
Wait Free Atomi
 Semanti
s and Writeba
ks {Preliminary VersionAmitanand S. Aiyer1, Lorenzo Alvisi1, and Rida A. Bazzi21 Department of Computer S
ien
es,The University of Texas at Austinfanand,lorenzog�
s.utexas.edu2 Computer S
ien
e and Engineering Department,Arizona State Universitybazzi�asu.eduRevised 26th Feb 20071 Abstra
tIn the presen
e of Byzantine faults no proto
ol
an a
hieve wait-free atomi
semanti
s without having the reader perform a write ba
k. All existing proto
olsfor wait-free atomi
 semanti
s write ba
k the entire value to the servers. Weshow the �rst proto
ol that does not writeba
k the value, but still a
hieves wait-free atomi
 semanti
s by writing ba
k the timestamp. Further, we also showthat wait-free atomi
 semanti
s
an be a
hieved even when the readers are onlyallowed to
hange just 1-bit of information at the servers.2 Introdu
tionIt
an be shown that write-ba
ks from the readers are ne
essary to a
hieve wait-free atomi
 semanti
s in a (pure shared memory) s
enario where the base obje
ts
annot
ommuni
ate with ea
h other dire
tly. This limitation holds true, evenif we use
ryptography, self-verifying data, and need to tolerate just one
rashfailure among a million nodes.In this work we show that despite the need to perform a write ba
k foratomi
 wait free semanti
s, the readers need not write ba
k the value as su
h.Spe
i�
ally, we show that writing ba
k just One bit of information is suÆ
ientto a
hieve atomi
 wait free semanti
s.We present our algorithm in two stages.{ First, we show a proto
ol WriteBa
kOnlyTS that a
hieves atomi
 wait-free semanti
s by only writing ba
k the timestamp (without having to writeba
k the value).{ Later, we present a subroutein to simulate the former proto
ol over a baseobje
t, where only one-bit of information is allowed to be updated by thereader. This subroutein when used as a primitive in WriteBa
kOnlyTSa
hieves wait-free atomi
 semanti
s, writing-ba
k only one-bit of informa-tion.

For simpli
ity, we present a single-writer multiple-reader version of the pro-to
ol.3 Model/AssumptionsThe system
onsists of a set of n repli
as (servers), a writer and a set of readers.Readers and writers are
olle
tively referred to as
lients.Clients exe
ute proto
ols that spe
ify how read and write operations are im-plemented. We assume that
lients do not start a new operation before �nishinga previous operation. We assume that up to f servers may be Byzantine faultyand may deviate arbitrarily from the spe
i�ed proto
ol. The remaining (n� f)servers are
orre
t and follow the spe
i�ed proto
ol. We require that the totalnumber of servers n be at least 4f + 1.We assume authenti
ated FIFO point-to-point asyn
hronous
hannels be-tween
lients and servers. Servers do not
ommuni
ate with other servers.Clients
an fail by
rashing and follow their proto
ol before they
rash. Upto f Byzantine servers may behave arbitrarily. The remaining n� f are
orre
tand do not
rash.4 WriteBa
kOnlyTS proto
olThis se
tion presents the WriteBa
kOnlyTS proto
ol, that provides atomi
wait free semanti
s when the reader only writes ba
k the timestamp but not thevalue.4.1 Proto
ol Des
riptionThe servers maintain 4 registers, RVal , R1 , RValPrev and R2 . RegistersRVal and RValPrev store the value that is written by the writer, registersR1 and R2 store the timestamps for the value.Register R1 stores the timestamp for the value stored in register RVal ,and is in
remented whenever the register RVal is updated. Register RValPrevstores the previously written value,
orresponding to the timestamp (R1 - 1).The register R2 stores the timestamp of the oldest value that any furtherread may return.Insight: To a
hieve atomi
 semanti
s, we just need to ensure that whenevera writer
ompletes the write operation for a value with timestamp t, or a readerreturns a value with timestamp t, no further \read" from register R2 will returna timestamp older than t.The servers follow the \listeners" pattern of
ommuni
ation as in [1℄. Theymaintain a list of a
tive readers and push updates to any of the registers to alla
tive readers.

write(val) f++ts;// phase 1send (WRITE1, v = val, ts1 = ts) to all;wait for n-f a
ks;// phase 2send (WRITE2, ts2 = ts) to all;wait for n-f a
ks;g Fig. 1. Writer's proto
olWrite proto
ol The proto
ol for the (single) writer is shown in Figure 4.1.To perform a write operation,1. The writer in
reases the existing timestamp by 1 and sends a message toall the servers requesting them to update register RVal with the new valueand register R1 with the new timestamp.2. The writer then waits for (n � f) a
knowledgements before it now sends amessage to all the servers to update the value of register R2 with the newtimestamp.3. When (n � f) servers a
knowledge the re
eipt of this message, the write
ompletes.Read proto
ol To perform a read operation, a reader sends the read requestto all the servers. After gathering at least n� f responses, the reader
al
ulatesmin ts2 as the 2f + 1-st smallest timestamp among all the re
eived values forR2 .The reader then waits and
olle
ts responses, until it re
eives enough mat
h-ing value-timestamp pairs for some timestamp that is at least as fresh asmin ts2 .If the value timestamp of the value that is being de
ided upon is same asmin ts2 , f + 1 identi
al responses are suÆ
ient. Otherwise, the reader waits to
olle
t n� f identi
al responses.After
olle
ting enough identi
al responses to
hoose a value, the readerwrites ba
k the timestamp of the value
hosen to register R2 . The read op-eration
ompletes after the reader re
eives (n � f) a
knowledgements for thewrite-ba
k.Server's proto
ol The servers follow the \listeners" pattern of
ommuni
ationwith the readers. They maintain a list of a
tive readers { readers that are
ur-rently reading { and forward the values to the readers until they
omplete theread.When a server re
ieves a write or a write-ba
k message, it updates the
or-responding register and a
knowledges the
lient.

read() fsend (START READ) to all;do fre
eive (RESPONSE, v, ts1, vprev, ts2) from server s;value[s℄[ts1℄ := v,value[s℄[ts1-1℄ := vprev,if timestamp2[s℄ == NULL:timestamp2[s℄ := ts2;if re
eived >= (n� f) responses:min ts2 := (2f + 1)-th smallest among timestamp2[℄ ;prev ts2 := (f + 1)-th largest among timestamp2[℄ ;if min ts2 != null and 9 ts, val, su
h that:(eitherts � min ts2 andts � prev ts2 andthere are f + 1 servers, s, withvalue[s℄[ts℄ == valor ts � min ts2 andts > prev ts2 andthere are n� f servers, s, withvalue[s℄[ts℄ == val)beginsele
ted ts = ts;sele
ted value = val;break;endg while(true)// write-ba
k phasesend (WRITE BACK, ts2 = sele
ted ts) to all;wait for (n� f) a
ks;return sele
ted value;g Fig. 2. Reader's proto
ol4.2 Proto
ol Corre
tnessFirst, we show the safety
ondition: that our proto
ol a
hieves atomi
ity assum-ing it is live. We will later show that our proto
ols always terminate establishingliveness.Atomi
ity is shown by proving thatW-R atomi
ity On
e a writer
ompletes a write operation for a value with timestamp t, nofurther read will return an older value.R-R atomi
ity On
e a read operation returns a value with timestamp t, no future read willreturn an older value.Lemma 1 (W-R atomi
ity). On
e a writer
ompletes a write operation for avalue with timestamp t, no further read will return an older value.
Proof: To
omplete a write operation, the writer sends (WRITE2, ts2 = ts) toall and waits for a
knowledgements from at least n � f servers. Thus, when awrite operation
ompletes at least n � 2f
orre
t servers have set the value of

server() fwhile(true) fre
eive msg from
lient;if
lient == WRITER:if msg == (WRITE1, v = val, ts1 = ts) and ts > R1:waitFor(R2 >= ts� 1);RV PREV = RV1;R1 = ts;RV = val;// send updates to all a
tive readers;send (RESPONSE, RV, R1, RV PREV, R2) to Readers;if msg == (WRITE2, ts2 = ts):waitFor(R1 == ts);if (ts > R2)R2 = ts;// send updates to all a
tive readers;send (RESPONSE, RV, R1, RV PREV, R2) to Readers;a
knowledge the
lient;if
lient == READER:if msg == (START READ):// add
lient to the set of a
tive readers;Readers = Readers [f
lient gsend (RESPONSE, RV, R1, RV PREV, R2) to
lient;if msg == (WRITE BACK, ts2 = ts):if ts > R2:waitFor(R2 >= ts� 1);R2 = ts;// remove
lient from a
tive readersReaders = Readers n f
lient ga
knowledge the
lient;gg Fig. 3. Server's proto
ol, involving writeba
k of timestampregister R2 = t. Sin
e the value of register R2 only in
reases, any further readwill only re
eive values � t from these
orre
t servers.Hen
e, the value of min ts2
omputed by the reader will be � t. So, the readwill only return a value � t. utLemma 2 (R-R atomi
ity). On
e a read operation returns a value with times-tamp t, no future read will return an older value. for a value with timestamp t,no further read will return an older value.
Proof: Similar to Lemma 1 utLemma 3 (Corre
tness). A read only returns a value that is written by awriter.
Proof: A value is set as the sele
ted value only if there are either f +1 or n� fservers responding with the same value and timestamp. Sin
e, in either of the
ase, at least one of the servers has to be
orre
t and
lients are non-mali
ious,sele
ted value will only be set to the value written by the writer. ut

Lemma 4 (Write Liveness). A write operation always terminates and is wait-free.
Proof: A write operation only waits for n � f responses at any stage. Sin
e atmost f servers are faulty, it follows that a write operation always terminates andis wait-free. utLemma 5 (Read Liveness). A read operation always terminates and is wait-free.
Proof: If a reader will eventually re
eive responses from all the n � f
orre
tservers.Let t be the f+1-th largest timestamp2 entry re
eived from a
orre
t server.Sin
e n � 4f + 1, we would have t � min ts2t � prev ts2The
orre
t server must have set register R2 to t, either be
ause it re
eiveda (WRITE2, ts2 = t) message from the writer, or it re
eived a (WRITE BACK,ts2 = t) message from another reader 3We will now argue that in either
ase, the reader will re
eive enough identi
alresponses to set sele
ted value and sele
ted ts. If the reader sets sele
ted valueto a non-null value, then termination follows sin
e the reader only waits for n�fresponses to the write-ba
k message.Consider the following two
ases:1. The writer sends at least one (WRITE2, ts2 = t) message:In this
ase, the writer would have sent (WRITE1, value = val, ts1 = t) toall the servers. Eventually all the
orre
t servers among the 2f + 1 serverswith timestamp � t will re
ieve this message and send the updates to thereader. When all these updates rea
h the reader, the reader will have � f+1identi
al responses for the value with timestamp t, and will be sele
t a valueif the reader has not already sele
ted.2. If the writer never sent a (WRITE2, ts2 = t) message, then some reader(s)must have sent a (WRITE BACK, ts2 = t) message. Consider the �rst readerto have sent su
h a message. No
lient would have written t to register R2earlier, and the prev ts2 evaluated during that read would have to be < t.Thus, in order to have sele
ted t to perform a write-ba
k, the reader musthave re
eived at least n� f � 2f + 1 identi
al responses with timestamp t.At least f + 1 of these are
orre
t and there value will not be overwrittenby any further write. Thus when the responses from these servers rea
h thereader, the reader will be able to de
ide on the value. ut3 The message
ould also have been sent by the same reader during a previous readoperation. The argument in this
ase is similar to the argument when the read wasby another reader.

5 Proto
ol with only One write-ba
kable bitWe now show how to a
hieve atomi
 wait free semanti
s if only one bit of in-formation at the server may be updated by a reader with a write-ba
k. We willshow how to infer the same values of registers R1 and R2 using just the registerR1 and a write-ba
kable bit b.As in the proto
ol presented earlier, register R1 stores the timestamp of thevalue stored in register RVal and is updated by the writer during phase 1 ofthe write. The value of the register R2 is
al
ulated using the formulaR2 = R1� bwhere R1 is value in register R1 , R2 is the value in register R2 and b is therewritable bit, that may be updated by both the reader and the writer.On re
ieving WRITE1 message, the server updates the registers RVal , R1and sets the equation for evaluating R2 asR2 = R1� bwhile setting b to 0 or 1 a

ordingly to satisfy the equation. If this write messageis not signi�
antly delayed, then the value of b would be 1. However, if before thewrite message has rea
hed the server a reader has written ba
k the timestampto R2 then b would be 0.On re
ieving WRITE2 message, the server sets the equation for evaluatingR2 as R2 = R1 + bwhile setting b to 0 or 1 a

ordingly to satisfy the equation. Typi
ally, at thispoint, b would be 0 unless this message has been so mu
h delayed that the writerhas written the next value, a reader read it and has performed a write-ba
k.The proto
ol for the server using only 1-write ba
kable bit is shown in Fig-ure 5.The proto
ols for the readers and the writer are un
hanged.Corre
tness [Sket
h℄ Inspite of having only 1 writeba
kable-bit at the serverthis proto
ol provides the same interfa
e and guarantees as the proto
ol in Fig-ure 4.1.Spe
i�
ally, for any exe
ution, a message sent by a (
orre
t)
lient to a serverrunning either of the proto
ols always re
eives identi
al responses.Thus this proto
ol also a
hieves the same guarantees as the previous proto
ol,namely, wait-free atomi
 semanti
s.Referen
es1. Martin, J.P., Alvisi, L., Dahlin, M.: Minimal byzantine storage. In: DISC '02,London, UK, Springer-Verlag (2002) 311{325

server() fwhile(true) fre
eive msg from
lient;if
lient == WRITER:if msg == (WRITE1, v = val, ts1 = ts) and ts > R1:// waitFor(R2 >= ts � 1);waitFor(R1 == ts-1 and EQN == \R2 = R1 + b")int tmpR2 =
omputeR2();RV PREV = RV1;R1 = ts;RV = val;EQN == \R2 = R1 - b";b = 1 - b; // same as b = R1 - R2// = ts - tmpR2// = ts - (ts-1 + b)// = 1 - bassert(
omputeR2() == tmpR2);// send updates to all a
tive readers;send (RESPONSE, RV, R1, RV PREV,
omputeR2()) to Readers;if msg == (WRITE2, ts2 = ts):// waitFor(R1 == ts);waitFor(R1 == ts);assert(EQN == \R2 = R1 - b");EQN == \R2 = R1 + b";b = 0;assert(
omputeR2() == ts);if (tmpR2 !=
omputeR2())send (RESPONSE, RV, R1, RV PREV,
omputeR2()) to Readers;a
knowledge the
lient;if
lient == READER:if msg == (START READ):// add
lient to the set of a
tive readers;Readers = Readers [f
lient gsend (RESPONSE, RV, R1, RV PREV,
omputeR2()) to
lient;if msg == (WRITE BACK, ts2 = ts):if ts >
omputeR2():// waitFor(R2 >= ts � 1);waitFor((R1 == ts - 1 and EQN == \R2 = R1 + b")or R1 > ts� 1);//
omputeR2() = ts;if (R1 == ts and EQN == \R2 = R1 - b"):b = 0;else if (R1 == ts - 1 and EQN == \R2 = R1 + b")b = 1;else if (R1 == ts and EQN == \R2 = R1 + b")// do nothing;else if (R1 >= ts+ 1)// do nothing;// remove
lient from a
tive readersReaders = Readers n f
lient ga
knowledge the
lient;assertInvariants();gg Fig. 4. Server's proto
ol, involving writeba
k of only 1-bit

