
Wait Free Atomi Semantis and Writebaks {Preliminary VersionAmitanand S. Aiyer1, Lorenzo Alvisi1, and Rida A. Bazzi21 Department of Computer Sienes,The University of Texas at Austinfanand,lorenzog�s.utexas.edu2 Computer Siene and Engineering Department,Arizona State Universitybazzi�asu.eduRevised 26th Feb 20071 AbstratIn the presene of Byzantine faults no protool an ahieve wait-free atomisemantis without having the reader perform a write bak. All existing protoolsfor wait-free atomi semantis write bak the entire value to the servers. Weshow the �rst protool that does not writebak the value, but still ahieves wait-free atomi semantis by writing bak the timestamp. Further, we also showthat wait-free atomi semantis an be ahieved even when the readers are onlyallowed to hange just 1-bit of information at the servers.2 IntrodutionIt an be shown that write-baks from the readers are neessary to ahieve wait-free atomi semantis in a (pure shared memory) senario where the base objetsannot ommuniate with eah other diretly. This limitation holds true, evenif we use ryptography, self-verifying data, and need to tolerate just one rashfailure among a million nodes.In this work we show that despite the need to perform a write bak foratomi wait free semantis, the readers need not write bak the value as suh.Spei�ally, we show that writing bak just One bit of information is suÆientto ahieve atomi wait free semantis.We present our algorithm in two stages.{ First, we show a protool WriteBakOnlyTS that ahieves atomi wait-free semantis by only writing bak the timestamp (without having to writebak the value).{ Later, we present a subroutein to simulate the former protool over a baseobjet, where only one-bit of information is allowed to be updated by thereader. This subroutein when used as a primitive in WriteBakOnlyTSahieves wait-free atomi semantis, writing-bak only one-bit of informa-tion.

For simpliity, we present a single-writer multiple-reader version of the pro-tool.3 Model/AssumptionsThe system onsists of a set of n replias (servers), a writer and a set of readers.Readers and writers are olletively referred to as lients.Clients exeute protools that speify how read and write operations are im-plemented. We assume that lients do not start a new operation before �nishinga previous operation. We assume that up to f servers may be Byzantine faultyand may deviate arbitrarily from the spei�ed protool. The remaining (n� f)servers are orret and follow the spei�ed protool. We require that the totalnumber of servers n be at least 4f + 1.We assume authentiated FIFO point-to-point asynhronous hannels be-tween lients and servers. Servers do not ommuniate with other servers.Clients an fail by rashing and follow their protool before they rash. Upto f Byzantine servers may behave arbitrarily. The remaining n� f are orretand do not rash.4 WriteBakOnlyTS protoolThis setion presents the WriteBakOnlyTS protool, that provides atomiwait free semantis when the reader only writes bak the timestamp but not thevalue.4.1 Protool DesriptionThe servers maintain 4 registers, RVal , R1 , RValPrev and R2 . RegistersRVal and RValPrev store the value that is written by the writer, registersR1 and R2 store the timestamps for the value.Register R1 stores the timestamp for the value stored in register RVal ,and is inremented whenever the register RVal is updated. Register RValPrevstores the previously written value, orresponding to the timestamp (R1 - 1).The register R2 stores the timestamp of the oldest value that any furtherread may return.Insight: To ahieve atomi semantis, we just need to ensure that whenevera writer ompletes the write operation for a value with timestamp t, or a readerreturns a value with timestamp t, no further \read" from register R2 will returna timestamp older than t.The servers follow the \listeners" pattern of ommuniation as in [1℄. Theymaintain a list of ative readers and push updates to any of the registers to allative readers.

write(val) f++ts;// phase 1send (WRITE1, v = val, ts1 = ts) to all;wait for n-f aks;// phase 2send (WRITE2, ts2 = ts) to all;wait for n-f aks;g Fig. 1. Writer's protoolWrite protool The protool for the (single) writer is shown in Figure 4.1.To perform a write operation,1. The writer inreases the existing timestamp by 1 and sends a message toall the servers requesting them to update register RVal with the new valueand register R1 with the new timestamp.2. The writer then waits for (n � f) aknowledgements before it now sends amessage to all the servers to update the value of register R2 with the newtimestamp.3. When (n � f) servers aknowledge the reeipt of this message, the writeompletes.Read protool To perform a read operation, a reader sends the read requestto all the servers. After gathering at least n� f responses, the reader alulatesmin ts2 as the 2f + 1-st smallest timestamp among all the reeived values forR2 .The reader then waits and ollets responses, until it reeives enough math-ing value-timestamp pairs for some timestamp that is at least as fresh asmin ts2 .If the value timestamp of the value that is being deided upon is same asmin ts2 , f + 1 idential responses are suÆient. Otherwise, the reader waits toollet n� f idential responses.After olleting enough idential responses to hoose a value, the readerwrites bak the timestamp of the value hosen to register R2 . The read op-eration ompletes after the reader reeives (n � f) aknowledgements for thewrite-bak.Server's protool The servers follow the \listeners" pattern of ommuniationwith the readers. They maintain a list of ative readers { readers that are ur-rently reading { and forward the values to the readers until they omplete theread.When a server reieves a write or a write-bak message, it updates the or-responding register and aknowledges the lient.

read() fsend (START READ) to all;do freeive (RESPONSE, v, ts1, vprev, ts2) from server s;value[s℄[ts1℄ := v,value[s℄[ts1-1℄ := vprev,if timestamp2[s℄ == NULL:timestamp2[s℄ := ts2;if reeived >= (n� f) responses:min ts2 := (2f + 1)-th smallest among timestamp2[℄ ;prev ts2 := (f + 1)-th largest among timestamp2[℄ ;if min ts2 != null and 9 ts, val, suh that:(eitherts � min ts2 andts � prev ts2 andthere are f + 1 servers, s, withvalue[s℄[ts℄ == valor ts � min ts2 andts > prev ts2 andthere are n� f servers, s, withvalue[s℄[ts℄ == val)beginseleted ts = ts;seleted value = val;break;endg while(true)// write-bak phasesend (WRITE BACK, ts2 = seleted ts) to all;wait for (n� f) aks;return seleted value;g Fig. 2. Reader's protool4.2 Protool CorretnessFirst, we show the safety ondition: that our protool ahieves atomiity assum-ing it is live. We will later show that our protools always terminate establishingliveness.Atomiity is shown by proving thatW-R atomiity One a writer ompletes a write operation for a value with timestamp t, nofurther read will return an older value.R-R atomiity One a read operation returns a value with timestamp t, no future read willreturn an older value.Lemma 1 (W-R atomiity). One a writer ompletes a write operation for avalue with timestamp t, no further read will return an older value.
Proof: To omplete a write operation, the writer sends (WRITE2, ts2 = ts) toall and waits for aknowledgements from at least n � f servers. Thus, when awrite operation ompletes at least n � 2f orret servers have set the value of

server() fwhile(true) freeive msg from lient;if lient == WRITER:if msg == (WRITE1, v = val, ts1 = ts) and ts > R1:waitFor(R2 >= ts� 1);RV PREV = RV1;R1 = ts;RV = val;// send updates to all ative readers;send (RESPONSE, RV, R1, RV PREV, R2) to Readers;if msg == (WRITE2, ts2 = ts):waitFor(R1 == ts);if (ts > R2)R2 = ts;// send updates to all ative readers;send (RESPONSE, RV, R1, RV PREV, R2) to Readers;aknowledge the lient;if lient == READER:if msg == (START READ):// add lient to the set of ative readers;Readers = Readers [f lient gsend (RESPONSE, RV, R1, RV PREV, R2) to lient;if msg == (WRITE BACK, ts2 = ts):if ts > R2:waitFor(R2 >= ts� 1);R2 = ts;// remove lient from ative readersReaders = Readers n f lient gaknowledge the lient;gg Fig. 3. Server's protool, involving writebak of timestampregister R2 = t. Sine the value of register R2 only inreases, any further readwill only reeive values � t from these orret servers.Hene, the value of min ts2 omputed by the reader will be � t. So, the readwill only return a value � t. utLemma 2 (R-R atomiity). One a read operation returns a value with times-tamp t, no future read will return an older value. for a value with timestamp t,no further read will return an older value.
Proof: Similar to Lemma 1 utLemma 3 (Corretness). A read only returns a value that is written by awriter.
Proof: A value is set as the seleted value only if there are either f +1 or n� fservers responding with the same value and timestamp. Sine, in either of thease, at least one of the servers has to be orret and lients are non-maliious,seleted value will only be set to the value written by the writer. ut

Lemma 4 (Write Liveness). A write operation always terminates and is wait-free.
Proof: A write operation only waits for n � f responses at any stage. Sine atmost f servers are faulty, it follows that a write operation always terminates andis wait-free. utLemma 5 (Read Liveness). A read operation always terminates and is wait-free.
Proof: If a reader will eventually reeive responses from all the n � f orretservers.Let t be the f+1-th largest timestamp2 entry reeived from a orret server.Sine n � 4f + 1, we would have t � min ts2t � prev ts2The orret server must have set register R2 to t, either beause it reeiveda (WRITE2, ts2 = t) message from the writer, or it reeived a (WRITE BACK,ts2 = t) message from another reader 3We will now argue that in either ase, the reader will reeive enough identialresponses to set seleted value and seleted ts. If the reader sets seleted valueto a non-null value, then termination follows sine the reader only waits for n�fresponses to the write-bak message.Consider the following two ases:1. The writer sends at least one (WRITE2, ts2 = t) message:In this ase, the writer would have sent (WRITE1, value = val, ts1 = t) toall the servers. Eventually all the orret servers among the 2f + 1 serverswith timestamp � t will reieve this message and send the updates to thereader. When all these updates reah the reader, the reader will have � f+1idential responses for the value with timestamp t, and will be selet a valueif the reader has not already seleted.2. If the writer never sent a (WRITE2, ts2 = t) message, then some reader(s)must have sent a (WRITE BACK, ts2 = t) message. Consider the �rst readerto have sent suh a message. No lient would have written t to register R2earlier, and the prev ts2 evaluated during that read would have to be < t.Thus, in order to have seleted t to perform a write-bak, the reader musthave reeived at least n� f � 2f + 1 idential responses with timestamp t.At least f + 1 of these are orret and there value will not be overwrittenby any further write. Thus when the responses from these servers reah thereader, the reader will be able to deide on the value. ut3 The message ould also have been sent by the same reader during a previous readoperation. The argument in this ase is similar to the argument when the read wasby another reader.

5 Protool with only One write-bakable bitWe now show how to ahieve atomi wait free semantis if only one bit of in-formation at the server may be updated by a reader with a write-bak. We willshow how to infer the same values of registers R1 and R2 using just the registerR1 and a write-bakable bit b.As in the protool presented earlier, register R1 stores the timestamp of thevalue stored in register RVal and is updated by the writer during phase 1 ofthe write. The value of the register R2 is alulated using the formulaR2 = R1� bwhere R1 is value in register R1 , R2 is the value in register R2 and b is therewritable bit, that may be updated by both the reader and the writer.On reieving WRITE1 message, the server updates the registers RVal , R1and sets the equation for evaluating R2 asR2 = R1� bwhile setting b to 0 or 1 aordingly to satisfy the equation. If this write messageis not signi�antly delayed, then the value of b would be 1. However, if before thewrite message has reahed the server a reader has written bak the timestampto R2 then b would be 0.On reieving WRITE2 message, the server sets the equation for evaluatingR2 as R2 = R1 + bwhile setting b to 0 or 1 aordingly to satisfy the equation. Typially, at thispoint, b would be 0 unless this message has been so muh delayed that the writerhas written the next value, a reader read it and has performed a write-bak.The protool for the server using only 1-write bakable bit is shown in Fig-ure 5.The protools for the readers and the writer are unhanged.Corretness [Sketh℄ Inspite of having only 1 writebakable-bit at the serverthis protool provides the same interfae and guarantees as the protool in Fig-ure 4.1.Spei�ally, for any exeution, a message sent by a (orret) lient to a serverrunning either of the protools always reeives idential responses.Thus this protool also ahieves the same guarantees as the previous protool,namely, wait-free atomi semantis.Referenes1. Martin, J.P., Alvisi, L., Dahlin, M.: Minimal byzantine storage. In: DISC '02,London, UK, Springer-Verlag (2002) 311{325

server() fwhile(true) freeive msg from lient;if lient == WRITER:if msg == (WRITE1, v = val, ts1 = ts) and ts > R1:// waitFor(R2 >= ts � 1);waitFor(R1 == ts-1 and EQN == \R2 = R1 + b")int tmpR2 = omputeR2();RV PREV = RV1;R1 = ts;RV = val;EQN == \R2 = R1 - b";b = 1 - b; // same as b = R1 - R2// = ts - tmpR2// = ts - (ts-1 + b)// = 1 - bassert(omputeR2() == tmpR2);// send updates to all ative readers;send (RESPONSE, RV, R1, RV PREV, omputeR2()) to Readers;if msg == (WRITE2, ts2 = ts):// waitFor(R1 == ts);waitFor(R1 == ts);assert(EQN == \R2 = R1 - b");EQN == \R2 = R1 + b";b = 0;assert(omputeR2() == ts);if (tmpR2 != omputeR2())send (RESPONSE, RV, R1, RV PREV, omputeR2()) to Readers;aknowledge the lient;if lient == READER:if msg == (START READ):// add lient to the set of ative readers;Readers = Readers [f lient gsend (RESPONSE, RV, R1, RV PREV, omputeR2()) to lient;if msg == (WRITE BACK, ts2 = ts):if ts > omputeR2():// waitFor(R2 >= ts � 1);waitFor((R1 == ts - 1 and EQN == \R2 = R1 + b")or R1 > ts� 1);// omputeR2() = ts;if (R1 == ts and EQN == \R2 = R1 - b"):b = 0;else if (R1 == ts - 1 and EQN == \R2 = R1 + b")b = 1;else if (R1 == ts and EQN == \R2 = R1 + b")// do nothing;else if (R1 >= ts+ 1)// do nothing;// remove lient from ative readersReaders = Readers n f lient gaknowledge the lient;assertInvariants();gg Fig. 4. Server's protool, involving writebak of only 1-bit

