University of Texas at Austin, Department of Computer Sciences, Technology Report TR-07-19

Dynamic Ray Scheduling for Improved System Performance

Paul Arthur Navratil, Donald S. Fussell and Calvin Lin*
Department of Computer Sciences
The University of Texas at Austin

ABSTRACT

The performance of full-featured ray tracers has historically been
limited by the hardware’s floating point computational power.
However, next generation multi-threaded multi-core architectures
promise to provide sufficient CPU power to support real time frame
rates. In such systems, the emerging problem will be limited
memory system performance in terms of both on-chip cache and
DRAM-to-cache bandwidth. This paper presents a novel ray trac-
ing algorithm that significantly improves both cache utilization and
DRAM-to-cache bandwidth. The key insight is to view ray traversal
as a scheduling problem, which allows our algorithm to match ray
traversal computations and intersection computations with avail-
able system resources. Using a detailed simulator, we show that our
algorithm reduces the amount of geometry brought into the cache
by up to 32x for primary rays and up to 60x for shadow rays,
in exchange for the small overhead of maintaining the ray sched-
ule. Moreover, our algorithm creates units of work that are more
amenable to parallelization than traditional Whitted-style ray trac-
ers.

Index Terms: 1.3.7 [Computer Graphics]: Ray Tracing—

1 INTRODUCTION

Full-featured ray tracing can produce high-quality images but not
yet at interactive frame rates. Floating-point CPU power has tra-
ditionally been the limiting factor, but modern CPUs have par-
tially removed this barrier. Several current systems trace primary
and hard-shadow rays, generated from point lights, at interactive
rates[SWW*04, RSHO5, WSS05, WIK*06]. New chips with many
processing cores promise to overcome this computational bound
on ray tracing. Moreover, ray tracing’s embarrassingly parallel na-
ture seems to lend itself well to such architectures. However, these
multi-core architectures introduce a new bottleneck in the memory-
system, because cache and bandwidth must be shared among many
cores. This contention is exacerbated by the use of a complex light-
ing model, which is necessary for photo-realistic images. Complex
lighting algorithms can generate incoherent memory accesses (e.g.,
Monte-Carlo methods, photon mapping[Jen96]) and can require the
use of additional data structures (e.g., photon mapping[Jen96]). We
conclude, then, that real-time ray tracing of dynamic scenes with
complex lighting could be feasible if the ray tracing algorithms
could be made memory efficient.

Recursive ray tracers, derived from Whitted’s algorithm[Whi80],
are not memory-efficient because they traverse rays depth-first.
Consecutive primary rays may be tested for intersection against the
same geometry, but these tests can be widely separated in time. For
example, all child rays of the first primary ray must be traversed be-
fore the second primary ray can begin. If the scene is small enough
or the cache large enough, the impact of this inefficiency may be
masked, but the trend is toward larger scenes rendered using a com-
plex lighting model. Optimizations such as tracing rays in SIMD-

*[pnav | fussell | lin]@cs.utexas.edu

friendly packetsf WSBWO1] or using ray frustums[RSHOS5] help,
but only if rays are sufficiently coherent, which is typically only
the case for primary and perhaps shadow rays. These techniques
can be considered simple scheduling schemes designed to improve
the memory access behavior of the ray tracer. Unfortunately, since
they are designed specifically to work for already coherent sets of
rays, they show little promise to be of much benefit in handling the
incoherent rays in a globally illuminated scene.

Pharr, et al.[PKGH97] use a somewhat more sophisticated
scheduler to improve the memory efficiency of ray tracing scenes
much too large to fit into main memory. They schedule rays for
processing according to their location in scene space independently
of their spawn order. The rays traverse the cells of a uniform grid,
and they are queued at any cell that contains geometry. When a cell
is selected for processing, all rays queued at that cell are tested
for intersection against geometry in the cell. Any rays that do
not intersect an object traverse to the next non-empty cell. This
approach significantly reduces bandwidth usage between disk and
main memory and increases the utilization of geometry data in main
memory. However, the algorithm is not suited for managing traf-
fic between main memory and processor cache because it allows
ray state to grow unchecked, and because the acceleration structure
does not adapt to the local geometric density of the scene. These
two factors create work loads of highly variable sizes, the effects
of which are masked at main memory scale (hundreds of MB) but
cannot be masked at cache scale (hundreds of KB).

In this paper, we present an algorithm that schedules ray pro-
cessing by actively managing both ray and geometry state to maxi-
mize cache utilization and bandwidth utilization without exceeding
peak bandwidth supply. We view the algorithm of Pharr, et al., and
Whitted’s recursive ray tracing algorithm as two points on a contin-
uum that varies the number of rays that can be active in the system
at once. In this view, our new algorithm generalizes both algo-
rithms, selecting the appropriate point along the continuum based
on the available resources of the host architecture. To demonstrate
its feasibility, we sketch an implementation of our algorithm. Using
detailed simulation of three scenes, we show that our algorithm ob-
tains up to 32x reduction in the amount of geometry loaded when
traversing primary rays, and up to 60x reduction when travers-
ing shadow rays, with relatively little added overhead to handle
ray state. We conclude that our notion of dynamically scheduled
rays provides data access patterns that are spatially coherent both
in terms of scene space and in terms of localized data access. Our
algorithm can be easily combined with current ray tracing optimiza-
tions for coherent ray data, and, unlike those techniques, it promises
to scale for use with complex lighting models.

The remainder of the paper is organized as follows: Section 2
describes our algorithm in detail and presents our implementation
sketch; we describe our simulation and testing framework in Sec-
tion 3; we discuss our results in Section 4; in Section 5 we present
related work, and we sketch future directions and draw conclusions
in Section 6.

2 DyNAMIC RAY SCHEDULING

The goal of our new ray tracing algorithm is to actively manage
ray and geometry state to provide better cache utilization and lower

University of Texas at Austin, Department of Computer Sciences, Technology Report TR-07-19

o
(ONORNO

LR OOy

Figure 1: Queue Point Selection — Here, we demonstrate how our
queue point selection algorithm works on a toy k-d tree. We mea-
sure the amount of cache available to hold geometry and determine
what is the maximum amount of geometry (g,.4x) that can be loaded
without exceeding available cache capacity. We select the first node
on each branch of the tree that contains geometry: g < g4 In this
figure, if guax > 26, the root (A) is the only queue point, and our algo-
rithm degenerates to Whitted-style ray tracing, because all geometry
fits in cache. If 26 > g,..x > 16, the internal nodes (B) are queue
points. If 16 > g,u. > 10, the nodes (C) are queue points. If g4 < 10,
the leaves (D) are queue points. Note that even if g, is smaller than
the amount of geometry at a leaf, that leaf is made a queue point be-
cause there is no remaining acceleration structure beneath it (see
Section 2.2).

bandwidth requirements, which will in turn lead to faster execution
time.

Our algorithm is rooted in two concepts: rays can be traced in-
dependently (non-recursively), and rays can be queued at regions
in scene space where the geometry in that region fits completely
in available memory. Taken together, these concepts permit tight
control on the use of memory resources because, for any particular
queue point, there is a known, tight upper bound on the amount of
data that must be touched to process all the rays in that queue.

Our algorithm seeks to optimize both (1) bandwidth utilization
between main memory and the lowest level of processor cache and
(2) utilization of the lowest level of processor cache itself. Without
loss of generality, we will refer to DRAM-to-L2 bandwidth and L2
utilization in our discussion, since these are common components
of the multi-core hardware we target (see Figure 2).

The algorithm described here uses a k-d tree as the acceleration
structure, but it could be adapted to other acceleration structures,
including regular grids, hierarchical grids, and bounding volume
hierarchies. The ability of the chosen acceleration structure to adapt
to varying densities of scene geometry directly affects the quality of
scheduling possible by determining how much flexibility we have in
choosing queue points for rays. Our discussion will provide insight
as to how the acceleration structure interacts with other parts of
the algorithm, but a thorough analysis of the impact of acceleration
structure choice is beyond the scope of this paper.

2.1 Traversal Algorithm

Our traversal algorithm traces rays from the root of the acceleration
structure down to queue points, where further ray processing is de-
ferred. It later iterates over these queue points to complete all ray
traversals. To simplify our discussion, we first describe the traver-
sal of primary rays only. Our technique, however, is applicable to
all ray types, so we then generalize it to deal with secondary rays.

2.1.1 Traversing Primary Rays

We select queue points in the acceleration structure based on the
amount of geometry that will fit in available cache. Each queue
point is the root of a subtree of the acceleration structure, a subtree
that contains no more geometry than will fit into L2 cache. See
Figure 1 for an example. If the entire scene can fit into cache, then
the root of the acceleration structure becomes the only queue point,
and the traversal degenerates to Whitted’s recursive algorithm.

Our algorithm can also efficiently schedule worst-case condi-
tions in an acceleration structure. Sometimes the construction al-
gorithm for the acceleration structure cannot adapt to dense local
geometry. At such points in a k-d tree, a leaf with an unusually large
amount of geometry is placed in the acceleration structure. If the
geometry at that leaf exceeds cache capacity, a recursive ray traver-
sal will always thrash the cache each time such a leaf is pierced
by a ray. Our algorithm treats such leaves as a separate scheduling
problem, and loads blocks of both rays and geometry to process the
queue efficiently. See Section 2.2 for implementation details.

Our algorithm queues all primary rays, then iterates over the
queues until all rays have terminated or have left the bounds of the
scene. When a queue is selected for processing, each ray traverses
any of the remaining subtree and is tested for intersection against
the geometry at each leaf of the subtree that the ray may reach.
Once a ray is selected at this stage, it is processed until either a suc-
cessful intersection is found or until the ray leaves the bounds of
the subtree. If the ray leaves the bound of the subtree, it continues
its traversal through the full acceleration structure, either to the next
queue point or until it leaves the bounds of the scene.

When a ray intersects a surface, we can either shade the inter-
section point immediately (as in ray casting) or save it for deferred
casting of secondary rays. A pixel id is maintained with the ray
so that the proper pixel can be shaded. When supersampling, sam-
ples can be blended in the framebuffer as they arrive. If secondary
rays are cast (described in Section 2.1.2), then the point is shaded
iteratively as each secondary ray is processed.

2.1.2 Traversing Secondary Rays

Our algorithm can be easily generalized to handle secondary rays.
These rays are processed in generations: shadow rays from the cur-
rent generation are processed, then any newly spawned non-shadow
rays are processed. By processing rays in generations, we limit the
amount of active ray state in the system while still providing coher-
ent access to scene geometry.

To generate shadow rays and other secondary rays, we maintain
the intersection points for the current generation of rays. For each
point light, we trace shadow rays from the light toward the intersec-
tion points, which makes the traversal identical to the primary ray
traversal method described in Section 2.1.1. Shadow rays inherit
both the pixel id and the shading information from their spawning
ray. Thus, when light visibility has been determined, the shading
contribution, if any, can be added to the appropriate pixel.

Once all shadow rays for the current generation have terminated,
we traverse newly spawned non-shadow rays. Each new ray starts
queued at whichever queue point contains its origin. Our algorithm
then iterates over queue points to traverse rays, as before. Note that
while we may achieve less coherence here than for primary and
shadow rays, we can achieve significantly better coherence than a
recursive ray tracer by allowing many secondary rays to be active at
once. Once all rays of this new generation have been processed, any
resultant intersection points are used to generate the next generation
of shadow and secondary rays. This process continues until no new
secondary rays are generated.

Note that our technique can employ adaptive sampling tech-
niques by maintaining ray information across generations. We do
this by adding a field in the ray structure for a pointer to the infor-
mation to be maintained (see Figure 2. This solution is similar to

University of Texas at Austin, Department of Computer Sciences, Technology Report TR-07-19

core |core
0 1 L2
bus
cache
core |core
2 3

Main Memory (DRAM)
(not to scale)

basic ray layout
(32 bytes total, 64 color bits)

|x|y\ z\ i\ j\k\color‘

adaptive sampling ray layout
(32 bytes total, 32 color bits)

x]y [z i] ik ptr|on

Figure 2: System Block Diagram and Ray Layout — we target a
multi-core architecture, as represented in this block diagram. We
use a tight ray representation, whether or not adaptive sampling is
required. Our basic ray layout supports 48-bit color plus a 16-bit al-
pha channel. Our adaptive sampling ray layout, which contains a
pointer to the information that must be maintained for the adaptive
sampler, supports 24-bit color plus an 8-bit alpha channel.

splitting shading information for geometry into a separate structure,
which is loaded only when needed.

2.2 Implementation Sketch

We now describe how our algorithm can be implemented on a mod-
ern multi-core processor. We maintain geometry and acceleration
structure data in cache while buffering rays to ensure threads are
maximally occupied. For the discussion below, we assume a 4MB
L2 cache.

We want the acceleration structure to remain resident in cache.
We represent k-d tree nodes using eight bytes, similar to the k-d
tree used in PBRT[PHO04]. We use an additional bit from the least-
significant end of the mantissa of the split location in order to indi-
cate whether a node is a queue point (leaving 20 bits for the single-
precision mantissa representation). We expect this quantization not
to significantly affect the quality of the k-d tree. Using this repre-
sentation, 128K nodes can remain resident if we reserve 1IMB of
the L2 for nodes. If the k-d tree is larger, we have the option of
reserving more space or maintaining only the top of the tree, from
the root down to the queue points. If we maintain only the top of
the tree, we must load each subtree before processing its associated
queue. This situation will only occur for extremely large scenes,
where the added cost for loading the subtree will be insignificant
compared to the cost of loading the associated geometry.

We also maintain a table that associates each queue point with a
buffer in main memory that contains the actual ray queue. We keep
this table and its associated buffers in memory so that rays can be
enqueued quickly and without having to load data to compute the
address to which the ray should be sent. This table costs 8 bytes
per entry, and we expect 32K queue points to be sufficient for most
trees, which makes the table cost 256KB.

We must have rays cached to perform traversals and intersec-
tions, yet we expect to have hundreds to thousands of rays queued
at each point. Bringing all rays in at once would evict other needed
data from cache. Further, we do not need all rays loaded, since we
can only process as many rays as there are threads available. Yet
we require more than a single ray per thread so that the thread can
swap if a ray reaches a leaf with yet-uncached geometry. We want
to buffer enough rays to mask the latency of the initial cache miss on
a leaf’s geometry. We know that all queued rays must be traversed
through the active subtree, so this work will be available so long as
there are queued rays. A single ray traversal step in a k-d tree is a
ray-plane intersection test, made simpler because the plane is guar-
anteed to be axis-aligned. The ray-plane intersection test can be
computed with a multiply, an add and a comparison. With instruc-
tion latency, the test takes about seven cycles to complete[SSM*05].
We expect about ten traversal steps will be necessary to take a ray
from the queue point to a leaf, and modern DRAMS can return a
random data request in about 80 cycles. Therefore, having two rays
per thread should be sufficient. We represent our rays in 32 bytes
(see Figure 2), and if we have 4 threads, the ray buffer requires 256
bytes.

Finally, we need to cache geometry. We select queue points in
the acceleration structure so that the geometry in the subtree will
fit in available cache (taking into account the acceleration structure,
ray buffer, etc., described above). We could load all geometry in
the subtree immediately, but we do not yet know which geometry,
if any, will actually be required. To avoid spurious geometry loads,
we wait to load geometry until a ray has definitely reached it (i.e.,
reached the leaf that contains the geometry). Note that if a queue
point is at a leaf, then the geometry may be loaded immediately
because the geometry will definitely be tested for intersection.

For systems where cache resources are very limited, it is possi-
ble to have a queue point, which must be at a leaf of the accelera-
tion structure, that contains more geometry than will fit in available
cache. A Whitted-style ray tracer will thrash the cache each time
a ray pierces such a leaf. Our algorithm permits more flexible ap-
proaches by treating this condition as a separate scheduling prob-
lem. We know the amount of geometry at each leaf from building
the acceleration structure, so we can detect a thrashing condition
before loading any geometry. We create cache-sized blocks of ge-
ometry and iterate over them as we test for intersection against the
rays in the ray buffer. This iterated processing technique results in
fewer overall cache loads than allowing uncontrolled cache thrash-
ing.

3 EXPERIMENTAL METHODOLOGY

We have performed a feasibility study of our algorithm using a re-
search (non-optimized) ray tracer with a simulated L2 cache. With
this arrangement, we test the performance of our algorithm in terms
of cache utilization and bandwidth consumption, over a range of
cache sizes to determine its effectiveness. Our simulation results,
presented here, are promising enough that we are currently creating
an optimized implementation targeted for specific hardware. We
discuss this implementation further in Section 6.

To obtain the cache measurements in our simulation, we cre-
ate a memory trace using explicit reads and writes in our code
and run that trace through various cache configurations using
Dinero IV[EH98], a light-weight trace-driven simulator. We sim-
ulate cache sizes in power-of-two increments from 1KB to 4MB,
with 64B cache lines. This wide range of sizes allows us to under-
stand the performance of our algorithm both when cache resources
are scarce and when they are plentiful. We make each cache fully
associative to eliminate conflict misses. Thus, after the cache is
warm, all misses are capacity misses.

We test our algorithm on three scenes, each rendered at 1024 x
1024 resolution (see Figure 3). These models provide a variety

University of Texas at Austin, Department of Computer Sciences, Technology Report TR-07-19

Figure 3: Test scene images — We test our algorithm on three scenes: room, grove, and sphereflake. For each we measure the total
geometry in the scene and the number of triangles porentially visible (p-v), which must be tested for intersection when tracing primary rays only
and primary + secondary rays. [room: 47K triangles, 6.6K p-v primary, 7.7K p-v secondary]; [grove: 164K triangles, 127K p-v primary, 142K
p-v secondary]; [sphereflake: 797K triangles, 258K p-v primary, 535K p-v secondary]. Note that the geometry artifacts in room are contained

in the scene specification and are not due to our ray tracer.

of total geometry, potentially-visible (p-v) geometry, and geomet-
ric topology. We use a small architectural scene (room: 47K tri-
angles, 6.6K p-v primary, 7.7K p-v secondary), a grove of tree
models (grove: 164K triangles, 127K p-v primary, 142K p-v sec-
ondary), and a five-level sphereflake model from the Standard Pro-
cedural Database scenes[Hai87] (sphereflake: 797K triangles,
258K p-v primary, 535K p-v secondary). We specifically mention
potentially-visible geometry when tracing primary and secondary
rays because these figures are a more accurate measure of the ge-
ometry load when rendering. Total geometry affects the size and
quality of the acceleration structure and whether the scene can fit
in main memory, but it does not impact the geometry traffic be-
tween main memory and processor cache unless all geometry must
be tested for intersection.

We compare our algorithm against two recursive ray tracers: a
single-ray tracer using rays ordered along a Hilbert curve, and a ray
packet tracer using 8 x 8 packets tiled over the image plane. We
use a Hilbert curve ordering for single rays, since this ordering is
known to produce better utilization of the memory system[Voo91].
We use an 8 x 8 packet size since it is the midpoint of currently
popular packet sizes (4 x 4[RSHOS, WIK*06] — 16 x 16[WBS07])
and it was recently found to provide the most system speed-up in
this range[BEL*07].

4 RESULTS AND DiscussION

We present the results of our algorithm feasibility study here. We
show that by using dynamic ray scheduling to actively manage both
ray and geometry data, we can improve the cache utilization for
geometry data by as much as 32x over recursive ray tracing when
tracing primary rays, and by as much as 60x when tracing both
primary and point-light shadow rays. These savings will become
increasingly important as additional lighting and shading data is
stored in scene space, both increasing the amount of data that must
be loaded and decreasing the available cache space for geometry.

4.1 Tracing Primary Rays

In Figures 4-6, we present our measurements for tracing primary
rays only. These measurements show that our algorithm reduces
geometry traffic between DRAM and L2 for all cache sizes at the
cost of increased ray traffic. Ray traffic is more desirable than ge-
ometry traffic, since a thread must block for a geometry load but
can switch to another ray if one is available. Said another way, we
want to keep geometry in cache and stream rays, so long as there
are enough rays in cache to keep all threads busy.

Further, our algorithm significantly reduces geometry traffic
when system resources are scarce. When the data load on the sys-
tem is greatest, our algorithm adapts to make efficient use of avail-
able resources. Recursive ray tracing cannot adapt in this way, and
ends up thrashing the cache with geometry data. Note that recur-
sive ray tracing maximally constrains the amount of ray traffic at
the potential cost of increased geometry traffic. Our algorithm re-
laxes this constraint, allowing ray traffic to grow while significantly
reducing geometry traffic. Thus our algorithm can make efficient
use of system resources and adapt to various system loads.

For example, the Intel 5000X chipset[Int07] provides 21GB/s
peak bandwidth between DRAM and L2. At 20 frames per second
(fps), a ray tracer has only enough time to use 1GB of bandwidth
for any one frame (we are ignoring computation time here which
would further reduce the time available to load data). When cache
resources are scarce, our algorithm reduces geometry traffic to fit
within this bandwidth constraint. When cache resources are plen-
tiful, the ray traffic overhead generated by our algorithm does not
exceed available bandwidth.

4.2 Tracing Secondary Rays

Our algorithm performs well when tracing both primary rays and
secondary rays. In this section, we present measurements for trac-
ing primary rays and shadow rays from three point-lights in each
scene. We present our measurements for each light individually, to
observe the effects of each light position, and for all three lights
together, to observe their interaction. Because our algorithm does
not always reduce geometry traffic in our secondary ray tests, and
as we have said, we always have ray overhead, we focus our dis-
cussion on geometry traffic and what our measurements imply for
more complex lighting models.

In Figures 7-9, we show how much our algorithm reduces geom-
etry traffic when tracing both primary and point-light shadow rays.
The relative performance of our algorithm depends on the number
and location of point lights in the scene. In Figures 7 and 8, light
0 is located at the camera point, which is a best-case for recursive
algorithms because no new geometry is accessed between the hit
point and the light. Thus, if cache is sufficiently large enough to
hold the geometry tested for intersection against the primary ray,
then no new geometry will be loaded. Our algorithm does com-
paratively worse because we trace all primary rays, then trace the
shadow rays. Thus we miss this locality. However, this relative
measure does not translate into negative system performance be-
cause it only occurs when resources are plentiful. As we discuss in

University of Texas at Austin, Department of Computer Sciences, Technology Report TR-07-19

room
cache geometry traffic ray traffic geometry traffic reduction total traffic reduction
size | recursive packet dynamic | recursive packet dynamic recursive packet recursive packet
1K 6056.65 — 4531.30 32.00 — 245.32 33.7% — 27.5% —
2K 5863.94 — 943.52 32.00 — 323.14 521.5% — 365.5% —
4K 4939.97 403.16 231.89 32.00 32.00 313.38 2030.3% 73.9% 811.8% -25.3%
8K 1269.55 136.71 90.05 32.00 32.00 314.44 1309.8% 51.8% 221.8% -139.8%

16 K 133.23 18.58 3.95 32.00 32.00 285.63 3274.7% 370.7% -753% -472.5%
32K 4.86 11.10 3.31 32.00 32.00 263.97 46.9% 235.5% -625.1% -520.1%
64 K 3.83 8.75 2.90 32.00 32.00 231.63 32.3% 202.1% -554.5% -475.5%
128 K 345 6.37 2.74 32.00 32.00 155.70 26.1% 132.6% -346.9% -312.9%
256 K 3.24 3.14 2.57 32.00 32.00 108.39 26.4% 22.4% -214.8% -215.8%
512K 3.05 2.90 2.53 32.00 32.00 72.49 20.6% 14.5% -114.0% -115.0%
1024 K 2.89 2.77 2.42 32.00 32.00 52.53 19.2% 14.6% -57.5% -58.0%
2048 K 2.59 2.55 2.42 32.00 32.00 32.35 7.3% 5.4% -0.5% -0.6%
4096 K 242 242 242 32.00 32.00 32.00 0.0% 0.0% 0.0% 0.0%

Figure 4: Data traffic (MB) for room — Even on our smallest test scene, both in total geometry and in visible geometry, our algorithm reduces
geometry traffic. The most dramatic traffic reduction comes at the smallest tested cache sizes. While overall traffic increases significantly for
the middle range of caches (32K - 512K), we expect this not to impact performance because our algorithm prevents cache pollution from ray
data and the traffic does not exceed peak bandwidth on current architectures. Note that ray traffic does not decrease monotonically due to the
selection of different queue points in the acceleration structure. We do not report results for packets for 1K and 2K caches because they are too
small to contain the packet and any geometry.

grove

cache geometry traffic ray traffic geometry traffic reduction total traffic reduction
size | recursive packet dynamic | recursive packet dynamic recursive packet recursive packet
1K | 11084.02 — 9641.98 32.00 — 390.63 15.0% — 10.8% —
2K | 10230.37 — 5992.17 32.00 — 382.68 70.7% — 61.0% —
4K 9132.21 4120.02 2564.29 32.00 32.00 340.52 256.1% 60.7% 215.5% 42.9%
8K 7861.03 1925.96 943.50 32.00 32.00 294.80 733.2% 104.1% 537.4% 58.1%

16 K 5361.92 781.82 227.31 32.00 32.00 251.28 2258.9% 2439% 1027.0% 70.0%
32K 1313.46 365.39 139.96 32.00 32.00 211.86 838.5% 161.1% 282.4% 13.0%
64 K 182.14 216.75 118.75 32.00 32.00 177.97 53.4% 82.5% -38.6% -19.3%
128K 138.09 169.63 105.55 32.00 32.00 153.36 30.8% 60.7% -52.2% -28.4%
256 K 121.41 168.35 97.31 32.00 32.00 127.47 24.8% 73.0% -46.5% -12.2%
512K 112.68 166.10 91.95 32.00 32.00 101.35 22.5% 80.6% -33.6% 2.5%
1024 K 107.00 160.23 87.37 32.00 32.00 86.23 22.5% 83.4% -24.9% 10.7%
2048 K 103.40 141.21 84.92 32.00 32.00 70.06 21.8% 66.3% -14.5% 11.8%
4096 K 100.44 95.67 83.87 32.00 32.00 57.78 19.8% 14.1% -7.0% -10.9%

Figure 5: Data traffic (MB) for grove — On this larger test scene, the benefit of our algorithm becomes clear. When cache resources are scarce
(here, j 64K), our algorithm significantly reduces data traffic. When cache resources are plentiful (here, > 64K) we still obtain better cache
utilization with respect to geometry, at the cost of more ray traffic. Again, we expect this increased ray traffic to not affect system performance
because peak bandwidth between DRAM and cache is not exceeded. We do not report results for packets for 1K and 2K caches because they
are too small to contain the packet and any geometry.

sphereflake
cache geometry traffic ray traffic geometry traffic reduction total traffic reduction
size | recursive packet dynamic | recursive packet dynamic recursive packet recursive packet
1K 4185.85 — 3451.22 32.00 — 142.80 21.3% — 17.4% —
2K 3600.98 — 2263.18 32.00 — 133.51 59.1% — 51.6% —
4K 2773.87 922.74 629.53 32.00 32.00 130.79 340.6% 46.6% 269.0% 25.6%
8K 1289.94 378.95 208.70 32.00 32.00 123.86 518.1% 81.6% 297.5% 23.6%
16K 339.72 205.01 110.64 32.00 32.00 132.35 207.0% 85.3% 53.0% -2.5%
32K 122.87 134.69 78.10 32.00 32.00 128.85 57.3% 72.5% -33.6% -24.2%
64 K 97.58 108.71 73.60 32.00 32.00 134.33 32.6% 47.7% -60.5% -47.8%
128 K 88.69 10591 70.52 32.00 32.00 137.08 25.8% 50.2% -72.0% -50.5%
256 K 83.53 105.23 68.53 32.00 32.00 141.08 21.9% 53.5% -81.4% -52.8%
SI2K 8042 103.85 67.63 32.00 32.00 149.31 18.9% 53.6% -93.0% -59.7%
1024 K 78.44 91.00 66.80 32.00 32.00 142.11 17.4% 36.2% -89.2% -69.8%
2048 K 77.09 74.84 66.04 32.00 32.00 146.63 16.7% 13.3% -94.9% -99.0%
4096 K 76.37 74.82 65.70 32.00 32.00 150.94 16.2% 13.9% -99.9% -102.8%

Figure 6: Data traffic (MB) for sphereflake — This scene has more total geometry, but less potentially visible geometry than grove. The
acceleration structure created for this scene challenges our algorithm. The geometry is finely tessellated yet structured, which results in a deep,
poor k-d tree. Our algorithm still reduces geometry traffic for all caches. Note that the effect of the acceleration structure can be seen in the
parabolic trend of the ray traffic measurements. We do not report results for packets for 1K and 2K caches because they are too small to contain
the packet and any geometry.

University of Texas at Austin, Department of Computer Sciences, Technology Report TR-07-19

room with shadows

cache | light O traffic reduction light I traffic reduction light 2 traffic reduction all 3 lights traffic reduction
size | recursive packet | recursive packet | recursive packet recursive packet
1K 26.6% — -2.6% — -9.1% — -7.9% —
2K 438.4% — 300.6% — 231.5% — 240.0% —
4K | 1404.8% 930.9% 1450.4% 360.4% | 1263.5% 304.6% 1060.9% 739.8%
8K 756.4% 571.3% 1754.8% 211.2% 1704.5% 203.8% 1148.7% 456.7%
16K | 1588.2% 1738.4% | 5927.2% 607.7% | 5966.1% 618.3% 3368.8% 1380.2%
32K -33.1% 76.6% 73.8% 221.0% 69.2% 212.2% -11.7% 65.1%
64 K -48.8% 57.0% 24.2% 219.6% 23.9% 218.5% -57.8% 64.8%
128K -56.8% 19.5% 6.4% 166.8% 10.8% 177.7% -81.1% 38.8%
256 K -56.5% -60.5% -0.8% 63.3% 2.9% 68.6% -95.0% -17.3%
SI12K -64.2% -72.9% -12.6% -9.3% -7.6% -4.2% -116.4% -110.7%
1024 K -65.9% -72.8% -17.3% -22.2% -10.9% -15.5% -125.2% -134.0%
2048 K -84.4% -87.4% -39.1% -42.3% -31.7% -34.8% -166.1% -172.8%
4096 K -97.6% -97.6% -55.1% -55.1% -46.9% -46.9% -197.9% -197.9%

Figure 7: Data traffic (MB) for room with shadows — On this smallest scene, the worst for our algorithm because total geometry can nearly
fit in cache, our algorithm only reduces geometry traffic when cache resources are scarce. Light 0 is located at the camera point, which is a
best-case for recursive algorithms since no new geometry is accessed by the shadow ray. We do not report results for packets for 1K and 2K
caches because they are too small to contain the packet and any geometry.

grove with shadows

cache | light O traffic reduction light I traffic reduction light 2 traffic reduction all 3 lights traffic reduction
size | recursive packet | recursive packet | recursive packet recursive packet
1K 11.0% — 10.3% — -21.7% — -12.4% —
2K 61.8% — 73.3% — 23.9% — 37.5% —
4K 209.3% 114.7% 273.8% 109.9% 155.8% 26.3% 178.1% 101.2%
8K 513.7% 277.2% 755.6% 230.6% 477.7% 75.2% 475.7% 263.3%
16K | 1182.0% 7291% | 1934.7% 516.9% | 1407.4% 238.0% 1095.7% 640.3%
32K 346.1% 315.7% 955.0% 311.4% 604.3% 164.0% 510.1% 410.1%
64 K -21.9% 0.1% 155.0% 153.4% 71.5% 76.2% 90.9% 127.2%
128K -42.8% -16.2% 65.7% 97.7% 22.5% 44.7% 20.8% 35.8%
256 K -50.2% -8.3% 34.9% 88.6% 8.1% 46.6% -5.3% 22.7%
512K -53.3% -4.0% 23.2% 108.6% 1.5% 58.8% -21.3% 30.7%
1024 K -53.7% -2.7% 10.9% 115.6% -5.4% 63.6% -39.8% 34.1%
2048 K -54.9% -13.4% 1.6% 113.6% -9.7% 64.8% -56.6% 36.0%
4096 K -57.6% -65.4% -3.5% 96.7% -16.2% 38.3% -74.0% 29.4%

Figure 8: Data traffic (MB) for grove with shadows — On this larger scene, our algorithm reduces geometry traffic both when cache is scarce
and when cache is plentiful. Light 0 is located at the camera point, which is a best-case for recursive algorithms since no new geometry is
accessed by the shadow ray. We do not report results for packets for 1K and 2K caches because they are too small to contain the packet and
any geometry.

sphereflake with shadows

cache | light O traffic reduction light I traffic reduction light 2 traffic reduction all 3 lights traffic reduction
size | recursive packet | recursive packet | recursive packet recursive packet
1K -1.6% — -2.4% — 5.1% — -4.2% —
2K 21.6% — 27.0% — 41.6% — 27.3% —
4K 228.4% 73.1% 304.0% 109.7% 332.7% 130.2% 306.6% 160.7%
8K 421.9% 128.7% 553.8% 179.7% 580.1% 207.3% 631.7% 243.8%

16 K 275.5% 152.8% 298.5% 160.1% 340.8% 185.8% 577.2% 271.5%
32K 61.7% 82.8% 84.1% 102.5% 83.0% 103.0% 148.9% 184.7%
64 K 20.0% 33.7% 41.2% 52.2% 50.6% 61.1% 72.0% 96.6%
128 K 7.6% 25.8% 28.4% 38.9% 37.3% 51.1% 47.9% 65.5%
256 K -0.8% 26.3% 22.3% 42.3% 29.9% 55.1% 34.6% 65.6%
S12K -6.4% 27.2% 18.1% 44.8% 25.2% 58.7% 26.2% 69.9%
1024 K -11.3% 24.0% 14.5% 43.1% 21.1% 58.0% 19.9% 68.1%
2048 K -14.3% -7.6% 12.6% 21.0% 17.7% 32.7% 14.5% 64.1%
4096 K -17.4% -18.7% 8.6% 4.2% 16.7% 12.4% 9.6% 16.5%

Figure 9: Data traffic (MB) for sphereflake with shadows — On this large scene, as on grove, our algorithm reduces geometry traffic both
when cache is scarce and when cache is plentiful. Light 0 is located near the camera point, which is a good case for recursive algorithms since
little new geometry is accessed by the shadow ray. We do not report results for packets for 1K and 2K caches because they are too small to
contain the packet and any geometry.

University of Texas at Austin, Department of Computer Sciences, Technology Report TR-07-19

Section 4.1, so long as our algorithm does not exceed peak band-
width, overall rendering time will not be affected. Further, recur-
sive algorithms cannot maintain this locality under a more complex
lighting model. Global illumination approximations generate tens
to hundreds of secondary rays per primary ray, each of which may
access new, uncached geometry. A recursive ray tracer will even-
tually thrash the cache with geometry data, whereas our algorithm
will continue to process these rays coherently.

Our algorithm performs slightly worse for the 1K cache, the
smallest we use. We attribute this to the difference in shadow ray
direction between our algorithm and the recursive algorithms. Our
algorithm traces shadow rays from point light to hit points, whereas
the recursive algorithms trace shadow rays from hit points to point
light. In so doing, the recursive algorithms gain a bit of temporal lo-
cality by immediately testing the shadow ray for intersection with
the geometry around the primary ray hit point. For larger cache
sizes, the ray coherence benefits of tracing shadow rays from light
to hit point overwhelm this smaller effect.

5 RELATED WORK

As mentioned earlier, our work builds on several previous ray
scheduling schemes to create a ray tracing algorithm in which both
geometry and rays are actively managed components. Below, we
discuss this and other related work to better distinguish the contri-
butions of our algorithm.

All recursive ray tracers implement some form of Whitted’s orig-
inal recursive ray tracing algorithm[Whi80]. Recent innovations to
the basic algorithm include the use of SIMD instructions to trace
multiple rays in parallel[WSBWO1] and tracing a frustum of rays
through the acceleration structure to eliminate upper level traver-
sal steps[RSHOS]. These techniques can increase the number of
rays active in the system at once, but none of them allow rays to
be dynamically scheduled: once a ray (or packet of rays) is se-
lected for traversal, the selected ray(s) and all child rays must be
traced to completion before another selection choice is made. The
fixed active ray state in these algorithms hampers their ability to
handle system-related issues such as thrashing and effectively hid-
ing latency. Recently, Boulos, et al.[BEL*07], attempted to achieve
real-time frame rates on a current workstation-class system for both
Whitted-style ray tracing with full specular effects and distribution
ray tracing[CPC84]. They claim interactive rates for their Whitted-
style tracer for both primary and secondary rays by employing
clever methods of organizing secondary rays. Further, Boulos, et
al., observes that shading computation may soon overtake visibility
computation as the primary system cost. Note that our algorithm
could accept a modified form of their secondary ray organization
technique. Also, because our algorithm operates in local regions of
scene space, it facilitates grouping similarly shaded points, making
efficient use of shading computation.

Pharr, et al.[PKGH97], take an approach quite different from
the Whitted tracing model. They decompose the rendering
equation[Kaj86] so that it can be calculated forward as rays are
traced, rather than using the recursion stack to accumulate shading
calculations. Pharr’s algorithm targets efficient use of main mem-
ory and traffic between disk and RAM to render models that cannot
fit in main memory. Pharr uses Monte-Carlo-based global illumina-
tion to model indirect diffuse lighting, a technique that uses many
sample rays per primary ray. Since this algorithm targeted a higher
level of the memory hierarchy, there are aspects of it that are poorly
suited for RAM to cache traffic. The acceleration structure is a
uniform grid, the non-adaptivity of which makes it more difficult to
guarantee the amount of geometry found at any particular cell. This
variance may be masked at the RAM level, but at the cache level it
complicates effective scheduling. Also, while rays can be reordered
under Pharr’s algorithm, ray state is not actively managed. Pharr ac-
tively seeks to get deep into the ray tree quickly, the result of which

is that many secondary rays of many ray generations are active at
once in the system. Again, while this technique may be effective
when considering disk to RAM traffic, the ray state explosion that
results can cause uncontrollable thrashing in cache-sized memories.
Our technique controls both geometry state and ray state to ensure
efficient operation within a given system.

We are aware of two implementations of algorithms similar to
that of Pharr et al. Dachille and Kaufman[DKO0O] used Pharr’s ray
deferring algorithm in a hardware-based volume rendering system.
They use specialized hardware to perform standard volume ren-
dering and volume rendering with a simplified global illumination
model. In this system, rays are collected at each cell of the vol-
ume, much like how rays collect in Pharr’s uniform grid. Cells are
then scheduled for processing like Pharr’s algorithm. They were
able to achieve interactive frame rates on a simulation of their hard-
ware. Because they use direct volume rendering, there is no signif-
icant geometry traffic per cell: the system loads the eight vertices
of the cell and trilinearly interpolates each sample along each ray.
Thus, their system does not address managing geometry traffic at
all. Steinhurst, et al.[SCLO5], use Pharr-like reordering to obtain
better cache performance for photon mapping. Like Pharr, their
system experiences ray state explosion. However, its effects cannot
be masked at the cache level, and the performance of their system
suffers. We expect that our algorithm would perform better on this
task because it actively manages ray state.

6 CONCLUSIONS AND FUTURE WORK

We have presented a ray tracing algorithm that dynamically sched-
ules rays in order to actively manage both ray and geometry data.
In so doing, our algorithm significantly reduces geometry traffic
between DRAM and L2 cache with a moderate increase in ray traf-
fic. Further, our algorithm dramatically reduces overall data traffic
when memory resources are scarce, thus permitting the efficient ray
tracing of large, complex scenes.

We have three areas for future work. First, we will implement
a cycle-accurate cache model in our simulator to obtain measure-
ments for the utilization analysis we give in Section 4.1. Second, we
will expand our research ray tracer to include secondary rays, global
illumination and distribution ray tracing effects[CPC84]. Third,
we will complete the implementation of our system as described
in Section 2.2 targeted at the latest multi-core multi-threaded com-
modity architecture. With this implementation, we hope to either
achieve real-time ray tracing performance directly or to determine
what additional system resources are required to achieve it.

ACKNOWLEDGMENTS

Thanks to the Real-Time Graphics and Systems group at UT for
their helpful comments. This research was supported in part by the
National Science Foundation under CISE Research Infrastructure
Grant EIA-0303609.

REFERENCES

[BEL*07] BouLos S., EDWARDS D., LACEWELL J. D., KNiss J.,
KAuUTZ J., WALD 1., SHIRLEY P.: Packet-based Whitted and
Distribution Ray Tracing. In Proceedings of Graphics Inter-
face 2007 (2007).
CooK R. L., PORTER T., CARPENTER L.: Distributed ray
tracing. In SIGGRAPH ’84: Proceedings of the 11th annual
conference on Computer graphics and interactive techniques
(New York, NY, USA, 1984), ACM Press, pp. 137-145.
[DKO00] DACHILLE IX F., KAUFMAN A.: Gi-cube: an architecture
for volumetric global illumination and rendering. In HWWS
’00: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware (New York, NY, USA,
2000), ACM Press, pp. 119-128.
[EH98] EDLER J., HILL M. D.: Dinero IV cache simulator
(http://www.cs.wisc.edu/markhill/DineroI V/), 1998.

[CPC84]

University of Texas at Austin, Department of Computer Sciences, Technology Report TR-07-19

[Hai87] HAINES E.: A proposal for standard graphics environments.
IEEE computer graphics and applications (November 1987),
3-5. http://www.acm.org/tog/resources/SPD/.

[Int07] INTEL CORPORATION: Intel 5000X Chipset Overview
(http://www.intel.com/products/chipsets/5000x), 2007.

[Jen96] JENSEN H. W.: Global Illumination using Photon Maps. in
X. Pueyo and P. Schroder, editors, Rendering Techniques ’96,
pages 21-30. Springer-Verlag, 1996.

[Kaj86] KAltya J. T.: The rendering equation. In SIGGRAPH
'86: Proceedings of the 13th annual conference on Computer
graphics and interactive techniques (New York, NY, USA,
1986), ACM Press, pp. 143-150.

[PHO4] PHARR M., HUMPREYS G.: Physically Based Rendering:
From Theory to Implementation. Morgan Kaufmann, 2004.

[PKGH97] PHARR M., KOLB C., GERSHBEIN R., HANRAHAN P.: Ren-
dering complex scenes with memory-coherent ray tracing.
In SIGGRAPH ’'97: Proceedings of the 24th annual confer-
ence on Computer graphics and interactive techniques (New
York, NY, USA, 1997), ACM Press/Addison-Wesley Publish-
ing Co., pp. 101-108.

[RSHOS] RESHETOV A., SOUPIKOV A., HURLEY J.: Multi-level ray
tracing algorithm. In SIGGRAPH ’05: Proceedings of the
32nd annual conference on Computer graphics and interac-
tive techniques (New York, NY, USA, 2005), ACM Press.

[SCLO5] STEINHURST J., COOMBE G., LASTRA A.: Reordering
for cache conscious photon mapping. In GI '05: Proceed-
ings of the 2005 conference on Graphics interface (School of
Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 2005), Canadian Human-Computer Communications
Society, pp. 97-104.

[SSM*05] SLUSALLEK P., SHIRLEY P., MARK W., STOLL G., WALD
I.: Parallel & distributed processing. In SIGGRAPH ’05:
ACM SIGGRAPH 2005 Courses (New York, NY, USA, 2005),
ACM Press, p. 11.

[SWW*04] SCHMITTLER J., WOOP S., WAGNER D., PAUL W. J.,
SLUSALLEK P.: Realtime ray tracing of dynamic scenes on
an FPGA chip. In Graphics Hardware 2004 (2004).

[Voo91] VOORHIES D.: Space-filling curves and a measure of co-
herence. in J. Arvo, editor, Graphics Gems II, pages 26-30.
Academic Press, 1991.

[WBS07] WALD 1., BOULOS S., SHIRLEY P.: Ray tracing deformable
scenes using dynamic bounding volume hierarchies. ACM
Transactions on Graphics 26, 1 (2007), 6.

[Whi80] WHITTED T.: An improved illumination model for shaded
display. Communications of the ACM 23, 6 (June 1980), 343—
349.

[WIK*06] WALDI., IZE T., KENSLER A., KNOLL A., PARKER S. G.:
Ray Tracing Animated Scenes using Coherent Grid Traversal.
ACM Transactions on Graphics (2006), 485-493. (Proceed-
ings of ACM SIGGRAPH 2006).

[WSBWO1] WALD I., SLUSALLEK P., BENTHIN C., WAGNER M.: In-
teractive rendering with coherent ray tracing. In Proc. of Eu-
rographics 2001 (2001).

[WSSO05] WoOP S., SCHMITTLER J., SLUSALLEK P.: RPU: a pro-
grammable ray processing engine. In SIGGRAPH ’05: Pro-
ceedings of the 32nd annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 2005), ACM
Press.

