves on to the weaned state. Servers will

also move to weaned when they receive a wean certificate from their peers.
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Server i ’s variables

m D the current data

m ts the data’s timestamp (initially -1)

m meta current view meta-information: (N ,f ,m ,t ,g ,pubKey)

m oldMeta meta-information for the previous view: (N ,f ,m,t ,g ,pubKey)

m cert admin certificate for (m meta)

m priv private key matching certificate

m weanCert certificate that the view in m meta is weaned

m serverWeaned true if the server is weaned (initially false)

m oldEnded true if the server knows that the old view ended (initially false)

Figure A.4: Server variables for masking quorums

A.3.3 DQ-RPC Satisfies Transquorums for Masking Quorums

We now show that DQ-RPC also satisfies transquorums when we use the masking

quorum’s φ operation. Recall that that φ returns the value that is vouched for by

f + 1 servers and that is not countermanded, or ⊥ if there is no such value.

Lemma 73. The masking DQ-RPC operations are timely.

Proof. Recall that timeliness means ∀w ∈ W,∀r ∈ R ∪ T , o(r) 6= ⊥ : w → r =⇒

o(w) ≤ o(r). The proof is similar to that for the dissemination case. If w and

r picked views in the same generation then the two quorums intersect in at least

f + 1 correct servers. Since w happened before r and servers never decrease the

timestamp they store, it follows that o(r) 6= ⊥ ⇒ o(w) ≤ o(r).

If w picked a view t that is in the previous generation from r’s view (say v),

then we consider the last view u in t’s generation. As we have seen in the previous

paragraph, non-aborted reads from a quorum q(u) in u will result in a timestamp

that is at least as large as o(w). Since r picked a view that is in a more recent

generation than u, it follows that r received 2f(v)+1 replies in v’s generation (so at

least one correct). Correct servers in the new view only respond to a read request
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write(ts,D) :
1. if (m ts<ts) : (m ts,m D) := (ts,D)
2. if not m oldEnded : askOldView()

// m oldEnded holds at this point
3. return “OK”

read() :
1. if (m serverWeaned ∨ m weanCert 6= ⊥) : return (m ts,m D)
2. if askPeers() : return (m ts,m D)
3. if askOldView() : return (m ts,m D)

// not m serverWeaned and m weanCert == ⊥, and the read from the old servers failed
4. return (−1,⊥)

readLocal() :
1. return m weanCert

private askOldView() :
1. Q’ :=Q-RPC(”READ+HELP”,m cert) to a quorum of servers in m oldMeta.N
2. m oldEnded := true
3. if φ(Q′) 6= ⊥ :
4. m serverWeaned := true
5. if (m ts, m D) < φ(Q’) “ (m ts,m D) := φ(Q’)
6. if |{m ∈ Q’ : m ts < m.ts}| < m oldMeta.f + 1 :
7. m serverWeaned := true
8. return m serverWeaned ∨ m weanCert 6= ⊥

private askPeers() :
1. Q’ :=Q-RPC(”READ LOCAL”) to a quorum of servers in m meta.N
2. if any response includes a valid wean certificate cert for this view :
3. m oldEnded := true
4. m weanCert := cert
5. return m serverWeaned ∨ m weanCert 6= ⊥

private waitForWean() // started on its own thread when the server hears of the new view
1. while (not m serverWeaned) ∧ (m weanCert == ⊥) :
2. askPeers()
3. wait for some time
4. kill any read() or write() thread that is waiting for the old servers

Figure A.5: Server protocol for masking quorums
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until they know that either they or their view has weaned. It follows that the replies

in r contained at least f(v) + 1 replies C that are at least as recent as the highest-

timestamped value whose write completed in view u, which in turn is at least o(w).

So if r were to pick any value such that o(r) < o(w) then that value would be

countermanded by C. Therefore o(r) 6= ⊥ ⇒ o(w) ≤ o(r).

It is not possible for w to pick a view in a later generation than what r picks

if w → r since R masking DQ-RPCs wait until any previous generation has ended.

This concludes our proof that ∀w ∈ W,∀r ∈ R, o(r) 6= ⊥ : w → r =⇒ o(w) ≤

o(r).

Lemma 74. The masking DQ-RPC operations are sound.

Proof. Soundness requires that ∀r ∈ R, o(r) 6= ⊥ : ∃w ∈ W s.t. r 6→ w ∧ o(w) =

o(r).

Correct servers only respond to read queries with data that was previously

written – either directly to them or to the previous quorum. The φ function ensures

this property by only accepting values that are vouched for by f + 1 servers.

Theorem 25. DQ-RPC satisfies transquorums even if the old servers are taken

offline after the newView call returns.

The masking DQ-RPC also tolerates crashes from the administrator: all

operations still eventually complete as long as the servers from the old view are not

taken offline.

Lemma 75. If some view t never ends then all quorum operations to that view

eventually complete.

Proof. An individual server s responds to read quorum operations once either it

receives a reply from the old servers or it knows that its view is weaned (in that latter
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case the server only responds after the client resends its query). If the administrator

failed then the old servers are not taken offline and thus they will eventually respond.

If the administrator did not fail then eventually s will know that its view is weaned.

The wait quorum operation waits on the same conditions, thus individual

servers will eventually respond to write quorum operations. The help and read local

operations do not block on anything, thus they will complete trivially.

It follows from the above lemma that as long as some view stays around long

enough, all DQ-RPC operations will complete.

Theorem 26. DQ-RPC satisfies transquorums even if the administrator crashes

during a view change, as long as both the old and the new servers are kept online.

A.3.4 Masking Protocols for Byzantine Faulty Clients

We now turn our attention to a variant of the U-masking protocol that can han-

dle Byzantine failures from the client. We use Phalanx [101] with an improved φ

function that provides partial-atomic semantics (the original Phalanx only provides

safe semantics). The client code is shown in Figure A.6. Phalanx does not require

the clients to have public-private key pairs, but the servers do. In step 4 of the

write(. . .) operation, the clients collect signatures from the servers (the echoes).

Servers only accept writes if they are accompanied by a quorum of valid signatures.

For write-backs, servers require f + 1 of a different type of signature. Notice that

the signature step is neither timely nor sound: the signatures’ only purpose is to

make the write call succeed.

It is natural to ask why we consider Byzantine faulty clients. After all,

nothing prevents faulty clients from continuously writing incorrect values. However,

in many practical situations such faulty clients would eventually be identified and
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read :
1. Q := TRANS-QR(”READ”)
2. r := φ(Q)

// largest non-countermanded triple vouched for by at least f + 1 servers
3. if r==⊥ : return ⊥
4. let V be f + 1 valid signatures for r taken from Q
5. Q := TRANS-QW(”WRITE-BACK”,r , V )
6. return r.data

write(D) :
1. Q := TRANS-QT (”READ TS”)
2. ts := max{Q.ts} + 1
3. let m := (ts, writer id,D)
4. Q’ := TRANS-Q(”SIGN”,m)
5. let V be a quorum of valid signatures for m taken from Q’
6. Q” := TRANS-QW(”WRITE”,m ,V )

Figure A.6: Masking quorum or hybrid-m for Byzantine faulty clients

removed from the system. More to the point, our goal here is to show that the DQ-

RPC operation can make many protocols dynamic. We have included the protocol

of Figure A.6 for completeness.

The protocol guarantees partial-atomic semantics, meaning that all reads

that return a value satisfy atomic semantics and reads that are not concurrent with

any other operation always return a value.
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Appendix B

Two-Step Consensus

B.1 Approximate Theorem Counterexample

In his “approximate theorem” 3a [86], Lamport states: “If there are at least two

proposers whose proposals can be learned with a 2-message delay despite the failure

of Q acceptors, or there is one such possibly malicious proposer that is not an

acceptor, then N > 2Q + F + 2M .” Here, N is the number of acceptors; M is the

number of failures despite which safety must be ensured; and F is the number of

failures despite which liveness must be ensured. The paper indicates that the term

“approximate theorem” was chosen because there are special cases where the bounds

do not hold. The paper does not include a specific special case for approximate

theorem 3a, but that approximate theorem does not hold in systems where learners

never fail.

In these systems, only 3f +1 acceptors are necessary to tolerate f Byzantine

failures and be able to learn in two message delays despite up to f Byzantine failures

(3a instead predicts that 5f+1 acceptors would be needed). Learners learn v if 2f+1

acceptors say they have accepted it. Since any two quorums of size 2f + 1 intersect
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in a correct acceptor, no two learners will learn different values. If the leader is

faulty then it is possible that no value is learned. In that case, a leader election,

and the new leader asks the learners for the value that they have learned. Since

learners are all correct, the new leader can wait for all learners to reply with a signed

response. The leader can therefore choose a value to propose that will maintain the

safety properties. Since the learners’ answers are signed, the new leader can forward

them to the acceptors to convince them to accept a new value.
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