
Separating AC0 from Depth-2 Majority Circuits

Alexander A. Sherstov

The University of Texas at Austin
Department of Computer Sciences

Austin, TX 78712 USA
sherstov@cs.utexas.edu

Abstract

We give the first proof that AC0 cannot be simulated by MAJ ◦MAJ circuits of size 2polylog(n).

Namely, we construct an explicit AC0 function that requires MAJ ◦MAJ circuits of size 2Ω(n1/5). This
solves an open problem arising in the work of Allender [1], and matches Allender’s classic result that
AC0 can be simulated by MAJ ◦MAJ ◦MAJ circuits of size 2polylog(n). The hard function we construct
is an AC0 circuit of depth 3. This construction is best possible since all AC0 circuits of depth less than 3
can be trivially simulated by polynomial-size MAJ ◦MAJ circuits. This paper also complements work
by Krause and Pudlák [10] on the hardness of computing AC0 by threshold circuits.

Our proof is based on communication complexity. To obtain the above result, we develop a novel
technique for communication lower bounds, the Degree/Discrepancy Theorem. This technique is a sep-
arate contribution of our paper. It allows one to translate lower bounds on the threshold degree of a
Boolean function into upper bounds on the discrepancy of a closely related function. Upper bounds
on the discrepancy, in turn, immediately imply communication lower bounds as well as lower bounds
against threshold circuits.

As part of our proof, we use the Degree/Discrepancy Theorem to construct an explicit AC0 circuit
of depth 3 that has discrepancy 2−Ω(n1/5), under an explicit distribution. This yields the first known AC0

function with exponentially small discrepancy: all previously known functions with low discrepancy
feature PARITY or MAJORITY as a subfunction, and thus cannot be computed in AC0.

Finally, we discuss applications of our work to computational learning theory, showing that
polynomial-size DNF and CNF formulas have margin complexity 2Ω(n1/5).



1 Introduction

A classic result of complexity theory, due to Allender [1], states that every function in AC0 can be computed
by a depth-3 majority circuit of quasipolynomial size. The question immediately arises whether this result
can be improved. In particular, can AC0 be efficiently simulated by depth-2 majority circuits? This question
has remained unanswered since the publication of Allender’s work in 1989. We solve this problem, giving
an explicit AC0 circuit that requires MAJ ◦MAJ circuits of exponential size. Our result still holds if the
bottom gates are replaced by arbitrary linear threshold functions (THRESH):

Theorem 1.1 (AC0,3 requires large MAJ ◦THRESH circuits). There is an (explicitly given) function F :
{−1,1}N ×{−1,1}N →{−1,1} in AC0,3 (i.e., computable by an AND/OR/NOT circuit of size poly(N) and
depth 3) such that any MAJ◦THRESH circuit for F requires 2Ω(N1/5) THRESH gates.

The best previous lower bound was 2polylog(N) and is trivially obtained by recalling that AC0 can compute
inner product mod 2 on logc N variables, for any constant c. See [15] for details.

Our result establishes that Allender’s elegant simulation is optimal. Yet MAJ◦MAJ circuits are known to
be quite powerful; for example, the addition of N numbers, each N bits long, is computable by a polynomial-
size MAJ ◦MAJ circuit [23]. Moreover, every polynomial-size CNF or DNF formula (i.e., every AC0,2

circuit) can be trivially simulated by a MAJ ◦MAJ circuit of polynomial size. Theorem 1.1 shows that
for AC0 circuits of depth 3 already such simulations do not exist. In this light, Theorem 1.1 complements
Krause and Pudlák’s construction [10] of an AC0,3 function that requires exponential-size THRESH◦MODr

circuits, for all r. Note that the two results are incomparable.
A different and more revealing view of this paper is in terms of communication complexity [12]. The

communication complexity of Boolean functions has long been an active area of research, due to its inherent
appeal as a complexity subject as well as its varied applications in theoretical computer science. Despite
this sustained interest, few general methods are known for communication lower bounds.

This paper contributes a new lower-bound technique based on the notion of threshold degree. For a
Boolean function f , its threshold degree is the minimum d such that f can be computed by a majority vote of
some fanin-d gates. Equivalent terminology includes “strong degree” [2], “voting polynomial degree” [10],
and “PTF degree” [17]. This concept has an established role in the circuit complexity literature [2, 7, 9–
11, 14]. In many cases [14], it is straightforward to obtain good lower bounds on the threshold degree. It
is therefore natural to wonder whether lower bounds on the threshold degree can be used to obtain lower
bounds on communication complexity. We answer this question in the affirmative. Given a Boolean function
f : {−1,1}n →{−1,1} with threshold degree d, we explicitly construct a related function f [N] : {−1,1}N×
{−1,1}N →{−1,1} that has discrepancy at most 1/2d . Here N = O(n2/d) and

f [N](x,y) = f (φ1(x,y), . . . ,φn(x,y)),

where each φi can be computed by a trivial DNF/CNF formula of size O(N). Roughly speaking, f [N] applies
the original function f to various subsets of the inputs. We defer the details to Section 3. This construction,
the Degree/Discrepancy Theorem, is a separate contribution of our paper:

Theorem 1.2 (Degree/Discrepancy Theorem). Let f : {−1,1}n → {−1,1} have threshold degree d > 1.
Then for any N > n,

disc
(

f [N]
)

6

√√√√ n

∑
k=d

(
n
k

)(
2n
N

)k

.

In particular,
disc

(
f [N]
)

< 2−d

when N > 10en2/d.
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In words, Theorem 1.2 gives a method for obtaining discrepancy upper bounds from lower bounds on the
threshold degree. Discrepancy upper bounds, in turn, immediately yield lower bounds on communication
in every model (randomized, nondeterministic, deterministic). Discrepancy is particularly powerful in that
it yields communication lower bounds even for computing the function to any nonnegligible advantage,
a critical aspect for lower bounds against threshold circuits. This contrasts with other communication-
complexity methods (e.g., the corruption bound of Razborov [21]) that only apply for computing the function
to a small constant error. An additional advantage of discrepancy is its relationship to other complexity
measures, e.g., its equivalence to the margin complexity of sign matrices (Linial and Shraibman [13]).

By applying the technique of Theorem 1.2 to an explicit function f ∈ AC0,2 with high threshold degree,
we obtain an explicit function f [N] ∈ AC0,3 that requires exponential-size MAJ ◦THRESH circuits. This
establishes Theorem 1.1.

An intermediate product of our proof is the explicitly given function f [N] ∈ AC0,3 that has exponen-
tially small discrepancy: discλ ( f [N]) = 2−Ω(N1/5), where λ is an explicitly given distribution. We find
this fact interesting in its own right since all previously known functions with exponentially small discrep-
ancy (e.g., [5, 15]) contain contain PARITY or MAJORITY as a subfunction, and thus cannot be computed
in AC0.

Theorem 1.3 (Discrepancy of AC0,3). There is an (explicitly given) function F : {−1,1}N ×{−1,1}N →
{−1,1} in AC0,3 (i.e., computable by an AND/OR/NOT circuit of size poly(N) and depth 3) and an explicit
distribution λ over {−1,1}N ×{−1,1}N , such that discλ (F) = 2−Ω(N1/5).

Theorem 1.3 is best possible in that every function F : {−1,1}N ×{−1,1}N → {−1,1} computable in
AC0,2 has large discrepancy: discλ (F) = 1/NO(1) under all distributions λ . See Section 5 for details.

The remainder of this paper is organized as follows. Section 2 provides necessary background on com-
munication complexity and threshold functions. Section 3 is devoted to the proof of the Degree/Discrepancy
Theorem, our main technical tool. Section 4 studies a particular function f ∈ AC0,2 with high threshold de-
gree. Section 5 applies the Degree/Discrepancy Theorem to f , yielding an explicit function f [N] ∈ AC0,3

with exponentially small discrepancy. Section 6 uses this discrepancy result to obtain exponential lower
bounds on the size of MAJ◦THRESH circuits that implement f [N]. Section 7 concludes with an application
to computational learning theory.

2 Preliminaries

We view Boolean functions as mappings {−1,1}n → {−1,1}. The notation [n] stands for the set
{1,2, . . . ,n}. The expression (

{1, . . . ,N}
n

)
denotes the family of all size-n subsets of {1,2, . . . ,N}.

The notation Rm×n refers to the family of all m× n matrices with real entries. The (i, j)th entry of a
matrix A is denoted by Ai j. We frequently use “generic-entry” notation to specify a matrix succinctly: we
write A = [F(i, j)]i, j to mean that that the (i, j)th entry of A is given by the expression F(i, j).

For a constant integer d > 1, we denote the class of polynomial-size unbounded-fanin AND/OR/NOT
circuits of depth d by AC0,d . As usual, AC0 denotes the union

⋃
d AC0,d , as d ranges over all constants.

We denote a majority gate by MAJ. The abbreviation THRESH refers to a linear threshold gate, i.e., a
function of the form f = sign(∑n

i=1 aixi−θ) for some reals a1, . . . ,an,θ . We follow the general convention
in denoting depth-2 majority circuits by MAJ ◦MAJ; majority-of-threshold circuits by MAJ ◦THRESH;
majority-of-parity circuits by MAJ◦PARITY, and so on.

2



2.1 Communication complexity

We consider Boolean functions f : X ×Y → {−1,1}. Typically X = Y = {−1,1}n, but we also allow X
and Y to be arbitrary sets, possibly of unequal cardinality. We identify a function f with its communication
matrix M = [ f (x,y)]x,y ∈ {−1,1}|X |×|Y |. In particular, we use the terms “communication complexity of
f ” and “communication complexity of M” interchangeably (and likewise for other complexity measures,
such as discrepancy). The two communication models of interest to us are the randomized model and the
deterministic model. The randomized complexity R1/2−γ/2( f ) of f is the minimum cost of a randomized
protocol for f that computes f (x,y) correctly with probability at least 1

2 + γ

2 (or, equivalently, with advantage
γ) for each input (x,y). The public-coin randomized complexity Rpub

1/2−γ/2( f ) is defined analogously, with the
only difference that the communicating parties now have a source of shared random bits (i.e., they can
observe tosses of a common coin without communicating). The distributional complexity Dµ

1/2−γ/2( f ) is the

minimum cost of a deterministic protocol for f that has error at most 1
2 −

γ

2 (or, equivalently, advantage γ)
with respect to the distribution µ over the inputs.

A rectangle of X ×Y is any set R = A×B with A⊆ X and B⊆ Y. For a fixed distribution µ over X ×Y ,
the discrepancy of f is defined as

discµ( f ) = max
R

∣∣∣∣∣ ∑
(x,y)∈R

µ(x,y) f (x,y)

∣∣∣∣∣ ,
where the maximum is taken over all rectangles R. We define disc( f ) = minµ discµ( f ). The discrepancy
method is a powerful technique that lower-bounds the randomized and distributional complexity in terms of
the discrepancy:

Proposition 2.1 (Kushilevitz and Nisan [12, pp. 36–38]). For every Boolean function f (x,y), every distri-
bution µ, and every γ > 0,

R1/2−γ/2( f ) > Rpub
1/2−γ/2( f ) > Dµ

1/2−γ/2( f ) > log2
γ

discµ( f )
.

The following fact is useful in analyzing the discrepancy. It arises as a special case in the work of
Ford and Gál [3, Theorem 3.1] on multiparty communication complexity. It is also implicit in an article by
Raz [20, Lemma 5.1].

Lemma 2.2 (Ford and Gál [3], Raz [20]). Let M ∈ {−1,1}|X |×|Y |, and let µ be a probability distribution
over X ×Y. Then there is a choice of signs αx,βy ∈ {−1,1} for all x ∈ X , y ∈ Y such that

discµ(M) 6

∣∣∣∣∣∑x,y αxβyµ(x,y)Mxy

∣∣∣∣∣ .
Proof (adapted from Raz [20]): Let R = A×B be the rectangle over which the discrepancy is achieved. Fix
αx = 1 for all x ∈ A, and likewise βy = 1 for all y ∈ B. Choose the remaining signs αx,βy independently and
at random. Passing to expectations,∣∣∣∣∣E

[
∑
x,y

αxβyµ(x,y)Mxy

]∣∣∣∣∣=
∣∣∣∣∣∣ ∑
(x,y)∈R

E[αxβy︸︷︷︸
=1

]µ(x,y)Mxy + ∑
(x,y)6∈R

E [αxβy]︸ ︷︷ ︸
=0

µ(x,y)Mxy

∣∣∣∣∣∣=
∣∣∣∣∣ ∑
(x,y)∈R

µ(x,y)Mxy

∣∣∣∣∣
= discµ(M).

In particular, there exists a setting αx,βy ∈ {−1,1} for all x,y with the desired property.

A definitive resource for further details is the book of Kushilevitz and Nisan [12].
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2.2 Threshold Degree

Let χS 
 ∏i∈S xi. Since we view Boolean functions as mappings {−1,1}n →{−1,1}, the function χS is the
parity of the bits in the set S. Every function f : {−1,1}n →{−1,1} can be represented as

f (x)≡ sign

(
∑

S∈S

aSχS(x)

)
,

for a suitable choice of S ⊂ P([n]) and real coefficients aS. For example, the majority function can be
represented as MAJ(x) = sign(x1 + x2 + · · ·+ xn), and the parity function can be written as PARITY(x) =
sign(x1x2 . . .xn) = sign(χ[n]).

The degree of a particular representation, sign(∑S∈S aSχS), is defined as maxS∈S |S|, the largest fanin
of a parity gate χS. The threshold degree of a function f is the minimum degree over all the representations
of f . We denote the threshold degree of f by deg( f ). It is clear that functions that depend on k out of the n
variables have threshold degree at most k. Another simple observation is that a function and its negation have
the same threshold degree: deg( f ) = deg(− f ) for all f . Threshold degree is also known in the literature as
“strong degree” [2], “voting polynomial degree” [10], and “PTF degree” [17].

A relevant result is the following theorem from the theory of linear inequalities:

Theorem 2.3 (Gordan’s Transposition Theorem [22, Sec. 7.8]). Let A ∈ Rm×n. Then exactly one of the
following holds:

(1) utA > 0 for some vector u;

(2) Av = 0 for some nonzero vector v > 0.

The notation utA > 0 and v > 0 above for vectors utA and v is to be understood entry-wise, as usual. A
straightforward consequence of Gordan’s Transposition Theorem is the following well-known result regard-
ing threshold representations (see also [2, 17]).

Theorem 2.4 (Existence of a threshold representation; cf. [2, 17]). Let φ1,φ2, . . . ,φk : {−1,1}n → R be
arbitrary real functions, and let f : {−1,1}n → {−1,1} be a given Boolean function. Then exactly one of
the following holds:

(1) f can be represented as f (x)≡ sign(∑k
i=1 aiφi(x)) for some real coefficients a1,a2, . . . ,ak;

(2) there is a distribution µ over {−1,1}n such that E
x∼µ

[ f (x)φi(x)] = 0 for each i = 1,2, . . . ,k.

Proof. Consider the k× 2n matrix A = [ f (x)φi(x)]i,x. The claim follows from Theorem 2.3, with u playing
the role of a set of coefficients (a1,a2, . . . ,ak) ∈ Rk, and v playing the role of a probability distribution.

Corollary 2.4.1. Let f : {−1,1}n →{−1,1} be arbitrary. Then exactly one of the following holds:

(1) deg( f ) 6 d;

(2) there is a distribution µ over {−1,1}n such that E
x∼µ

[ f (x)χS(x)] = 0 for all χS with |S|6 d.
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3 The Degree/Discrepancy Theorem

This section establishes a technique that allows one to start with a function f with high threshold degree and
obtain a closely related function f [N] with low discrepancy. We formalize f [N] in the following definition.

Definition 3.1. Given f : {−1,1}n →{−1,1}, integer N > n, define f [N] : {−1,1}N ×
({1,...,N}

n

)
→{−1,1}

as
f [N](x,S) 
 f (xi1 ,xi2 , . . . ,xin),

where i1 < i2 < · · ·< in are the elements of S.

The relationship between the threshold degree of f and the discrepancy of f [N], the Degree/Discrepancy
Theorem, is the main result of this section.

Theorem 1.2 (Restated from p. 1). Let f : {−1,1}n → {−1,1} have threshold degree d > 1. Then for any
N > n,

disc
(

f [N]
)

6

√√√√ n

∑
k=d

(
n
k

)(
2n
N

)k

.

In particular,
disc

(
f [N]
)

< 2−d

when N > 10en2/d.

Proof of Theorem 1.2

To reduce notational clutter, we put F(x,S) 
 f [N](x,S). Let µ be a probability distribution over {−1,1}n

under which E
y∼µ

[ f (y)φ(y)] = 0 for any real-valued function φ of d−1 or fewer of the variables y1, . . . ,yn.

The existence of µ is assured by Corollary 2.4.1. We will denote the uniform distribution by U ; the corre-
sponding domain will be clear from the context. Let µS(x) 
 µ(xi1 ,xi2 , . . . ,xin), where i1 < i2 < · · ·< in are
the elements of S. We will analyze the discrepancy of F under the distribution

λ (x,S) 

µS(x)

2N−n ·
(N

n

) .
By Lemma 2.2, there is a choice of values αx,βS ∈ {−1,1} for all x and S such that

discλ (F) 6

∣∣∣∣∣∑x,S αxβSλ (x,S)F(x,S)

∣∣∣∣∣ .
As a result,

discλ (F)2 6

(
∑
x,S

αxβSλ (x,S)F(x,S)

)2

= 4n
(

E
x∼U

E
S∼U

[αxβSµS(x)F(x,S)]
)2

by definition of λ

6 4n E
x∼U

[(
E

S∼U
[βSµS(x)F(x,S)]

)2
]

since E[Z]2 6 E[Z2] for all Z

6 4n E
(S,T )∼U

∣∣∣∣ E
x∼U

[µS(x)µT (x)F(x,S)F(x,T )]
∣∣∣∣ .
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The last equation implies that

discλ (F)2 6 4n
n

∑
k=0

Pr[|S∩T |= k] · max
S,T :|S∩T |=k

∣∣∣∣ E
x∼U

[µS(x)µT (x)F(x,S)F(x,T )]
∣∣∣∣ . (3.1)

To analyze this expression, we prove two key claims.

Claim 3.1.1. Let |S∩T |6 d−1. Then E
x∼U

[µS(x)µT (x)F(x,S)F(x,T )] = 0.

Proof of Claim 3.1.1. For notational convenience, assume that S = {1,2, . . . ,n}. Then

E
x∼U

[µS(x)µT (x)F(x,S)F(x,T )] = E
x∼U

[µ(x1, . . . ,xn)µT (x) f (x1, . . . ,xn)F(x,T )]

=
1

2N ∑
x1,...,xn

µ(x1, . . . ,xn) f (x1, . . . ,xn) ∑
xn+1,...,xN

µT (x)F(x,T )

=
1

2N E
(x1,...,xn)∼µ

 f (x1, . . . ,xn) ·

(
∑

xn+1,...,xN

µT (x)F(x,T )

)
︸ ︷︷ ︸

∗

 .

Since |S∩T |6 d−1, the marked expression is a real-valued function of at most d−1 variables. The claim
follows by the definition of µ.

Claim 3.1.2. Let |S∩T |= k. Then
∣∣∣∣ E
x∼U

[µS(x)µT (x)F(x,S)F(x,T )]
∣∣∣∣6 2k−2n.

Proof of Claim 3.1.2. For notational convenience, let

S = {1,2, . . . ,n} and T = {1,2, . . . ,k}∪{n+1,n+2, . . . ,n+(n− k)}.

We have:∣∣∣∣ E
x∼U

[µS(x)µT (x)F(x,S)F(x,T )]
∣∣∣∣6 E

x∼U
[|µS(x)µT (x)F(x,S)F(x,T )|]

= E
x∼U

[µS(x)µT (x)]

= E
x1,...,x2n−k

[µ(x1, . . . ,xn)µ(x1, . . . ,xk,xn+1, . . . ,x2n−k)]

6 E
x1,...,xn

[µ(x1, . . . ,xn)]︸ ︷︷ ︸
=2−n

· max
x1,...,xk

E
xn+1,...,x2n−k

[µ(x1, . . . ,xk,xn+1, . . . ,x2n−k)] .︸ ︷︷ ︸
62−(n−k)

The bounds 2−n and 2−(n−k) above simply use the fact that µ is a probability distribution.

We now apply Claims 3.1.1 and 3.1.2 to simplify (3.1):

discλ (F)2 6 4n
n

∑
k=0

Pr[|S∩T |= k] · max
S,T :|S∩T |=k

∣∣∣∣ E
x∼U

[µS(x)µT (x)F(x,S)F(x,T )]
∣∣∣∣

= 4n
n

∑
k=d

Pr[|S∩T |= k] · max
S,T :|S∩T |=k

∣∣∣∣ E
x∼U

[µS(x)µT (x)F(x,S)F(x,T )]
∣∣∣∣ by Claim 3.1.1

6 4n
n

∑
k=d

Pr[|S∩T |= k] ·2k−2n by Claim 3.1.2.
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Since

Pr[|S∩T |= k] =

(n
k

)(N−n
n−k

)(N
n

) 6

(
n
k

)( n
N

)k
,

we obtain:

discλ (F)2 6
n

∑
k=d

(
n
k

)(
2n
N

)k

.

Using the inequality
(n

k

)
< ( en

k )k, we see that

discλ (F)2 <
1
4d

as soon as N > 10en2/d. This completes the proof of the theorem. �

Remark 3.2. The proof of Theorem 1.2 analyzes the discrepancy of f [N] under a certain distribution λ ,
defined in terms of the distribution µ under which f is uncorrelated with every function of at most deg( f )−1
variables. Therefore, the distribution λ in the statement of Theorem 1.2 is explicitly specified whenever µ

is explicitly specified.

Remark 3.3. Another helpful observation concerns the circuit complexity of f [N]. As stated, f [N] is a function
of (x,S) pairs, where x ∈ {−1,1}N and S ⊂ [N]. The point is that in implementing f [N] as a circuit, one is
free to choose whatever representation of the set S makes for the most compact circuit. The discrepancy
of f [N] is an intrinsic property of its communication matrix (Section 2.1) and is therefore not affected by
the syntactic representation of the inputs to f [N]. We will take advantage of this fact below in the proof of
Theorem 1.3, where we construct a small AC0,3 circuit for f [N] by representing S as a string in [N]n.

4 A Function in AC0,2 with High Threshold Degree

Consider the function MP : {−1,1}4m3 →{−1,1}, defined as

MP(x) 

m∨

i=1

4m2∧
j=1

xi, j.

Observe that deg(MP) 6 m since by the distributivity law, MP is computable by the conjunction of OR gates
with fanin m. Minsky and Papert [14], who originally defined this function, proved that this simple upper
bound on deg(MP) is in fact tight.

Theorem 4.1 (Minsky-Papert [14]). The function MP on 4m3 variables has deg(MP) = m.

Minsky and Papert’s proof, while short and elegant, does not yield an explicit distribution µ over
{−1,1}4m3

such that Eµ [MP ·χS] = 0 for all χS with |S| 6 deg(MP)− 1. The existence of such a distri-
bution is assured by Corollary 2.4.1. The purpose of this section is to construct the distribution µ explicitly.
In Section 5, we will exploit this µ to obtain an explicit function f in AC0,3 and an explicit distribution λ

such that discλ ( f ) = 2−Ω(n1/5). We do not need the explicitness of µ , however, for the circuit lower bounds
(Theorem 1.1).

Theorem 4.2 (Explicit distribution for MP). There is an explicit distribution over {−1,1}4m3
such that

Eµ [MP ·χS] = 0 for all χS with |S|6 m−1.

We obtain Theorem 4.2 by extending a beautiful argument, due to O’Donnell and Servedio [18], that
makes the crux of the Minsky-Papert construction explicit. See Appendix A for the proof.

7



5 Discrepancy of AC0,3

This section proves an exponentially small upper bound on the discrepancy of an explicit function in AC0,3.
In the next section, we will apply this result to threshold circuits.

Theorem 1.3 (Restated from p. 2). There is an (explicitly given) function F : {−1,1}N × {−1,1}N →
{−1,1} in AC0,3 (i.e., computable by an AND/OR/NOT circuit of size poly(N) and depth 3) and an ex-
plicit distribution λ over {−1,1}N ×{−1,1}N , such that discλ (F) = 2−Ω(N1/5).

Proof. Consider the function MP on n = 4m3 variables. Theorem 4.1 states that deg(MP) = m. Consider
now the function MP[N], where N = 10e(4m3)2/m = 160em5. By Theorem 1.2,

discλ

(
MP[N]

)
<

1
2m (5.1)

under a suitable distribution λ . Theorem 4.2 gives an explicit distribution µ such that Eµ [MP ·χS] = 0 for
all χS with |S|6 m−1. Therefore, the distribution λ in (5.1) is explicitly given by Remark 3.2.

Represent a set S ⊂ [N] with elements i1 < i2 < · · · < in by a Boolean string (y1,y2, . . . ,yn) ∈
({−1,1}logN)n, where yk is the binary representation of the integer ik. We define F : {−1,1}N ×
({−1,1}logN)n →{−1,1} as follows:

F(x,y1,y2, . . . ,yn) 
 MP[N](x,S),

where S is the set whose elements, when written in binary, are y1 < y2 < · · · < yn. In the event that
y1,y2, . . . ,yn do not specify a legal set S (e.g., they are not all distinct or ordered), the value of F is im-
material. By construction,

discλ (F) = discλ

(
MP[N]

)
. (5.2)

Equations (5.1) and (5.2) show that discλ (F) < 2−m = 2−Ω(N1/5). Furthermore, F is function on at most
2N variables. It remains to show that F is computable by a polynomial-size AND/OR/NOT circuit of
depth 3. For this, observe that

F(x,y) = MP(φ1(x,y1), . . . ,φn(x,yn)),

where φi(x,yi) computes xdecimal(yi), i.e., computes xa with a being the decimal integer whose binary repre-
sentation is yi. Each φi is clearly computable by a decision tree of size O(N), and thus also by a CNF formula
of size O(N). Hence, f is computable in AC0,3 (by collapsing the two middle layers of AND gates).

Remark 5.1. The function F in Theorem 1.3 can be viewed as a communication problem in which Alice is
given an input x ∈ {−1,1}N , Bob is given a polynomial-size DNF formula f : {−1,1}N →{−1,1} (from a
restricted set), and the objective is to evaluate f (x). The proof of Theorem 1.3 shows that the communication
matrix of this problem has discrepancy 2−Ω(N1/5). We will use this view in a later section.

Theorem 1.3 shows that AC0,3 has functions with exponentially small discrepancy. At the same time, the
discrepancy of every function in AC0,2 is at least 1/poly(n). This interesting fact may have been previously
discovered; for completeness, we document its proof below.

Proposition 5.2 (Discrepancy of AC0,2). Let f : {−1,1}n×{−1,1}n →{−1,1} be a function in AC0,2 (i.e.,
a polynomial-size DNF or CNF formula). Then discµ( f ) = 1/nO(1) for every distribution µ.
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Proof. Assume f is a polynomial-size DNF formula; the CNF case is analogous. Then in particular f can be
represented as MAJ(T1,T2, . . . ,Ts), where s = nO(1) and each Ti is a term. Consider a public-coin randomized
protocol in which the parties randomly pick i ∈ {1,2, . . . ,s}, evaluate Ti using O(1) communication, and
output the result. This protocol evaluates f correctly with probability at least 1

2 + 1
s . Thus,

Rpub
1/2−1/s( f ) = O(1).

Proposition 2.1 immediately implies that discµ( f ) = Ω(1/s) = 1/nO(1) for all µ.

6 Lower Bounds for MAJ◦THRESH Circuits

As a consequence of Theorem 1.3, we obtain an explicit function in AC0,3 that requires MAJ ◦THRESH
circuits of exponential size. We apply an established argument, due to Nisan [15], to prove that a low-
discrepancy function requires large MAJ◦THRESH circuits. The key piece of the argument is the following
statement.

Theorem 6.1 (Nisan [15]). Let f = sign(∑n
i=1 aixi) be a linear threshold function. Then Rpub

ε ( f ) = O(logn+
log 1

ε
), for any partition of the variables and any ε = ε(n).

We are now in a position to finish our task.

Theorem 1.1 (Restated from p. 1). There is an (explicitly given) function F : {−1,1}N × {−1,1}N →
{−1,1} in AC0,3 (i.e., computable by an AND/OR/NOT circuit of size poly(N) and depth 3) such that any
MAJ◦THRESH circuit for F requires 2Ω(N1/5) THRESH gates.

Proof. Let F be the function in the statement of Theorem 1.3, with disc(F) = 2−Ω(N1/5). Proposition 2.1
implies that for any γ > 0,

Rpub
1/2−γ/2(F) = Ω(N1/5)− log

1
γ
. (6.1)

On the other hand, suppose F is computed by MAJ(h1,h2, . . . ,hs), where each hi is a linear threshold func-
tion. Then the parties can randomly pick i ∈ {1,2, . . . ,s} and use Theorem 6.1 to evaluate hi correctly with
probability 1− 1/(2s), with only O(logN + logs) bits of communication. The proposed protocol would
have advantage at least 1/(2s) in predicting F. Thus,

Rpub
1/2−1/(2s)(F) = O(logN + logs). (6.2)

Comparing (6.1) and (6.2), we see that s = 2Ω(N1/5).

Remark 6.2. It has been shown [5, 6] that polynomial-size MAJ ◦THRESH circuits are exactly the same
complexity class as polynomial-size MAJ◦MAJ circuits. Therefore, we could replace references to MAJ◦
THRESH circuits by MAJ◦MAJ, in Theorem 1.1 above and elsewhere in this paper. We prefer the keep the
MAJ◦THRESH notation, however, as the more descriptive one in the context of circuit lower bounds.

7 Representing DNF formulas as a Threshold of Features

We conclude with an application of our results to learning theory. Let C be an arbitrary set of Boolean func-
tions. Suppose it is possible to fix polynomial-time computable Boolean functions h1, . . . ,hd : {−1,1}n →
{−1,1} such that every function f ∈ C can be represented as

f (x)≡ sign

(
d

∑
i=1

aihi(x)

)
,
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where a1, . . . ,ad are integers specific to f , with |a1|+ · · ·+ |ad | 6 W. The obvious complexity measures of
this representation are d and W . If d and W are polynomial in n, elegant and efficient algorithms exist for
learning C from random examples under every distribution, e.g., the classic Perceptron algorithm [14, 16].
Such classes C possess a variety of other desirable characteristics [8]. (The simplicity of this learning task
is due to the fact that the target functions are halfspaces with a large margin, 1

dW , in terms of the feature
set h1, . . . ,hd .) Given C , a natural question to ask is whether it is possible to choose h1, . . . ,hd such that
d = poly(n) and W = poly(n). The question is particularly intriguing for polynomial-size DNF and CNF
formulas, a concept class that has eluded every attempt at an efficient, distribution-free learning algorithm.
Our machinery yields a strong negative answer to this possibility. We confine our attention below to DNF
formulas; the CNF case is closely analogous.

Theorem 7.1. Let C denote the concept class of polynomial-size DNF formulas. Let h1, . . . ,hd : {−1,1}n →
{−1,1} be arbitrary Boolean functions such that every f ∈C can be expressed as f (x)≡ sign(∑d

i=1 aihi(x))
for some integers a1, . . . ,ad with |a1|+ · · ·+ |ad |6 W. Then dW > 2Ω(n1/5).

Proof. Consider the communication problem F in which Alice is given an input x ∈ {−1,1}n, Bob is given
a function f ∈ C , and the objective is to compute f (x). By Remark 5.1, the communication matrix of this
problem has discrepancy 2−Ω(n1/5). We will construct a cost-2 randomized protocol for the problem, with
advantage 1/(dW ) on every input. Then we will have

1
dW

Prop. 2.1
6 4disc(F)

Rem. 5.1
6

1
2Ω(n1/5)

,

and the proof will be complete.
We now describe the protocol. The idea behind this construction is not new; see [4, 13, 19] for similar

work. First, the parties pick i ∈ {1, . . . ,d} uniformly at random. Then Alice sends hi(x) to Bob. Bob
retrieves the representation of f as f (x) ≡ sign(∑d

i=1 aihi(x)) for some integers a1, . . . ,ad . With probability
1
2 + 1

2 ·
|ai|

|a1|+···+|ad | , Bob announces hi(x) ·sign(ai) as the output. With the remaining probability, he announces

−hi(x) · sign(ai). Thus, Bob’s expected output is aihi(x)
|a1|+···+|ad | . As a result, the protocol achieves the desired

advantage:

f (x) ·
d

∑
i=1

1
d
· aihi(x)
|a1|+ · · ·+ |ad |

=
1
d
· |a1h1(x)+ · · ·+adhd(x)|

|a1|+ · · ·+ |ad |
>

1
dW

.
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thirty-third annual ACM symposium on Theory of computing, pages 258–265, New York, NY, USA,
2001. ACM Press.

[8] A. R. Klivans and R. A. Servedio. Learning intersections of halfspaces with a margin. In COLT, pages
348–362, 2004.

[9] A. R. Klivans and A. A. Sherstov. Improved lower bounds for learning intersections of halfspaces. In
Proceedings of the 19th Annual Conference on Learning Theory (COLT), Pittsburg, USA, June 2006.

[10] M. Krause and P. Pudlák. On the computational power of depth 2 circuits with threshold and modulo
gates. In STOC ’94: Proceedings of the twenty-sixth annual ACM symposium on Theory of computing,
pages 48–57, New York, NY, USA, 1994. ACM Press.

[11] M. Krause and P. Pudlák. Computing boolean functions by polynomials and threshold circuits. Com-
put. Complex., 7(4):346–370, 1998.

[12] E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University Press, New York, NY,
USA, 1997.

[13] N. Linial and A. Shraibman. Lower bounds in communication complexity based on factorization
norms. Manuscript at http://www.cs.huji.ac.il/~nati/PAPERS/quant_cc.pdf, June 2006.

[14] M. L. Minsky and S. A. Papert. Perceptrons: expanded edition. MIT Press, Cambridge, MA, USA,
1988.

[15] N. Nisan. The communication complexity of threshold gates. In Proceedings of “Combinatorics, Paul
Erdos is Eighty”, pages 301–315, 1993.

[16] A. B. J. Novikoff. On convergence proofs on perceptrons. In Proceedings of the Symposium on the
Mathematical Theory of Automata, volume XII, pages 615–622, 1962.

[17] R. O’Donnell and R. A. Servedio. Extremal properties of polynomial threshold functions. In IEEE
Conference on Computational Complexity, pages 3–12, 2003.

[18] R. O’Donnell and R. A. Servedio. New degree bounds for polynomial threshold functions. In STOC
’03: Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 325–334,
New York, NY, USA, 2003. ACM Press.

11



[19] R. Paturi and J. Simon. Probabilistic communication complexity. J. Comput. Syst. Sci., 33(1):106–123,
1986.

[20] R. Raz. The BNS-Chung criterion for multi-party communication complexity. Comput. Complex.,
9(2):113–122, 2000.

[21] A. A. Razborov. On the distributional complexity of disjointness. Theor. Comput. Sci., 106(2):385–
390, 1992.

[22] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, Inc., New York, NY,
USA, 1998.

[23] K.-Y. Siu and V. P. Roychowdhury. On optimal depth threshold circuits for multiplication and related
problems. SIAM J. Discrete Math., 7(2):284–292, 1994.

A An Explicit Distribution for the MP Function

Recall the function MP : {−1,1}4m3 →{−1,1}, defined as

MP(x) 

m∨

i=1

4m2∧
j=1

xi, j.

The objective of this section is to obtain an explicit distribution µ over {−1,1}4m3
such that Ex∼µ [MP ·χS] =

0 for all χS with |S|6 deg(MP)−1. The existence of such a distribution is assured by Corollary 2.4.1. Our
analysis works by extending a beautiful argument, due to O’Donnell and Servedio [18], that makes the crux
of the Minsky-Papert construction explicit.

Proposition A.1 (O’Donnell and Servedio [18]). Let T = {0,1, . . . ,2m}. Let ν(t) = 2−2m
(2m

t

)
, a prob-

ability distribution over T. Then Eν [(−1)t p(t)] = 0 for every polynomial p(t) of degree at most 2m− 1.

Proof (O’Donnell and Servedio [18]). It suffices to prove the claim for p(t) = td , where d 6 2m− 1. The
latter follows from the combinatorial identity ∑

2m
t=0
(2m

t

)
(−1)ttd = 0, for all d = 0,1, . . . ,2m−1.

O’Donnell and Servedio used Proposition A.1 to obtain an explicit distribution over {0,1, . . . ,2m} under
which every low-degree symmetric polynomial has zero correlation with MP. However, what we seek is an
explicit distribution over {−1,1}4m3

. To achieve this goal, we take the argument of O’Donnell and Servedio
a step further. The technical exposition follows.

For t ∈ {0,1, . . . ,2m}, define

Xt 


{
x :

4m2

∑
j=1

1− xi, j

2
= 4m2− (t− (2i−1))2 for each i = 1,2, . . . ,m

}
. (A.1)

Thus, X0,X1, . . . ,X2m are disjoint sets of inputs. The same sets of inputs figure in the analysis of Minsky and
Papert [14] and O’Donnell and Servedio [18]. It is easy to check that for t = 0,1, . . . ,2m,

x ∈ Xt =⇒ MP(x) = (−1)t . (A.2)
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Let ν be the distribution over {0,1, . . . ,2m} as defined in Proposition A.1. We will work with the following
distribution µ over {−1,1}4m3

:

µ(x) =



ν(0)/|X0| if x ∈ X0,
ν(1)/|X1| if x ∈ X1,

...
ν(2m)/|X2m| if x ∈ X2m,

0 otherwise.

Theorem 4.2 (Restated from p. 7). There is an explicit distribution (namely, µ above) over {−1,1}4m3
such

that Eµ [MP ·χS] = 0 for all χS with |S|6 m−1.

Proof. Let χS be arbitrary with |S| 6 m− 1. Call the variables xi,1,xi,2, . . . ,xi,4m2 the ith block of x. Let
σ1,σ2, . . . ,σm be fixed permutations for blocks 1,2, . . . ,m, respectively. The theorem follows immediately
from the following two claims.

Claim A.1.1. Eµ [MP · (χS ◦ (σ1, . . . ,σm))] = Eµ [MP ·χS] for all σ1, . . . ,σm.

Claim A.1.2. ∑σ1,...,σm Eµ [MP · (χS ◦ (σ1, . . . ,σm))] = 0.

We prove these claims below. This completes the proof of the theorem.

Proof of Claim A.1.1. The functions MP(x) and µ(x) depend only on the sum of the bits in each block.
Formally, MP≡MP◦ (σ1, . . . ,σm) and µ ≡ µ ◦ (σ1, . . . ,σm). The claim follows.

Proof of Claim A.1.2. Write χS = χS1 χS2 . . .χSm , where Si = S∩{(i,1), . . . ,(i,4m2)}. Then,

∑
σ1,...,σm

E
µ

[MP · (χS ◦ (σ1, . . . ,σm))] = ∑
σ1,...,σm

E
µ

[
MP ·

m

∏
i=1

(χSi ◦σi)

]
= E

µ

[
MP ·

m

∏
i=1

(
∑
σi

χSi ◦σi

)]

= E
µ

[
MP ·

m

∏
i=1

pi(xi,1 + xi,2 + · · ·+ xi,4m2)

]
,

where p1, p2, . . . , pm are polynomials of degree at most |S1|, |S2|, . . . , |Sm|, respectively. We now use the
definition of µ to simplify the last equation.

E
µ

[
MP ·

m

∏
i=1

pi(xi,1 + xi,2 + · · ·+ xi,4m2)

]
= ∑

x
µ(x)MP(x)

m

∏
i=1

pi(xi,1 + xi,2 + · · ·+ xi,4m2)

=
2m

∑
t=0

∑
x∈Xt

ν(t)
|Xt |

MP(x)
m

∏
i=1

pi(xi,1 + xi,2 + · · ·+ xi,4m2)

=
2m

∑
t=0

∑
x∈Xt

ν(t)
|Xt |

(−1)t
m

∏
i=1

pi(2(t− (2i−1))2−4m2)︸ ︷︷ ︸
p(t)

by (A.1), (A.2)

=
2m

∑
t=0

ν(t)(−1)t p(t)

= 0,

where the last line follows by Proposition A.1 since p(t) has degree at most 2∑i |Si|= 2|S|6 2m−2.
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