Wait Free Atomic Semantics and Writebacks —
Preliminary Version

Amitanand S. Aiyer!, Lorenzo Alvisi', and Rida A. Bazzi?

! Department of Computer Sciences,
The University of Texas at Austin
{anand,lorenzo}@cs.utexas.edu
Computer Science and Engineering Department,
Arizona State University
bazziQasu.edu

2

Revised 26" Feb 2007

1 Abstract

In the presence of Byzantine faults no protocol can achieve wait-free atomic
semantics without having the reader perform a write back. All existing protocols
for wait-free atomic semantics write back the entire value to the servers. We
show the first protocol that does not writeback the value, but still achieves wait-
free atomic semantics by writing back the timestamp. Further, we also show
that wait-free atomic semantics can be achieved even when the readers are only
allowed to change just I1-bit of information at the servers.

2 Introduction

It can be shown that write-backs from the readers are necessary to achieve wait-
free atomic semantics in a (pure shared memory) scenario where the base objects
cannot communicate with each other directly. This limitation holds true, even
if we use cryptography, self-verifying data, and need to tolerate just one crash
failure among a million nodes.

In this work we show that despite the need to perform a write back for
atomic wait free semantics, the readers need not write back the value as such.
Specifically, we show that writing back just One bit of information is sufficient
to achieve atomic wait free semantics.

We present our algorithm in two stages.

— First, we show a protocol WriteBackOnlyTS that achieves atomic wait-
free semantics by only writing back the timestamp (without having to write
back the value).

— Later, we present a subroutein to simulate the former protocol over a base
object, where only one-bit of information is allowed to be updated by the
reader. This subroutein when used as a primitive in WriteBackOnlyTS
achieves wait-free atomic semantics, writing-back only one-bit of informa-
tion.

For simplicity, we present a single-writer multiple-reader version of the pro-
tocol.

3 Model/Assumptions

The system consists of a set of n replicas (servers), a writer and a set of readers.
Readers and writers are collectively referred to as clients.

Clients execute protocols that specify how read and write operations are im-
plemented. We assume that clients do not start a new operation before finishing
a previous operation. We assume that up to f servers may be Byzantine faulty
and may deviate arbitrarily from the specified protocol. The remaining (n — f)
servers are correct and follow the specified protocol. We require that the total
number of servers n be at least 4f + 1.

We assume authenticated FIFO point-to-point asynchronous channels be-
tween clients and servers. Servers do not communicate with other servers.

Clients can fail by crashing and follow their protocol before they crash. Up
to f Byzantine servers may behave arbitrarily. The remaining n — f are correct
and do not crash.

4 WriteBackOnlyTS protocol

This section presents the WriteBackOnlyTS protocol, that provides atomic
wait free semantics when the reader only writes back the timestamp but not the
value.

4.1 Protocol Description

The servers maintain 4 registers, RVal , R1, RValPrev and R2 . Registers
RVal and RValPrev store the value that is written by the writer, registers
R1 and R2 store the timestamps for the value.

Register R1 stores the timestamp for the value stored in register RVal ,
and is incremented whenever the register RVal is updated. Register RValPrev
stores the previously written value, corresponding to the timestamp (R1 - 1).

The register R2 stores the timestamp of the oldest value that any further
read may return.

Insight: To achieve atomic semantics, we just need to ensure that whenever
a writer completes the write operation for a value with timestamp t, or a reader
returns a value with timestamp t, no further “read” from register R2 will return
a timestamp older than t.

The servers follow the “listeners” pattern of communication as in [1]. They
maintain a list of active readers and push updates to any of the registers to all
active readers.

write(val) {
++ts;
// phase 1
send (WRITEL, v = val, tsl = ts) to all;
wait for n-f acks;
// phase 2
send (WRITE2, ts2 = ts) to all;
wait for n-f acks;

Fig. 1. Writer’s protocol

Write protocol The protocol for the (single) writer is shown in Figure 4.1.
To perform a write operation,

1. The writer increases the existing timestamp by 1 and sends a message to
all the servers requesting them to update register RVal with the new value
and register R1 with the new timestamp.

2. The writer then waits for (n — f) acknowledgements before it now sends a
message to all the servers to update the value of register R2 with the new
timestamp.

3. When (n — f) servers acknowledge the receipt of this message, the write
completes.

Read protocol To perform a read operation, a reader sends the read request
to all the servers. After gathering at least n — f responses, the reader calculates
min_ts2 as the 2f + 1-st smallest timestamp among all the received values for
R2.

The reader then waits and collects responses, until it receives enough match-
ing value-timestamp pairs for some timestamp that is at least as fresh as min_ts2.

If the value timestamp of the value that is being decided upon is same as
min_ts2, f + 1 identical responses are sufficient. Otherwise, the reader waits to
collect n — f identical responses.

After collecting enough identical responses to choose a value, the reader
writes back the timestamp of the value chosen to register R2 . The read op-
eration completes after the reader receives (n — f) acknowledgements for the
write-back.

Server’s protocol The servers follow the “listeners” pattern of communication
with the readers. They maintain a list of active readers — readers that are cur-
rently reading — and forward the values to the readers until they complete the
read.

When a server recieves a write or a write-back message, it updates the cor-
responding register and acknowledges the client.

(START_READ) to all;

(RESPONSE, v, tsl, vprev, ts2) from server s;
value[s][ts1] := v,
value[s][ts1-1] := vprev,
if timestamp2[s] == NULL:
timestamp?2[s] := ts2;

received >= (n — f) responses:
min_ts2 := (2f + 1)-th smallest among timestamp2[];
prev_ts2 := (f + 1)-th largest among timestamp?2/[];

min_ts2 '= null 3 ts, val, such that:
(either
ts > min_ts2

ts < prev_ts2
there are f 4 1 servers, s, with
value[s][ts] == val

ts > min_ts2

ts > prev_ts2

there are n — f servers, s, with
value[s][ts] == val)

selected-ts = ts;
selected_value = val;

)

} (true)

// write-back phase
(WRITE_BACK, ts2 = selected_ts) to all;
(n — f) acks;

selected_value;

Fig. 2. Reader’s protocol

4.2 Protocol Correctness

First, we show the safety condition: that our protocol achieves atomicity assum-
ing it is live. We will later show that our protocols always terminate establishing
liveness.

Atomicity is shown by proving that

W-R atomicity Once a writer completes a write operation for a value with timestamp ¢, no
further read will return an older value.

R-R atomicity Once a read operation returns a value with timestamp ¢, no future read will
return an older value.

Lemma 1 (W-R atomicity). Once a writer completes a write operation for a
value with timestamp t, no further read will return an older value.

Proof: To complete a write operation, the writer sends (WRITE2, ts2 = ts) to
all and waits for acknowledgements from at least n — f servers. Thus, when a
write operation completes at least n — 2f correct servers have set the value of

server() {
while(true) {
receive msg from client;

if client == WRITER:
if msg == (WRITEL, v = val, tsl = ts) and ts > Rl:
waitFor(R2 >= ts — 1);
RV_PREV = RV1;
R1 = ts;
RV = val;

// send updates to all active readers;
send (RESPONSE, RV, R1, RV_.PREV, R2) to Readers;

if msg == (WRITE2, ts2 = ts):
waitFor(R1 == ts);
if (ts > R2)
R2 = ts;
// send updates to all active readers;
send (RESPONSE, RV, R1, RV_.PREV, R2) to Readers;

acknowledge the client;

if client == READER:
if msg == (START_READ):
// add client to the set of active readers;
Readers = Readers U { client }
send (RESPONSE, RV, R1, RV_PREV, R2) to client;

if msg == (WRITE_BACK, ts2 = ts):
if ts > R2:
waitFor(R2 >=ts — 1);
R2 = ts;
// remove client from active readers
Readers = Readers \ { client }
acknowledge the client;

Fig. 3. Server’s protocol, involving writeback of timestamp

register R2 = t. Since the value of register R2 only increases, any further read
will only receive values > ¢ from these correct servers.

Hence, the value of min_ts2 computed by the reader will be > ¢. So, the read
will only return a value > t. a

Lemma 2 (R-R atomicity). Once a read operation returns a value with times-
tamp t, no future read will return an older value. for a value with timestamp t,
no further read will return an older value.

Proof: Similar to Lemma 1 a

Lemma 3 (Correctness). A read only returns a value that is written by a
writer.

Proof: A value is set as the selected_value only if there are either f +1orn— f
servers responding with the same value and timestamp. Since, in either of the
case, at least one of the servers has to be correct and clients are non-malicious,
selected_value will only be set to the value written by the writer. O

Lemma 4 (Write Liveness). A write operation always terminates and is wait-
free.

Proof: A write operation only waits for n — f responses at any stage. Since at
most f servers are faulty, it follows that a write operation always terminates and
is wait-free. O

Lemma 5 (Read Liveness). A read operation always terminates and is wait-
free.

Proof: If a reader will eventually receive responses from all the n — f correct
servers.

Let ¢ be the f+ 1-th largest timestamp2 entry received from a correct server.
Since n > 4f + 1, we would have

t > min_ts2

t < prev_ts2

The correct server must have set register R2 to ¢, either because it received
a (WRITE2, ts2 = ¢) message from the writer, or it received a (WRITE_BACK,
ts2 = t) message from another reader 3

We will now argue that in either case, the reader will receive enough identical
responses to set selected_value and selected_ts. If the reader sets selected_value
to a non-null value, then termination follows since the reader only waits for n— f
responses to the write-back message.

Consider the following two cases:

1. The writer sends at least one (WRITE2, ts2 = t) message:

In this case, the writer would have sent (WRITE1, value = val, tsl = t) to
all the servers. Eventually all the correct servers among the 2f + 1 servers
with timestamp < ¢ will recieve this message and send the updates to the
reader. When all these updates reach the reader, the reader will have > f+1
identical responses for the value with timestamp ¢, and will be select a value
if the reader has not already selected.

2. If the writer never sent a (WRITE2, ts2 = ¢) message, then some reader(s)
must have sent a (WRITE_BACK, ts2 = t) message. Consider the first reader
to have sent such a message. No client would have written ¢ to register R2
earlier, and the prev_ts2 evaluated during that read would have to be < t.
Thus, in order to have selected ¢ to perform a write-back, the reader must
have received at least n — f > 2f + 1 identical responses with timestamp ¢.
At least f + 1 of these are correct and there value will not be overwritten
by any further write. Thus when the responses from these servers reach the
reader, the reader will be able to decide on the value.

a

® The message could also have been sent by the same reader during a previous read
operation. The argument in this case is similar to the argument when the read was
by another reader.

5 Protocol with only One write-backable bit

We now show how to achieve atomic wait free semantics if only one bit of in-
formation at the server may be updated by a reader with a write-back. We will
show how to infer the same values of registers R1 and R2 using just the register
R1 and a write-backable bit b.

As in the protocol presented earlier, register R1 stores the timestamp of the
value stored in register RVal and is updated by the writer during phase 1 of
the write. The value of the register R2 is calculated using the formula

R2=R1%b

where R1 is value in register R1 , R2 is the value in register R2 and b is the
rewritable bit, that may be updated by both the reader and the writer.

On recieving WRITE1L message, the server updates the registers RVal , R1
and sets the equation for evaluating R2 as

R2=R1-b

while setting b to 0 or 1 accordingly to satisfy the equation. If this write message
is not significantly delayed, then the value of b would be 1. However, if before the
write message has reached the server a reader has written back the timestamp
to R2 then b would be 0.
On recieving WRITE2 message, the server sets the equation for evaluating
R2 as
R2=R1+5b

while setting b to 0 or 1 accordingly to satisfy the equation. Typically, at this
point, b would be 0 unless this message has been so much delayed that the writer
has written the next value, a reader read it and has performed a write-back.
The protocol for the server using only 1-write backable bit is shown in Fig-
ure 5.
The protocols for the readers and the writer are unchanged.

Correctness [Sketch] Inspite of having only 1 writebackable-bit at the server
this protocol provides the same interface and guarantees as the protocol in Fig-
ure 4.1.

Specifically, for any execution, a message sent by a (correct) client to a server
running either of the protocols always receives identical responses.

Thus this protocol also achieves the same guarantees as the previous protocol,
namely, wait-free atomic semantics.

References

1. Martin, J.P., Alvisi, L., Dahlin, M.: Minimal byzantine storage. In: DISC ’02,
London, UK, Springer-Verlag (2002) 311-325

server() {

(true) {

msg from client;

client == WRITER:
msg == (WRITEL, v = val, ts1 = ts) and ts > R1:
// (R2 >= tsfl);
(R1 == ts-1 and EQN == “R2 = R1 + b"”)
tmpR2 = computeR2();
RV_PREV = RV1;

R1 = ts;
RV = val;
EQN == “R2 = R1 - b”;

b=1-b;// same as b = R1 - R2
// = ts - tmpR2
// = ts - (ts-1 4+ b)
//=1-b

assert(computeR2() == tmpR2);

// send updates to all active readers;
(RESPONSE, RV, R1, RV_.PREV, computeR2()) to Readers;

msg == (WRITE2, ts2 = ts):

// (R1 == ts);

(R1 == ts);
assert(EQN == “R2 = Rl - b");
EQN == “R2 = R1 + b7
b = 0;
assert(computeR2() == ts);

(tmpR2 != computeR2())
(RESPONSE, RV, R1, RV_.PREV, computeR2()) to Readers;

acknowledge the client;

client == READER:
msg == (START_READ):
// add client to the set of active readers;
Readers = Readers U { client }
(RESPONSE, RV, R1, RV_.PREV, computeR2()) to client;

msg == (WRITE_BACK, ts2 = ts):
ts > computeR2():
// (R2 >=ts — 1);
((R1 ==ts - 1 and EQN == “R2 = Rl + b”)
or R1 > ts — 1);
// computeR2() = ts;
(

R1 == ts and EQN == “R2 = R1 - b”):
b = 0;

(R1 ==ts-1and EQN == “R2 = R1 + b”)
b=1;

(R1 == ts and EQN == “R2 = R1 + b”)

// do nothing
(Rl >=ts+1)
// do nothing

)

// remove client from active readers
Readers = Readers \ { client }
acknowledge the client;

assertInvariants();

¥

Fig. 4. Server’s protocol, involving writeback of only 1-bit

