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Abstract

A halfspace matrix is a Boolean matrix A with rows indexed by linear threshold functions f , columns
indexed by inputs x ∈ {−1,1}n, and the entries given by A f ,x = f (x). We demonstrate the potential of
halfspace matrices as tools to answer nontrivial open questions.

1. (Communication complexity) We exhibit a Boolean function f with discrepancy Ω(1/n4) under
all product distributions but O(

√
n/2n/4) under a certain non-product distribution. This essentially

solves an open problem of Kushilevitz and Nisan [23].

2. (Complexity of sign matrices) We construct a matrix A∈ {−1,1}N×NlogN
with dimension complex-

ity logN but margin complexity Ω(N1/4/
√

logN). This gap is an exponential improvement over
the results of Forster et al. [12] and Srebro and Shraibman [35] and is close to optimal. As an
application to circuit complexity, we prove an Ω(2n/4/(d

√
n)) circuit lower bound for computing

halfspaces by a majority of an arbitrary set of d gates. This complements a result of Goldmann,
Håstad, and Razborov [14]. In addition, we prove new results on the complexity measures of sign
matrices, complementing a recent study by Linial et al. [25–27].

3. (Learning theory) We prove that the statistical-query (SQ) dimension of halfspaces in n dimensions
is less than 2(n+1)2 under all distributions (with n+1 being a trivial lower bound). This improves
on the fundamental result of Blum et al. [5]. We are able to give a simple, one-page proof of our
result that contrasts with the sophisticated argument of Blum et al.

Finally, we motivate our learning-theoretic result for the complexity community by showing that
SQ dimension estimates for natural classes of Boolean functions can resolve major open problems in
complexity theory. Specifically, we show that an exp(2(logn)o(1)

) upper bound on the SQ dimension
of AC0 would imply an explicit language in PSPACEcc \PHcc. Viewed differently, this explains the
apparent lack of progress on designing distribution-free learning algorithms for AC0 with a nontrivial
running time.



1 Introduction

A halfspace is Boolean function f representable as f (x) = sign(∑n
i=1 aixi −θ) for some reals a1, . . . ,an,θ .

We introduce the notion of a halfspace matrix, which is a ±1-valued matrix A with rows indexed by half-
spaces, columns indexed by inputs x ∈ {−1,1}n, and the entries given by A f ,x = f (x). We explore the
potential of halfspace matrices in the study of complexity. Specifically, we demonstrate how halfspace ma-
trices can answer nontrivial open questions in communication complexity, the complexity of sign matrices,
and the complexity of learning.

Our work is inspired by Forster’s groundbreaking result [10] on the sign-representation of Boolean
matrices by real ones. Forster’s work has had exciting applications, including a linear lower bound [10]
on communication complexity in the unbounded-error model, extremal results [10, 12, 13] on Euclidean
embeddings, and lower bounds [11] for depth-2 threshold circuits. This paper builds on Forster’s discovery
and related work to illustrate the power of halfspace matrices.

1.1 Communication Complexity

Among the primary models of communication complexity is the randomized model [23, Chapter 3]. Two
parties, Alice and Bob, have access to disjoint parts x,y ∈ {−1,1}n of the input to a fixed function f :
{−1,1}n ×{−1,1}n → {−1,1} and must therefore communicate to evaluate f (x,y). They are allowed to
use randomization. On every input, the players must compute the correct value with probability at least 2/3.
The cost of a protocol is number of bits exchanged in the worst case. The randomized complexity R( f ) of a
function f is cost of the best protocol for f .

The standard approach to proving lower bounds on R( f ) is to analyze the distributional complexity
Dµ

1/3( f ) instead. One defines a probability distribution µ on {−1,1}n ×{−1,1}n and argues that the cost
Dµ

1/3( f ) of the best deterministic protocol with error at most 1/3 over µ must be high. It can be shown that
R( f ) = maxµ Dµ

1/3( f ). The main design question, then, is what distribution µ to consider. While product
distributions µ(x,y) = µX(x)µY (y) are easier to analyze, they do not always yield the optimal lower bounds.
A standard example of this phenomenon is the set disjointness function DISJ: every product distribution
µ has Dµ

1/3(DISJ) = O(
√

n logn) (see [23]), although R(DISJ) = Θ(n) (see [16, 32]). This motivates the
following intriguing question in communication complexity:

Open Problem (Kushilevitz and Nisan [23, page 37]). Can restricting the distribution µ to be a product
distribution affect the resulting lower bound on R( f ) by more than a polynomial factor? Formally, is R( f ) =
(maxµ:product Dµ

1/3( f ))O(1)?

Since its formulation 10 years ago, this problem has seen no progress. This motivates us to look at
a related question. The chief source of lower bounds on distributional complexity Dµ

1/3( f ) and thus ran-
domized complexity R( f ) is the so-called discrepancy method. The method lower-bounds Dµ

1/3( f ) in terms
of a quantity called discrepancy, discµ( f ). (Small discrepancy implies high communication complexity.)
A natural question to ask is whether there can be a large gap between the discrepancy under product and
non-product distributions. Our first main result states that, in fact, this gap can be exponential:

Theorem 1.1 (Discrepancy gap). There exists an (explicit) function f : {−1,1}n×{−1,1}n2 →{−1,1} for
which discµ( f ) = Ω(1/n4) under all product distributions µ but discλ ( f ) = O(

√
n/2n/4) under a certain

non-product distribution λ .

We thus establish that discrepancy-based methods can yield exponentially worse lower bounds on ran-
domized complexity R( f ) if restricted to product distributions. This is the first nontrivial discrepancy gap
obtained for any function.
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1.2 Complexity of Sign Matrices

A sign matrix is any matrix with ±1 entries. A systematic study of sign matrices from a complexity-
theoretic perspective has been recently initiated by Linial et al. [25]. Apart from the inherent interest of this
subject as a new area of complexity, Linial et al. observe that several major problems in theoretical computer
science are questions about sign matrices. Indeed, research into sign matrices has already yielded excellent
complexity results [10, 11].

Our paper continues this investigation, focusing on the two main complexity measures of a sign matrix:
dimension and margin complexity. Their formal definition is as follows. A Euclidean embedding of a
sign matrix A ∈ {−1,1}M×N is a collection of unit-length vectors u1, . . . ,uM ∈ Rk and v1, . . . ,vN ∈ Rk

(for some k) such that 〈ui,v j〉 ·Ai j > 0 for all i, j. The integer k is the dimension of the embedding. The
quantity γ = mini, j |〈ui,v j〉| is the margin of the embedding. The dimension complexity dc(A) is the smallest
dimension of an embedding of A. The margin complexity mc(A) is the minimum 1/γ over all embeddings
of A.

Both dimension complexity and margin complexity have drawn much interest [4,10–13,25]. In addition
to their roles as complexity measures, dimension complexity is a key player in the unbounded-error model
of communication complexity [1, 29], and margin complexity is the central notion in the highly successful
kernel methods [8, 37] of machine learning.

Using the random projection technique of Arriaga and Vempala [2], it is straightforward to show [4]
that dc(A) = O(mc(A)2 log(M +N)) for every M×N sign matrix. This observation has had important algo-
rithmic applications, such as the algorithm of Klivans and Servedio [20] for learning certain intersections of
halfspaces. In this paper, we ask the opposite question: Can one place an upper bound on margin complexity
in terms of dimension complexity? A suitable upper bound of this type would establish the distribution-free
weak learnability of unrestricted intersections of two halfspaces, leading to a major breakthrough in the
area [22]. Unfortunately, we give a strong negative answer to this question.

This problem of estimating the gap between dimension and margin complexity has been studied by
several researchers. Forster et al. [12] constructed a family of matrices A ∈ {−1,1}N×N for which dc(A) =
O(1) but mc(A) = Θ(logN). Srebro and Shraibman [35] amplified this separation, obtaining dc(A) 6 2p

and mc(A) = (logN)Θ(p) for any choice of the parameter 1 6 p 6 (logN)1−ε . Our second main theorem is
an exponential improvement over these results.

Theorem 1.2 (Margin vs. dimension). There is an (explicit) matrix A ∈ {−1,1}N×NlogN
for which dc(A) 6

logN but mc(A) = Ω(N1/4/
√

logN).

The exponential separation we obtain above is quite close to optimal since every matrix A∈ {−1,1}M×N

has 1 6 dc(A) 6 min{M,N} and 1 6 mc(A) 6 min{
√

M,
√

N} (see Section 2).
As an application of our analysis in Theorem 1.2, we consider a problem [14] from circuit complexity.

Fix arbitrary d functions f1, . . . , fd : {−1,1}n →{−1,1}. Assume that every halfspace can be computed as a
majority vote of gates from among f1, . . . , fd . We prove that there are halfspaces that require circuits of size
Ω(2n/4/(d

√
n)) in this model. This generalizes the well-known fact [15, 34] that some halfspaces require

exponentially large weights, and complements a result due to Goldmann, Håstad, and Razborov [14]. See
Section 6.1 for details.

We prove a number of additional results (see Section 7). In particular, we show that the standard com-
plexity measures (dc(A), mc(A), and a new complexity measure sq(A) that we introduce) form an ordered
sequence that spans the continuum between disc×(A)−1 and disc(A)−1. Here disc×(A) is the discrepancy un-
der product distributions, and disc(A) is general discrepancy. This close interplay between linear-algebraic
complexity measures (dc(A) and mc(A)) and those from communication complexity (disc×(A) and disc(A))
is further evidence that the study of sign matrices has much to contribute to complexity theory.
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1.3 Learning Theory

We adopt the statistical query (SQ) model of learning, due to Kearns [17]. The SQ model is a restricted
version of the standard PAC learning model [36]. Fix a set C of Boolean functions {−1,1}n → {−1,1} (a
concept class) and distribution µ over {−1,1}n. For each choice of an unknown function f ∈ C , the learner
in the SQ model must be able to construct an approximation to f by asking queries of the form, “What is
Ex∼µ [G(x, f (x))] , approximately?” Here G : {−1,1}n ×{−1,1} → {−1,1} is any polynomial-time com-
putable predicate of the learner’s choosing, distinct for each query. Extensive research has established the
SQ model as a powerful and elegant abstraction of learning [6, 7, 18, 22, 39]. In particular, essentially all
known PAC learning algorithms can be adapted [18] to work in the SQ model. Furthermore, SQ algorithms
are inherently robust to random classification noise since they use statistics instead of individual labeled
examples.

A measure of the learning complexity of a given concept class C under a given distribution µ is its
statistical query (SQ) dimension, sqdimµ(C ). This complexity measure is essentially tight: low SQ dimen-
sion implies efficient weak learnability in the SQ model, and high SQ dimension rules it out. Informally,
sqdimµ(C ) is the size of the largest subset F ⊆ C of (almost) mutually orthogonal functions in C under µ.
We put sqdim(C ) 
 maxµ sqdimµ(C ). We delay the technical details to Section 2.

Our next result concerns the concept class of halfspaces. This concept class is arguably the most studied
one [19–22, 24, 38] in computational learning theory, with applications in areas as diverse as data mining,
artificial intelligence, and computer vision. In a fundamental paper, Blum et al. [5] gave a polynomial-time
algorithm for learning halfspaces in the SQ model under arbitrary distributions. It follows from the work of
Blum et al. that the SQ dimension of halfspaces is O(nc), where c > 0 is a sufficiently large constant. We
substantially sharpen this estimate:

Theorem 1.3 (SQ dimension of generalized halfspaces). Fix n arbitrary functions φ1, . . . ,φn : {−1,1}n →
R. Let C be the set of all Boolean functions f representable as f = sign(∑n

i=1 aiφi(x)) for some reals
a1, . . . ,an. Then sqdimµ(C ) < 2n2 under all distributions µ.

Corollary 1.3.1 (SQ dimension of halfspaces). Let C be the concept class of halfspaces in n dimensions.
Then sqdimµ(C ) < 2(n+1)2 under all distributions µ.

Since sqdim(halfspaces) > n + 1 even under the uniform distribution, the quadratic upper bound of
Corollary 1.3.1 is not far from optimal. In addition to strengthening the estimate of Blum et al., Theorem 1.3
has a much simpler, one-page proof that builds only on Forster’s self-contained theorem [10]. By contrast,
the proof of Blum et al. relies on nontrivial notions from computational geometry and requires a lengthy
analysis of robustness under noise. We believe that Theorem 1.3 is additionally valuable in that it brings a
novel set of techniques (complexity of sign matrices) to bear on a central problem of computational learning.

To best convey the importance—outside of learning theory—of studying the SQ dimension of natural
classes of functions, we establish the following final result.

Theorem 1.4 (On the conjecture that IP ∈ PSPACEcc \PHcc). Let C be the class of functions {−1,1}n →
{−1,1} computable in AC0. If sqdim(C ) 6 O

(
22(logn)ε

)
for every constant ε > 0, then IP ∈ PSPACEcc \

PHcc.

Thus, a suitable upper bound on the SQ dimension of AC0 circuits would separate the communication-
complexity analogues of the polynomial hierarchy (PH) and polynomial space (PSPACE). This latter prob-
lem is a major unresolved question in theoretical computer science that dates back to a 1989 manuscript by
Razborov [31]. Viewed from a different standpoint, Theorem 1.4 explains the lack of progress in designing
learning algorithms for AC0: a distribution-free algorithm for weakly learning AC0 in reasonable time would
settle a major open question in complexity theory.
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The SQ upper bound, exp
(

2(logn)o(1)
)

, for AC0 assumed in Theorem 1.4 grows faster than any quasipoly-
nomial function but slower than any subexponential one. In particular, any quasipolynomial upper bound on
the SQ dimension of AC0 would separate PHcc and PSPACEcc. At present, however, no upper bounds better
than 2Õ(n1/3) are known on the SQ dimension of polynomial-size DNF formulas, let alone AC0 circuits. We
hope that our observations will draw the community’s attention to the SQ dimension as an important notion
in complexity theory.

1.4 Our Techniques

A common theme of this paper is the use of halfspace matrices to answer the extremal questions at hand. Our
first technical tool is Forster’s theorem [10], which we show constrains the sign pattens of halfspace matrices
in an important way. These structural constraints allow us prove an upper bound on the SQ dimension of
halfspaces (Theorem 1.3). Another technical tool we use is a result of Goldmann, Håstad, and Razborov [14]
in communication complexity. We apply it to show that halfspace matrices possess considerable structural
complexity. It is this contrast between Forster’s result and that of Goldmann, Håstad, and Razborov that
allows us to obtain the discrepancy gap (Theorem 1.1) and the margin-dimension gap (Theorem 1.2).

To prove Theorem 1.2, we use a technique for lower-bounding margin complexity based on commu-
nication complexity. By contrast, all previous lower bounds [10–12, 25] for explicit matrices are based
solely on linear algebra. Most of these previous techniques yield identical bounds on dimension and margin
complexity, and thus cannot yield the gap of Theorem 1.2.

Finally, our proof of Theorem 1.4 regarding PSPACEcc \PHcc builds on the original manuscript of
Razborov [31] and a combinatorial observation due to Lokam [28].

The rest of the paper is organized as follows. After the technical preliminaries, we first prove the SQ
dimension upper bound (Theorem 1.3) and then use it to establish the discrepancy and margin-dimension
gaps (Theorems 1.1 and 1.2). Additional results on the complexity of sign matrices come next. We conclude
the paper with observations concerning PSPACEcc \PHcc (Theorem 1.4).

2 Preliminaries

2.1 Communication complexity

We consider Boolean functions f : X ×Y →{−1,1}. Typically X = Y = {−1,1}n, but we also allow X and
Y to be arbitrary sets, possibly of unequal cardinality. We identify a function f with its communication ma-
trix M = [ f (x,y)]y,x ∈ {−1,1}|Y |×|X |. In particular, we use the terms “communication complexity of f ” and
“communication complexity of M” interchangeably (and likewise for other complexity measures, such as
discrepancy). The two communication models of interest to us are the randomized model and the determin-
istic model, both reviewed in Section 1. The randomized complexity R1/2−γ/2( f ) of f is the minimum cost
of a randomized protocol for f that computes f (x,y) correctly with probability at least 1

2 + γ

2 (equivalently,
with advantage γ) for each input (x,y). The distributional complexity Dµ

1/2−γ/2( f ) is the minimum cost of

a deterministic protocol for f that has error at most 1
2 −

γ

2 (equivalently, advantage γ) with respect to the
distribution µ over the inputs.

A distribution µ over X ×Y is called a product distribution if it can be represented as µ = µX × µY

(meaning µ(x,y) = µX(x)µY (y) for all x,y), where µX and µY are distributions over X and Y , respectively.
A rectangle of X ×Y is any set R = A×B with A ⊆ X and B ⊆ Y. For a fixed distribution µ over X ×Y , the
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discrepancy of f is defined as

discµ( f ) = max
R

∣∣∣∣∣ ∑
(x,y)∈R

µ(x,y) f (x,y)

∣∣∣∣∣ ,
where the maximum is taken over all rectangles R. We define disc( f ) = minµ discµ( f ). We let disc×( f )
denote the minimum discrepancy of f under product distributions. Clearly, disc( f ) 6 disc×( f ), and we will
show that there can be an exponential gap between these quantities.

The discrepancy method is a powerful technique that lower-bounds the randomized and distributional
complexity in terms of the discrepancy:

Proposition 2.1 (Kushilevitz and Nisan [23, pp. 36–38]). For every Boolean function f (x,y), every distri-
bution µ, and every γ > 0,

R1/2−γ/2( f ) > Dµ

1/2−γ/2( f ) > log2
γ

discµ( f )
.

A definitive resource for further details is the book of Kushilevitz and Nisan [23].

2.2 Sign matrices

We frequently use “generic-entry” notation to specify a matrix succinctly: we write A = [F(i, j)]i, j to mean
that that the (i, j)th entry of A is given by the expression F(i, j). We denote vectors by boldface letters
(u,v,ei, etc.) and scalars by plain letters (ui,x j, etc.) A (Euclidean) embedding of a matrix A ∈ {−1,1}M×N

is a collection of vectors u1, . . . ,uM ∈ Rk and v1, . . . ,vN ∈ Rk (for some k) such that 〈ui,v j〉 ·Ai j > 0 for all
i, j. The integer k is the dimension of the embedding. The quantity

γ = min
i, j

|〈ui,v j〉|
‖ui‖ · ‖v j‖

is the margin of the embedding. The dimension complexity dc(A) is the smallest dimension of an embedding
of A. The margin complexity mc(A) is the minimum 1/γ over all embeddings of A.

Let ei denote the vector with 1 in the ith component and zeroes elsewhere. The following is a trivial
embedding of a sign matrix A = [a1 | . . . |aN ] ∈ {−1,1}M×N : label the rows by vectors e1, . . . ,eM ∈RM and
the columns by vectors 1√

M
a1, . . . ,

1√
M

aN . It is easy to see that this embedding has dimension M and margin

1/
√

M. By interchanging the roles of the rows and columns, we see that

1 6 dc(A) 6 min{M,N}, 1 6 mc(A) 6 min{
√

M,
√

N}

for every matrix A∈ {−1,1}M×N . We say that a matrix R∈RM×N sign-represents a matrix A∈ {−1,1}M×N

if Ai jRi j > 0 for all i, j. We symbolically write A = sign(R). Observe that the dimension complexity of a
sign matrix is the minimum rank of any real matrix that sign-represents it.

The spectral norm of R∈RM×N is defined as ‖R‖= max‖x‖=1 ‖Rx‖. The Frobenius norm of R is defined

as ‖R‖F =
√

∑i, j R2
i j. For all R ∈ RM×N , we have

‖R‖F > ‖R‖=
√
‖RRt‖=

√
‖RtR‖.

A fundamental result, due to Forster, gives a lower bound on the dimension complexity of a matrix in terms
of its spectral norm:

5



Theorem 2.2 (Forster [10]). Let A ∈ {−1,1}M×N . Then dc(A) >
√

MN/‖A‖.

Using the random projection technique of Arriaga and Vempala [2], it is straightforward to show the
following relationship between dimension and margin complexity.

Proposition 2.3 (Ben-David, Eiron, and Simon [4]). Let A ∈ {−1,1}M×N . If A has an embedding with
margin γ (in arbitrarily high dimension), then A has an embedding with margin γ/2 and dimension
O( 1

γ2 log(N +M)). In particular, dc(A) 6 O(mc(A)2 log(N +M)).

2.3 SQ dimension

A concept class C is a set of Boolean functions {−1,1}n → {−1,1}. Let µ be a probability distribution
over {−1,1}n. The statistical query (SQ) dimension of C under µ, denoted sqdimµ(C ), is the largest N for
which there are N functions f1, . . . , fN ∈ C with∣∣∣∣ E

x∼µ
[ fi(x) · f j(x)]

∣∣∣∣6 1
N

for all i 6= j. We denote sqdim(C ) 
 maxµ{sqdimµ(C )}. The SQ dimension of a concept class fully
characterizes its weak learnability in the statistical query model: a low SQ dimension implies an efficient
weak-learning algorithm, and a high SQ dimension rules out such an algorithm. The following two theorems
make these statements precise.

Theorem 2.4. [6] (Upper Bound) Let C be a concept class and µ a distribution s.t. sqdimµ(C ) = N. Then
there is a non-uniform learning algorithm for C that makes N queries, each of tolerance 1/(3N3), and finds
a hypothesis with error at most 1/2−1/(3N3) under µ .

Theorem 2.5. [39, Corollary 1] (Lower Bound) Let C be a concept class and µ a distribution
s.t. sqdimµ(C ) = N. Then if all queries are made with tolerance at least 1/N1/3, at least N1/3/2−1 queries
are required to learn C to error 1/2−1/(2N1/3) under µ in the statistical query model.

We will need the following folklore fact about the SQ dimension.

Proposition 2.6 (SQ dimension and weak approximations). Let sqdimµ(C ) = N. Then there is a set
H ⊆ C with |H |= N such that each f ∈ C has |Eµ [ f ·h] |> 1/(N +1) for some h ∈H .

In words, Proposition 2.6 says that when the SQ dimension of C is low, it is possible to select a small
number of functions that, collectively, will approximate every function in C . See Appendix A for a proof.

When analyzing the SQ dimension of a concept class under arbitrary distributions, it is often helpful
(e.g., Klivans and Sherstov [22]) to consider a modified concept class in order to keep the distribution in the
analysis uniform:

Proposition 2.7 (Distribution change by function composition). Let C = { f1, . . . , ft} be a concept class
of functions {−1,1}n → {−1,1}. Define a related class C ′ = { f1 ◦ g, . . . , ft ◦ g}, where g : {−1,1}m →
{−1,1}n is an arbitrary function for some m. Then sqdim(C ) > sqdimU(C ′), where U denotes the uniform
distribution over {−1,1}m.

We omit the simple proof of this fact; see [22] for details.
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3 SQ Dimension of Halfspaces

This section establishes an SQ upper bound for halfspaces, which plays a key role in further development.

Theorem 1.3 (Restated from p. 3). Fix n arbitrary functions φ1, . . . ,φn : {−1,1}n → R. Let C be the set of
all Boolean functions f representable as f = sign(∑n

i=1 aiφi(x)) for some reals a1, . . . ,an. Then sqdimµ(C ) <

2n2 under all distributions µ.

Corollary 1.3.1 (Restated from p. 3). Let C be the concept class of halfspaces in n dimensions. Then
sqdimµ(C ) < 2(n+1)2 under all distributions µ.

Proof of Theorem 1.3. Let µ an arbitrary distribution. Assume for simplicity that µ is rational (extension to
the general case is straightforward). Then the weight µ(x) of each point x is an integral multiple of 1/M,
where M is a suitably large integer.

Let N = sqdimµ(C ). Then there is a set F ⊆ C of |F | = N functions with |Eµ [ f ·g] | 6 1/N for all
distinct f ,g ∈ F . Consider the matrix A ∈ {−1,1}N×M whose rows are indexed by the functions in F ,
whose columns are indexed by inputs x ∈ {−1,1}n (an input x indexes exactly µ(x) ·M columns), and
whose entries are given by A = [ f (x)] f ,x. By Theorem 2.2,

N 6
(dc(A) ‖A‖)2

M
. (3.1)

We complete the proof by obtaining upper bounds on dc(A) and ‖A‖.
We analyze dc(A) first. Recall that each f ∈ F has the form f (x) = sign(∑n

i=1 a f ,iφi(x)), where
a f ,1, . . . ,a f ,n are reals specific to f . Therefore,

A = [ f (x)] f ,x = sign

[ n

∑
i=1

a f ,iφi(x)

]
f ,x

= sign

(
n

∑
i=1

[a f ,iφi(x)] f ,x

)
.

The last equation shows that A is sign-representable by the sum of n matrices of rank 1, i.e.,

dc(A) 6 n. (3.2)

We now turn to ‖A‖. The entries of the N×N matrix AAt are given by AAt = [M ·Eµ [ f ·g]] f ,g. Thus,

‖A‖2 = ‖AAt‖ 6 ‖M · I‖+‖AAt −M · I‖ 6 ‖M · I‖+‖AAt −M · I‖F 6 M +M

√
N(N−1)

N2 < 2M.

We have shown that
‖A‖<

√
2M. (3.3)

Substituting the estimates (3.2) and (3.3) into (3.1) completes the proof. To extend the analysis to irrational
distributions µ , one considers a rational distribution µ ′ that approximates µ closely enough and follows the
same reasoning. We omit these simple manipulations.

Remark 3.1. An easy inspection of the proof of Theorem 1.3 reveals the following stronger result. For a
distribution µ, let N be the size of the largest set { f1, . . . , fN} ⊆ C with average (not maximum!) pairwise
correlations at most 1

N , i.e., 1
N(N−1) ∑i 6= j(Eµ [ fi · f j])2 6 1

N2 . Clearly, N is at least the SQ dimension of C .
Theorem 1.3 establishes an upper bound on this larger quantity: N < 2n2.

We will also need a version of Theorem 1.3 in slightly different terminology.
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Theorem 3.2 (SQ dimension and dimension complexity). Let A ∈ {−1,1}M×N be an arbitrary matrix.
View the rows f1, . . . , fM ∈ {−1,1}N of A as Boolean functions. Then sqdim({ f1, . . . , fM}) < 2 dc(A)2.

In stating Theorem 3.2, we implicitly extended the notion of the SQ dimension of sets of Boolean functions
to sets of arbitrary vectors with ±1 components. This extension is natural since every Boolean function can
be viewed as a vector with ±1 components, and vice versa.

4 A Result from Communication Complexity

To obtain the discrepancy and margin-dimension gaps (Theorems 1.1 and 1.2) in the next two sections,
we recall a result from communication complexity. Consider the Boolean function GHR : {−1,1}4n2 ×
{−1,1}2n →{−1,1}, defined as

GHR(x,y) = sign

(
1+

2n−1

∑
j=0

y j

n−1

∑
i=0

2i(xi,2 j + xi,2 j+1)

)
.

This function was constructed and studied by Goldmann, Håstad, and Razborov [14] in the context of
separating classes of threshold circuits. Their analysis exhibits a non-product distribution with respect to
which GHR(x,y) has high distributional complexity:

Theorem 4.1 (Goldmann, Håstad, and Razborov [14, Theorem 6 and its proof]). There is an (explicit)
non-product distribution λ such that any deterministic one-way protocol for GHR with advantage γ with
respect to λ has cost at least log(γ 2n/2/

√
n)−O(1).

A key consequence of Theorem 4.1 for our purposes is the following result.

Lemma 4.2 (Discrepancy under non-product distributions). There is a non-product distribution λ for
which discλ (GHR) = O(

√
n/2n/2).

Proof. Consider the distribution λ from Theorem 4.1. Let R be the combinatorial rectangle over which the
discrepancy discλ (GHR) is achieved:

discλ (GHR) =
∣∣∑(x,y)∈R λ (x,y)GHR(x,y).

∣∣
Then there is a deterministic one-way protocol for GHR(x,y) with advantage at least discλ (GHR) and
constant cost. Namely, if (x,y) ∈ R, the players output sign(∑(x,y)∈R λ (x,y)GHR(x,y)). If (x,y) 6∈ R, the
players analogously output sign(∑(x,y)6∈R λ (x,y)GHR(x,y)). But by Theorem 4.1, every one-way constant-
cost protocol achieves advantage at most O(

√
n/2n/2). Thus, discλ (GHR) = O(

√
n/2n/2).

5 Discrepancy Gap

Lemma 4.2 of the previous section established that GHR(x,y) has exponentially small discrepancy under a
certain non-product distribution. Using the SQ upper bound of Section 3, we now prove that the discrepancy
of GHR(x,y) under all product distributions is Ω(1/n4).

Lemma 5.1 (Product distributions). Let µ = µX × µY be a product distribution. Then discµ(GHR) =
Ω(1/n4).
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Proof. For each fixed x, denote GHRx(y) = GHR(x,y). Since each GHRx is a halfspace in the 2n variables
y0, . . . ,y2n−1, Theorem 1.3 implies that

sqdimµY
({GHRx}x) 6 sqdimµY

({halfspaces in 2n dimensions}) = O(n2).

Thus, by Proposition 2.6, there is a set H ⊆ {GHRx}x of |H |= O(n2) functions such that each GHRx has∣∣∣∣ E
y∼µY

[GHRx(y) · f (y)]
∣∣∣∣> 1

|H |+1

for some f ∈H .
This yields the following protocol for evaluating GHR(x,y). Alice, who knows x, sends Bob the index of

the function f ∈H that is best correlated with GHRx. This costs log |H | bits. Bob, who knows y, announces
f (y) as the output of the protocol. For every fixed x, this protocol achieves advantage 1/(|H |+1) over the
choice y. As a result, the protocol achieves overall advantage 1/(|H |+ 1) with respect to any distribution
µX on the x’s. Since only 1 + log |H | bits are exchanged, we obtain the sought bound on the discrepancy
by Proposition 2.1:

discµ(GHR) >
1

(|H |+1) ·21+log |H | = Ω

(
1
n4

)
.

Lemmas 4.2 and 4.2 immediately imply the main result of this section:

Theorem 1.1 (Restated from p. 1). There exists an (explicit) function f : {−1,1}n ×{−1,1}n2 → {−1,1}
for which discµ( f ) = Ω(1/n4) under all product distributions µ but discλ ( f ) = O(

√
n/2n/4) under a certain

non-product distribution λ .

6 Margin-Dimension Gap

To exhibit a large gap between margin complexity and dimension complexity, we consider the function
GHR(x,y) from the previous section. We first note that its dimension complexity is low.

Proposition 6.1. The dimension complexity of [GHR(x,y)]x,y is at most 2n+1.

Proof. By definition of GHR, the sign matrix [GHR(x,y)]x,y is sign-represented by the real matrix

M =

[
1+

2n−1

∑
j=0

y j

n−1

∑
i=0

2i(xi,2 j + xi,2 j+1)

]
x,y

.

It is easy to verify that M has rank at most 2n+1.

It remains to show that the margin complexity of [GHR(x,y)]x,y is high. We do so using the discrepancy
estimate for GHR(x,y). By appealing to Grothendieck’s inequality and linear-programming duality, Linial
and Shraibman [26] have recently given a short, elegant proof that the margin complexity and discrepancy
of a matrix are equivalent up to a small multiplicative constant:

Theorem 6.2 (Linial and Shraibman [26]). For every matrix A ∈ {−1,1}M×N ,

1
4KG ·mc(A)

6 disc(A) 6
1

mc(A)
,

where KG ∈ [1.67,1.79] is the Grothendieck constant.

9



Lemma 4.2 and Theorem 6.2 immediately yield an estimate of the margin complexity of [GHR(x,y)]x,y.

Lemma 6.3. The margin complexity of [GHR(x,y)]x,y is Ω(2n/2/
√

n).

Thus, Linial and Shraibman’s subtle result allows us to obtain a particularly good lower bound on the
margin complexity. For completeness, we note that a slightly worse bound can be obtained using well-known
and more elementary facts relating margin complexity and discrepancy (see, e.g., Paturi and Simon [29],
Forster et al. [11]). Proposition 6.1 and Lemma 6.3 readily imply the main result of this section:

Theorem 1.2 (Restated from p. 2). There is an (explicit) matrix A∈{−1,1}N×NlogN
for which dc(A) 6 logN

but mc(A) = Ω(N1/4/
√

logN).

Remark 6.4. While Theorem 1.2 exhibits an exponential gap between the dimension complexity dc and
margin complexity mc, there can be no such gap between the dimension complexity dc and “average mar-
gin.” Specifically, a powerful lemma due to Forster [10] shows that any k-dimensional embedding of a
given matrix A ∈ {−1,1}M×N can be converted into another k-dimensional embedding u1, . . . ,uM ∈ Sk−1

and v1, . . . ,vN ∈ Sk−1 of A that has high average margin: 1
MN ∑i, j〈ui,v j〉2 > 1

k . (Here Sk−1 denotes the
k-dimensional real unit sphere.)

6.1 Application: Circuit Complexity of Halfspaces

As an application of our margin analysis in Lemma 6.3, we study a question [14] from circuit complexity.
Recall that every halfspace on n variables can be represented as

sign(a1x1 +a2x2 + · · ·+anxn−θ),

where a1,a2, . . . ,an,θ are integers called weights. A fundamental fact is that there are halfspaces that require
weights of magnitude 2Ω(n). This fact can be deduced by an easy counting argument, since there are 2Θ(n2)

distinct halfspaces [33]. A short and simple 2Ω(n) lower bound for an explicit halfspace is due to Siu and
Bruck [34]. Håstad [15] improves on that construction, obtaining an explicit halfspace that requires weight
2Θ(n logn). The 2Θ(n logn) lower bound is best possible for any halfspace.

Consider now a slightly modified question. Instead of expressing a halfspace as a weighted sum of
singletons x1,x2, . . . ,xn,1, we get to choose an arbitrary set of Boolean functions f1, . . . , fd : {−1,1}n →
{−1,1}. We would like to know if there is a way to choose d = poly(n) such functions such that every
halfspace is expressible as

sign(a1 f1(x)+a2 f2(x)+ · · ·+ad fd(x)),

where a1,a2, . . . ,ad are integers bounded by a polynomial in n. Unfortunately, the three above approaches
do not yield weight lower bounds for this more general setting. Lemma 6.3, on the other hand, yields a
simple solution to the problem.

Theorem 6.5 (Weights of halfspaces over generalized bases). Let f1, . . . , fd : {−1,1}n → {−1,1} be
arbitrary functions. Assume that each halfspace in n dimensions can be expressed as sign(∑d

i=1 ai fi(x)),
where a1,a2, . . . ,ad are integers bounded in absolute value by w. Then dw > Ω(2n/4/

√
n).

Theorem 6.5 shows a continuous trade-off between the number d of base functions and the magnitude
w of the weights. In particular, the weights cannot be polynomially bounded unless there are exponentially
many base functions. Goldmann, Håstad, and Razborov [14, Corollary 9] proved a related result, in which
the set of the base functions can be arbitrarily large but they must have low randomized communication
complexity (e.g., majority gates, mod gates). Theorem 6.5 complements that result.
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Proof of Theorem 6.5. It will be convenient to view d = d(n) and w(n) = w as functions of n, and set
D = d(2n) and W = w(2n). Fix the Boolean functions f1, . . . , fD satisfying the premise of the theorem.
Consider the function

GHR(x,y) = sign

(
1+

2n−1

∑
j=0

y j

n−1

∑
i=0

2i(xi,2 j + xi,2 j+1)

)
.

Since for each fixed x, the function GHRx(y) = GHR(x,y) is a halfspace in the 2n variables y0, . . . ,y2n−1,
it is representable as a weighted sum of f1(y), . . . , fD(y) with coefficients bounded by W. This yields the
following embedding of the matrix [GHR(x,y)]x,y :

A =

[
D

∑
i=1

ai(x) fi(y)

]
x,y

,

where each |ai(x)|6 W. The margin of this embedding is

γ >
1√

∑
D
i=1W 2 ·

√
∑

D
i=1 12

=
1

DW
.

At the same time, γ 6 O(
√

n/2n/2) by Lemma 6.3. Combining these two bounds on γ yields

DW = d(2n)w(2n) > Ω

(
2n/2
√

n

)
,

and thus dw = d(n)w(n) > Ω(2n/4/
√

n).

7 Complexity Measures of Sign Matrices: An Integrated View

The results of the previous sections can be interpreted, in particular, as a study of the complexity measures
of sign matrices. Our goal in this section is to unify them into a coherent picture and better demonstrate how
they relate to previous work.

We start with the observation that the SQ dimension, so far viewed as a property of concept classes,
is just as naturally viewed as a property of sign matrices. Given a matrix A ∈ {−1,1}M×N , view its rows
as Boolean functions. We define the statistical-query complexity sq(A) of A as the SQ dimension of its
rows. Formally, sq(A) = sqdim({ f1, . . . , fM}), where f1, . . . , fM are the rows of A. We prove that the SQ
complexity of a matrix is essentially equivalent to the minimum discrepancy of the matrix under product
distributions:

Theorem 7.1 (SQ complexity vs. discrepancy under product distributions). Let A ∈ {−1,1}M×N . Then√
1
2 sq(A) < disc×(A)−1 < (2sq(A))2.

Since disc×(A) = disc×(At), Theorem 7.1 has the interesting corollary that the rows and columns of a matrix
have the same SQ dimension, up to a polynomial factor:

Corollary 7.1.1. Let A ∈ {−1,1}M×N . Then ( 1
32 sq(A))1/4 < sq(At) < 32sq(A)4.

We defer the proof of Theorem 7.1 to Appendix C. At this point, we can summarize much of this paper and
relevant previous work in the following succinct diagram:
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disc×(A)−1 =poly sq(A) 6poly︸ ︷︷ ︸
unknown gap

dc(A) 6poly︸ ︷︷ ︸
exponential gap achievable

mc(A)≈ disc(A)−1

The purpose of this schematic is to show that the standard complexity measures (sq(A), dc(A), mc(A))
of sign matrices form an ordered spectrum that extends from disc×(A)−1 to disc(A)−1. In what follows,
we let A ∈ {−1,1}M×N be an arbitrary matrix. We shall traverse the diagram left to right, giving precise
quantitative statements.

• The smallest discrepancy of a matrix under product distributions, disc×(A), and the SQ complexity
of that matrix, sq(A), are within a polynomial factor of each other: Θ(

√
sq(A)) 6 disc×(A)−1 6

Θ(sq(A)2). We establish this fact in Theorem 7.1.

• SQ complexity puts a lower bound on dimension complexity: dc(A) >
√

sq(A)/2. We prove this
relationship in Theorem 3.2.

• It is unknown how large the gap between sq(A) and dc(A) can be.

• Dimension complexity lower-bounds margin complexity: mc(A) > Ω(
√

dc(A)/ log(N +M)). This
well-known result is easily proved using random projections (see, e.g., Ben-David, Eiron, and Si-
mon [4]).

• In Theorem 1.2, we show that the gap between dc(A) and mc(A) can be exponentially large. In partic-
ular, we exhibit a matrix A ∈ {−1,1}N×NlogN

for which dc(A) 6 logN but mc(A) = Ω(N1/4/
√

logN).

• Margin complexity is within a multiplicative constant of the discrepancy: mc(A) 6 disc(A)−1 6 4KG ·
mc(A), where KG ∈ [1.67,1.79] is the Grothendieck constant. This is a recent result due to Linial and
Shraibman [26].

In summary, this paper refines the current understanding of the complexity measures of sign matrices
by proving new relationships among them and analyzing the gaps. A particularly interesting fact is that the
standard complexity measures (sq(A), dc(A), sq(A)) form an ordered sequence that spans the continuum
between product-distribution discrepancy and general discrepancy. This close interplay between linear-
algebraic complexity measures (dc(A) and mc(A)) and those from communication complexity (disc×(A)
and disc(A)) is further evidence that the study of sign matrices has much to contribute to complexity theory.

We conclude this section by proposing an approach to separating sq(A) and dc(A). For p prime, consider
the n-dimensional vector space Fn

p. Consider the symmetric matrix A of size pn−1
p−1 × pn−1

p−1 whose rows and
columns are indexed by nonzero one-dimensional subspaces of Fn

p and whose entries are given by

AS,T =
{

1 if S and T are orthogonal,
−1 otherwise.

This matrix is known as a projective space matrix and is a straightforward generalization of the inner-
product-mod-2 matrix IP to higher moduli p. Forster et al. [11] have shown that A has exponentially high
dimension complexity: dc(A) > pn/2−1(1−o(1)). At the same time, it seems plausible that disc×(A)−1 (and
thus sq(A)) is small: it is unclear how to construct a product distribution under which A would have low
discrepancy. In this light, A is a promising candidate for separating sq(A) and dc(A).
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8 Application of the SQ Dimension to Complexity Theory

This final section demonstrates that estimating the SQ dimension of natural classes of Boolean functions is
an important task in complexity theory. Specifically, we show that a suitable estimate of the SQ dimension
of AC0 would solve a long-standing problem, that of separating PHcc from PSPACEcc. These classes in
communication complexity were introduced by Babai, Frankl, and Simon [3] as analogues of the polynomial
hierarchy PH and polynomial space PSPACE in computational complexity. For our purposes, it will be more
convenient to view PHcc and PSPACEcc as classes of N ×N matrices computed by certain circuits rather
than by protocols. We consider only circuits with AND,OR,NOT gates. The inputs to a circuit are arbitrary
matrices A ∈ {−1,1}N×N whose “−1” entries form a combinatorial rectangle; this is equivalent to requiring
that rank(A−J) 6 1, where J is the all-ones matrix. The output of a circuit is a matrix {−1,1}N×N computed
entry-wise from the inputs.

Definition 8.1 (Complexity classes PHcc and PSPACEcc). PHcc is the class of all matrix families {AN}
that are computable by circuits of size exp((log logN)O(1)) and constant depth, for some choice of the
input matrices. PSPACEcc is the class of all matrix families {AN} that are computable by circuits of size
exp((log logN)O(1)) and depth (log logN)O(1), for some choice of the input matrices.

It is clear that PHcc ⊆ PSPACEcc, and separating these classes is a major open problem [28, 31].
Razborov [31, Remark 3] argues that “the most natural candidate for PSPACEcc\PHcc is the INNER PROD-
UCT MOD 2 predicate,” defined as

IPN = [(x1∧ y1)⊕·· ·⊕ (xlogN ∧ ylogN)]x,y∈{−1,1}logN .

Indeed, it is easy to see that IP ∈ PSPACEcc. However, neither IP nor any other explicit family of matrices
is currently known to be outside PHcc. We now show that a suitable estimate of the SQ dimension of AC0

would prove the conjecture that IP 6∈ PHcc.

Theorem 1.4 (Restated from p. 3). Let C be the class of functions {−1,1}n →{−1,1} computable in AC0.

If sqdim(C ) 6 O
(

22(logn)ε
)

for every constant ε > 0, then IP ∈ PSPACEcc \PHcc.

Proof. It will be convenient to prove the contrapositive: if IP ∈ PHcc, then the SQ dimension of AC0 is at
least 22(logn)ε

under some distribution.
We start with an insight due to Lokam [28], restated in a terminology suitable to our proof. Let C be the

assumed constant-depth circuit of size s = 2(log logN)c
that computes IP ∈ {−1,1}N×N . Then C has at most

s inputs, which we denote by A1, . . . ,As ∈ {−1,1}N×N . View the rows of the input and output matrices as
Boolean functions {−1,1}logN → {−1,1}. Since the “−1” entries in each A1, . . . ,As form a combinatorial
rectangle, each Ai features at most one such row function (call it fi) that is not identically false. As a result,
the rth row of the output matrix IP can be computed as Cr( f1(x), . . . , fs(x)), where Cr is a constant-depth
circuit of size s = 2(log logN)c

. See Lokam [28] for interesting other uses of this observation.
We now return to our proof. Since the rows of IP are mutually orthogonal, the N functions

{Cr( f1(x), . . . , fs(x))}r=1,...,N that form the rows of the IP matrix are mutually orthogonal under the uni-
form distribution on x. By Proposition 2.7, this implies that the class of constant-depth, size-s circuits has
SQ dimension at least N. Setting n 
 2(log logN)c

, we conclude that the class of constant-depth, size-n circuits

(a subclass of AC0) has SQ dimension at least 22(logn)1/c

.
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[15] J. Håstad. On the size of weights for threshold gates. SIAM
J. Discret. Math., 7(3):484–492, 1994.

[16] B. Kalyanasundaram and G. Schintger. The probabilistic
communication complexity of set intersection. SIAM J.
Discret. Math., 5(4):545–557, 1992.

[17] M. Kearns. Efficient noise-tolerant learning from statisti-
cal queries. In STOC ’93: Proceedings of the twenty-fifth
annual ACM symposium on theory of computing, pages
392–401, New York, NY, USA, 1993. ACM Press.

[18] M. J. Kearns and U. V. Vazirani. An Introduction to Com-
putational Learning Theory. MIT Press, Cambridge, MA,
USA, 1994.

[19] A. R. Klivans, R. O’Donnell, and R. A. Servedio. Learning
intersections and thresholds of halfspaces. J. Comput. Syst.
Sci., 68(4):808–840, 2004.

[20] A. R. Klivans and R. A. Servedio. Learning intersections
of halfspaces with a margin. In COLT, pages 348–362,
2004.

[21] A. R. Klivans and A. A. Sherstov. Cryptographic hardness
for learning intersections of halfspaces. In FOCS ’06: Pro-
ceedings of the 47th Annual Symposium on Foundations of
Computer Science, Berkeley, CA, October 2006.

[22] A. R. Klivans and A. A. Sherstov. Improved lower bounds
for learning intersections of halfspaces. In Proceedings of
the 19th Annual Conference on Learning Theory (COLT),
Pittsburg, USA, June 2006.

[23] E. Kushilevitz and N. Nisan. Communication complexity.
Cambridge University Press, New York, NY, USA, 1997.

[24] S. Kwek and L. Pitt. PAC learning intersections of
halfspaces with membership queries. Algorithmica,
22(1/2):53–75, 1998.

[25] N. Linial, S. Mendelson, G. Schechtman, and
A. Shraibman. Complexity measures of sign matri-
ces. Combinatorica, 2006. To appear. Manuscript
at http://www.cs.huji.ac.il/~nati/PAPERS/

complexity_matrices.ps.gz.

[26] N. Linial and A. Shraibman. Learning complexity
vs. communication complexity. Manuscript at http:

//www.cs.huji.ac.il/~nati/PAPERS/lcc.pdf, De-
cember 2006.

[27] N. Linial and A. Shraibman. Lower bounds in com-
munication complexity based on factorization norms.
Manuscript at http://www.cs.huji.ac.il/~nati/

PAPERS/ccfn.pdf, December 2006.

[28] S. V. Lokam. Spectral methods for matrix rigidity with
applications to size-depth trade-offs and communication
complexity. J. Comput. Syst. Sci., 63(3):449–473, 2001.

[29] R. Paturi and J. Simon. Probabilistic communication com-
plexity. J. Comput. Syst. Sci., 33(1):106–123, 1986.

[30] R. Raz. The BNS-Chung criterion for multi-party com-
munication complexity. Comput. Complex., 9(2):113–122,
2000.

[31] A. A. Razborov. Ob ustoichivyh matritsah. Research
report, Steklov Mathematical Institute, Moscow, Russia,
1989. In Russian. Engl. title: “On rigid matrices”.

14



[32] A. A. Razborov. On the distributional complexity of dis-
jointness. Theor. Comput. Sci., 106(2):385–390, 1992.

[33] M. E. Saks. Slicing the hypercube. Surveys in combina-
torics, 1993, pages 211–255, 1993.

[34] K.-Y. Siu and J. Bruck. On the power of threshold circuits
with small weights. SIAM J. Discrete Math., 4(3):423–
435, 1991.

[35] N. Srebro and A. Shraibman. Rank, trace-norm and max-
norm. In COLT, pages 545–560, 2005.

[36] L. G. Valiant. A theory of the learnable. Commun. ACM,
27(11):1134–1142, 1984.

[37] V. N. Vapnik. The nature of statistical learning theory.
Springer-Verlag New York, Inc., New York, NY, USA,
1995.

[38] S. Vempala. A random sampling based algorithm for learn-
ing the intersection of halfspaces. In Proceedings of the
38th Annual Symposium on Foundations of Computer Sci-
ence, pages 508–513, 1997.

[39] K. Yang. New lower bounds for statistical query learning.
J. Comput. Syst. Sci., 70(4):485–509, 2005.

A Statistical Query Dimension

This section presents a folklore result that is needed in the proofs of Theorems 1.1 and 7.1.

Proposition 2.6 (Restated from p. 6). Let sqdimµ(C ) = N. Then there is a set H of |H |= N functions in
C such that each f ∈ C has |Eµ [ f ·h] |> 1/(N +1) for some h ∈H .

Proof. For a set F ⊆ C , define
γ(F ) 
 max

f1 6= f2∈F
{|Eµ [ f1 · f2] |},

the largest correlation between any two functions in F . Let γ∗ be the minimum γ(F ) over all N-element
subsets F ⊆ C . Let H be a set of N functions in C such that γ(H ) = γ∗ and the number of function pairs
in H with correlation γ∗ is the smallest possible (over all N-element subsets F with γ(F ) = γ∗).

We claim that each f ∈ C has |Eµ [ f ·h] |> 1/(N +1) for some h ∈H . If f ∈H , the claim is trivially
true. Thus, assume that f 6∈H . There are two cases to consider.

γ(H ) 6 1/(N +1). Then f must have correlation more than 1/(N + 1) with some member of H : other-
wise we would have γ(H ∪{ f}) 6 1/(N +1) and sqdimµ(C ) > N +1.

γ(H ) > 1/(N +1). Again, f must have correlation more than 1/(N +1) with some member of H : other-
wise we could improve on the number of function pairs in H with correlation γ∗ by replacing some
element of H with f .

B Discrepancy

This section reviews tools needed in the discrepancy calculation of Theorem 7.1, in Appendix C. We start
with an important observation that arises as a special case in the work of Ford and Gál [9, Theorem 3.1] on
multiparty communication complexity. It is also implicit in an article by Raz [30, Lemma 5.1].

Lemma B.1 (Ford and Gál [9], Raz [30]). Let M ∈ {−1,1}|X |×|Y |, and let µ be a probability distribution
over X ×Y. Then there is a choice of signs αx,βy ∈ {−1,1} for all x ∈ X , y ∈ Y such that

discµ(M) 6

∣∣∣∣∣∑x,y αxβyµ(x,y)Mxy

∣∣∣∣∣ .
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Proof (adapted from Raz [30]). Let R = A×B be the rectangle over which the discrepancy is achieved. Fix
αx = 1 for all x ∈ A, and likewise βy = 1 for all y ∈ B. Choose the remaining signs αx,βy independently and
at random. Passing to expectations,∣∣∣∣∣E

[
∑
x,y

αxβyµ(x,y)Mxy

]∣∣∣∣∣=
∣∣∣∣∣∣ ∑
(x,y)∈R

E[αxβy︸︷︷︸
=1

]µ(x,y)Mxy + ∑
(x,y)6∈R

E [αxβy]︸ ︷︷ ︸
=0

µ(x,y)Mxy

∣∣∣∣∣∣=
∣∣∣∣∣ ∑
(x,y)∈R

µ(x,y)Mxy

∣∣∣∣∣
= discµ(M).

In particular, there exists a setting αx,βy ∈ {−1,1} for all x,y with the desired property.

Ford and Gál used Lemma B.1 in an elegant way to relate the discrepancy to the pairwise correlations
of the matrix rows:

Lemma B.2 (Ford and Gál [9]). For every Boolean function f (x,y) and every product distribution µ =
µX ×µY ,

discµ( f ) 6

√
E

y,y′∼µY

∣∣∣∣ E
x∼µX

[ f (x,y) f (x,y′)]
∣∣∣∣.

Proof (adapted from Ford and Gál [9]). By Lemma B.1, there is a choice of values αx,βy ∈ {−1,1} for all
x and y such that

discµ( f ) 6

∣∣∣∣∣∑x
∑
y

µ(x,y)αxβy f (x,y)

∣∣∣∣∣=
∣∣∣∣ E
x∼µX

E
y∼µY

[αxβy f (x,y)]
∣∣∣∣ .

Thus,

discµ( f )2 6

(
E

x∼µX
E

y∼µY
[αxβy f (x,y)]

)2

6 E
x

(
E
y
[αxβy f (x,y)]

)2

(E[Z])2 6 E[Z2]

= E
x

E
y,y′

[
α

2
x βyβy′ f (x,y) f (x,y′)

]
6 E

y,y′

∣∣∣E
x

[
f (x,y) f (x,y′)

]∣∣∣ since α
2
x = |βyβy′ |= 1.

C SQ Dimension and Discrepancy

Our goal in this section is to prove Theorem 7.1:

Theorem 7.1 (Restated from p. 11). Let A ∈ {−1,1}M×N . Then√
1
2 sq(A) < disc×(A)−1 < (2sq(A))2.

We divide the proof in two parts: the upper bound on disc×(A) and the lower bound.

Lemma C.1 (Upper bound). Let A ∈ {−1,1}M×N . Then disc×(A) <
√

2/sq(A).
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Proof. Assume sq(A) = d. Then there are d rows f1, . . . , fd ∈ {−1,1}N of A and a distribution µ on
{1, . . . ,N} such that |Ex∼µ [ fi(x) f j(x)] | 6 1/d for all i 6= j. Let U be the uniform distribution over the d
rows f1, . . . , fd of A. We prove the lemma by showing that discµ×U(A) <

√
2/d :

discµ×U(A) 6
√

Ei, j∼U
[∣∣Ex∼µ [ fi(x) f j(x)]

∣∣] by Lemma B.2

6

√
1
d
·1+

d−1
d

· 1
d

<

√
2
d
.

Lemma C.2 (Lower bound). Let A ∈ {−1,1}M×N . Then disc×(A) > 1/(2sq(A))2.

Proof. The proof is closely analogous to that of Lemma 5.1; indeed, Lemma 5.1 can be deduced from this
lemma. Let µ × λ be an arbitrary product distribution over [N]× [M]. We will obtain a lower bound on
discµ×λ (A) by constructing an efficient protocol for A with a suitable advantage.

Let sq(A) = d. Then by Proposition 2.6, there are d rows f1, . . . , fd ∈ {−1,1}N in A such that each of
the remaining rows f has |Ex∼µ [ f (x) fi(x)] | > 1/(d + 1) for some i = 1, . . . ,d. This yields the following
protocol for evaluating A(x,y). Bob, who knows y, sends Alice the index i of the function fi that is best
correlated with the yth row of A. This costs dlogde bits. Alice, who knows x, announces fi(x) as the output
of the protocol.

For every fixed y, the described protocol achieves advantage 1/(d + 1) over the choice x. As a result,
the protocol achieves overall advantage 1/(d +1) with respect to any distribution λ on the rows of A. Since
only 1+ dlogde bits are exchanged, we obtain the sought bound on the discrepancy by Proposition 2.1:

discµ×λ (A) >
1

(d +1) ·21+dlogde >
1

4d2 .

Lemmas C.1 and C.2 immediately yield Theorem 7.1.
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