
Lightweight writeback for Byzantine storage systems

Amitanand S. Aiyery, Lorenzo Alvisiy, and Rida A. BazzizyUT AustinzArizona State University

Abstract
We present the first optimally resilient, bounded,
wait-free implementation of a replicated register
providing atomic semantics in a system in which
readers can be Byzantine, up tof servers (n �(3f + 1)) are subject to Byzantine failures and
servers do not communicate with each other. Un-
like previous solutions, the sizes of messages sent
to writers depend only on the actual number of ac-
tive readers and not on the total number of readers
in the system. Timestamps generated by our solu-
tion are non-skipping and messages sent to readers
and writers contain only a finite number of values,
operation identifiers, and timestamps. We introduce
lightweight write back, a new mechanism which en-
ables readers to write back only the (non skipping)
timestamp of the value read and not the value itself.
This is particularly important since Byzantine read-
ers that write back a value could force the servers
to process infinitely large messages, whereas a non-
skipping timestamp is practically finite in size. With
a novel use of secret sharing techniques combined
with writeback throttling, we manage to tolerate
Byzantine readers without the use of any unproven
cryptographic assumptions.

1 Introduction
Distributed storage systems in which servers are
subject to Byzantine failures have been the subject
of much study [1, 2, 3, 4, 5, 6, 8, 9, 10]. Results
vary in the assumptions made about both the system
model and the semantics of the storage implemen-
tation. The system parameters include the number
of clients (readers and writers), the synchrony as-
sumptions, the level of concurrency, the fraction of
faulty servers, and the faulty behavior of clients. In
the absence of synchrony assumptions, atomic [7]

read and write semantics are possible, but stronger
semantics are not []. We consider implementations
with atomic semantics in this paper.

We consider solutions in a system ofn servers
that do not communicate with each other and in
which up tof servers are subject to Byzantine fail-
ures (f -resilient), any number of clients can fail
by crashing (wait-free), and readers can be subject
to Byzantine failures. Systems in which servers
do not communicate with each other are interest-
ing because such solution can be relatively easily
translated into solutions in a shared object model.
Also, solutions that depend on communication be-
tween servers tend to have high message complex-
ity, quadratic in the number of servers [10, 5].

Of particular interest are solutions that bound
the bandwidth consumed by client-server commu-
nication. Bazzi and Ding [4] present a solution that
(i) requires clients and servers to exchange a finite
number of messages and (ii) limits the size of the
messages sent by the servers to the readers: the size
of these messages is bound by a constant times the
logarithm of the number of write operations per-
formed in the system—or, equivalently, by a con-
stant times the size of a timestamp. Unfortunately,
this solution allows messages sent to writers to be as
large as the maximum number of potential readers
in the system, even during times when the number
of actual readers is small. Further, the solution re-
quires at least4f + 1 servers. In [4], a distinction
is made betweenamortized boundedsolutions and
boundedsolution(See section3.3). It is natural to
ask whether it is possible to provide similar (or even
better) boundedness properties whenn � 4f .

In this paper, we show that it is possible to
have a wait-freef -resilient atomic solution in the
non-communicating server model that requires only

1

3f + 1 servers, satisfies all the amortized bounded-
ness guarantees of Bazzi and Ding’s solution, and
provides boundedness guarantees also on the size
of messages sent to writers. In [4], a distinction
is made betweenamortized boundedsolutions and
boundedsolution. For write operations, we show
only amortized boundednes. For read operations,
we show amortized boundedness but, using the tech-
niques of [4], we can transform this solution into
a bounded solution. Our solution tolerates Byzan-
tine readers without the use of any unproven cryp-
tographic assumptions, such as hardness of factor-
ing or of computing discrete logarithms, on which
public-key cryptography depends. Further, it dif-
fers from all previous solutions that achieve atomic
semantics in the non-communicating server model
(bounded or otherwise) in requiring readers to write
back only the timestamps of the values they read,
rather than the values themselves. Suchlightweight
write back, while intriguing in itss own right, is of
particular interest when considering Byzantine read-
ers: if the values written by writers are not of fixed
size (large files for example), a Byzantine reader
can write back a very large value (potentially un-
bounded) and force the servers to check whether
the written back value is valid—this is true even
for solutions that use unproven cryptographic as-
sumptions. By writing back only the the timestamp,
a read operation always costs a server a bounded
amount of work to process. To our knowledge, this
issue was not considered in previous work.

To achieve our results, we build on existing
work and introduce some new techniques. We use
the concurrent-reader-detection and the write back-
throttling ideas from the atomic wait-free solution of
Bazzi and Ding [4]. In what follows we give a high
level overview of the new techniques we introduce.

Increasing resiliencyWe reduce increase the re-
siliency of our solution by estimating the times-
tamp of the value to be read in a new way. In-
stead of choosing thef + 1’st largest timestamp
as the potential timestamp of a value to read, we
choose the2f+1’st smallest timestamp amongst the
timestamps received. While thef + 1’st timestamp
worked well forn = 4f + 1 it does not work well
for n = 3f + 1. By choosing the2f + 1’st small-

est timestamp, we are, in a sense, assuming that
all the servers that are not heard from have higher
timestamps and then choosing thef + 1’st largest
amongst the timestamps ofall servers, whether they
have been heard from or not. What makes this ap-
proach work is the continuous update of the2f+1’st
smallest timestamp as responses are received from
new servers.

Writing back timestamp We do away with the re-
quirement of writing back values by adding an extra
communication round to the write operation which
enables the reader to ascertain, when it writes back a
timestamp, that the writer’s message containing the
corresponding value will be eventually received by
all correct servers.

Bounding message sizes to writersWe bound the
sizes of messages sent to servers using three rounds
of communication betwwen writers and servers.
These rounds occur in parallel with the first two
rounds of the write protocol and no server receives
a total of more than two messages across the three
rounds. In the first round, the writer estimates the
number of concurrent readers; in the second and
third rounds it determines their identities.

Tolerating Byzantine readersWe use writeback
throttling to tolerate Byzantine readers without us-
ing unproven cryptographic assumptions. The idea
is for the writer to associate with each value it writes
both a primary secret (a polynomial of degreef),
and a set of secondary secrets (random strings).
Each server receives from the writer a share of the
primary secret, a unique set of secondary secrets,
plus a copy of one of the secondary secrets sent
to each of the other servers (we call these copies
proofs). A correct server will not divulge to a reader
its share of the primary secret or its proofs for a par-
ticular value unless it can ascertain that the write op-
eration for that value has made sufficient progress.
Further, a correct server will not allow a reader to
write back a value (or, in our case, the timestamp
of a value) unless the reader can present (i) in the
first round, sufficiently many shares that are consis-
tent with the share stored at the server, and (ii) in
the second round, sufficiently many proofs match-
ing the stored secrets at the server.

2

2 Model/Assumptions
The system consists of a set ofn replicas (servers),
a set ofm writers and a set of readers. Readers
and writers are collectively referred to as clients.
Clients have unique identifiers that are totally or-
dered. When considering boundedness of the sizes
of messages, we assume that a read operation in the
system can be uniquely identified with a finite bit
string, otherwise any message sent by a reader can
be unbounded in size. The identifier consists of a
reader identifier and a read operation tag. The num-
ber of read operations in the system is exponential
in the size of the operation identifiers. Similarly
write operations are identified by the writer iden-
tifier and the timestamp of the value being written.
Since timestamps are non-skipping, write operation
can also be represented by finite strings in practice.

Clients execute protocols that specify howread
andwrite operations are implemented. We assume
that clients do not start a new operation before fin-
ishing a previous operation. We assume that up tof
servers may be Byzantine faulty and may deviate ar-
bitrarily from the specified protocol. The remaining(n� f) servers are correct and follow the specified
protocol. We require that the total number of serversn be at least3f + 1.

We assume that clients cannot spoof each
other’s or servers messages and that servers cannot
spoof each other’s or client messages. While such
an assumption can be enforced in practice using
cryptographic techniques with unproven assump-
tions, such techniques are not required to enforce
this assumption. We assume FIFO point-to-point
asynchronous channels between clients and servers.
Servers do not communicate with other servers.

Writers can fail by crashing and follow their
protocol before they crash. In section3 we assume
that the readers can fail only by crashing. Later,
we relax this assumption and we consider Byzantine
readers in section4. When considering Byzantine
readers, we make the additional assumption that the
channels between the servers and the writers are pri-
vate. The probability that a given read operation by
a Byzantine reader improperly writes back a value
is 2�k wherek is a security parameter. We choosek to be sufficiently large so that the probability of

failure for all operations is small. Ifk = o+ k0 bits,
whereo is the number of bits required to represent
one operation, then the system failure probability is2�k0

.

3 Lightweight Write Back
We now present a protocol that implements a wait-
free atomic register using3f + 1 replicas and
bounded number of messages, where the reader
does not have to write back the value. The reader
instead only writes back the timestamp associated
with the value, which, in practice, can be thought
of as bounded since our protocol implements non-
skipping timestamps [3].

Figures1 - 3 present a single-writer-multiple-
reader version of the protocol that assumes benign
readers. In Section4 we extend this protocol to
handle Byzantine readers. This protocol can also
be easily extended to support multiple-writers, us-
ing ideas from [4], as described in Section5.

3.1 Protocol Overview
In our protocol, the writer writes in three phases.
In the first phase, the writer writes a value/times-
tamp pair and waits for replies fromn � f servers.
The second and third phase are more subtle. In the
second phase, the writer sends a message to each
server indicating that the first phase is finished. In
the third phase, the writer sends a message to each
server indicating that the second phase is finished.
When a correct server receives a second phase mes-
sage it can conclude that, if the writer executed no
further writes, at leastf +1 correct servers have re-
ceived the (value,timestamp) pairs sent in the first
phase. Similarly, if a server receives a third phase
message, it can conclude that at leastf + 1 cor-
rect servers have received the second phase mes-
sage. The reason for the second and third phases
will become clearer when we describe the reader’s
protocol.

To understand the reader’s protocol, we consider
a simple scenario. The reader starts by request-
ing third phase information from the servers. Each
server replies with the most current timestamp for
which it knows that the corresponding write opera-
tion reached its third phase. Now, assume that the
reader receives replies from all correct servers in

3

response to its request for third phase information.
The timestamps returned by these correct servers
can be quite different because the reader’s requests
could reach them at different times and the writer
could have executed many write operation during
that time. Of special interest is the largest third
phase timestamp returned by a correct server. Let
us call that timestamptlargest. If the writer executes
no write operation after its write oftlargest, then,
when the reader receives the third phase response
with tlargest, it can simply request all second phase
and first phase messages and be guaranteed to re-
ceivef +1 replies with identical valuev and times-
tamptlargest; at that time, the reader would be able
to determine that, by readingv, it would not violate
atomic semantics. Also, having receivedf + 1 sec-
ond phase messages fortlargest, the reader knows
that the writer completed the first phase of the write
(the one in which the value is written): the reader
therefore does not need to write back the value (by
redoing the first phase of the writer) and can limit
itself to completing the second and the third phase
of the write. Hence, at least in this simple scenario,
it is possible for the reader to maintain atomic se-
mantics by writing back only the timestamp of the
value read and not the value itself.

While this scenario is instructive, it is too
simple—a number of serious complications can oc-
cur. For instance, a fast writer might write many val-
ues with timestamps larger thantlargest. Also, the
reader does not know when it has received replies
from all correct servers. If we assume, for now,
that the readercan tell when it has received val-
ues from all correct servers the we can solve the
problems caused by a fast writer by having the fast
writer help the reader to terminate. This is done
by having the writer detect concurrent read oper-
ations and then have the writer request from the
server toflush outthe written value to concurrent
readers. This is the same approach taken in [4],
but our protocol for detecting concurrent read oper-
ations consumes bounded bandwidth, whereas that
of [4] is unbounded. Our solution guarantees that
if the writer completes the write of a value whose
timestamp is larger thantlargest + 1, then it will be
able to detect any concurrent reader and such read-

ers will be able to terminate. But if the writer writes
values with timestampstlargest + 1 to all correct
servers andtlargest +2 to only some correct servers
and those servers replace the values they store with
these newer values, then the reader might not be able
to receive enough values whose timestamp istlargest
and therefore be unable to terminate. To avoid hav-
ing the values whose timestamps are equal totlargest
erased, we require servers to keep the three most up
to date written values. This way, either the reader
is independently able to decide which value to read
(when the writer is not fast) or the writer detects the
reader and helps the reader to decide on a value by
asking the servers to forward the latest value writ-
ten.

There remains the problem of the reader not
knowing when it has received replies from all cor-
rect servers. In fact, in response to its request
for third phase information, the reader can receive
replies only fromn� f serversf of which may be
faulty, and it might not be able to terminate based
on these responses. We handle this situation by sim-
ply assumingthat thesen� f messages are all from
correct servers. If they indeed are, then the reader
will for sure be able to decide ontlargest by request-
ing second and first phase information (it is possible
that the reader will be able to decide even if they
are not correct). If, however, the reader is not able
to decide, then there are other correct servers whose
replies are not amongst then� f replies, and, wait-
ing long enough to decide, the reader will eventu-
ally receive some message from one of the remain-
ing correct servers. When it receives more messages
while it is waiting to decide, the reader recalculatestlargest with the assumption that, with the new mes-
sages it received, it must finally have replies from all
correct servers: therefore, the reader re-requests first
and second phase information from all servers. This
process continues until the reader indeed receives
replies from all correct servers, in which case, it is
guaranteed to decide.

Finally, in the above discussion we have as-
sumed that the reader can be certain as totlargest
really is—in reality, in our protocol the reader can
only estimatetlargest by using the2f + 1’st largest
third phase timestamp. We will show that this is suf-

4

ficient to guarantee that the reader can decide and
that its decision is valid.

3.2 Protocol Description
We assume that a writer will not write a new value
until it finishes writing the previous value. We also
assume that each message is tagged with the id of
the operation to which it pertains and messages that
do not pertain to the current operation are ignored.
For simplicity, we do not show these tags in the
code.

The Write operation: The main write opera-
tion is performed in three phases (rounds of mes-
sage exchanges). The writer also runs the GetCon-
currentReaders sub-protocol in parallel with the first
two phases. To proceed to the third phase the writer
waits for the completion of the second phase and
for the GetConcurrentReaders sub-protocol to ter-
minate.

The GetConcurrentReaders sub-protocol is ex-
plained in Section3.4. We now present the main
write operation assuming that GetConcurrentRead-
ers (i) always terminates and consumes bounded
bandwidth, and (ii) returns to the writer the identi-
fiers of all concurrent read operations that are known
to all correct servers and have not terminated before
GetConcurrentReaders ends.

In the first phase of a write operation (W1), the
writer sends the value-timestamp pair that it intends
to write to all the servers after starting the GetCon-
currentReaders sub-protocol in parallel. On receiv-
ing the value-timestamp pair, the servers store this
information in RNextVal(line 147) and acknowl-
edges the writer. The writer waits to collect at least(n�f) acknowledgements before proceeding to the
next phase.

In the second phase (W2), the writer sends a
message to all the servers to update the current
value-timestamp pair at the servers. On receiv-
ing this message, the servers replaceRVal with
RNextVal, and updateRPrevand RPrev2accord-
ingly, before acknowledging the writer. The writer
again has to wait to receive at least(n�f) acknowl-
edgements.

Before beginning the third phase (W3), the
writer waits for the GetConcurrentReaders sub-
protocol to end. The writer then sends a message to

each server asking it to (i) forward the values stored
at the server to the concurrent readers detected by
the writer, and (ii) update the value ofRts . Af-
ter forwarding the messages and updating the set of
active readers, the server acknowledges the writer.

The write operation completes when the writer
receives(n � f) acknowledgements in the third
phase.

The Read operation: The read operation can
also be considered to be taking place in three phases.
In the first two phases, the reader contacts the
servers to gather a value that satisfies both the va-
lidity (valid) and freshness (notOld) criterion. In
these phases, the reader also collects responses from
servers, that are not solicited by the reader, but have
been forwarded by the servers because of the writer
(FWD messages in lines12 and 44). To proceed
to the third phase, the reader waits either (i) until
it finds a value that satisfies both the validity and
freshness conditions, or (ii) until it knows that it has
a value that has been forwarded by the writer (fwded
is true). On finding such a value, the reader writes
back the timestamp in phase 3 to complete the read.

In the first phase (R1), the reader asks for the
timestamp of the latest completed write at each
server. This information is received by the servers
during the third phase of the write (W3) and is stored
in Rts . On receiving this request, the servers re-
spond with the timestamp stored inRts. The reader
waits to collect at least(n � f) responses before it
begins the next phase.

In the second phase (R2), the reader requests the
servers for the values stored at the server and col-
lects them. In this phase the reader will re-request
the servers for the values, if the reader receives a
timestamp response from one of thef servers that
did not respond in the previous phase (R1). The
reader keeps collecting responses and re-requesting
values, until it finds a value-timestamp pair that sat-
isfies both the validity and freshness criterion (i.e
notOldandvalid hold true in line126).

In the final phase, the reader writes back the
timestamp corresponding to the value-timestamp
pair that either satisfies both the validity and fresh-
ness conditions or has been forwarded by the writer.
The write back is done in two rounds, one after an-

5

other, and correspond to the writer’s operation for
phases W2 and W3.

For the first write back round, the reader only
sends the timestamp of the value that is decided
upon to all the servers. On receiving this times-
tamp, the servers wait until they directly receive
the writer’s message from phase W1, to update the
value, before acknowledging the reader. The reader
has to wait for(n � f) acknowledgements before
starting the next round. In the second round of the
write back, the reader asks all the servers to update
their timestamp for the latest completed write. On
receiving(n�f) acknowledgements for the second
round, the read operation completes.

write() f
1: inc(ts)

// Phases W1–W2
2: cobegin

�
writeVal();
CR = GetConcurrentReaders()	

coend

// Phase W3
3: send(WRITE TS,ts, CR) to all
4: wait for (n� f) acks.g

writeVal() f
// Phase W1

5: send(NEXT VAL, hv; tsi) to all
6: wait for (n� f) acks.

// Phase W2
7: send(WRITE VAL) to all
8: wait for (n� f) acks. g

Figure 1: The Writer’s Protocol

3.3 Protocol Correctness
We show that the protocol implement atomic seman-
tics, that the value read by readers are valid, and
that the operations always terminate even if some
client crash in the middle of their operations. We
also show that the protocol is bounded.

Atomicity We order all operations according to
their timestamps. The timestamp of a write opera-
tion is the timestamp of the value being written and
the timestamp of a read operation is the timestamp
of the returned value. When two operations have the
same timestamp, we order the write before the read.

Given this ordering, to prove atomicity, it is suffi-
cient to prove the following lemmas (whose proofs
can be found in the Appendix).

Lemma 1. If a writer completes a write for times-
tampt, no further reader will satisfy fwded[hv; xi]
for anyx � t.
Proof: Since the writer has already completed the
write operation for timestampt, no correct server
will forward a message saying that the latest times-
tamp isx for anyx � t. Thusfwded[hv; xi] cannot
become true for anyx � t. �
Lemma 2 (W-R atomicity). Once a writer com-
pletes a write operation for a value with timestampt, no read operation that starts after the write opera-
tion terminates will return a value with a timestamp
smaller thant
Proof: When a writer completes write for times-
tampt, all butf processes would have set their value
of timestamp Rtsto t. Thus a later read cannot re-
ceive more than2f timestamps (with the TS mes-
sage) that are< t. ThusnotOld[x] will always be
false for any value< t

Also, from lemma9, fwded[hv; xi] cannot be-
come true for anyx � t. �
Lemma 3 (R-R atomicity). Once a read operation
returns a value with timestampt, no future read will
return a value with a smaller timestamp.

Proof: When a reader completes the write back for
timestampt, all butf processes would have set their
value of timestampRtsto t. Thus a later read can-
not receive more than2f timestamps (with the TS
message) that are< t. Thus, for any later reader,
notOld[x] will always be false for any value< t

Also, since the reader has returnedt, the writer
has already completed the write operation for times-
tampt�1. Thus, from lemma9, fwded[hv; xi] can-
not become true for anyx � t� 1. �
3.3.1 Validity and Wait-freedom
The following lemmas have simple proofs that can
be found in the Appendix.

Lemma 4 (Correctness). A read only returns a

6

value that is written by a writer.

Proof: A value is set as the chosenvalue has to
satisfy eitherfwdedor valid. Since at leastf + 1
servers are required to return the same value for ei-
ther of these conditions, at least one of them must be
correct. Correct clients only accept values received
from the writer. �
Lemma 5 (Write Liveness). A write operation al-
ways terminates and is wait-free.

Proof: Theorem1 shows that the GetConcurren-
tReaders sub-protocol always terminates.

In the remainder of a write operation, the writer
only waits forn � f responses at any stage. Since
at mostf servers are faulty, it follows that a write
operation always terminates and is wait-free. �
Lemma 6 (Read Liveness).A read operation al-
ways terminates and is wait-free.

Proof: Proof by Contradiction. Assume that a read
operation never terminates.

Eventually the reader should receive acknowl-
edgements for the GETTS message from all the
correct processes. Let the global time at that in-
stance begts0.

Let t be the timestamp of the last write to have
completed beforegts0, andtsmax be the timestamp
of the(2f + 1)-th smallest timestamp calculated by
the reader (atgts0).

The writer could be writing timestampt+1 but,
it would not have started writing timestampt + 2.
Thus, tsmax � tlargest � t+ 1
wheretlargest is the largest (third phase, W3) times-
tamp value received from the correct servers.

If the writer has already detected the reader dur-
ing a previous write, then eventually the reader will
eventually receivef + 1 forwarded messages from
the correct servers and will be able to decide on the
forwarded value-timestamp pair.

If not, by theorem2, if the writer writes times-
tampt+ 2, the writer will detect the read operation
during the GetConcurrentReaders sub-protocol for
write t + 2. On receiving the third phase message
(W3) from the writer, all correct servers (in W3) will

forward values for timestampt, t + 1 andt + 2 to
the reader.

For correct servers that never receive the final
message for writet+ 2, consider the following two
cases:

Case1:tsmax � t. At most f correct servers may
not have received the value for timestampt. When
the reader receives responses from all the correct
servers for the RequestValue() phase initiated aftergts0, the reader will have at leastf + 1 matching
value timestamp pairshv; tsi for ts = t. Thus, the
reader would decide on the value with timestampt
after writing it back to the servers.

Case 2:tsmax == t+ 1. Since at least one correct
server has updated the value of lastcomp to bet+1
it must be the case that the client (the writer, or the
reader doing a write-back) must have receivedn�f
responses from servers that have updatedRValwith
timestampt+ 1.

Thus, when the correct servers among thesen� f servers respond to the RequestValue() phase,
the reader will havef + 1 matching responses for
timestampt+ 1 to decide on. �
BoundednessA solution is amortized bounded ifm
operations do not generate more thanm � k mes-
sages, for some constantk without some servers
being detected as faulty. In an amortized bounded
solution, a client executing a particular operation
might have to handle an unbounded number oflate
messages. In a bounded solution a client operation
will always handle no more thank messages for
some constantk and if more thank messages are
received, the faulty behavior of some servers will be
detected.

In this section we show that our solution is
amortized bounded. The solution does not rule out
the possibility that a reader receives many unso-
licited messages from a server. All we can do in
that case is to declare the server faulty and our proof
of boundedness does not apply to such rogue servers
that are detected to be faulty.

To make the solution bounded for the reader
techniques such as [4] can be used. We omit these
details from the presentation here.

7

Lemma 7 (Boundedness).The total number of
messages exchanged between the server and the
reader for each read operation is bounded

Proof: For each read operation, the reader sends
to each server a maximum of 1 GETTS message,f + 1 GET VAL messages, 1 WBACKVAL mes-
sage, and 1 WBACKTS message. Also, a reader
will only receive from each server 1 TS message, up
to (f + 1) VALS messages sent in response to the
GET VAL message, up to1 VALS messages for-
warded in response to a concurrent write, and 2 ac-
knowledgements in response to the WBACKVAL
and WBACK TS messages. �
Lemma 8 (Write Boundedness).The total number
of messages exchanged between the server and the
writer during a write operation is bounded.

Proofs for the above lemmas are in the Appendix.
Proof: During each write operation, the writer sends
three WRITE messages and receives three acknowl-
edgements from each server. The sizes of the replies
from servers are bounded. In addition, by Theo-
rem 4, the messages exchanged in the GetConcur-
rentReaders sub-protocol are bounded. �
3.4 Bounded Detection of Readers
The protocol requires that the writer be able to de-
tect the presence of ongoing read operations—more
specifically, a writer that invokes GetConcurren-
tReaders() after all correct servers have begun pro-
cessing a read requestr issued by clientr must be
able to identifyr (assumingr does not terminate be-
fore the end of the execution of the detection proto-
col). We recall here that a read operation is uniquely
determined by a reader identifier and an operation
tag. We also recall that a reader does not issue a
read operation before starting finishing a previous
operation. A simple way to implement the required
functionality is for the writer to collect, from all
servers, the sets of ongoing read operations (theac-
tive reader operations) and to identify those among
them that appear in at leastf +1 sets: this is the ap-
proach taken in [4]. Unfortunately, when it receives
a list of allegedly active reader operations, the writer
has no way, in this implementation, to determine
whether the received sets contain operations that are

indeed active or are just the fabrication of a faulty
server: because it is possible that some servers may
have begun processing read requests that have not
yet reached the other servers, faulty servers can send
arbitrarily long lists of bogus active operations with-
out being detected as faulty.

We would like a solution that maintains the de-
sired functionality but somehow bounds the size
of the responses that a writer can receive, so that
servers that send longer messages would be imme-
diately unmasked as faulty. Clearly, no bounded so-
lution is possible if the number of readers is infinite,
because it would not be possible to bound the size of
a reader identifier. We therefore assume that the set
of readers (and thus the size of a reader’s identifier)
is finite. Under these assumptions, a simple way
to bound the implementation outlined above would
be to prohibit servers from sending lists of active
reader operations that are larger than the maximum
numberrmax of potential operations in the system.
However, this solution is profoundly unsatisfactory
because the number of active reader operations can
be very small when compared tormax. For exam-
ple, if an operation can be represented with 100 bits
(50 for reader identifiers and 50 to differentiate op-
erations), then server responses could still contain
up to 2100 operations even when only a handful of
readers are active. Ideally, the response size should
be proportional to the number of active reader op-
erations: only solutions that match this ideal can be
called bounded in any practical sense. Luckily, this
match is exactly what the solution that we are about
to present guarantees. In our solution, the size of
messages sent by any server cannot be larger than
the size ofrmax plusthe size of the list of identifiers
of the active reader operations (readers with ongo-
ing operations). Note that the size ofrmax is log-
arithmic in the number of different operations (this
includes the reader identifier and the operation tag)
and therefore is of the same order of magnitude as
the size of an operation identifier (assuming identi-
fier are of fixed size). The GetConcurrentReaders
protocol is shown in Figure4.

3.4.1 Protocol Description
The idea of the protocol is to first estimate the num-
ber of active reader operations in the system and

8

then accept lists of active reader operations whose
size is bounded by this estimate. The difficulty
is in ensuring that all genuinely active operations,
and only those, are detected. The protocol has two
phases. In the first phase, the writer determines a set
of servers who are returning avalid active list count,
i.e. a count of active reader operations that does not
exceed the count returned by at leastsomecorrect
server. In the second phase, the writer collects active
reader operations sets whose overall size is bounded
by the sum of the valid active list counts determined
in the first phase. The protocol guarantees that the
sets collected in the second phase detect all ongo-
ing read operations. We describe the two phases in
more details in what follows.
(1) The first phase involves two communication
steps. In the first communication step, the writer
prompts the servers for their active list count and
determines which servers return avalid active list
count count, where a countcount is valid if there
are at leastf + 1 servers that return a count equal
to or greater thancount. This means that there is
a least one correct server whose count is equal to
or greater thancount. In the second communica-
tion step, the writer requests the actual list of active
reader operations from every server that returned a
valid count. Here there is a slight technicality, as
the number of active read operations that are active
at the servers with valid counts might have grown
since the writer prompted them for their active list
counts. We handle this by requiring the servers to
save the list of active readers when they receive a
count request: when the servers receive a request
for the actual list of active readers, they return the
one they have previously saved. If a server replies
with a list that is longer than the count it has send
previously, the server is declared faulty. The first
phase ends when the writer collects list of active
readers, with valid counts, fromf + 1 servers. At
this point, the writer can be certain that at least one
thesef + 1 servers is correct and its list contains
all issuers of ongoing read operations whose read
requests reached all correct servers before the ex-
ecution of the detection protocol. However, there
is no way for the writer to determine which specific
server(s), among thef+1 servers with valid counts,

are correct. So, the writer constructs the union of all
the active list sets received by the end of phase 1. As
we just indicated, the union set must contain all ac-
tive reader operations whose request messages have
reached all correct servers before the start of the de-
tection protocol.
(2) In the second phase, the writer sends the union
set to all servers from which it hasnot requested an
active list. On receipt of the union set, a servers
is required to send the intersection of the union set
with its own active list. The writer collects replies
from the servers from which it did not receive a list
of active readers in the first phase. There are two
types of such servers. First, the servers that received
a request for their list of active reader operations in
phase 1, but did not return their response in time,
before the end of phase 1. Second, the servers that
were not sent a request in phase 1 and are replying to
intersection requests made in phase 2. The second
phase ends when the total number of servers that
send lists either in the first or the second phase is
greater than or equal ton � f . After the end of the
second phase, the writer includes every reader that
appears inf + 1 active reader sets in the setCR of
active readers.

3.4.2 Proof of Correctness
Theorem 1 (Termination). The GetConcurren-
tReaders() protocol always terminates if the writer
never crashes.

Proof. The writer only waits for up ton � f re-
sponses from both the first and second phases to
terminate. Since servers do not have to wait to re-
spond, all correct servers will eventually respond to
the writer and the writer will always finish the exe-
cution of the protocol.

Theorem 2 (Detection).If a read operationr never
terminates and the writer starts executing the the de-
tection protocol after all correct servers receive the
read request, then the writer will includer in the
set CR at the end of the detection protocol if it has
not already detected the read operationr during a
previous write.

Proof. Since the read operationr does not termi-
nate, and the writer has not detectedr during a pre-
vious write operation,r will be present in the active

9

reader’s list for all the correct servers for the whole
duration of the execution of the detection protocol.
Since the writer waits forf + 1 responses to com-
pute the union, andr is present in the active reader’s
list for every correct server,r should belong to the
union set. Thus ifr is present in the active reader’s
set for any correct server it will be reported to the
writer.

The writer collects the information about the ac-
tive readers from at leastn � f � 2f + 1 servers.
Since at leastf + 1 of them are correct and containr, they will reportr to the writer either initially in
phase 1 or in response to the union set in phase 2 andr will belong toCR at the end of the protocol.

Theorem 3 (Validity). Every read operationr that
is in the CR set at the end of GetConcurrentRead-
ers() is an operation that was active during the Get-
ConcurrentReaders() protocol.

Proof. A read operationr is added to set CR only if
it is reported to be present in the set of active readers
by at leastf + 1 servers. Since at least one of these
servers must be correct, the read operationr must
have been active when the server responded to the
writer’s message.

Theorem 4 (Boundedness).The total number
of messages exchanged between the server and
the writer during the GetConcurrentReaders sub-
protocol is bounded both in number and size.

Proof: The writer only sends 2 messages and re-
ceives 2 messages from each server.

Let count be the actual number of concurrent
read operations in the system. Thus the size of active
readers at all correct servers will be at mostcount.
The messages exchanged in the first round only con-
tain the size of the set of active reader operations.
This size requires can be encoded withrmax and is
of the same order of magnitude as the reader’s iden-
tifiers. In second round, the writer collects the ac-
tive readers set from those servers whose count is at
most thef+1-th largest. Thus the sets in these mes-
sages are no larger thanount. Also, the size of the
union set and the responses containing the intersec-
tion is at most(n� 2f)� ount, which is bounded
by our definition. �

4 Byzantine Readers
We now explain how the protocol presented in Sec-
tion 3 can be modified to tolerate Byzantine read-
ers without the use of unproven cryptographic as-
sumptions. In the following, we call the protocol of
Section3 the non-reader-tolerant protocol, or NRT,
protocol.

Overview: We start by recalling some proper-
ties of NRT protocol. When a correct server receives
a third phase W3 message from a writer, it believes
that at leastf + 1 correct servers have received and
updated their latest value with the value/timestamp
pair for which a timestamp is being written in W3.
This belief is true because the writer has completed
phases W1 and W2 and receivedn � f acknowl-
edgements from servers, at leastf + 1 of which are
correct. If a reader is benign, (i) write back throt-
tling during the first round of write back, and (ii)
the requirement that abenignreader finishes the first
round of the write back before proceeding to the sec-
ond, ensure that this belief holds true when a correct
server accepts a second round write back (to update
the value ofRts). However, if the reader is Byzan-
tine, the reader may not wait for the completion of
W1 by the writer before starting its first round of
write back. Also, a reader might proceed to its sec-
ond round of write back without finishing its first
round of write back. Thus accepting the write back
without any checks can violate the correctness of
the protocol. We need mechanisms that allow read-
ers toprove that the writer finished its W1 phase
for a given timestamp in order for servers to accept
their first round writeback message for that times-
tamp. Similarly, readers must be able to prove that
enough servers accepted their first round writeback
messages in order to proceed to the second round of
writeback.

These mechanisms can be realized as follows.
In the first phase of a write operation, the writer gen-
erates a random secret polynomialP of degreef
and distributes random secret shares to the servers
so that anyf + 1 shares can be used to reconstruct
the secret. The share of a servers is simply P (s)
assuming server identifiers are the integers1 thoughn. The writer does not send the secret polynomial
to any server. A server is not supposed to divulge a

10

share unless it has received a W2 message from the
writer for the write operation for which it received a
share (or, alternatively, if it can be convinced that the
writer has sent a W2 message to a correct server). A
reader canprove its first writeback to serverq by
providingf +1 shares that can be used to construct
a polynomialP 0 such thatP 0(q) is equal to share ofq (we show that with very low probability a Byzan-
tine reader can fabricatef + 1 shares that can be
used to match the share of a correct server). By pro-
viding these shares, a reader is essentially provid-
ing a proof with very high probability that a correct
server received a W2 message from the writer for
the timestamp being written back. After receiving
a proof of a writeback, a server is convinced that
the writer has progressed to phase W2 and from that
time on it will be willing to divulge its share.

A complication with the protocol occurs if a
reader that getsf + 1 matching timestamps (and
values), sayts, with purported proofs is not able
to convinceenough servers to accept its first round
write back message (for instance, if the reader re-
ceivesf responses from faulty servers that provide
bogus shares). In that case, the reader might not be
able to terminate. In this situation there are two pos-
sibilities: either the writer sentW2 messages forts
to f +1 correct servers or the writer stopped before
sending these messages. In the first case, the reader
will eventually get fromf+1 correct servers match-
ing timestamps and shares that enable it to proceed
with its first round of write back. In the second
case, the writer clearly did not progress to phase W3
for timestampts, which means that the2f + 1’st
smallest timestamp on which the reader is basing its
write back is not correct (too large). In fact, it must
be the case that eventually the reader will receive
more messages from correct servers which enable it
to calculate a smaller2f + 1’st smallest timestamp.
When the reader receivesall messages from correct
servers, the2f + 1’st timestamp it calculates will
be a timestamp for which the writer started the W3
phase and finished the W2 phase and the reader will
be able to collectf +1 timestamps and correspond-
ing shares to finish its first round of writeback.

One issue has to do with the number messages
that the reader sends before it is guaranteed to fin-

ish its first write back round. This number isf2. In
fact, if messages that enable the reader to update its2f + 1’st smallest timestamp are slow in arriving,
the reader would have to try to redo its first round
of write back each time it receives a message from
a server that did not reply to its earlier attempt at
write back. In fact, every time a reader receives a
late reply to its round one write back message, it
collects all the shares it has received so far and it
sends those shares to servers. Servers try to findf + 1 shares amongst these shares that they can use
to reconstruct their own share (note that the server
might need to consider and exponential number of
possibility (exponential inf) when looking forf+1
shares that can reconstruct the secret. The security
parameter has to be chosen large enough to take into
consideration that the probability increases with the
increase in the number of combinations considered).
The set of shares can increase at mostf times after
which the reader must have received messages from
all servers and can give up on writing back a value
with timestampts. Also, the reader can update the2f + 1’st smallest timestampf times, For each one
of these updates the reader would have to go through
the process just described inf rounds for a total off2 rounds.

Once a reader manages to finish its first round
of write back it has to convince servers to allow it
to go for a second round of write back. To that
end, it needs to provide proof that enough correct
servers must have the value written by the writer
and accepted the first round of write back from the
reader. Our mechanism for helping a reader in its
second round of write back does not use secret shar-
ing and instead usesmatchingsecrets. (A compli-
cation might occur because of write back messages
that arrive late at the servers. We will assume in the
discussion that there are no late writebacks and we
address that problem later.) In the first round of a
write, the writer sends to each serverp n writeback
secrets, which are randomk-bit strings wherek is a
security parameter. The writer sendswb seretpq,
one for each serverq, Also, in the same round,
the writer provides every serverq with a writeback
proof stringwb proofqp = seretpq, one for each
server in the system. A server responds with a write-

11

back proof if it accepts the first round writeback
message sent by the reader. When a reader finishes
its first write back round, it knows thatf + 1 cor-
rect servers accepted the first round write back. This
means that the first round write back message will
eventually be accepted by all correct servers because
the shares provided by thesef + 1 servers will be
enough to convince all correct servers. So, eventu-
ally the reader will receive2f + 1 writeback proofs
and the reader presents these proofs when attempt-
ing its second round of write back. A server ac-
cepts a second phase writeback only if the reader
provides2f + 1 matching proofs (which guaran-
tees thatf + 1 correct servers must have accepted
the first phase writeback). It is possible that some
of the collected proofs are from faulty servers and
the second phase writeback will not be accepted (but
not rejected either). While waiting for an acknowl-
edgment of its second phase writeback, the reader
will send any new acknowledgment of its first phase
writeback to all servers. So, eventually, the reader
will get 2f + 1 acknowledgments from the correct
readers because, as we have argued, all the correct
readers will get the first phase message from the
writer. This will guarantee that the reader will be
able to collect2f + 1 proofs that will be accepted
by 2f + 1 correct servers.

Late writebacks: There is another complica-
tion due to late writebacks. If a writeback arrives
late at a server, the server might not have the proof
to give the reader because the old proofs might have
been replaced with newer ones due to subsequent
writes. If a server that receives a writeback mes-
sage, and has a current timestamp that is larger than
the timestamp being written back, it simply sends a
writeback acknowledgment, but without a proof.

The meaning of a writeback without proof is
that the writer started the second phase of the write
of a value with a higher timestamp. So, when the
reader finishes its first round of write back, it will
collect2f + 1 acknowledgments, some with proofs
and some without proofs and send these along with
its second phase writeback. If one of the acknowl-
edgments without proofs is from a correct server,
then this means that the writer must have started
writing a new value and finished the third phase of

the write operation for which the reader is sending
a second phase writeback, and therefore all correct
servers will eventually receive the third phase mes-
sage from the writer and can accept the writeback.
If none of the acknowledgments without proofs is
from a correct server, then the reader will eventually
receive either enough proofs (as we argued in the
previous paragraph) or one acknowledgment with-
out proof from a correct server; in either case, the
correct reader will be able to finish its second phase
writeback.

It should be clear from the description that a cor-
rect server will not accept a second phase writeback
unlessf + 1 correct servers accepted the first phase
write back. Thus if a correct server accepts a second
phase write back then its belief holds true. Also, the
read operation initiated by a correct reader always
terminates.

Figures5 - 9 present the pseudocode for han-
dling Byzantine readers. The protocol for detection
of concurrent readers is same as the one presented
in Figure4.

4.1 Protocol Correctness
We show that the protocol implements atomic se-
mantics, that the value read by readers are valid, and
that the operations always terminate even if some
client crash in the middle of their operations. We
also show that the protocol is bounded.

4.1.1 Secrets are hard to guess
Theorem 5. Given af -degree polynomialP overZp, wherep is a prime number andlog p > k. For a
giveni 2 f1 : : : ; ng, the probability that a random
variablex overZp is equal toP (i) is less than2�k.

Proof. The probability thatx equals any specific
value is1=p < 2�k.

Theorem 6. Given af -degree polynomialP overZp, where p is a prime number andlog p >k. The probability that a Byzantine reader fin-
ishes a first round write back for which the
writer has not finished its W1 phase is at most2�(k�log(f(2f+1))�(f+1)n) .
Proof. We give a generous upper bound. For a given
timestamp, then reader sends at mostf sets of shares

12

of increasing size. For each set, a server will con-
sider at mostn choosef + 1 possibilities. The
number of these possibilities is less than2(f+1)n.
Each possibility can succeed with probability2�k.
The maximum number of ways in which a reader
can succeed in writing to a correct in one of thef
tries isf(2f + 1)2(f+1)n. The probability that the
reader succeeds in writing to one correct server is at2�(k�log(f(2f+1))�(f+1)n) .

It follows that the probability that a reader suc-
ceeds in writing back a bogus timestamp in the first
round can be made arbitrarily small. Similarly, we
can show that the probability that a reader can suc-
ceed in writing back a bogus timestamp in the sec-
ond round can be made arbitrarily small.

4.1.2 Atomicity
To show atomicity, we should show that there is a
global ordering of operations that is consistent with
real time ordering and such that the resulting execu-
tion is a valid sequential execution. We order all op-
erations according to their timestamps. The times-
tamp of a write operation is the timestamp of the
value being written and the timestamp of a read op-
eration is the timestamp of the returned value. When
two operations have the same timestamp, we order
the write before the read. Given this ordering, to
prove atomicity, it is sufficient to prove the follow-
ing.

W-R Once a writer completes a write operation for
a value with timestampt, no read operation
that starts after the write operation terminates
will return a value with a timestamp smaller
thant.

R-R Once a read operation returns a value with
timestampt, no future read will return a value
with a smaller timestamp.

Lemma 9. If a writer completes a write for times-
tampt, no further reader will satisfy fwded[hv; xi]
for anyx � t.
Proof: Since the writer has already completed the
write operation for timestampt, no correct server
will send a FWD message saying that the latest
value-timestamp ishv; xi for any x � t. Thus

fwded[hv; xi] cannot become true for anyx � t
since this requires at least one response from a cor-
rect server. �
Lemma 10 (W-R atomicity). Once a writer com-
pletes a write operation for a value with timestampt, no further read will return an older value.

Proof: When a writer completes write for times-
tampt, all butf processes would have set their value
of timestamp Rtsto t. Thus a later read cannot re-
ceive more than2f timestamps (with the TS mes-
sage) that are< t. ThusnotOld[x] will always be
false for any value< t

Also, from lemma9, fwded[hv; xi] cannot be-
come true for anyx � t. �
Lemma 11 (R-R atomicity). Once a read opera-
tion returns a value with timestampt, no future read
will return an older value.

Proof: When a reader completes the write back for
timestampt, all butf processes would have set their
value of timestampRtsto t. Thus a later read can-
not receive more than2f timestamps (with the TS
message) that are< t. Thus, for any later reader,
notOld[x] will always be false for any value< t

Also, since the reader has returnedt, the writer
has already completed the write operation for times-
tampt�1. Thus, from lemma9, fwded[hv; xi] can-
not become true for anyx � t� 1. �
4.1.3 Validity and Wait-freedom
Lemma 12 (Correctness).A read only returns a
value that is written by a writer.

Proof: A value is set as the chosenvalue has to
satisfy eitherfwdedor valid. Since at leastf + 1
servers are required to return the same value for ei-
ther of these conditions, at least one of them must be
correct. Correct clients only accept values received
from the writer. �
Lemma 13 (Write Liveness).A write operation al-
ways terminates and is wait-free.

Proof: Theorem?? shows that the GetConcurren-
tReaders sub-protocol always terminates.

In the remainder of a write operation, the writer
only waits forn � f responses at any stage. Since

13

at mostf servers are faulty, it follows that a write
operation always terminates and is wait-free. �
Lemma 14 (Belief 1). If a correct server sets its
value of Rts tot in response to a third phase mes-
sage (W3) from the writer, then at leastf+1 correct
servers should have received and updated the value-
timestamp for timestampt
Proof: Since the writer is benign, the writer only
starts phase W3 for timestampt after receivingn�f
responses from W2. Correct servers respond to W2
only after they have received and updatedRValwith
the latest value-timestamp pair. Sincen�f � 2f+1
at leastf + 1 correct servers should have received
and updated the value-timestamp for timestampt. �
Lemma 15 (Belief 2). If a correct server sets its
value of Rts tot in response to a write back message
(second round) from a reader, then at leastf + 1
correct servers should have received and updated
the value-timestamp for timestampt
Proof: A correct server accepts a second round
write back from a reader only if the reader provides
at least2f+1 proofsthat match thesecretsreceived
from the writer.

At leastf + 1 of these servers must be correct.
Correct servers only divulge the proofs, in response
to the first round write back message, after receiving
the value-timestamp from the writer and updating it.�
Lemma 16 (Belief WB1). A correct server accepts
a (first round) write back message from a reader, and
updates the value-timestamp for timestampt only if
the writer has completed phase 1 of the write(W1).

Proof: Consider the first correct servers to accept a
first round write back message for timestampt.

A correct servers accepts a first round write
back only if it receivesf + 1 shares that are consis-
tent with the share it holds. Thus at least one correct
server must have revealed its share to the reader.

Since correct servers only reveal their share on
receiving the second phase write message (or on ac-
cepting a first phase write-back message) for times-
tamp t, it follows that the writer must have com-
pleted first phase write (W1) before sending the sec-
ond phase write message to the server. �

Lemma 17 (Write back termination). If a correct
reader tries to write back a timestampt for which
(i) it has received from a correct server in the first
phase of the read (in response to GETTS) and (ii)
for which it has received (ii)f + 1 matching re-
sponses from correct servers, then the write back
eventually terminates.

Proof: Since a correct server has returned a times-
tamp t from the W3 phase of the write, it follows
that the writer must have completed phase W1.

Thus, on receiving the write back message from
the reader with thef + 1 correct shares, and re-
ceiving the W1 message from the writer, all correct
servers will accept the first round of write back mes-
sage and will respond with either the wbproof (or? if the writer has overwritten the value).

If no correct server responds with a?, on re-
ceiving the responses from all the correct servers,
the reader will have2f+1 matching proofs that can
convince all the correct servers to accept a second
round write back.

If a correct server responds with a?, then the
writer must have sent a W3 message for timestampt + 1. Thus, after receiving the W2 message for
timestampt + 1 (line 198) all correct servers will
accept the second round of the write back.

Thus eventually, in either case, the reader will
be able to convince all the correct servers and re-
ceiven � f acknowledgements from them. Thus
terminating the write back phase. �
Lemma 18 (Read Liveness).A read operation al-
ways terminates and is wait-free.

Proof: Proof by Contradiction. Assume that a read
operation never terminates.

Eventually the reader should receive acknowl-
edgements for the GETTS message from all the
correct processes. Let the global time at that in-
stance begts0.

Let t be the timestamp of the last write to have
completed beforegts0, andtsmax be the timestamp
of the(2f + 1)-th smallest timestamp calculated by
the reader (atgts0).

The writer could be writing timestampt+1 but,
it would not have started writing timestampt + 2.

14

Thus, tsmax � tlargest � t+ 1
wheretlargest is the largest (third phase, W3) times-
tamp value received from the correct servers.

If the writer has already detected the reader dur-
ing a previous write, then the reader will eventually
receivef + 1 forwarded messages from the correct
servers and will be able to decide on the forwarded
value-timestamp pair.

If not, by theorem?? if the writer writes times-
tampt+ 2, the writer will detect the read operation
during the GetConcurrentReaders sub-protocol for
write t + 2. On receiving the third phase message
(W3) from the writer, all correct servers (in W3) will
forward values for timestampt, t + 1 andt + 2 to
the reader.

For correct servers that never receive the final
message for writet+ 2, consider the following two
cases:

case 1tsmax � t
At most f correct servers may not have re-
ceived the value for timestampt. When the
reader receives responses from all the cor-
rect servers for the RequestValue() phase ini-
tiated aftergts0, the reader will have at leastf + 1 matching value timestamp pairshv; tsi
for timestampts = t(= tsmax).
Thus the reader would decide on the value
with timestampt after writing it back to the
servers.

case 2tsmax = t+ 1
Since at least one correct server has updated
the value of lastcomp to bet+1 it must be the
case that at leastf+1 correct servers have re-
ceived and updated their value-timestamp fort+ 1 (by Lemmas14 and 15).

Thus, when all the correct servers respond to
the RequestValue phase initiated aftergts0,
the reader will havef+1 matching responses
for timestampt+ 1 = tsmax to decide on.

By Lemma 17 the reader’s write back phase is
guaranteed to terminate because the reader is writ-
ing backtsmax which was received from a correct

server in response to GETTS. �
4.1.4 Boundedness
In this section, we show that for each operation, a
bounded number of messages of bounded size will
be generated. The solution does not rule out the pos-
sibility that a reader receives many unsolicited mes-
sages from a server. All we can do in that case is
to declare the server faulty and our proof of bound-
edness does not apply to such rogue servers that are
detected to be faulty.

Lemma 19 (Boundedness).The total number of
messages exchanged between the server and the
reader for each read operation is bounded

Proof: For each read operation, the reader sends to
each server a maximum of� 1 GET TS message,� f + 1 GET VAL messages,� (f +1)� (f +1) messages for the first round

of the write back.

During each write back attempt, the client
sends only one message. However since the
shares gathered by the client may contain a
few from faulty servers the reader can retry
on receiving more shares. A client asks the
first time when it hasf +1 shares, it can retry
until it getsf more shares. If it gets2f + 1
shares, then at leastf+1 of those will be cor-
rect and it will be accepted. Making a total off + 1 attempts.

Also, the value of the(2f + 1)-th smallest
timestamp can be updated up tof times after
receivingn � f responses. This can cause
the write back to be initiated for up tof + 1
different timestamps. (for a less tighter bound
note thatacceptableonly holds for up ton
different values).

Thus totally the first round of the write back
message can be sent up to(f + 1) � (f + 1)
times.� and up to(f + 1)� (f + 1) messages for the

15

second round of the write back.

The reader starts initiating the second round
when it gets(n� f) responses. It retries each
time in receives a new response from the pre-
vious round. Since the total number of re-
sponses can only go up ton, the reader will
have to retry only up tof + 1 times.

Also, since there are at most(f +1) different
timestamp values that the reader may try to
decide on, the maximum number of second
round messages sent by the reader is(f+1)�(f + 1).

Also, a reader will only receive from each server� 1 TS message,� up to (f + 1) VALUE messages, sent in re-
sponse to the GETVALUE message,� up to1 FWD message, forwarded in response
to a concurrent write,� up to(f +1)� (f +1) messages in response
to the messages send by the client for the first
round of the write back, and� up to(f+1)�(f+1) messages in response to
the messages sent by the client in the second
round. �

Any reader or server that sends more than
the maximum number of messages specified by
Lemma19 in a particular operation can be detected
as faulty and ignored (by the receiver). For simplic-
ity, we do not explicitly show this in the pseudocode
provided.

Lemma 20 (Write Boundedness).The total num-
ber of messages exchanged between the server and
the writer during a write operation is bounded.

Proof: During each write operation, the writer sends
three WRITE messages and receives three acknowl-
edgements from each server. The sizes of the replies
from servers are bounded. In addition, by Theo-
rem 4, the messages exchanged in the GetConcur-
rentReaders sub-protocol are bounded. �

5 Multiple Writers
The protocol presented in Section3 can eazily be
extended to support multiple writers using standard
techniques. We assume that each writer has a unique
identifierwi, and that the set of writer identifiers is
totally ordered.

To implement am writer atomic register, each
server maintainsm copies of its data structures –
one for each server. To perform a read operation, the
reader preforms a read to get the latest value from
each of them writers and chooses the one with the
highest timestamp. If there are values from differ-
ent writers with the same timestamp, ties are broken
based on the ordering of the writer’s id. The writer
operation is mostly similar to the writer operation
for the single writer presented in Section3. The only
challenge is in the way timestamps are incremented
to implement non-skipping timestamps.

In order to implement non-skipping timestamps,
the writer preforms a (multi-writer) read operation
to get the value-timestamp information for the latest
completed write. The writer then chooses the next
higher timestamp for its current write.

6 Related Work
Distributed storage systems have been widely stud-
ied in [1, 2, 3, 4, 5, 6, 8, 9, 10]. These works vary
widely in terms of the consistency semantics pro-
vided, resilience to faults and client failures, and the
assumptions about the environment.

Atomic semantics:Malkhi and Reiter first used
quorum systems to build a scalable distributed stor-
age system [9]. Their system uses self-verifying
data to achieve atomic semantics withn � 3f + 1
replicas. Martin et al. were the first to imple-
ment an atomic register for generic data in an asyn-
chronous system with unbounded number or read-
ers and writers using the optimal3f + 1 repli-
cas [10]. They achieve atomic semantics with-
out reader write-back, so they can trivially handle
Byzantine readers. However their protocol is not
wait-free, may require an unbounded number of
messages during a read operation, and it is vulnera-
ble to faulty servers causing the timestamps to grow
infinitely large.

16

Non-skipping timestamps:Bazzi and Ding [3]
introduced non-skipping timestamps to counter the
rapid exhaustion of the timestamp space: they re-
quire4f+1 replicas . Cachin and Tesaro [5] achieve
non-skipping timestamps using3f + 1 replicas us-
ing threshold cryptography. Their solution can tol-
erate both Byzantine readers and writers but re-
quires servers to communicate among themselves
and needs cryptography.

Wait-freedom: Abraham et al. show that con-
structing a wait-free register in a shared memory
model with < (4f + 1) replicas requires a two-
round write operation for at least one server [1].
In [1], they show a wait-free construction of a safe
register that uses only3f + 1 replicas. In [2] they
also develop a wait-free regular register but requiren � 4f + 1 replicas.

Recently, Guerraoui and Vukolic have proposed
the novel abstraction ofrefined quorum systemsto
capture both (i) the worst case conditions with asyn-
chrony, contention and failures (ii) and also, the best
case conditions involving synchrony, no contention,
and no failures [6]. Using this abstraction, they pro-
vide a distributed storage implementation that guar-
antees wait-free atomic semantics in a shared mem-
ory model for generic data without any authentica-
tion primitives with optimal (best-case) complex-
ity(number of rounds). This solution is optimally
resilient (it requiresn � 3f + 1), but it does not
address worst case boundedness as we do. Under
adversarial contention and asynchrony assumptions,
the solution allows a read operation to send an un-
bounded number of messages. Our solution guar-
antees boundedness in all executions, but in the ab-
sence of adversarial conditions, read and write op-
erations in our solution require a larger number of
rounds than those of their solution. Their solution
does not tolerate Byzantine readers as we do.

Finiteness: Bounded Wait-free registers were
first introduced in [4], but required4f + 1 replicas
and were only partially bounded: messages between
the writer and the faulty servers could be infinitely
large. Also, [4] only considers benign clients.

Byzantine Readers: Handling faulty clients
(readers and writers) has been considered by [5,
8, 10]. All these approaches are based on cryp-

tographic primitives that rely on the unproven as-
sumption about the computation hardness of prob-
lems such as factoring and discrete logarithms, and
involve communication between servers.

currsize

References
[1] I. Abraham, G. V. Chockler, I. Keidar, and D. Malkhi. Byzantine

disk paxos: optimal resilience with byzantine shared memory. In
Distributed Computing, pages 387–408. Springer-Verlag, April
2006.

[2] I. Abraham, G. V. Chockler, I. Keidar, and D. Malkhi. Wait-free
regular storage from byzantine components.IPL, July 2006.

[3] R. A. Bazzi and Y. Ding. Non-skipping timestamps for byzantine
data storage systems. InDISC ’04, pages 405–419, London, UK,
2004. Springer-Verlag.

[4] R. A. Bazzi and Y. Ding. Bounded wait-free f-resilient atomic
byzantine data storage systems for an unbounded number of
clients. In DISC ’06, pages 299–313, London, UK, 2006.
Springer-Verlag.

[5] C. Cachin and S. Tessaro. Optimal resilience for erasure-coded
byzantine distributed storage. InDSN, pages 115–124, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[6] R. Guerraoui and M. Vukolic. Refined Quorum Systems. Tech-
nical Report LPD-REPORT-2007-001, EPFL, 2007.

[7] L. Lamport. On interprocess communication. part i: Basic for-
malism.Distributed Computing, 1(2):77–101, 1986.

[8] B. Liskov and R. Rodrigues. Byzantine clients rendered harm-
less. InDISC 2005, pages 311–325, London, UK, 2005. Springer-
Verlag.

[9] D. Malkhi and M. K. Reiter. Secure and scalable replication in
phalanx. InProc. 17th SRDS, pages 51–58, 1998.

[10] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal byzantine stor-
age. InDISC ’02, pages 311–325, London, UK, 2002. Springer-
Verlag.

17

Definitions:
valid(hv; tsi) , jfs : hv; tsi 2 Values[s]gj � f + 1
notOld(hv; tsi) , jfs : last omp[s℄ � tsgj � 2f + 1
fwded(hv; tsi) , jfs : fwd[s℄ = hv; tsigj � f + 1
read()f8s: last comp[s] = ?8s: fwd[s] = ?8s: Values[s] = ;

// Phase R1
9: RequestTimestamp()

repeat
10: on receive(TS, s, ts) from server s
11: last comp[s] = ts

12: on receive(FWD, s,hv; tsi, V als) from server s
13: fwd[s] = hv; tsi
14: Values[s] = Values[s][V als
15: until (jfx : last omp[x℄ 6=?gj � n� f)

// Phase R2
16: RequestValue()

repeat
17: on receive(TS, s, ts) from server s
18: last comp[s] = ts
19: RequestValue()

20: on receive(VALS, s,V als) from server s
21: Values[s] = Values[s][V als
22: on receive(FWD, s,hv; tsi, V als) from server s
23: fwd[s] = hv; tsi
24: Values[s] = Values[s][V als

until
�9hv; tsi : fwded(hv ; tsi)

25: _� notOld(hv ; tsi) ^ valid(hv ; tsi) ��
// Phase R3

26: WriteBack(ts)
27: return hv; tsig

RequestTimestamp()f
send(GET TS) to allg

RequestValue()f
send(GET VAL) to allg

WriteBack(ts) f
// Round 1

28: send(WBACK VAL, ts) to all
29: wait for (n� f) acks.

// Round 2
30: send(WBACK TS,ts) to all
31: wait for (n� f) acks. g

Figure 2: Reader’s protocol

Initialization:
READERS := ;
RNextVal := ?
server()f

// Write Protocol messages
32: on receive(NEXT VAL, hv; tsi) from writer
33: RNextVal:= hv; tsi
34: on receive(WRITE VAL) from writer
35: if (RVal.ts< RNextVal.ts)
36: RPrev2:= RPrev
37: RPrev := RVal
38: RVal := RNextVal

39: sendWRITE-ACK1 to the writer

40: on receive(WRITE TS,ts, CR) from writer
41: if (Rts< ts)
42: Rts:= ts
43: for eachr 2 CR:
44: send(FWD, s, RVal, f RVal, RPrev, RPrev2g) to r
45: READERS= READERSn CR
46: sendWRITE-ACK2 to the writer

// Read Protocol messages
47: on receive(GET TS) from reader r:
48: READERS.enqueue(r)
49: send(TS, s, Rts) to r

50: on receive(GET VAL) from reader r
51: send(VALS, s,f RVal, RPrevg) to r

52: on receive(WBACK VAL, ts) from readerr
53: wait for (RNextVal.ts� ts)
54: if (RVal.ts< ts)
55: RPrev2:= RPrev
56: RPrev := RVal
57: RVal := RNextVal

58: sendWBACK-ACK1 to r
59: on receive(WBACK TS,ts) from readerr
60: wait for (RVal.ts� ts)
61: if (Rts< ts)
62: Rts:= ts
63: READERS.remove(r)
64: sendWBACK-ACK2 to r

// GetConcurrentReaders Protocol messages
65: on receive(GET ACT RD CNT) from writer
66: send(RDRS CNT, s, READERS.size()) to writer

67: on receive(GET ACT RDS, count) from writer
68: send(READERS, s,READERS[1:count]) to writer

69: on receive(GET ACT RDS INS, A) from writer
70: send(RDRS INS, s, READERS\ A) to writer g

Figure 3: Protocol for servers
18

Definitions:
notLarge(s), jfx : ount[x℄ � ount[s℄gj � f + 1
GetConcurrentReaders()f8s: readers[s] :=?8s: count[s] := ?8s: sent[s] := false

union set := ?
send(GET ACT RD CNT) to all servers

repeat
71: on receive(RDRS CNT, s; ount) from servers
72: count[s℄ = ount
73: 8p: if (notLarge(p)̂ sent[p] = false)
74: send(GET ACT RDS) to serverp
75: sent[p] := true

76: on receive(READERS; s;R) from servers
77: if (: sent[s] _ (sent[s] ^ count[s℄ 6= jRj))
78: detect failure of s
79: else
80: readers[s℄ := R
81: until (jfreaders[s℄ : readers[s℄ 6=?gj � f + 1)

82: union set:= [sreaders[s℄
83: for each (s : sent[s℄ 6= true)
84: send(GET ACT RDS INS, unionset)to servers

repeat
85: on receive(READERS; s;R) from servers
86: if (: sent[s] _ (sent[s] ^ count[s℄ 6= jRj))
87: detect failure of s
88: else
89: readers[s℄ := R
90: on receive(RDRS INS, s;R) from servers
91: if (R 6� union set)
92: detect failure of s
93: else
94: readers[s℄ := R
95: until (jfs : readers[s℄ 6=?gj � n� f)
96: CR =

nx : jfs : x 2 readers[s℄gj � (f + 1)o
97: return CRg
Figure 4: Bounded detection of readers: Writer code

19

write() f
98: inc(ts)
99: generateSecretsAndProofs()

// Phases W1–W2
100: cobegin

�
writeVal();
CR = GetConcurrentReaders()	

coend

// Phase W3
101: send(WRITE TS,ts, CR) to all
102: wait for (n� f) acks.g

writeVal() f
// Phase W1

103: 8s: send
�

NEXT VAL, hv; ts; shares; wb seretss; proofssi, �
to server s

// Phase W2
104: send(WRITE VAL) to all
105: wait for (n� f) acks.g

Figure 5: The Writer’s Protocol for handling Byzantine Readers

20

Definitions:
valid(hv; tsi) , jfs : hv; ts; �i 2 Values[s]gj � f + 1
acceptable(hv; tsi) , 9s : last omp[s℄ = ts ^ writingBak(ts) = false
notOld(hv; tsi) , jfs : last omp[s℄ � tsgj � 2f + 1
fwded(hv; ts; �i) , jfs : fwd[s℄ = hv; tsigj � f + 1
GetShares(hv ; tsi) , fxj9s : hv; ts; xi 2 V alues[s℄g
read()f8s: last comp[s] = ?8s: fwd[s] = ?8s: Values[s] = ;8ts: writingBack[ts] = false

written back value = ?
// Phase R1

106: send(GET TS) to all
107: repeat
108: on receive(TS, s, ts) from server s
109: last comp[s] = ts

110: on receive(FWD, s,hv; ts; shi, V als) from server s
111: fwd[s] = hv; ts; shi
112: Values[s] = Values[s][V als
113: on receive(VALS, s,V als) from server s
114: Values[s] = Values[s][V als
115: until (jfx : last omp[x℄ 6=?gj � n� f)

// Phase R2
116: send(GET VAL) to all
117: repeat
118: on receive(TS, s, ts) from server s
119: last comp[s] = ts
120: send(GET VAL) to all

121: on receive(VALS, s,V als) from server s
122: Values[s] = Values[s][V als
123: on receive(FWD, s,hv; ts; shi, V als) from server s
124: fwd[s] = hv; ts; shi
125: Values[s] = Values[s][V als

if
�9hv; tsi: fwded(hv ; tsi)

126: _� notOld(hv ; tsi) ^ acceptable(hv ; tsi) ^ valid(hv ; tsi) ��
127: writingBack[ts] = true
128: fork WriteBack(hv; tsi)
129: until (written back value 6=?)

130: return written back valueg
Figure 6: Reader’s protocol (part 1 of 2)

21

WriteBack(hv ; tsi) f
// Round 1

131: Shares = GetShares(hv ; tsi)
132: send(WBACK VAL, ts, Shares) to all
133: repeat
134: on receive(WBACK VAL ACK, s,proofs or bottoms , ts) from server sACKS1 = ACKS1[fproofs or bottomsg
135: if (Shares 6= GetShares(hv ; tsi))
136: goto line 131

137: until WBACK VAL ACK’s are received fromn� f different servers
// Round 2

138: local wb2 cnt=0;
139: ACKS1 = set of WBACK VAL ACK messages received
140: send(WBACK TS,ts, ACKS1) to all
141: repeat
142: on receive(WBACK VAL ACK, s,proofs or bottoms , ts) from server sACKS1 = ACKS1[fproofs or bottomsg
143: goto line139

144: on receive(WBACK TS ACK, s, ts) from server s
145: wb2 cnt++

until wb2 nt � n� f
written back value =hv; tsig

Figure 7: Reader’s protocol (part 2 of 2)

22

Definitions:
consistent(Shares, givenshare), Shares contains at leastf + 1 shares, such that the secret polynomialF

generated by thesef + 1 shares agrees with the givenshare (i.e. givenshare =F [s]).
secretsMatch(Proofs, mySecrets), At least2f + 1 proof values in Proofs match the corresponding values in mySecrets

i.e. jfxj9y : mySerets[x℄ = Proofs[y℄[x℄gj � 2f + 1
Initialization:
READERS := ;
RNextVal := ?
server()f

// Write Protocol messages
on receive

�
NEXT VAL,

146: hv; ts; shares; (wb serets1; wb serets2; : : : ; wb seretsn); (proofs1; proofs2; : : : ; proofsn); i � from writer
RNextVal:= hv; ts; sharesi
RNextWBproof:= (proofs1; proofs2; : : : ; proofsn)
RNextWBsecret:= (wb serets1; wb serets2; : : : ; wb seretsn)

147:
148: on receive(WRITE VAL) from writer
149: if (RVal.ts< RNextVal.ts)
150: RPrev2:= RPrev
151: RPrev := RVal
152: RVal := RNextVal
153: RValsecrets := RNextWBsecret
154: RValproofs := RNextWBproof

155: sendWRITE-ACK1 to the writer

156: on receive(WRITE TS,ts, CR) from writer
157: if (Rts< ts)
158: Rts:= ts
159: for each r 2 CR:
160: send(FWD, s, RVal, f RVal, RPrev, RPrev2g) to r
161: READERS= READERSn CR
162: sendWRITE-ACK2 to the writer

// Read Protocol messages
163: on receive(GET TS) from reader r:
164: READERS.enqueue(r)
165: send(TS, s, Rts) to r

166: on receive(GET VAL) from reader r
167: send(VALS, s,f RVal, RPrevg) to r

Figure 8: Protocol for servers (part 1 of 2)

23

168: on receive(WBACK VAL, ts, shares) from readerr
169: wait for (RNextVal.ts� ts)
170: if (RVal.ts> ts)
171: send(WBACK VAL ACK, s,?, ts) tor
172: else if(RVal.ts= ts)
173: send(WBACK VAL ACK, s, RValproofs, ts) tor
174: else if(consistent(shares,RNextVal.share))
175: RPrev2:= RPrev
176: RPrev := RVal
177: RVal := RNextVal
178: RValsecrets := RNextWBsecret
179: RValproofs := RNextWBproof
180: send(WBACK VAL ACK, s, RValproofs, ts) tor
181: else if((?2 shares))
182: wait for (RVal.ts� ts)
183: if (RVal.ts> ts)
184: send(WBACK VAL ACK, s,?, ts) tor
185: else if(RVal.ts= ts)
186: send(WBACK VAL ACK, s, RValproofs, ts) tor

else
187: // ignore

188: on receive(WBACK TS,ts, PROOFS) from readerr
189: wait for (RVal.ts� ts)
190: if (Rts� ts)
191: READERS.remove(r)
192: send(WBACK TS ACK, s, ts) to r
193: else if(Rts< ts^ secretsMatch(PROOFS,RValsecrets))
194: Rts:= ts
195: READERS.remove(r)
196: send(WBACK TS ACK, s, ts) to r
197: else if(?2 PROOFS)
198: wait for (Rts� ts)
199: READERS.remove(r)
200: send(WBACK TS ACK, s, ts) to r

else
201: // ignore

// GetConcurrentReaders Protocol messages
202: on receive(GET ACT RD CNT) from writer
203: send(RDRS CNT, s, READERS.size()) to writer

204: on receive(GET ACT RDS, count) from writer
205: send(READERS, s,READERS[1:count]) to writer

206: on receive(GET ACT RDS INS, A) from writer
207: send(RDRS INS, s, READERS\ A) to writerg

Figure 9: Protocol for servers, (part 2 of 2)

24

	Introduction
	Model/Assumptions
	Lightweight Write Back
	Protocol Overview
	Protocol Description
	Protocol Correctness
	Validity and Wait-freedom

	Bounded Detection of Readers
	Protocol Description
	Proof of Correctness

	Byzantine Readers
	Protocol Correctness
	Secrets are hard to guess
	Atomicity
	Validity and Wait-freedom
	Boundedness

	Multiple Writers
	Related Work

