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Abstract

High-dimensional data is central to most data mining applications, and only recently has it
been modeled via directional distributions. In [Banerjee et al., 2003] the authors introduced the
use of the von Mises-Fisher (vMF) distribution for modeling high-dimensional directional data,
particularly for text and gene expression analysis. The vMF distribution is one of the simplest
directional distributions. The Watson, Bingham, and Fisher-Bingham distributions provide distri-
butions with an increasing number of parameters and thereby commensurately increased modeling
power. This report provides a followup study to the initial development in [Banerjee et al., 2003]
by presenting Expectation Maximization (EM) procedures for estimating parameters of a mixture
of Watson (moW) distributions. The numerical challenges associated with parameter estimation
for both of these distributions are significantly more difficult than for the vMF distribution. We
develop new numerical approximations for estimating the parameters permitting us to model real-
life data more accurately. Our experimental results establish that for certain data sets improved
modeling power translates into better results.

1 Introduction

Directional distributions provide a rich class of probabilistic models for characterizing vectorial data
whose relative spatial orientations are of greater importance than their magnitude. Mardia and Jupp
[2000] enlist numerous applications of directional data; however, before the work of [Banerjee et al.,
2003], directional distributions had not been formally applied to modeling high-dimensional data.

We highlight at this point the fact that just as Euclidean distance is related to the multivari-
ate Gaussian, so is cosine-similarity related to the von Mises-Fisher (vMF) distribution—the natural
directional distribution on a unit hypersphere [Mardia and Jupp, 2000]. Owing to this reason, direc-
tional models seem particularly suitable for text and gene-expression data and empirical success of the
cosine-similarity and Pearson correlation corroborates this belief. However, the vMF distribution can
sometimes be too restrictive. In situations where data is axially symmetric, for e.g., for diametric clus-
tering of anti-correlated genes [Dhillon et al., 2003], the vMF distribution fails to capture the inherent
patterns. Indeed, as we show later in this report, the diametric clustering procedure of [Dhillon et al.,
2003] is a limiting case of a mixture of Watson distributions, which are axially symmetric directional
distributions. Data that exhibits several axes of symmetry can be suitably modeled with Bingham
distributions that generalize the Watson distributions, though at the expense of dramatically more
difficult parameter estimation.

In this report we discuss generative mixture-models based on the Watson distributions. In par-
ticular we derive an EM algorithm for performing the parameter estimation for a mixture of Watson
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(moW) distributions. Akin to the vMF case [Banerjee et al., 2003], parameter estimation for the Wat-
son distribution also turns out to be challenging as it entails solving difficult non-linear equations. We
derive accurate numerical approximations for solving these nonlinear equations—these approximations
are crucial for an efficient implementation.

As an outcome of our EM algorithms for doing mixture modeling with both these densities we for-
mulate clustering procedures, which in themselves are further interesting as they provide a theoretical
basis for the diametric k-means algorithm of Dhillon et al. [2003].

We would like to point out that at the time of writing this report, other work performing mixture
modeling for Watson distributions has appeared in the literature [Bijral et al., 2007]. However, the
authors of [Bijral et al., 2007] were not aware of the relation of mixtures of Watson distributions to
diametric clustering, which we describe in this paper. The parameter estimates derived by them are
also different from our approach (in fact [Bijral et al., 2007] follow the approach of [Banerjee et al.,
2005] to obtain their parameter estimates).

2 Background

In this section we summarize some background material about directional distributions to provide an
introduction to the uninitiated reader. Those who are familiar with these basics can straightway skip
to the next section. The material in this section is based upon [Mardia and Jupp, 2000], though all
the proofs are of our own construction.

Let S
p−1 denote the p-dimensional unit hypersphere, i.e., S

p−1 = {x|x ∈ R
p, and ‖x‖2 = 1}. All

the densities that we describe will be defined on the surface of this unit hypersphere. We denote
the probability element on S

p−1 by dS
p−1, and parameterize S

p−1 by polar coordinates (r, θ), where
r = 1, and θ = [θ1, . . . , θp−1]. Consequently xi = sin θ1 · · · sin θi−1 cos θi for 1 ≤ i < p, and xp =

sin θ1 · · · sin θp−1. Given this parameterization, it is easy to show that dS
p−1 =

(
∏p−1

k=2 sinp−k θk−1

)

dθ.

2.1 Uniform distribution

The uniform distribution on S
p−1 has its probability element equal to cpdS

p−1, where cp is the nor-
malization constant such that

∫

Sp−1

cpdS
p−1 = 1.

Performing this simple integration we obtain

cp = Γ(p/2)/2πp/2,

where Γ(·) is the well-known Gamma function [Abramowitz and Stegun, 1974].

2.2 The von Mises-Fisher distribution

A unit norm random vector x is said to have the p-dimensional von Mises-Fisher (vMF) distribution

if its probability element is cp(κ)eκµT xdS
p−1, where ‖µ‖ = 1 and κ ≥ 0. The normalizing constant

cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)
,

where Is(κ) denotes the modified Bessel function of the first kind [Abramowitz and Stegun, 1974]. We
note there that traditionally, researchers in directional statistics normalize the integration measure
by the uniform measure, so that instead of cp(κ), one uses cp(κ)2πp/2/Γ(p/2); as far as parameter
estimation is concerned, this distinction is immaterial, and we shall ignore it for the rest of this report.
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The vMF density p(x|µ, κ) = cp(κ)eκµT x is parameterized by the mean direction µ, and the
concentration parameter κ, so-called because it characterizes how strongly the unit vectors drawn
according to p(x|µ, κ) are concentrated about the mean direction µ. Larger values of κ imply stronger
concentration about the mean direction. In particular when κ = 0, p(x|µ, κ) reduces to the uniform
density on S

p−1, and as κ→∞, p(x|µ, κ) tends to a point density.
The vMF distribution is one of the simplest distributions for directional data and it has proper-

ties analogous to those of the multi-variate Gaussian distribution for data in R
p. For example, the

maximum entropy density on S
p−1 subject to the constraint that E[x] be fixed, is a vMF density (see

Rao [1973, pp. 172–174] and Mardia [1975] for details).

2.3 Watson distribution

The uniform and the vMF distributions are defined over directions. However, sometimes the obser-
vations are axes, wherein the vectors x and −x are indistinguishable [Mardia and Jupp, 2000]. To
model such axial data one of the simplest densities is the Watson density, whose probability element

is given by cp(κ)eκ(µT x)2dS
p−1. After integrating to determine the constant we find

cp(κ) =
Γ(p/2)

2πp/2
1F1(

1
2 , p

2 , κ)
, (2.1)

where 1F1 denotes a confluent Hypergeometric function, also known as Kummer’s function (see [Abramowitz

and Stegun, 1974]). Due to the eκ(µT x)2 term in the Watson density, for κ > 0 the distribution tends
to concentrate around ±µ as κ increases, whereas for κ < 0, the density concentrates around the
great circle orthogonal to µ. Since (QµT Qx)2 = (µT x)2 for any orthogonal matrix Q, the Watson
density is rotationally invariant.

2.4 Bingham distribution

There exist some axial data sets that do not exhibit rotational symmetry, as is done by Watson
distributions. In such cases, one could potentially model the data using Bingham distributions. The

probability element of a Bingham distribution is given by cp(K)exT Kx. After integrating we find that

cp(K) =
Γ(p/2)

2πp/2
1F1(

1
2 , p

2 , K)
, (2.2)

where 1F1(·, ·, K) denotes the confluent Hypergeometric function of matrix argument [Muirhead,
1982]. Note that since xT (K + δIp)x = xT Kx + δ, the Bingham density is identifiable only up to a
constant diagonal shift in K. Thus one can assume Tr(K) = 0, or that the smallest eigenvalue of K

is zero [Mardia and Jupp, 2000]. Intuitively, one can see that the eigenvalues of K determine the axes
around which the data will cluster, e.g., greatest clustering will be around the axis corresponding to
the leading eigenvector of K.

2.5 Additional directional distributions

There exist several additional directional distributions, each with their own unique characteristics.
We omit a discussion of these densities and refer the reader to Mardia and Jupp [2000] for more
details. For the remainder of this report we will focus our attention on the Watson distribution,
briefly touching upon the Bingham density before concluding.

Bingham-Mardia distributions Mardia and Jupp [2000] remark that certain problems require
rotationally symmetric distributions that have a ‘modal ridge’ rather than just a mode at a single
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point. To model data with such characteristics they suggest the density

f(x; µ, κ, ν) = cp(κ)eκ(µT x−ν)2 , (2.3)

where as usual cp(κ) denotes the normalization constant.

Fisher-Watson distributions This distribution is a simpler version of the more general Fisher-
Bingham distribution [Mardia and Jupp, 2000]. The density is

f(x; µ, µ0, κ, κ0) = cp(κ0, κ, µT
0 µ)eκ0µT

0
x+κ(µT x)2 . (2.4)

Fisher-Bingham This is one of the most general directional densities and is given by

f(x; µ, κ, A) = cp(κ, A)eκµT x+xT Ax. (2.5)

There does not seem to exist a useful integral representation of the normalizing constant, and in an
actual application one needs to resort to some sort of approximation for it (such as a saddle-point
approximation). Kent distributions arise by putting an additional constraint Aµ = 0 in (2.5).

3 Mixture Modeling

We propose to model the input data using a mixture of probability distributions, where each com-
ponent of the mixture is a parameterized distribution. In traditional parametric modeling one esti-
mates these parameters (thereby learning a generative model from the data) by assuming the ob-
served data to be i.i.d., and maximizing the likelihood. More formally, assume that we have a
dataset D = {x1, . . . , xN} which is modeled using a mixture of K distributions parameterized by
Θ = [θ1, . . . , θK ]. Then the probability density at a single observation xi is

p(xi|Θ) =
K

∑

h=1

P (h)p(xi|θh, h),

where p(xi|θh, h) is the density contributed by class h, which occurs with prior probability P (h). The
log-likelihood for the entire dataset D is given by (assuming the xi to be i.i.d.)

L(D) =
∑

i

log

( K
∑

h=1

P (h)p(xi|θh, h)

)

(3.1)

The aim of maximum-likelihood parameter estimation is to maximize (3.1). However, maximizing (3.1)
can prove to be quite difficult even for simple densities. Here is where the Expectation Maximization
(EM) procedure comes to our rescue. By exploiting the concavity of the log function (3.1) can be
bounded below with the aim of decoupling the terms inside the logarithm. The resultant lower-bound
on the log-likelihood is easy to optimize iteratively, and the EM algorithm is guaranteed to find a
locally optimal solution to (3.1) as a consequence.

3.1 The E-step

The E-step of an EM algorithm is simple, though often requiring some engineering for efficient im-
plementation. Using a traditional hidden variable that indicates class membership or an equivalent
auxiliary function technique we can easily obtain the E-step. Exploiting the concavity of the log
function, from (3.1) we obtain

L(D) ≥
∑

ih

βih log
αhp(xi|θh, h)

βih
, (3.2)
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where βih ≥ 0, and
∑

h βih = 1. Optimizing (3.2) over βih subject to the convexity restrictions on
βih we obtain

βih =
αhp(xi|h, θh)

∑

l αlp(xi|l, θl)
. (3.3)

To see that this choice of βih yields the optimum value observe that for each i we essentially need to
maximize −KL(βi‖δi) ≤ 0, where δih ∝ αhp(xi|θh, h). The EM algorithm interprets the βih values
as p(h|xi, θh).

3.1.1 Hard assignments

Traditionally, to ease computational burdens, the following hard-assignment heuristic (hard-clustering)
is used

βih =

{

1, if h = argmaxh′ log
(

αh′cd(κh′) + κh′(xT
i µh′)2

)

0, otherwise.
(3.4)

In this case, the M -step (see §3.2) also usually simplifies considerably. Since the hard-assignment
heuristic is general, we do not provide specific simplifications for all the derivations below, though we
will come back to certain interesting special cases. Hard-assignments maximize a lower-bound on the
incomplete log-likelihood of the data, as is evident from (3.2). The fact that this lower-bound is tight
is proved in [Banerjee et al., 2005].

3.2 The M-step

The main difficulty during distribution estimation for directional distributions lies in the parameter
estimation in an M-step. In this step we maximize (3.2) w.r.t. the parameters θh, while keeping βih

fixed. Formally, the M -step is

max
Θ

∑

ih

βih log αhp(xi|θh), (3.5)

subject to Θ ∈ Ω, where the latter is some set (usually convex) describing the space of parameters.
We assume that for Θ = [θ1, . . . , θK ] the individual class parameters θh are independent of each other.
Hence, the maximization (3.5) is essentially a concatenation of K different maximization problems.

Since αh is the prior for the h-th class, we maximize (3.5) w.r.t. αh subject to the restriction that
∑

h αh = 1 to obtain

αh =
1

N

∑

i

βih. (3.6)

The difficulty of obtaining the other parameters depends on the distribution under question. Below
we list the M -step estimation for the vMF, Watson, and Bingham distributions. Other directional
distributions can be handled in a similar way, but we restrict our attention to these three because we
have provided fast approximate parameter estimates for these distributions.

3.2.1 M-step for Watson

For the Watson distribution we further estimate µh and κh for all the mixture components. The
maximization problem (3.5) becomes

max
µh,κh

∑

ih

βih

(

− log 1F1(
1
2 , d

2 , κh) + κh(µT
h xi)

2
)

,

subject to µT
h µh = 1.

(3.7)
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The corresponding Lagrangian is

L({(µh, κh)}) =
∑

ih

βih

(

− log 1F1(
1
2 , d

2 , κh) + κh(µT
h xi)

2
)

+
∑

h

λh(µT
h µh − 1). (3.8)

Computing ∂L/∂µh and ∂L/∂κh, setting them to zero, and enforcing the normalization constraints
on µh we obtain the parameter estimates

µh =

∑

i βihxix
T
i µh

‖∑

i βihxix
T
i µh‖

=
Ahµh

‖Ahµh‖
, (3.9)

κh = Solve

[

1F
′
1(

1
2 , d

2 , κh)

1F1(
1
2 , d

2 , κh)
=

∑

i βih(xT
i µh)2

∑

i βih

]

. (3.10)

Observe that in (3.9) the variable µh occurs on both sides of the equation, thereby necessitating an
iterative solution. From (3.9) we see that µh is given by the leading left-singular vector of the matrix
Ah. Obtaining κh requires the solution of the nonlinear equation in (3.10), as indicated by the Solve[·]
operation. However, for high-dimensionality (large d), a nonlinear root-finder for solving (3.10) can
be very time consuming and somewhat of an engineering challenge due to numerical issues (such as
overflow owing to the huge magnitude that 1F1 might attain). In Section 4 we derive an asymptotic
approximation for computing κh which is extremely efficient.

3.3 Algorithms for moW

The clustering algorithms for moW distributions are based on soft and hard-assignment schemes and
are titled soft-moW and hard-moW respectively. The soft-moW algorithm (Algorithm 3.1) estimates
the parameters of the mixture model exactly following the derivations in Section 3.2 using EM. Hence,
it assigns soft (or probabilistic) labels to each point that are given by the posterior probabilities of
the components of the mixture conditioned on the point. On termination, the algorithm gives the
parameters Θ = {αh, µh, κh}Kh=1 of the K Watson distributions that model the dataset X , as well as
the soft-clustering, i.e., the posterior probabilities p(h|xi, Θ), for all h and i (given by the βih values)
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Algorithm 3.1: soft-moW

SoftmoW(X )
Input: X ∈ S

p−1, K: number of clusters
Output: Soft clustering of X over a mixture of K Watson distributions
{Initialize}
αh, µh, κh for 1 ≤ h ≤ K
while not converged

The E (Expectation) step of EM
for i = 1 to N

for h = 1 to K
ph(xi|θh)← cp(κh)eκhµT

h xi

βih = p(h|xi,Θ)← αhph(xi|θh)
∑K

l=1 αlpl(xi|θl)
end for.

end for.
The M (Maximization) step of EM
for h = 1 to K

αh ← 1
N

∑N
i=1 βih

µh ←
∑

i
βihxix

T
i µh

‖
∑

i
βihxix

T
i

µh‖
; r̄h =

∑

i
βih(xT

i µh)2

Nαh

κh ← Solve
[

1F
′

1
(
1
2 ,

p
2 ,κh)

1F1(
1
2 ,

p
2 ,κh)

= r̄h

]

end for.
end while.

The hard-moW algorithm (Algorithm 3.2) estimates the parameters of the mixture model using a
hard assignment. In other words, we do the assignment of the points based on a derived posterior
distribution, wherein the E-step that estimates βih is replaced by

βih ←







1, if h = argmax
h′

αh′ ph′(xi|θh′)

0, otherwise.
(3.11)

After these hard assignments each point xi, belongs to a single cluster. Upon termination, Algo-
rithm 3.2 yields a hard clustering of the data and the parameters Θ = {αh, µh, κh}Kh=1.

3.4 Relation to diametric clustering

The Diametric Clustering algorithm of Dhillon et al. [2003] groups together both correlated and anti-
correlated data points. This amounts to grouping points while respecting axial symmetry. Immediately
one might ask the question whether the diametric clustering procedure bears a relation to clustering
based on mixtures of distributions that respect axial symmetry, i.e., distributions that essentially treat
±x as the same. We answer this question in the affirmative, and show that the diametric clustering
procedure of Dhillon et al. [2003] is a limiting case of EM for a mixture of Watson distributions. To
that end, first we recapitulate the diametric clustering procedure (taken from [Dhillon et al., 2003])
as Algorithm 3.3.
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Algorithm 3.2: hard-moW

HardmoW(X )
Input: X ∈ S

p−1, K: number of clusters
Output: A disjoint K-partitioning of X
{Initialize}
αh, µh, κh for all 1 ≤ h ≤ K
while not converged
{The Hardened E-step of EM}
for i = 1 to N

for h = 1 to K
ph(xi|θh)← cp(κh)eκhµT

h xi

βih ←
{

1, if h = argmaxh′ ph′(xi|θh′)

0, otherwise.

end for

end for

{The M-step of EM}
Same as in Algorithm 3.1

end while.

Algorithm 3.3: diametric K-means

Diametric(X , K)
Input: X ∈ S

p−1

Output: A disjoint K-partitioning Xk of X
{Initialize}
µh for 1 ≤ h ≤ K
while not converged
{The E-step of EM}
Set Xh ← ∅ for all 1 ≤ h ≤ K
for i = 1 to N
Xh ← Xh ∪ {xi} where h = argmaxh′(xT

i µh′)2

end for

{The M (Maximization) step of EM}
for h = 1 to K

Kh = [xi] such that xi ∈ Xh

µh ← Khµh

‖Khµh‖

end for

endwhile.

From Algorithm 3.3 it is evident how it may be derived as a limiting case of EM for a mixture of
Watson distributions. The first view is based on a limiting view of soft-moW as κh →∞, because this
sends βih → {0, 1}. The second limiting view comes from ignoring kappas in hard-moW, by setting all
of them to some fixed value κ∗. We omit the details for brevity as they are analogous to the reduction
in [Banerjee et al., 2005].

4 Approximating κ

In this section we exploit some of the properties of the confluent hypergeometric function 1F1 to
obtain an extremely efficient approximation to (3.10). It is well known [Abramowitz and Stegun,
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1974] that
∂ 1F1(a, b, z)

∂z
=

a

b
1F1(a + 1, b + 1, z). (4.1)

Assuming that b is relatively large we approximate (4.1) to write

a

b
1F1(a + 1, b + 1, z) ≈ a

b− 1
1F1(a + 1, b, z), (4.2)

essentially replacing b by b− 1. A useful identity that 1F1 satisfies is

(a + z) 1F1(a + 1, b, z) + (b − a− 1) 1F1(a, b, z) + (1− b) 1F1(a + 1, b− 1, z) = 0. (4.3)

We approximate the last term in the identity above by 1F1(a + 1, b, z). Hence we get the new
approximation

(a + b− 1 + z) 1F1(a + 1, b, z) ≈ (a + b− 1) 1F1(a, b, z). (4.4)

Recall that in (3.10) we needed to essentially solve

1F
′
1(a, b, z)

1F1a, b, z
= r̄,

where a, b, z, and r̄ are defined appropriately. Using (4.2) in (4.4) we obtain

(a + b− 1 + z)
b− 1

a
1F

′
1(a, b, z) ≈ (a + b− 1) 1F1(a, b, z). (4.5)

We solve this latter approximation (writing 1F
′
1(a, b, z)/ 1F1(a, b, z) = r̄) to obtain

z ≈ a(a + b− 1)

(b − 1)r̄
. (4.6)

However, in practice we have observed that the “corrected”-approximation

z ≈ (a + b− 1)

(

1

1− r̄
− a

(b− 1)r̄

)

, (4.7)

leads to much better accuracy. This accuracy may be viewed as the result of incorporating the relative
error term

ǫ =
1F

′
1(a, b, z)

1F ′
1(a, b, z)− 1F1(a, b, z)

,

into (4.5), so that we solve the “corrected”-approximation

((a + b− 1)(1 + ǫ) + z)
b− 1

a
1F

′
1(a, b, z) ≈ (a + b− 1) 1F1(a, b, z). (4.8)

This solution of (4.8) is given by (4.7), and it yields significantly better accuracy than (4.6) in practice.

4.1 A more careful look at the approximations

It is obvious that the error of approximation depends heavily upon the parameters a, b and z. De-
pending upon these parameters, we have the following four approximations (all of these are variations
of (4.7)).

z ≈ (a + b− 1)
1

1− r̄
(A1)

z ≈ (a + b− 1)

(

1

1− r̄
− a

(b − 1)r̄

)

(A2)

z ≈ (a + b− 1)

(

1

1− r̄
+

a− 1

(b − 1)r̄

)

(A3)

z ≈ (a + b− 1)

(

1

1− r̄
− a

br̄

)

. (A4)
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We conducted some experiments to determine the parameter ranges for which these approximations
work well. Figure 1 displays the behavior of the approximations (A1) and (A2) across a range of z as
a and b are held fixed. We display r̄ = 1F

′
1/ 1F1 on the X-axis, since the approximations are functions

of r̄, and show varying degrees of accuracy for small or large values of r̄.
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Figure 1: Approximation for varying z with parameters a and b are held fixed at 5.5, and 2000,
respectively. Subfigure (a) compares (A1) and (A2) for small values of z ∈ [0.01..100]. Subfigure (b)
compares (A1) and (A2) for larger values of z ∈ [100..4000]. Notice that as r̄ = 1F

′
1/ 1F1 increases,

both approximations become accurate for large values of z. In fact, (A1) is more accurate than (A2)
for larger values of z

Figure 2 reports results similar to those in Figure 1 except that now a = 0.5 is used, whereby to
attain better approximations we had to use (A3). In this case (A2) leads to very poor approximations.

Figure 3 shows approximations A1 and A3 for a = 0.5, as b is varied and z is held fixed. From the
results above it may seem that approximations (A3) and (A4) perform similarly. A small attestation
to this observation is provided by Figure 4 below.

5 Discussion and Future Work

In this report we presented simple EM procedures for doing parameter estimation for a mixture of
Watson distributions. We presented simple and efficient numerical estimates for solving the transcen-
dental equations that arise while performing the M-step for parameter estimation. We also showed
empirical verification to exhibit the accuracy of our estimates. Additionally, we also showed how the
diametric clustering algorithm of Dhillon et al. [2003] may be obtained as a limiting case of an EM
procedure for moW distributions.

An extension of the EM method to data modeled using a mixture of Bingham distributions remains
a part of our future work. The parameter estimation for this case is significantly more challenging
than for the moW case, and remains the greatest barrier to the development of an efficient EM method
for mixtures of Bingham distributions.
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Figure 2: Approximation for varying z with with parameters a and b are held fixed at 0.5, and 2000.0,
respectively. Subfigure (a) compares (A1) and (A2) for small values of z ∈ [0.01..100]. Subfigure (b)
compares (A1) and (A2) for larger values of z ∈ [100..4000]. Notice that as r̄ = 1F

′
1/ 1F1 increases,

both approximations become accurate for large values of z. In fact, (A1) is more accurate than (A2)
for larger values of z.
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Figure 3: Subfigure (a) shows the approximation of Figure 2(b) but with the true value of z as the
x-axis. Subfigure (b) shows a plot of how approximation (A1) compares against (A4) as b is varied
from 2 to 101. The true z was held constant at 50, and a = 0.5 was also fixed. We see that (A4)
consistently outperforms (A1).
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a point both (A3) and (A4) yield the same results. Note from the figure how the error shoots up when
the true value of z is close to b. It is a known fact that asymptotic approximations for Hypergeometric
functions break down when a is small, but both b and z are of comparable magnitude. Hence, some
further scope of improvement is possible.
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A Mathematical Background

For completeness, we include some of the relevant mathematical background in this appendix. We
recommend reading the appendix of our first technical report on directional distributions [Dhillon and
Sra, 2003] for the mathematical background necessary for some of the derivations in this appendix
(e.g., the Γ(x) function, the sinn(x) integral etc.).

A.1 Hypergeometric functions

Hypergeometric functions provide one of the richest classes of functions in analysis. Traditionally the
name “hypergeometric function” is used for Gauss’ hypergeometric function

2F1(a, b; c; z) =
∑

k≥0

akbk

ckk!
zk, (A.1)

where ak denotes the rising factorial (notation adopted from [Graham et al., 1998]), which is also
denoted by the Pochhammer symbol (a)k = a(a + 1) . . . (a + k − 1). The generalized hypergeometric
function pFq is defined analogously as

pFq = F (a1, . . . , ap; b1, . . . , bq; z) =
∑

k≥0

ak
1 · · ·ak

p

bk
1 · · · bk

qk!
zk. (A.2)

The reader is referred to [Abramowitz and Stegun, 1974, Graham et al., 1998] for more information
on Hypergeometric functions. Several online resources also provide useful information.

For directional distributions, the hypergeometric function of interest is the confluent hypergeomet-
ric 1F1(a, b, z), also called Kummer’s function. We now prove the two identities (4.1) and (4.3) that
proved crucial to the derivation of our approximations.

Lemma A.1 (Derivative of 1F1).

dn

dzn

(

1F1(a, b, z)
)

=
an

bn 1F1(a + n, b + n, z).

Proof. We prove that (d/dz) 1F1(a, b, z) = (a/b) 1F1(a + 1, b + 1, z), and the remainder of the proof
follows by induction. We have

d

dz
1F1(a, b, z) =

∑

k≥1

ak

bk(k − 1)!
zk−1

=
a

b

∑

k≥1

(a + 1)
k−1

(b + 1)
k−1

(k − 1)!
zk−1

=
a

b

∑

k≥0

(a + 1)
k

(b + 1)kk!
zk.

Lemma A.2. The following identity holds.

(a + z) 1F1(a + 1, b, z) + (b − a− 1) 1F1(a, b, z) + (1− b) 1F1(a + 1, b− 1, z) = 0.

Proof. The sum of the coefficients of ak

bkk!
zk from each of the three terms above is

(a + k) +
k(b + k − 1)

a
+ b− (a + 1)− (a + k)(b + k − 1)

a
= 0.
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For obtaining the above sum of coefficients we used the easily proved identity xm+n = xm(x + m)
n

(from which results such as xk−1 = xk/(x + k − 1) trivially follow).

Lemma A.3. Given that a > 0 and b > a, the following identity holds.

Γ(b − a)Γ(a)

Γ(b)
1F1(a, b, z) =

∫ 1

0

eztta−1(1− t)b−a−1dt, (A.3)

Proof. Expand ezt in its power series and integrate term by term to obtain the answer. We use the
fact that (see [Abramowitz and Stegun, 1974] or [Dhillon and Sra, 2003] for basic facts about the Γ(x)
function)

∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x + y)
,

along with the simple relation ak = Γ(a + k)/Γ(a).

A.2 Normalization constant for the Watson distribution

Now we derive the normalization constant for the Watson distribution over the unit hypersphere S
p−1.

The Watson density may be written as

Wd(κ, µ; x) = cp(κ)eκ(µT x)2 , x ∈ S
p−1, κ ∈ R. (A.4)

Normally, in the statistics literature this constant is computed relative to the uniform measure, which
amounts to normalizing it by the volume of the unit hypersphere. Now, we make a change of variables
to polar coordinates and integrate (A.4) over S

p−1. Thus,

∫

Sp−1

Wd(κ, µ; x)dx =

∫

Sp−1

cp(κ)eκ(µT x)2 = 1

=

∫ 2π

0

dθp−1

∫ π

0

eκ cos2 θ1 sinp−2 θ1dθ1

p−1
∏

j=3

∫ π

0

sinp−j θj−1dθj−1

= 2π × I × π
p−3

2

1

Γ(p−1
2 )

. (A.5)

We now look at the integral denoted by I in the last step above. Let φ← θ − π
2 . Then we have

I =

∫ π

0

eκ cos2 θ1 sinp−2 θ1dθ1 =

∫ π
2

−π
2

eκ sin2 θ1 cosp−2 θ1dθ1.

The integrand above is an even function, hence we have

I = 2

∫ π
2

0

eκ sin2 θ1 cosp−2 θ1dθ1.

Making the variable substitution t← sin2(θ1) and using (A.3), we can rewrite I as

I =

∫ 1

0

eκtt−
1
2 (1− t)

p

2
− 1

2
−1dt =

Γ(p
2 − 1

2 )Γ(1
2 )

Γ(p
2 )

1F1(
1

2
,
p

2
, κ).

Hence (A.5) becomes

2π
p−1

2

Γ(1/2)

Γ(p/2)
1F1(

1

2
,
p

2
, κ).
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Hence cp(κ) is (using the fact that Γ(1/2) =
√

π)

Γ(p/2)

2πp/2 1F1(
1

2
,
p

2
, κ)−1. (A.6)

Normalizing (A.6) by the surface area of the unit hypersphere, i.e., by Γ(p/2)/(2πp/2) (see [Dhillon
and Sra, 2003]) one obtains

cp(κ) =
1

1F1(
1
2 , p

2 , κ)
. (A.7)

A.3 Computing 1F1

The confluent hypergeometric function 1F1(a, b, z) appears to be fairly simple. However, for the
range of arguments expected when dealing with high-dimensional distributions it can be difficult to
efficiently compute it.

Muller [2001] discusses several different algorithms for computing 1F1. However, the simplest of all
is a simple truncated power-series. Using a multi-precision floating point computation library (such as
MPFR or NTL) Algorithm A.4 can be implemented to efficiently compute 1F1. The power-series does
not always converge fast, so could additionally use Aitken’s process or some other series convergence
acceleration method if needed.

Algorithm A.4: Computing 1F1(a, b, z) via truncated series

KummerSeries(a, b, z)
Input: a, b, z: positive real numbers; τ : tolerance param.
Output: M ≈ 1F1(a, b, z)
{Initialize}
M ← 1.0, R← 1.0
while not converged

β ← (a+i)∗z
(b+i)∗(i+1)

R← β ∗R
M ←M + R
if β < τ or M/R < τ

converged ← true

end if

end while

return (M).
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