Lightweight writeback for Byzantine storage systems
Amitanand S. Aiyet, Lorenzo Alvisi, and Rida A. BazZi

fUT Austin
tArizona State University

Abstract read and write semantics are possible, but stronger

We present the first optimally resilient, bounded, Seémantics are not [|. We consider implementations
wait-free implementation of a replicated register With atomic semantics in this paper.

providing atomic semantics in a system in which We consider solutions in a system mfservers
readers can be Byzantine, up foservers ¢ > that do not communicate with each other and in

(3f + 1)) are subject to Byzantine failures and which up tof servers are subject to Byzantine fail-
servers do not communicate with each other. Un- ures (f-resilient), any number of clients can fail
like previous solutions, the sizes of messages sent?Y crashing (wait-free), and readers can be subject
to writers depend only on the actual number of ac- to Byzantine failures. Systems in which servers
tive readers and not on the total number of readersd0 Not communicate with each other are interest-
in the system. Timestamps generated by our solu-iNg because such solution can be relatively easily
tion are non-skipping and messages sent to readerdranslated into solutions in a shared object model.
and writers contain only a finite number of values, AlSO, solutions that depend on communication be-
operation identifiers, and timestamps. We introduce tween servers tend to have high message complex-
lightweight write backa new mechanism which en- ity, quadratic in the number of serverH) 5].

ables readers to write back only the (non skipping) Of part_icular interest are sqlutions that bound
timestamp of the value read and not the value itself. e bandwidth consumed by client-server commu-
This is particularly important since Byzantine read- Nication. Bazzi and Ding4] present a solution that
ers that write back a value could force the servers (i) requires clients and servers to exchange a finite
to process infinitely large messages, whereas a nonllumber of messages and (ii) limits the size of the
skipping timestamp is practically finite in size. With Mmessages sent by the servers to the readers: the size
a novel use of secret sharing techniques combined©f these messages is bound by a constant times the
with writeback throttling, we manage to tolerate 0garithm of the number of write operations per-
Byzantine readers without the use of any unproven formed in the system—or, equivalently, by a con-

. this solution allows messages sent to writers to be as
1 Introduction large as the maximum number of potential readers

Distributed storage systems in which servers are in the system, even during times when the number
subject to Byzantine failures have been the subjectof actualreaders is small. Further, the solution re-
of much study 1, 2, 3, 4, 5, 6, 8, 9, 10]. Results quires at leastf + 1 servers. In4], a distinction
vary in the assumptions made about both the systemis made betweeamortized boundedolutions and
model and the semantics of the storage implemen-boundedsolution(See sectioB.3). It is natural to
tation. The system parameters include the numberask whether it is possible to provide similar (or even
of clients (readers and writers), the synchrony as- better) boundedness properties whe 4f.
sumptions, the level of concurrency, the fraction of In this paper, we show that it is possible to
faulty servers, and the faulty behavior of clients. In have a wait-freef-resilient atomic solution in the
the absence of synchrony assumptions, atorffic [non-communicating server model that requires only

3f + 1 servers, satisfies all the amortized bounded-
ness guarantees of Bazzi and Ding’s solution, and

est timestamp, we are, in a sense, assuming that
all the servers that are not heard from have higher

provides boundedness guarantees also on the sizémestamps and then choosing tfiet+ 1'st largest

of messages sent to writers. 4], a distinction

is made betweeamortized boundedolutions and
boundedsolution. For write operations, we show
only amortized boundednes. For read operations,

amongst the timestamps all servers, whether they
have been heard from or not. What makes this ap-
proach work is the continuous update of ffet-1'st
smallest timestamp as responses are received from

we show amortized boundedness but, using the tech-new servers.

nigues of fi], we can transform this solution into
a bounded solution. Our solution tolerates Byzan-
tine readers without the use of any unproven cryp-

tographic assumptions, such as hardness of factor-

ing or of computing discrete logarithms, on which
public-key cryptography depends. Further, it dif-
fers from all previous solutions that achieve atomic

Writing back timestamp We do away with the re-
qguirement of writing back values by adding an extra
communication round to the write operation which
enables the reader to ascertain, when it writes back a
timestamp, that the writer's message containing the
corresponding value will be eventually received by
all correct servers.

semantics in the non-communicating server model

(bounded or otherwise) in requiring readers to write Bounding message sizes to writerg/e bound the
back only the timestamps of the values they read, Sizes of messages sent to servers using three rounds
rather than the values themselves. Slightweight of communication betwwen writers and servers.
write back while intriguing in itss own right, is of ~ These rounds occur in parallel with the first two
particular interest when considering Byzantine read- rounds of the write protocol and no server receives
ers: if the values written by writers are not of fixed a total of more than two messages across the three
size (large files for example), a Byzantine reader rounds. In the first round, the writer estimates the
can write back a very large value (potentially un- number of concurrent readers; in the second and
bounded) and force the servers to check whetherthird rounds it determines their identities.

the written back value is valid—this is true even Tolerating Byzantine readersWe use writeback
for solutions that use unproven cryptographic as- hrotiling to tolerate Byzantine readers without us-
sumptions. By_ writing back only the the timestamp, ing unproven cryptographic assumptions. The idea
a read operation always costs a server a boundeds for the writer to associate with each value it writes
amount of work to process. To our knowledge, this poip g primary secret (a polynomial of degrég
issue was not considered in previous work. gnd a set of secondary secrets (random strings).
To achieve our results, we build on existing gach server receives from the writer a share of the

work and introduce some new techniques. We useyrimary secret, a unique set of secondary secrets,
the concurrent-reader-detection and the write back- p1s a copy of one of the secondary secrets sent

throttling ideas from the atomic wait-free solution of 5 aach of the other servers (we call these copies
Bazzi and Ding 4]. In what follows we give a high 1509, A correct server will not divulge to a reader
level overview of the new techniques we introduce. jis share of the primary secret or its proofs for a par-
ticular value unless it can ascertain that the write op-
eration for that value has made sufficient progress.
tamp of the value to be read in a new way. In- Further, a correct server will not allow a reader to

stead of choosing thg + 1'st largest timestamp Write back a value (or, in our case, the timestamp
as the potential timestamp of a value to read, we Of a value) unless the reader can present (i) in the
choose thé f +1’st smallest timestamp amongst the first round, sufficiently many shares that are consis-
timestamps received. While thfe+ 1'st timestamp tent with the share stored at the server, and (ii) in
worked well forn = 4f + 1 it does not work well the second round, sufficiently many proofs match-
for n = 3f 4+ 1. By choosing thef + 1'st small- ing the stored secrets at the server.

Increasing resiliencyWe reduce increase the re-
siliency of our solution by estimating the times-

2 Model/Assumptions failure for all operations is small. = o+ &' bits,

The system consists of a setofeplicas (servers), Whereo is the number of bits required to represent
a set ofm writers and a set of readers. Readers ON€ operation, then the system failure probability is

and writers are collectively referred to as clients. 27",

Clients have unique identifiers that are totally or- 3 Lig htweig ht Write Back
dered. When considering boundedness of the size . .
of messages, we assume that a read operation in th}Ne now present a protocol that implements a wait-

system can be uniquely identified with a finite bit ree gtc()jmlc rebglste; usingf + 1 rﬁpllcaﬁ] and q
string, otherwise any message sent by a reader Carpoun ed number ol messages, where the reader
does not have to write back the value. The reader

be unbounded in size. The identifier consists of a . : . :
reader identifier and a read operation tag. The num—ms'tead only writes back the timestamp associated

ber of read operations in the system is exponential with the value, Wh'Ch’ N practlce,.can be thought
in the size of the operation identifiers. Similarly of_as_bou_nded since our protocol implements non-
write operations are identified by the writer iden- sklppmg timestamps3]. . . .

tifier and the timestamp of the value being written. Figures1 - 3 present a single-writer-multiple-
Since timestamps are non-skipping, write operation reader version of the protocol that assumes benign

can also be represented by finite strings in practice. readers. In S_eCt'O” we extenql this protocol to
Clients execute protocols that specify havad handle Byzantine readers. This protocol can also

andwrite operations are implemented. We assume _be easily extended to support multiple-writers, us-

that clients do not start a new operation before fin- ing ideas from 4], as described in Sectid
ishing a previous operation. We assume thatupto 3.1 Protocol Overview
servers may be Byzantine faulty and may deviate ar- In our protocol, the writer writes in three phases.
bitrarily from the specified protocol. The remaining |n the first phase, the writer writes a value/times-
(n — f) servers are correct and follow the specified tamp pair and waits for replies from— f servers.
protocol. We require that the total number of servers The second and third phase are more subtle. In the
n be at leas8f + 1. second phase, the writer sends a message to each
We assume that clients cannot spoof each server indicating that the first phase is finished. In
other’s or servers messages and that servers cannahe third phase, the writer sends a message to each
spoof each other’s or client messages. While suchserver indicating that the second phase is finished.
an assumption can be enforced in practice usingWhen a correct server receives a second phase mes-
cryptographic techniques with unproven assump- sage it can conclude that, if the writer executed no
tions, such techniques are not required to enforcefurther writes, at leasf + 1 correct servers have re-
this assumption. We assume FIFO point-to-point ceived the (value,timestamp) pairs sent in the first
asynchronous channels between clients and serversphase. Similarly, if a server receives a third phase
Servers do not communicate with other servers. message, it can conclude that at lefst 1 cor-
Writers can fail by crashing and follow their rect servers have received the second phase mes-
protocol before they crash. In secti@iwe assume sage. The reason for the second and third phases
that the readers can fail only by crashing. Later, will become clearer when we describe the reader’s
we relax this assumption and we consider Byzantine protocol.
readers in sectiod. When considering Byzantine To understand the reader’s protocol, we consider
readers, we make the additional assumption that thea simple scenario. The reader starts by request-
channels between the servers and the writers are priing third phase information from the servers. Each
vate. The probability that a given read operation by server replies with the most current timestamp for
a Byzantine reader improperly writes back a value which it knows that the corresponding write opera-
is 27% wherek is a security parameter. We choose tjon reached its third phase. Now, assume that the
k to be sufficiently large so that the probability of reader receives replies from all correct servers in

response to its request for third phase information. ers will be able to terminate. But if the writer writes
The timestamps returned by these correct serversvalues with timestamps;q,4.5: + 1 to all correct
can be quite different because the reader’s requestsservers and;,,q4¢s: + 2 to only some correct servers
could reach them at different times and the writer and those servers replace the values they store with
could have executed many write operation during these newer values, then the reader might not be able
that time. Of special interest is the largest third to receive enough values whose timestantp,jge.:
phase timestamp returned by a correct server. Letand therefore be unable to terminate. To avoid hav-
us call that timestamfy,,¢.¢- If the writer executes ing the values whose timestamps are equalige.:
no write operation after its write ofj;,ges¢, then, erased, we require servers to keep the three most up
when the reader receives the third phase responsdo date written values. This way, either the reader
with t;4,4e5¢, It can simply request all second phase is independently able to decide which value to read
and first phase messages and be guaranteed to rgiwhen the writer is not fast) or the writer detects the
ceive f + 1 replies with identical value and times- reader and helps the reader to decide on a value by
tamptqrgest; at that time, the reader would be able asking the servers to forward the latest value writ-
to determine that, by reading it would not violate ten.
atomic semantics. Also, having receivéd- 1 sec- There remains the problem of the reader not
ond phase messages 4, 4.s:, the reader knows knowing when it has received replies from all cor-
that the writer completed the first phase of the write rect servers. In fact, in response to its request
(the one in which the value is written): the reader for third phase information, the reader can receive
therefore does not need to write back the value (by replies only fromn — f serversf of which may be
redoing the first phase of the writer) and can limit faulty, and it might not be able to terminate based
itself to completing the second and the third phase on these responses. We handle this situation by sim-
of the write. Hence, at least in this simple scenario, ply assuminghat these: — f messages are all from
it is possible for the reader to maintain atomic se- correct servers. If they indeed are, then the reader
mantics by writing back only the timestamp of the will for sure be able to decide df,,4es: by request-
value read and not the value itself. ing second and first phase information (it is possible
While this scenario is instructive, it is too that the reader will be able to decide even if they
simple—a number of serious complications can oc- are not correct). If, however, the reader is not able
cur. For instance, a fast writer might write many val- to decide, then there are other correct servers whose
ues with timestamps larger thap,g..¢. Also, the replies are not amongst the— f replies, and, wait-
reader does not know when it has received repliesing long enough to decide, the reader will eventu-
from all correct servers. If we assume, for now, ally receive some message from one of the remain-
that the readercan tell when it has received val- ing correct servers. When it receives more messages
ues from all correct servers the we can solve the while it is waiting to decide, the reader recalculates
problems caused by a fast writer by having the fast #;,,4¢s; With the assumption that, with the new mes-
writer help the reader to terminate. This is done sages it received, it must finally have replies from all
by having the writer detect concurrent read oper- correct servers: therefore, the reader re-requests first
ations and then have the writer request from the and second phase information from all servers. This
server toflush outthe written value to concurrent process continues until the reader indeed receives
readers. This is the same approach takendin [replies from all correct servers, in which case, it is
but our protocol for detecting concurrent read oper- guaranteed to decide.
ations consumes bounded bandwidth, whereas that Finally, in the above discussion we have as-
of [4] is unbounded. Our solution guarantees that sumed that the reader can be certain agQes:
if the writer completes the write of a value whose really is—in reality, in our protocol the reader can
timestamp is larger thaf,,4es: + 1, then it will be only estimatef;,,4es¢ Dy Using the2 f + 1'st largest
able to detect any concurrent reader and such readthird phase timestamp. We will show that this is suf-

ficient to guarantee that the reader can decide andeach server asking it to (i) forward the values stored

that its decision is valid. at the server to the concurrent readers detected by

3.2 Protocol Description the writer, and (ii) update the value oRts. Af-

ter forwarding the messages and updating the set of
e ") active readers, the server acknowledges the writer.

until it finishes writing the previous value. We also

assume that each message is tagged with the id of The write operation completes when the writer
. message 1S fagg receives(n — f) acknowledgements in the third

the operation to which it pertains and messages thatIohase

do not pertain to the current operation are ignored. '

F implicit q ¢ show th ‘ in th The Read operation: The read operation can
CgcrjeS'mp'C' Y, We do not show these 1ags In e 5150 be considered to be taking place in three phases.

The Write operation: The main write opera In the first two phases, the reader contacts the
L pet ' P servers to gather a value that satisfies both the va-
tion is performed in three phases (rounds of mes-

sage exchanges). The writer also runs the GetCon lidity (valid) and freshnessnotOld) criterion. In
9 9es). . . _—these phases, the reader also collects responses from
currentReaders sub-protocol in parallel with the first

N h — d to the third ph th i servers, that are not solicited by the reader, but have
Wo phases. 10 proceed fo the third pnase the Writery, . o, 5varded by the servers because of the writer
waits for the completion of the second phase and

for the GetConcurrentReade b-nrotocol to te (FWD messages in lines2 and 44). To proceed
mirnate oncurren s sub-proto ™ to the third phase, the reader waits either (i) until

. it finds a value that satisfies both the validity and
The GetConcurrentReaders sub-protocol is ex- - . . .

lained in Sectio8.4 We no esent the mai freshness conditions, or (ii) until it knows that it has
b .;n ! i ctiors.4. h ;NGprtCsen rtnR md a value that has been forwarded by the wriferded
\2’” e_opelra |ontas;g;n;{1eg ad Ceon onnc]lérrego Ege('jis true). On finding such a value, the reader writes
b;S é') .gt\évagsd ermi { ns ?cr: the S.E[Je tt?e 'dgnt' back the timestamp in phase 3 to complete the read.
andwidm, an (ii) returns > WITter ! - In the first phase (R1), the reader asks for the
fiers of all concurrent read operations that are known

. timestamp of the latest completed write at each
to all correct servers and have not terminated before . . .
server. This information is received by the servers
GetConcurrentReaders ends.

In the first phase of a write operation (W1), the during the third phase of the write (W3) and is stored

writer sends the value-timestamp pair that it intends In Rts. On recelving this request, the servers re-

. PP spond with the timestamp stored Ris. The reader
to write to all the servers after starting the GetCon- . .

: . waits to collect at leastn — f) responses before it

currentReaders sub-protocol in parallel. On receiv- begins the next phase
!ngotfr:]ea;_/slu?—tlr;lﬁztew; Fﬁg’ fze Zer&/erikstorel this In the second phase (R2), the reader requests the
information X _(' _7) N acknowr — —sarvers for the values stored at the server and col-
edges the writer. The writer waits to collect at least

acknowledaements before proceeding to the lects them. In this phase the reader will re-request
r(:;;[J;)hase 9 P 9 the servers for the values, if the reader receives a

. timestamp response from one of tlfieservers that
message 15 all the Semers 16 update the currendld 10t 1€3PoNd in the previous phase (RY). The
g . P . reader keeps collecting responses and re-requesting
value-timestamp pair at the servers. On receiv- A . .
. . . values, until it finds a value-timestamp pair that sat-
ing this message, the servers repla¢®val with

isfies both the validity and freshness criterion (i.e
RNextVaI, and updateRP_revand RI_DreVZaccord_— notOldandvalid hold true in linel126).
ingly, before acknowledging the writer. The writer

N has t itt ; t ledst K | In the final phase, the reader writes back the
2ggg]m:r?tso waitto receive at legat- f) acknowl- timestamp corresponding to the value-timestamp

Before beginning the third phase (W3), the pair that either satisfies both the validity and fresh-

) i ness conditions or has been forwarded by the writer.
writer waits for the GetConcurrentReaders sub- y

. The write back is done in two rounds, one after an-
protocol to end. The writer then sends a message to

We assume that a writer will not write a new value

other, and correspond to the writer’s operation for Given this ordering, to prove atomicity, it is suffi-

phases W2 and W3. cient to prove the following lemmas (whose proofs
For the first write back round, the reader only can be found in the Appendix).

sends the timestamp of the value that is decided

upon to all the servers. On receiving this times-

tamp, the servers wait until they directly receive

the writer's message from phase W1, to update the

value, before acknowledging the reader. The readerp, . since the writer has already completed the
has to wait for(n — f) acknowledgements before \jte operation for timestamp, no correct server

ste_lrting the next round. In the second round of the | . t5\vard a message saying that the latest times-
write back, the reader asks all the servers to updatetamp isz for anyz < ¢. Thusfwded((v, z)] cannot

Lemma 1. If a writer completes a write for times-
tampt, no further reader will satisfy fwdedy,)]
foranyx <t.

thelr_tllmestamp for the latest completed write. On become true for any < ¢. 0
receiving(n — f) acknowledgements for the second
round, the read operation completes. Lemma 2 (W-R atomicity). Once a writer com-
pletes a write operation for a value with timestamp
write() { t, no read operation that starts after the write opera-
L inc(ts) tion terminates will return a value with a timestamp
/I Phases W1-W2 smaller thant
2: cobegin { . . .
writeVval(); Proof: When a writer completes write for times-
. feF;; GetConcurrentReaders() tampt, all but f processes would have set their value
} of timestamp Rtsto ¢. Thus a later read cannot re-
' /I Phase W3 ceive more thar2f timestamps (with the TS mes-
p se”\‘,jvg’i\t’%: '(EAT_S';i'a(C:ES).tO al sage) that arec t. ThusnotOld[x] will always be
} false for any value< ¢
. Also, from lemma9, fwded[v,)] cannot be-
writeVal() {
/I Phase W1 come true for any < t. O
5: send(l_lEXT_VAL, (v, ts)) to all
6: wait for (n — f) acks Lemma 3 (R-R atomicity). Once a read operation
/| Phase W2 returns a value with timestantpno future read will
7 send(WRITE_VAL) to all return a value with a smaller timestamp.
8: wait for (n — f) acks }

Proof: When a reader completes the write back for
timestamp, all but f processes would have set their
value of timestampRtsto ¢. Thus a later read can-
3.3 Protocol Correctness not receive more thaf timestamps (with the TS
We show that the protocol implement atomic seman- message) that are t. Thus, for any later reader,
tics, that the value read by readers are valid, andnotOld[x] will always be false for any value ¢

that the operations always terminate even if some Also, since the reader has returnedhe writer
client crash in the middle of their operations. We has already completed the write operation for times-
also show that the protocol is bounded. tampt — 1. Thus, from lemma®, fwded[(v,)] can-

Atomicity We order all operations according to Notbecome true forany <¢ — 1. O
their timestamps. The timestamp of a write opera- 3.3.1 Validity and Wait-freedom

tion is the timestamp of the value being written and The following lemmas have simple proofs that can
the timestamp of a read operation is the timestamp pe found in the Appendix.

of the returned value. When two operations have the

same timestamp, we order the write before the read.Lemma 4 (Correctness). A read only returns a

Figure 1: The Writer’s Protocol

value that is written by a writer.

Proof: A value is set as the chosamlue has to
satisfy eitherfwdedor valid. Since at leasf + 1

servers are required to return the same value for ei-
ther of these conditions, at least one of them must be

forward values for timestamfg ¢t + 1 andt + 2 to
the reader.

For correct servers that never receive the final
message for write + 2, consider the following two
cases:

correct. Correct clients only accept values received Casel:tsma, < t. At mostf correct servers may

from the writer. O

Lemma 5 (Write Liveness). A write operation al-
ways terminates and is wait-free.

Proof: Theoreml shows that the GetConcurren-
tReaders sub-protocol always terminates.

In the remainder of a write operation, the writer
only waits forn — f responses at any stage. Since
at mostf servers are faulty, it follows that a write
operation always terminates and is wait-free. [

Lemma 6 (Read Liveness).A read operation al-
ways terminates and is wait-free.

Proof: Proof by Contradiction. Assume that a read
operation never terminates.

Eventually the reader should receive acknowl-
edgements for the GETS message from all the
correct processes. Let the global time at that in-
stance bets.

Let ¢ be the timestamp of the last write to have
completed beforgtsg, andts,,., be the timestamp
of the (2f + 1)-th smallest timestamp calculated by
the reader (agtsy).

The writer could be writing timestamip+ 1 but,
it would not have started writing timestampt 2.
Thus,

tSmaz < tiargest <t + 1

wheretq, 4¢5¢ 1S the largest (third phase, W3) times-
tamp value received from the correct servers.

If the writer has already detected the reader dur-
ing a previous write, then eventually the reader will
eventually receivef + 1 forwarded messages from

the correct servers and will be able to decide on the

forwarded value-timestamp pair.
If not, by theorem, if the writer writes times-
tampt + 2, the writer will detect the read operation

during the GetConcurrentReaders sub-protocol for

write ¢t + 2. On receiving the third phase message
(W3) from the writer, all correct servers (in W3) will

7

not have received the value for timestamp/Nhen

the reader receives responses from all the correct
servers for the RequestValue() phase initiated after
gtso, the reader will have at leagt+ 1 matching
value timestamp pair&, ts) for ts = ¢t. Thus, the
reader would decide on the value with timestaimp
after writing it back to the servers.

Case 2its;me: == t + 1. Since at least one correct
server has updated the value of lasmp to bet + 1
it must be the case that the client (the writer, or the
reader doing a write-back) must have receiwed f
responses from servers that have upda®élwith
timestamp + 1.

Thus, when the correct servers among these
n — f servers respond to the RequestValue() phase,
the reader will havef + 1 matching responses for
timestamp + 1 to decide on.

O

BoundednessA solution is amortized boundedrif
operations do not generate more thanx k mes-
sages, for some constahtwithout some servers
being detected as faulty. In an amortized bounded
solution, a client executing a particular operation
might have to handle an unbounded numbelaté
messages. In a bounded solution a client operation
will always handle no more thah messages for
some constank and if more thark messages are
received, the faulty behavior of some servers will be
detected.

In this section we show that our solution is
amortized bounded. The solution does not rule out
the possibility that a reader receives many unso-
licited messages from a server. All we can do in
that case is to declare the server faulty and our proof
of boundedness does not apply to such rogue servers
that are detected to be faulty.

To make the solution bounded for the reader
techniques such ad][can be used. We omit these
details from the presentation here.

Lemma 7 (Boundedness).The total number of indeed active or are just the fabrication of a faulty
messages exchanged between the server and thserver: because it is possible that some servers may
reader for each read operation is bounded have begun processing read requests that have not
yet reached the other servers, faulty servers can send
arbitrarily long lists of bogus active operations with-
out being detected as faulty.

We would like a solution that maintains the de-
sired functionality but somehow bounds the size
_ of the responses that a writer can receive, so that
to (f + 1) VALS messages sent in response 10 the geryers that send longer messages would be imme-
GET.VAL message, up td VALS messages for- giately unmasked as faulty. Clearly, no bounded so-
warded in response to a concurrent write, and 2 ac-|tion s possible if the number of readers is infinite,
knowledgements in response to the WBAGKL because it would not be possible to bound the size of
and WBACKTS messages. U areader identifier. We therefore assume that the set

Lemma 8 (Write Boundedness).The total number of readers (and thus the size of a reader’s identifier)

of messages exchanged between the server and th& finite. Und_er these as_sumptlo_ns, a simple way
writer during a write operation is bounded. to bound the implementation outlined above would

be to prohibit servers from sending lists of active
Proofs for the above lemmas are in the Appendix. reader operations that are larger than the maximum
Proof: During each write operation, the writer sends numberr,,,, Of potential operations in the system.
three WRITE messages and receives three acknowl-However, this solution is profoundly unsatisfactory
edgements from each server. The sizes of the repliesbecause the number of active reader operations can
from servers are bounded. In addition, by Theo- be very small when compared tg,,,. For exam-
rem 4, the messages exchanged in the GetConcur-ple, if an operation can be represented with 100 bits
rentReaders sub-protocol are bounded. O (50 for reader identifiers and 50 to differentiate op-
3.4 Bounded Detection of Readers erations), then server responses could still contain
up to 2% operations even when only a handful of
readers are active. ldeally, the response size should
be proportional to the number of active reader op-
erations: only solutions that match this ideal can be
“called bounded in any practical sense. Luckily, this
match is exactly what the solution that we are about
to present guarantees. In our solution, the size of
messages sent by any server cannot be larger than
the size ofr,,,4, plusthe size of the list of identifiers

Proof: For each read operation, the reader sends
to each server a maximum of 1 GHIS message,

f + 1 GET_VAL messages, 1 WBACK/AL mes-
sage, and 1 WBACKI'S message. Also, a reader
will only receive from each server 1 TS message, up

The protocol requires that the writer be able to de-
tect the presence of ongoing read operations—more
specifically, a writer that invokes GetConcurren-
tReaders() after all correct servers have begun pro
cessing a read requestissued by client, must be
able to identifyr (assuming- does not terminate be-
fore the end of the execution of the detection proto-
col). We recall here that a read operation is uniquely

determined by a reader identifier and an operation of the active reader operations (readers with ongo-

tag. We also recall that a reader does not issue aing operations). Note that the size g, is 10g-

read ?Pera/‘l"’? belfore st?rtyng Ifm'Sh'??ha prev_louds arithmic in the number of different operations (this
operation. A simple way to Implement tn€ required 4, o, jes the reader identifier and the operation tag)

functlona}[lr;ty |stforfthe vv_nter todcollecti_ fromﬂ?II and therefore is of the same order of magnitude as
servers, the sets of ongoing read operationsdthe the size of an operation identifier (assuming identi-

tive reader operat_lor)sand o identify th_os_e among - fier are of fixed size). The GetConcurrentReaders
them that appear in at leagt 1 sets: this is the ap- protocol is shown in Figuré

proach taken in4]. Unfortunately, when it receives 341 P D -
alist of allegedly active reader operations, the writer =™~ rotoco eSC”Ptlon_ .

has no way, in this implementation, to determine The idea of the protocol is to first estimate the num-
whether the received sets contain operations that aréd€r of active reader operations in the system and

then accept lists of active reader operations whoseare correct. So, the writer constructs the union of all
size is bounded by this estimate. The difficulty the active list sets received by the end of phase 1. As
is in ensuring that all genuinely active operations, we just indicated, the union set must contain all ac-
and only those, are detected. The protocol has twotive reader operations whose request messages have
phases. In the first phase, the writer determines a seteached all correct servers before the start of the de-
of servers who are returningvalid active list count, tection protocol.

i.e. a count of active reader operations that does not(2) In the second phase, the writer sends the union
exceed the count returned by at leastnecorrect set to all servers from which it hamtrequested an
server. In the second phase, the writer collects activeactive list. On receipt of the union set, a serger
reader operations sets whose overall size is boundeds required to send the intersection of the union set
by the sum of the valid active list counts determined with its own active list. The writer collects replies

in the first phase. The protocol guarantees that thefrom the servers from which it did not receive a list
sets collected in the second phase detect all ongo-of active readers in the first phase. There are two
ing read operations. We describe the two phases intypes of such servers. First, the servers that received
more details in what follows. a request for their list of active reader operations in
(1) The first phase involves two communication phase 1, but did not return their response in time,
steps. In the first communication step, the writer before the end of phase 1. Second, the servers that
prompts the servers for their active list count and were not sent a request in phase 1 and are replying to
determines which servers returnvalid active list intersection requests made in phase 2. The second
countcount where a countountis valid if there phase ends when the total number of servers that
are at leasif + 1 servers that return a count equal send lists either in the first or the second phase is
to or greater tharrount This means that there is greater than or equal to — f. After the end of the

a least one correct server whose count is equal tosecond phase, the writer includes every reader that
or greater tharcount In the second communica- appears irf + 1 active reader sets in the $8iR of

tion step, the writer requests the actual list of active active readers.

reader operations from every server that returned a3 4.2 Proof of Correctness

valid count. Here_ there is a sllg_ht technicality, S Theorem 1 (Termination). The GetConcurren-
the number of ac_tlve re_‘ad operatlo_ns that are aCt'VetReaders() protocol always terminates if the writer
at the servers with valid counts might have grown never crashes

since the writer prompted them for their active list _ _

counts. We handle this by requiring the servers to Proof. The writer only waits for up to — f re-
save the list of active readers when they receive aSPonses from both the first and second phases to
count request: when the servers receive a requesfeminate. Since servers do not have to wait to re-
for the actual list of active readers, they return the SPond, all correct servers will eventually respond to
one they have previously saved. If a server replies the writer and the writer will always finish the exe-
with a list that is longer than the count it has send cution of the protocol. O

previously, the server is c_leclared faulty. The first Theorem 2 (Detection).If a read operation- never
phase end_s Whgn the writer collects list of active terminates and the writer starts executing the the de-
readers, with valid counts, frorfi + 1 servers. At otion protocol after all correct servers receive the
this point, the writer can be certain _that_ at least ONe raaq request, then the writer will include in the
thesef + 1 servers is correct and its list contains ¢t R at the end of the detection protocol if it has

all issuers of ongoing read operations whose readnot already detected the read operatiemuring a
requests reached all correct servers before the ex'previous Write

ecution of the detection protocol. However, there _ _ _
is no way for the writer to determine which specific Proof. Since the read operation does not termi-

server(s), among thg+ 1 servers with valid counts, ~ Nateé, and the writer has not detecteduring a pre-
vious write operationy will be present in the active

reader’s list for all the correct servers for the whole
duration of the execution of the detection protocol.
Since the writer waits fof + 1 responses to com-
pute the union, andis present in the active reader’s
list for every correct server; should belong to the
union.set. Thus ifr is present in the active reader’s
set for any correct server it will be reported to the
writer.

The writer collects the information about the ac-
tive readers from at least — f > 2f + 1 servers.
Since at leasf + 1 of them are correct and contain
r, they will reportr to the writer either initially in

4 Byzantine Readers

We now explain how the protocol presented in Sec-
tion 3 can be modified to tolerate Byzantine read-
ers without the use of unproven cryptographic as-
sumptions. In the following, we call the protocol of
Section3 the non-reader-tolerant protocol, or NRT,
protocol.

Overview: We start by recalling some proper-
ties of NRT protocol. When a correct server receives
a third phase W3 message from a writer, it believes
that at leasyf + 1 correct servers have received and
updated their latest value with the value/timestamp

phase 1 orin response to the union set in phase 2 an‘ibair for which a timestamp is being written in W3.

r will belong toC'R at the end of the protocol. [J

Theorem 3 (Validity). Every read operation that

is in the CR set at the end of GetConcurrentRead-
ers() is an operation that was active during the Get-
ConcurrentReaders() protocol.

Proof. A read operation is added to set CR only if
itis reported to be present in the set of active readers
by at leastf + 1 servers. Since at least one of these
servers must be correct, the read operatianust

This belief is true because the writer has completed
phases W1 and W2 and received- f acknowl-
edgements from servers, at legist 1 of which are
correct. If a reader is benign, (i) write back throt-
tling during the first round of write back, and (ii)
the requirement thatlzenignreader finishes the first
round of the write back before proceeding to the sec-
ond, ensure that this belief holds true when a correct
server accepts a second round write back (to update
the value of Rts). However, if the reader is Byzan-

have been active when the server responded to thdine, the reader may not wait for the completion of

writer's message. O

Theorem 4 (Boundedness).The total number

W1 by the writer before starting its first round of
write back. Also, a reader might proceed to its sec-
ond round of write back without finishing its first

of messages exchanged between the server angound of write back. Thus accepting the write back

the writer during the GetConcurrentReaders sub-
protocol is bounded both in number and size.

Proof: The writer only sends 2 messages and re-
ceives 2 messages from each server.

Let count be the actual number of concurrent
read operations in the system. Thus the size of active
readers at all correct servers will be at mostint
The messages exchanged in the first round only con-
tain the size of the set of active reader operations.
This size requires can be encoded with,, and is
of the same order of magnitude as the reader’s iden-
tifiers. In second round, the writer collects the ac-
tive readers set from those servers whose count is a
most thef + 1-th largest. Thus the sets in these mes-
sages are no larger thaount. Also, the size of the
union.set and the responses containing the intersec-
tion is at mosi{(n — 2f) x count, which is bounded
by our definition. O

10

without any checks can violate the correctness of
the protocol. We need mechanisms that allow read-
ers toprove that the writer finished its W1 phase
for a given timestamp in order for servers to accept
their first round writeback message for that times-
tamp. Similarly, readers must be able to prove that
enough servers accepted their first round writeback
messages in order to proceed to the second round of
writeback.

These mechanisms can be realized as follows.
In the first phase of a write operation, the writer gen-
erates a random secret polynomfalof degreef

land distributes random secret shares to the servers

so that anyf + 1 shares can be used to reconstruct
the secret. The share of a serveis simply P(s)
assuming server identifiers are the intedetisough
n. The writer does not send the secret polynomial
to any server. A server is not supposed to divulge a

share unless it has received a W2 message from thash its first write back round. This number £3. In
writer for the write operation for which it received a fact, if messages that enable the reader to update its
share (or, alternatively, if it can be convinced thatthe 2f + 1'st smallest timestamp are slow in arriving,
writer has sent a W2 message to a correct server). Athe reader would have to try to redo its first round
reader carprove its first writeback to serveg by of write back each time it receives a message from
providing f + 1 shares that can be used to construct a server that did not reply to its earlier attempt at
a polynomialP’ such thatP’(q) is equal to share of write back. In fact, every time a reader receives a
g (we show that with very low probability a Byzan- late reply to its round one write back message, it
tine reader can fabricatg + 1 shares that can be collects all the shares it has received so far and it
used to match the share of a correct server). By pro-sends those shares to servers. Servers try to find
viding these shares, a reader is essentially provid- f + 1 shares amongst these shares that they can use
ing a proof with very high probability that a correct to reconstruct their own share (note that the server
server received a W2 message from the writer for might need to consider and exponential number of
the timestamp being written back. After receiving possibility (exponential irf) when looking forf +1
a proof of a writeback, a server is convinced that shares that can reconstruct the secret. The security
the writer has progressed to phase W2 and from thatparameter has to be chosen large enough to take into
time on it will be willing to divulge its share. consideration that the probability increases with the
A complication with the protocol occurs if a increase inthe number of combinations considered).
reader that getg + 1 matching timestamps (and The set of shares can increase at myosimes after
values), sayts, with purported proofs is not able which the reader must have received messages from
to convinceenough servers to accept its first round all servers and can give up on writing back a value
write back message (for instance, if the reader re- with timestampts. Also, the reader can update the
ceivesf responses from faulty servers that provide 2f + 1'st smallest timestamy times, For each one
bogus shares). In that case, the reader might not beof these updates the reader would have to go through
able to terminate. In this situation there are two pos- the process just described jfnrounds for a total of
sibilities: either the writer seril’2 messages fars f? rounds.
to f + 1 correct servers or the writer stopped before Once a reader manages to finish its first round
sending these messages. In the first case, the readesf write back it has to convince servers to allow it
will eventually get fromf 41 correct servers match- to go for a second round of write back. To that
ing timestamps and shares that enable it to proceedend, it needs to provide proof that enough correct
with its first round of write back. In the second servers must have the value written by the writer
case, the writer clearly did not progress to phase W3 and accepted the first round of write back from the
for timestampts, which means that thef + 1'st reader. Our mechanism for helping a reader in its
smallest timestamp on which the reader is basing its second round of write back does not use secret shar-
write back is not correct (too large). In fact, it must ing and instead usawsatchingsecrets. (A compli-
be the case that eventually the reader will receive cation might occur because of write back messages
more messages from correct servers which enable itthat arrive late at the servers. We will assume in the
to calculate a smalle&f + 1'st smallest timestamp. discussion that there are no late writebacks and we
When the reader receivadl messages from correct address that problem later.) In the first round of a
servers, thef + 1'st timestamp it calculates will write, the writer sends to each seryen writeback
be a timestamp for which the writer started the W3 secretswhich are randon&-bit strings wherek is a
phase and finished the W2 phase and the reader willsecurity parameter. The writer sena$_secret,,,
be able to collecf + 1 timestamps and correspond- one for each serveg, Also, in the same round,
ing shares to finish its first round of writeback. the writer provides every servegrwith a writeback
One issue has to do with the number messagesproof string wb_proof ., = secret,,, one for each
that the reader sends before it is guaranteed to fin-server in the system. A server responds with a write-

11

back proof if it accepts the first round writeback the write operation for which the reader is sending
message sent by the reader. When a reader finishesa second phase writeback, and therefore all correct
its first write back round, it knows that + 1 cor- servers will eventually receive the third phase mes-
rect servers accepted the first round write back. This sage from the writer and can accept the writeback.
means that the first round write back message will If none of the acknowledgments without proofs is
eventually be accepted by all correct servers becausdrom a correct server, then the reader will eventually
the shares provided by thege+ 1 servers will be receive either enough proofs (as we argued in the
enough to convince all correct servers. So, eventu- previous paragraph) or one acknowledgment with-
ally the reader will receivef + 1 writeback proofs out proof from a correct server; in either case, the
and the reader presents these proofs when attempteorrect reader will be able to finish its second phase
ing its second round of write back. A server ac- writeback.

cepts a second phase writeback only if the reader It should be clear from the description that a cor-
provides2f 4+ 1 matching proofs (which guaran- rect server will not accept a second phase writeback
tees thatf + 1 correct servers must have accepted unlessf + 1 correct servers accepted the first phase
the first phase writeback). It is possible that some write back. Thus if a correct server accepts a second
of the collected proofs are from faulty servers and phase write back then its belief holds true. Also, the
the second phase writeback will not be accepted (butread operation initiated by a correct reader always
not rejected either). While waiting for an acknowl- terminates.

edgment of its second phase writeback, the reader Figures5 - 9 present the pseudocode for han-
will send any new acknowledgment of its first phase dling Byzantine readers. The protocol for detection
writeback to all servers. So, eventually, the reader of concurrent readers is same as the one presented
will get 2f + 1 acknowledgments from the correct in Figure4.

readers bgcause, as _/ve have argued, all the correc 1 Protocol Correctness

readers will get the first phase message from the
writer. This will guarantee that the reader will be
able to collec2f + 1 proofs that will be accepted
by 2f + 1 correct servers.

Late writebacks: There is another complica-
tion due to late writebacks. If a writeback arrives
late at a server, the server might not have the proof4-1.1 Secrets are hard to guess
to give the reader because the old proofs might haveTheorem 5. Given a f-degree polynomialP over
been replaced with newer ones due to subsequentZ,, wherep is a prime number antbg p > k. For a
writes. If a server that receives a writeback mes- giveni € {1...,n}, the probability that a random
sage, and has a current timestamp that is larger tharvariable z over Z, is equal toP (i) is less thar2 .
the timestamp being written back, it simply sends a
writeback acknowledgment, but without a proof.

The meaning of a writeback without proof is
that the writer started the second phase of the write Theorem 6. Given a f-degree polynomialP over
of a value with a higher timestamp. So, when the Z,, wherep is a prime number andogp >
reader finishes its first round of write back, it will 5" The probability that a Byzantine reader fin-
collect2f + 1 acknowledgments, some with proofS jshes a first round write back for which the
and some without proofs and send these along withyter has not finished its W1 phase is at most
its second phase writeback. If one of the acknowl- o—(k—log(f(2f+1))—(f+1)n)
edgments without proofs is from a correct server,
then this means that the writer must have started Proof. We give a generous upper bound. For a given
writing a new value and finished the third phase of timestamp, then reader sends at nyosets of shares

We show that the protocol implements atomic se-
mantics, that the value read by readers are valid, and
that the operations always terminate even if some
client crash in the middle of their operations. We
also show that the protocol is bounded.

Proof. The probability thatz equals any specific
value isl/p < 27*. O

12

of increasing size. For each set, a server will con-
sider at mostn choosef + 1 possibilities. The
number of these possibilities is less th2id+1)".
Each possibility can succeed with probability”.
The maximum number of ways in which a reader
can succeed in writing to a correct in one of the
tries is f(2f + 1)2U/+Yn_ The probability that the
reader succeeds in writing to one correct server is at
9—(k—log(f(2f+1))—(f+1)n)
It follows that the probability that a reader suc-
ceeds in writing back a bogus timestamp in the first
round can be made arbitrarily small. Similarly, we
can show that the probability that a reader can suc-
ceed in writing back a bogus timestamp in the sec-
ond round can be made arbitrarily small.

4.1.2 Atomicity

To show atomicity, we should show that there is a
global ordering of operations that is consistent with
real time ordering and such that the resulting execu-
tion is a valid sequential execution. We order all op-
erations according to their timestamps. The times-
tamp of a write operation is the timestamp of the
value being written and the timestamp of a read op-
eration is the timestamp of the returned value. When
two operations have the same timestamp, we order
the write before the read. Given this ordering, to
prove atomicity, it is sufficient to prove the follow-

ing.

W-R Once a writer completes a write operation for
a value with timestamp, no read operation
that starts after the write operation terminates
will return a value with a timestamp smaller
thant.

R-R Once a read operation returns a value with
timestampt, no future read will return a value
with a smaller timestamp.

Lemma 9. If a writer completes a write for times-
tampt, no further reader will satisfy fwded,)]
foranyz < t.

Proof: Since the writer has already completed the
write operation for timestamp, no correct server
will send a FWD message saying that the latest
value-timestamp igv,z) for any z < ¢. Thus

13

fwded[(v,)] cannot become true for any < ¢
since this requires at least one response from a cor-
rect server. O

Lemma 10 (W-R atomicity). Once a writer com-
pletes a write operation for a value with timestamp
t, no further read will return an older value.

Proof: When a writer completes write for times-
tampt, all but f processes would have set their value
of timestamp Rtsto ¢. Thus a later read cannot re-
ceive more thar2f timestamps (with the TS mes-
sage) that arec ¢. ThusnotOId[x] will always be
false for any value< ¢

Also, from lemma9, fwded[v,)] cannot be-
come true for any < t. O

Lemma 11 (R-R atomicity). Once a read opera-
tion returns a value with timestampno future read
will return an older value.

Proof: When a reader completes the write back for
timestamp, all but f processes would have set their
value of timestampRtsto ¢. Thus a later read can-
not receive more thaf timestamps (with the TS
message) that are ¢. Thus, for any later reader,
notOId[x] will always be false for any value ¢

Also, since the reader has returnedhe writer
has already completed the write operation for times-
tampt — 1. Thus, from lemm®, fwded[v, z)] can-
not become true forany <t¢ — 1. O

4.1.3 Validity and Wait-freedom

Lemma 12 (Correctness).A read only returns a
value that is written by a writer.

Proof: A value is set as the chosemlue has to
satisfy eitherfwdedor valid. Since at leasf + 1
servers are required to return the same value for ei-
ther of these conditions, at least one of them must be
correct. Correct clients only accept values received
from the writer. O

Lemma 13 (Write Liveness). A write operation al-
ways terminates and is wait-free.

Proof: Theorem?? shows that the GetConcurren-
tReaders sub-protocol always terminates.

In the remainder of a write operation, the writer
only waits forn — f responses at any stage. Since

at mostf servers are faulty, it follows that a write Lemma 17 (Write back termination). If a correct
operation always terminates and is wait-free. [reader tries to write back a timestantor which
() it has received from a correct server in the first

Lemma 14 (Belief 1). If a correct server sets its : .
value of Rts ta in response to a third phase mes- phase .Of the read (m_respo_pse to GES) e_md (i)
for which it has received (ii)f + 1 matching re-

sage (W3) from the writer, then at legft-1 correct ¢ ¢ then th te back
servers should have received and updated the value->PONSES 1rom correct Servers, then the write bac

timestamp for timestamp eventually terminates.

Proof: Since the writer is benign, the writer only Proof: Since a correct server has returned a times-

starts phase W3 for timestampfter receiving.— f tampt from the W3 phase of the write, it follows
responses from W2. Correct servers respond to W2that the writer must have completed phase W1.
only after they have received and updafedfalwith Thus, on receiving the write back message from
the latest value-timestamp pair. Singce f > 2f+1 the reader with thef + 1 correct shares, and re-
at leastf + 1 correct servers should have received ceiving the W1 message from the writer, all correct

and updated the value-timestamp for timestanip servers will accept the first round of write back mes-
_ _ sage and will respond with either the vpiboof (or
Lemma 15 (Belief 2). If a correct server sets itS | it the writer has overwritten the value).

value of Rtsta in response to a write back message If no correct server responds with ia, on re-

(second round) from a reader, then at legst- 1 cejying the responses from all the correct servers,
correct servers should have received and updated {ha reader will havef + 1 matching proofs that can

the value-timestamp for timestarmp convince all the correct servers to accept a second

Proof: A correct server accepts a second round round write back.

write back from a reader only if the reader provides If a correct server responds witha then the

atleas®f + 1 proofsthat match thesecretgeceived ~ Writer must have sent a W3 message for timestamp

from the writer. t + 1. Thus, after receiving the W2 message for
At least f + 1 of these servers must be correct. timestampt + 1 (line 198) all correct servers will

Correct servers only divulge the proofs, in response accept the second round of the write back.

to the first round write back message, after receiving ~ Thus eventually, in either case, the reader will

the value-timestamp from the writer and updating it. be able to convince all the correct servers and re-
O ceiven — f acknowledgements from them. Thus

. terminating the write back phase. O
Lemma 16 (Belief WB1). A correct server accepts

a (first round) write back message from a reader, and Lemma 18 (Read Liveness)A read operation al-
updates the value-timestamp for timestanomly if ways terminates and is wait-free.

the writer has completed phase 1 of the write(W1). o
_ _ Proof: Proof by Contradiction. Assume that a read
Proof: Consider the first correct serveto accept a operation never terminates.

first round write back message for timestamp Eventually the reader should receive acknowl-

A correct servers accepts a first round write edgements for the GETS message from all the

back only if it receivesf +- 1 shares that are consis- correct processes. Let the global time at that in-
tent with the share it holds. Thus at least one correct stance begts,.

server must have revealed its share to the reader. Let ¢ be the timestamp of the last write to have

S_ir_1ce correct servers only _reveal their share on completed beforgtsy, andts,.. be the timestamp
receiving the second phase write message (or on ac¢ the (2f + 1)-th smallest timestamp calculated by
cepting a first phase write-back message) for times- ihe reader (@t so).

tampt, it follows that the writer must have com- The writer could be writing timestampt- 1 but
pleted first phase write (W1) before sending the sec- it \would not have started writing timestanipt- 2.
ond phase write message to the server. O

14

Thus, server in response to GETS. O
tSmaz < tlargest <t+1 4.1.4 Boundedness

wherety,, qs¢ IS the largest (third phase, W3) times- In this section, we show that for each operation, a
tamp value received from the correct servers. bounded number of messages of bounded size will
If the writer has already detected the reader dur- be generated. The solution does not rule out the pos-
ing a previous write, then the reader will eventually sibility that a reader receives many unsolicited mes-
receivef + 1 forwarded messages from the correct sages from a server. All we can do in that case is
servers and will be able to decide on the forwarded to declare the server faulty and our proof of bound-
value-timestamp pair. edness does not apply to such rogue servers that are
If not, by theoren?? if the writer writes times- detected to be faulty.
tampt + 2, the writer will detect the read operation
during the GetConcurrentReaders sub-protocol for
write ¢t + 2. On receiving the third phase message
(W3) from the writer, all correct servers (in W3) will
forward values for timestamfy ¢t + 1 andt + 2 to
the reader.
For correct servers that never receive the final
message for writé 4 2, consider the following two
cases:

Lemma 19 (Boundedness).The total number of
messages exchanged between the server and the
reader for each read operation is bounded

Proof: For each read operation, the reader sends to
each server a maximum of

e 1 GET_TS message,

e f+1GET.VAL messages,

case 1tsyee <t .
e (f+1)x(f+ 1) messages for the first round

At most f correct servers may not have re- of the write back.

ceived the value for timestamp When the
reader receives responses from all the cor-
rect servers for the RequestValue() phase ini-
tiated aftergtsg, the reader will have at least
f + 1 matching value timestamp paifs, ts)

for timestampts = t(= tsmaz)-

During each write back attempt, the client
sends only one message. However since the
shares gathered by the client may contain a
few from faulty servers the reader can retry
on receiving more shares. A client asks the
first time when it hag + 1 shares, it can retry

Thus the reader would decide on the value until it gets f more shares. If it get8f + 1

with timestampt after writing it back to the
servers.

case 2tspmer =t +1

Since at least one correct server has updated
the value of lastomp to be+1 it must be the
case that at leagt+ 1 correct servers have re-
ceived and updated their value-timestamp for
t + 1 (by Lemmasl4 and 15).

Thus, when all the correct servers respond to
the RequestValue phase initiated aftgg,
the reader will haveg + 1 matching responses
for timestampt + 1 = ts,,4, t0 decide on.

shares, then at leagtt 1 of those will be cor-
rect and it will be accepted. Making a total of
f + 1 attempts.

Also, the value of thg2f + 1)-th smallest
timestamp can be updated upftdimes after
receivingn — f responses. This can cause
the write back to be initiated for up tp + 1
different timestamps. (for a less tighter bound
note thatacceptableonly holds for up ton
different values).

Thus totally the first round of the write back
message can be sent up(o+ 1) x (f + 1)
times.

By Lemma 17 the reader's write back phase is
guaranteed to terminate because the reader is writ-
ing backts,,.; which was received from a correct

e and up to(f + 1) x (f + 1) messages for the

15

second round of the write back. 5 Multiple Writers

The reader starts initiating the second round The protocol presented in Secti@ican eazily be
when it getgn — f) responses. It retries each extended to support multiple writers using standard
time in receives a new response from the pre- techniques. We assume that each writer has a unique
vious round. Since the total number of re- identifierw;, and that the set of writer identifiers is
sponses can only go up ta the reader will totally ordered.
have to retry only up tgf + 1 times. To implement am writer atomic register, each
server maintainsn copies of its data structures —
one for each server. To perform a read operation, the
reader preforms a read to get the latest value from
round messages sent by the readéfis 1) egch of thm writers and chooses the one With the
(f +1). hlghesft tlme_stamp. If ther_e are value_s from differ-
ent writers with the same timestamp, ties are broken
Also, a reader will only receive from each server ~ based on the ordering of the writer’s id. The writer
operation is mostly similar to the writer operation
e 1 TS message, for the single writer presented in SectidnThe only
challenge is in the way timestamps are incremented
to implement non-skipping timestamps.
In order to implement non-skipping timestamps,
e up tol FWD message, forwarded in response the writer preforms a (multi-writer) read operation
to a concurrent write, to get the value-timestamp information for the latest
completed write. The writer then chooses the next

e upto(f +1) x (f +1) messages inresponse hjgher timestamp for its current write.
to the messages send by the client for the first
round of the write back, and 6 Related Work

. Distributed storage systems have been widely stud-

o upto(f+1)x(f+1) messaggs m_response to iedin[l,2,3,4,5,6,8,9, 10]. These works vary

the messages sent by the client in the SecondWidely in terms of the consistency semantics pro-
round. vided, resilience to faults and client failures, and the
0 assumptions about the environment.

Any reader or server that sends more than Atomic semantics: Malkhi and Reiter first used
the maximum number of messages specified by duorum systems to b_uild a scalable distributgd_stor—
Lemmal9in a particular operation can be detected 29€ Systemd]. Their system uses self-verifying
as faulty and ignored (by the receiver). For simplic- dat@ to achieve atomic semantics with> 3f + 1

ity, we do not explicitly show this in the pseudocode '€Plicas. Martin et al. were the first to imple-
provided. ment an atomic register for generic data in an asyn-

chronous system with unbounded number or read-
Lemma 20 (Write Boundedness).The total num- ers and writers using the optimalf + 1 repli-
ber of messages exchanged between the server andas [L0]. They achieve atomic semantics with-
the writer during a write operation is bounded. out reader write-back, so they can trivially handle

_]]]) Byzantine readers. However their protocol is not
Proof: During each write operatlor_1, the writer sends wait-free, may require an unbounded number of
three WRITE messages and receives three aCknOWI'messages during a read operation, and it is vulnera-

edgements from each server. The sizes of the replieg, o g taity servers causing the timestamps to grow
from servers are bounded. In addition, by Theo- infinitely large.

rem4, the messages exchanged in the GetConcur-

rentReaders sub-protocol are bounded. O

Also, since there are at mast + 1) different
timestamp values that the reader may try to
decide on, the maximum number of second

e up to(f + 1) VALUE messages, sent in re-
sponse to the GEVALUE message,

16

Non-skipping timestamps: Bazzi and Ding 8] tographic primitives that rely on the unproven as-
introduced non-skipping timestamps to counter the sumption about the computation hardness of prob-
rapid exhaustion of the timestamp space: they re-lems such as factoring and discrete logarithms, and
quire4 f+1 replicas . Cachin and Tesarg] pchieve involve communication between servers.
non-skipping timestamps usiryy + 1 replicas us- currsize
ing threshold cryptography. Their solution can tol- References
erate both Byzantine readers and writers but re- [1] I. Abraham, G. V. Chockler, I. Keidar, and D. Malkhi. Byziine

. . disk paxos: optimal resilience with byzantine shared memior
quires servers to communicate among themselves Distributed Computingpages 387-408. Springer-Verlag, April
and needs cryptography. 2006.

Wait-freedom: Abraham et al. show that con- (21 | frahian, 6. v checder L Kelter ana: Vet e
structlng_a wait-free reglste_r in-a Sha,red memory [3] R.A.Bazziand Y. Ding. Non-skipping timestamps for bytiae
model with < (4f + 1) replicas requires a two- data storage systems. INSC '04, pages 405-419, London, UK,
round write operation for at least one servéy. [2004. Springer-Verlag.

it ; [4] R. A. Bazzi and Y. Ding. Bounded wait-free f-resilieniatic
In [1]1 they show a wait-free construction of a safe byzantine data storage systems for an unbounded number of

register that uses onlyf + 1 replicas. In] they vélients. \I/n |DISC '06, pages 299-313, London, UK, 2006.
. . . ringer-Verlag.
also develop a wait-free regular register but require pring _ g _ N
. [5] C. Cachin and S. Tessaro. Optimal resilience for erasaded
n > 4f +1 repllcas. byzantine distributed storage. DSN pages 115-124, Washing-
Recently, Guerraoui and Vukolic have proposed ton, DC, USA, 2006. IEEE Computer Society.
the novel abstraction akfined quorum systemnis [6] R. Guerraoui and M. Vukolic. Refined Quorum Systems. Tech

. . . nical Report LPD-REPORT-2007-001, EPFL, 2007.
capture both (i) the worst case conditions with asyn- _ o _ ,
[7] L. Lamport. On interprocess communication. part i: Bafgr-

Chrony, contention and failures (ll) and also, the best malism. Distributed Computing1(2):77-101, 1986.
case conditions inVOlVing synchrony, no contention, [8] B. Liskov and R. Rodrigues. Byzantine clients renderednit
and no failures§]. Using this abstraction, they pro- sgrslég'mmsc 2005 pages 311-325, London, UK, 2005. Springer-
vide a dIStI_’IbU'[ed Stor?'ge Implemematlon that guar- [9] D. Malkhi and M. K. Reiter. Secure and scalable replizatin
antees wait-free atomic semantics in a shared mem- ~~ phalanx. InProc. 17th SRDSpages 51-58, 1998.
ory model for generic data without any authentica- [10] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal byzante stor-
tion primitives with optimal (best-case) complex- By, SC 10 pages 311-325, London, UK, 2002. Springer-
ity(number of rounds). This solution is optimally
resilient (it requiresn > 3f + 1), but it does not
address worst case boundedness as we do. Under
adversarial contention and asynchrony assumptions,
the solution allows a read operation to send an un-
bounded number of messages. Our solution guar-
antees boundedness in all executions, but in the ab-
sence of adversarial conditions, read and write op-
erations in our solution require a larger number of
rounds than those of their solution. Their solution
does not tolerate Byzantine readers as we do.
Finiteness: Bounded Wait-free registers were
first introduced in 4], but required4d f + 1 replicas
and were only partially bounded: messages between
the writer and the faulty servers could be infinitely
large. Also,] only considers benign clients.
Byzantine Readers: Handling faulty clients
(readers and writers) has been considered Hy |
8, 10]. All these approaches are based on cryp-

17

25:

26:
27:

29

30

Definitions:
valid((v, ts))
notOld((v, ts))
fwded((v, ts))

[{s: (v,ts) € Values[s]}| > f+1
|{s : last_comp[s] < ts}| > 2f +1
{s : fwd[s] = (v, ts)} = f +1

1> 11> >

read(){
Vs: lastcompl[s]
Vs: fwd[s]
Vs: Values[s]

1L
€L
0

/I Phase R1
RequestTimestamp()

repeat
on receive(TS, s, ts) from server s
lastcomp[s] = ts

on receive(FWD, s,(v, ts), Vals) from server s
fwd[s] = (v, ts)
Values[s] = Values[s] Vals

until (|{z : last_comp[z] #L}| > n — f)

/I Phase R2
RequestValue()

repeat
on receive(TS, s, ts) from server s
lastcomp[s] = ts
RequestValue()

on receive(VALS, s, Vals) from server s
Values[s] = Values[sl Vals

on receive(FWD, s,(v, ts), Vals) from server s
fwd[s] = (v, ts)
Values[s] = Values[sl Vals

until (El(vc, tse) : fwded(ve, tse))
V(notOld((ve, tse)) A valid((ve, tse))))

/| Phase R3
WriteBackgs.)
return (vc, tsc)

RequestTimestamp({)
send(GET_TS)to all

RequestValue({
send(GET_VAL) to all

WriteBack(ts) {
// Round 1
send(WBACK_VAL, ts) to all
wait for (n — f) acks.

/ Round 2
send(WBACK_TS, ts) to all
wait for (n — f) acks. }

18

Figure 2: Reader’s protocol

32
33

34:
35:
36:
37
38

39

47:
48:
49

50:
51

52

54:
55:
56:
57.

58:
59
60:
61
62:
63:
64:
65:
66:

67:
68:

69:

Initialization:
READERS
RNextVal

s

server(§

/I Write Protocol messages
on receive(NEXT_VAL, (v, ts)) from writer
RNextVat= (v, ts)

on receive(WRITE_VAL) from writer
if (RVal.ts < RNextValts)

RPrev2= RPrev
RPrev := RVal
RVal := RNextVval

sendWRITE-ACKZ1 to the writer

on receive(WRITE_TS, ts, CR) from writer
if (Rts< ts)
Rts:=ts

for eachr € CR:

send(FWD, s, RVal, { RVal, RPrev, RPrev2})tor
READERS READERS CR
sendWRITE-ACK?2 to the writer

/I Read Protocol messages

on receive(GET_TS) from reader r:
READERSenqueue(r)
send(TS, s,Rts) tor

on receive(GET_VAL) from reader r
send(VALS, s,{ RVal, RPrev})tor

on receive(WBACK _VAL, ts) from reademr
wait for (RNextValts> ts)
if (RVal.ts< ts)
RPrev2= RPrev
RPrev := RVal
RVal := RNextVal

sendWBACK-ACK1 to r

on receive(WBACK _TS, ts) from readen
wait for (RVal.ts> ts)
if (Rts< ts)
Rts:=ts

READERSremove(r)
sendWBACK-ACK2 to r

/I GetConcurrentReaders Protocol messages
on receive(GET_ACT_RD_CNT) from writer
send(RDRS.CNT, s, READERSSsize()) to writer

on receive(GET_ACT_RDS, count) from writer
send(READERS, s,READER$1:count]) to writer

on receive(GET_ACT_RDS.INS, A) from writer
send(RDRSINS, s, READERS) A) to writer }

Figure 3: Protocol for server

Definitions:
notLarge(s }= |{z : count[z] > count[s]}| > f +1

GetConcurrentReaders()
Vs: readers[s] =L

Vs:count[s] = L
Vs: sent[s] = false
union.set =1

send(GET_ACT_RD_CNT) to all servers

repeat
71 on receive(RDRSCNT, s, count) from servers
72 counfs] = count
73 Vp:if (notLarge(p)A sent[p] = false)
74. send(GET_ACT_RDS)to serverp
75: sent[p] :=true
76. on receive(READERS s, R) from servers
77: if (— sentfs] Vv (sentfs] A countfs] # |R|))
78: detect failure of s
79: else
80: readerfs| := R

81 until (|{readerss] : readerss] AL} > f+1)

82: union.set:= Ureaderss]
83 for each (s : senfs] # true)

84: send(GET-ACT_RDS.INS, unionset)to servers
repeat

85: on receive(READERS s, R) from servers

86. if (— sentfs] v (sentfs] A countfs] # |R)))

87: detect failure of s

88: else

89: readerfs] := R

90: on receive(RDRSINS, s, R) from servers

9L if (R ¢ unionset)

92: detect failure of s

93 else

94: readerfs] := R

95; until (|{s : readerfs] ZL}| > n — f)
96: CR={$Z |{s: @ € readers[s]}| > (f+1)}
97: return CR

}

Figure 4: Bounded detection of readers: Writer code

19

write() {

98: inc(ts)
99: generateSecretsAndProof3
/I Phases W1-W2
100 cobegin {
writeVal();
CR = GetConcurrentReaders()
} coend
/I Phase W3
10x send(WRITE_TS, ts, CR)to all
102 wait for (n — f) acks.
}
writeVal() {
/I Phase W1
103 Vs: send(NEXT_VAL, (v,ts, shares, wb_secretss,proofs,),)
to server s
/I Phase W2
104 send(WRITE_VAL) to all
105 wait for (n — f) acks
}

Figure 5: The Writer’s Protocol for handling Byzantine Reixd

20

106
107
108
109

110
111
112

113
114
115

116
117
118
119
120

121
122

123
124
125

126:

127.
128
129

130

Definitions:

valid((v, ts))
acceptable(v, ts))
notOld((v, ts))
fwded((v, ts, *))
GetSharesp., tsc))

I{s: (v,ts,*) € Values[s]}| > f+ 1

I{s : last_comp[s] < ts}| >2f +1
[{s: fwd[s] = (v, ts)}| > f +1
{z|3s : (ve,tsc,x) € Values[s]}

[11> 11> 11> (1>

read(){
Vs: lastcompls]
Vs: fwd[s]
Vs: Values[s]
Vts: writingBack(ts]
written_back value

Ise

1
1
0

fa
1

/I Phase R1
send(GET_TS)to all
repeat
on receive(TS, s, ts) from server s
lastcomp[s] = ts

on receive(FWD, s,(v, ts, sh), Vals) from server s
fwd[s] = (v, ts, sh)
Values[s] = Values[s] Vals

on receive(VALS, s, Vals) from server s
Values[s] = Values[sl Vals
until (|{z : last_.comp[z] AL} > n — f)

/I Phase R2
send(GET_VAL) to all
repeat
on receive(TS, s, ts) from server s
lastcomp[s] = ts
send(GET.VAL) to all

on receive(VALS, s, Vals) from server s
Values[s] = Values[sl Vals

on receive(FWD, s,(v, ts, sh), Vals) from server s

fwd[s] = (v, ts, sh)
Values[s] = Values[sl Vals

if (EI(vc,tsC): fwded(ve, tsc))

V (notOld((ve, tsc)) A acceptablef. , tsc)) A valid((ve, tsc))))

writingBack([ts.] = true
fork WriteBack({vc, tsc))
until (written_backvalue#£_1)

return written_back value

}

Figure 6: Reader’s protocol (part 1 of 2)

21

ds : last_comp[s] = ts A writingBack(ts) = false

WriteBack(ve, ts¢)) {

/I Round 1
13L Shares = GetSharesp., tsc))
132 send(WBACK_VAL, ts., Shares) to all
133 repeat
134 on receive(WBACK_VAL _ACK, s, proofs_or_bottoms, ts) from server s
ACKS1 = ACKS1U {proofs_or_bottoms }
135 if (Shares # GetSharesp., tsc)))
136 gotoline 131
137 until WBACK_VAL _ACK'’s are received frormn — f different servers
/I Round 2
138 local wb2_cnt=0;
139 ACK S1 = set of WBACK VAL _ACK messages received
140: send(WBACK_TS, ts, ACKS1)to all
141 repeat
142 on receive(WBACK_VAL _ACK, s, proofs_or_bottomg, ts) from server s
ACKS1 = ACKS1U {proofs_or_bottoms }
143 goto line139
144 on receive(WBACK_TS_ACK, s, ts) from server s
145 wb2 cnt++

until wb2_ent >n — f
written_back value =(v., ts¢)

Figure 7: Reader’s protocol (part 2 of 2)

22

146

147.

148
149
150
151
152
153
154

155

156
157
158

159
160:
161
162

163
164
165

166:
167

Definitions:
consistent(Shares, giveshare)> Shares contains at leagt+ 1 shares, such that the secret polynordial
generated by thesg+ 1 shares agrees with the givshare (i.e. givershare =F[s]).
secretsMatch(Proofs, mySecrefs)At least2f + 1 proof values in Proofs match the corresponding values inaogeds
i.e. [{z|qy : mySecrets[z] = Proofs|y][z]}| > 2f +1
Initialization:
READERS
RNextVal

0
L

server({
/I Write Protocol messages
on receive (NEXT_VAL,
(v, ts, shares, (wb_secrets1, wb_secretsa, . .., wb_secretsy), (proofsi, proofsa,...,proofsn),)) from writer
RNextVat= (v, ts, shares)
RNextWBproof= (proofsi, proofss,...,proofsn)
RNextWBsecret= (wb_secrets1, wb_secretss, ..., wb_secretsy,)

on receive(WRITE_VAL) from writer
if (RVal.ts< RNextValts)
RPrev2z= RPrev
RPrev := RVal
RVal := RNextVal
RValsecrets := RNextWBsecret
RValproofs := RNextWBproof

sendWRITE-ACK1 to the writer

on receive(WRITE_TS, ts, CR) from writer
if (Rts< ts)
Rts:=ts

for eachr € CR:

send(FWD, s, RVal, { RVal, RPrev, RPrev2})tor
READERS READERS CR
sendWRITE-ACK2 to the writer

/I Read Protocol messages

on receive(GET_TS) from reader r:
READERSenqueue(r)
send(TS, s, Rts) tor

on receive(GET_VAL) from reader r
send(VALS, s,{ RVal, RPrev})tor

Figure 8: Protocol for server (part 1 of 2)

23

168
169
170
171
172
173
174
175
176:
177
178
179
180
181
182
183
184
185
186

187

188
189
190
191
192
193
194
195
196:
197
198
199
200

20L

202

203

204
205

206:
207

on receive(WBACK_VAL, ts, shares) from reader

wait for (RNextValts > ts)
if (RVal.ts> ts)

send(WBACK_VAL _ACK, s, L, ts) tor
else if(RVal.ts = ts)

send(WBACK_VAL _ACK, s, RValproofs, ts) tor
else if(consistent(sharesRNextVal.share))

RPrev2z= RPrev

RPrev := RVal

RVal := RNextVal

RValsecrets := RNextWBsecret

RValproofs := RNextWBproof

send(WBACK_VAL _ACK, s, RValproofs, ts) tor
else if(_Le shares))

wait for (RVal.ts> ts)

if (RVal.ts> ts)

send(WBACK_VAL _ACK, s, L, ts) tor
else if(RVal.ts=ts)
send(WBACK_VAL _ACK, s, RValproofs, ts) tor

else

/l'ignore

on receive(WBACK_TS, ts, PROOFS) from reader

wait for (RVal.ts> ts)

if (Rts> ts)
READERSremove(r)
send(WBACK_TS.ACK, s, ts) to r

else if(Rts< ts A secretsMatch(PROOF R Valsecret3)
Rts:=ts
READERSremove(r)
send(WBACK_TS_ACK, s, ts) to r

else if(Le PROOFS)
wait for (Rts> ts)
READERSremove(r)
send(WBACK_TS.ACK, s, ts) to r

else
/I ignore

/I GetConcurrentReaders Protocol messages
on receive(GET_ACT_RD_CNT) from writer
send(RDRS.CNT, s, READERSsize()) to writer

on receive(GET_ACT_RDS, count) from writer
send(READERS, s,READER$1:count]) to writer

on receive(GETACT_RDSLINS, A) from writer
send(RDRSINS, s, READERS) A) to writer

Figure 9: Protocol for servey, (part 2 of 2)

24

	Introduction
	Model/Assumptions
	Lightweight Write Back
	Protocol Overview
	Protocol Description
	Protocol Correctness
	Validity and Wait-freedom

	Bounded Detection of Readers
	Protocol Description
	Proof of Correctness

	Byzantine Readers
	Protocol Correctness
	Secrets are hard to guess
	Atomicity
	Validity and Wait-freedom
	Boundedness

	Multiple Writers
	Related Work

