
Information-Theoretically Secure Byzantine Paxos

Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Harry C. Li
The University of Texas at Austin

{anand, lorenzo, aclement, harry}@cs.utexas.edu

Abstract

We present Information Theoretically secure
Byzantine Paxos (IT ByzPaxos), the first determin-
istic asynchronous Byzantine consensus protocol
that is provably secure despite a computationally
unbounded adversary. Previous deterministic
asynchronous algorithms for Byzantine consensus
rely on unproven number theoretic assumptions
(i.e., digital signatures) to maintain agreement. IT
ByzPaxos instead uses secret sharing techniques that
are information theoretically secure to ensure that
all correct processes agree. Our protocol guarantees
safety in an asynchronous system and provides
progress under eventual synchrony. IT ByzPaxos
matches the 3f+1 lower bound on the number of
processes for Byzantine consensus.

1 Introduction

We present Information Theoretically secure Byzan-
tine Paxos (IT ByzPaxos), the first determinis-
tic asynchronous Byzantine consensus protocol that
is provably secure despite a computationally un-
bounded adversary. Previous deterministic asyn-
chronous algorithms for Byzantine consensus [6, 13,
8] rely on unproven number theoretic assumptions
(i.e., digital signatures) to maintain agreement. IT

ByzPaxos instead uses secret sharing techniques that
are information theoretically secure to ensure that
all correct processes agree. Our protocol guaran-
tees safety in an asynchronous system and provides
progress under eventual synchrony. IT ByzPaxos
matches the 3f+1 lower bound on the number of pro-
cesses for Byzantine consensus.

IT ByzPaxos does not assume that an adversary
has a limited number of CPU cycles or that problems
like factoring or discrete logarithms are hard. With
the increasing connectivity of today’s computers, ad-
versaries have more computing power at their dis-
posal than ever before. Additionally, unforeseen ad-
vances in number theory have led to algorithms that
crack ciphers in a matter of months, compared to the
originally estimated millions of years. In 2005, for
example, Bahr et al. [1] factored the 640-bit number
(RSA-640) in the RSA Factoring Challenge in less
than six months using 30 2.2 GHz computers.

IT ByzPaxos provides an alternative to previous
algorithms that rely on computational bounds or un-
proven number theoretic assumptions. We show that
it is possible to design a deterministic Byzantine
consensus algorithm despite a computationally un-
bounded adversary. Furthermore, we believe that
our techniques generalize to other consensus pro-
tocols, like Fast Byzantine Paxos [13] and Dutta-
Gerraoui [8], to create alternatives to cryptographic
solutions.

IT ByzPaxos implements a write-once register

1

over a set of processes by restricting the values that
can be written according to the values that can be
read [12]. In Byzantine versions of such a register, a
process can only write to the register after presenting
a proof that that process first read from the register.
As shown by Li et al., guarding every write with such
proofs makes the register write-once, a property ideal
for maintaining agreement.

In previous works, these proofs are implemented
as quorums of signed messages providing two prop-
erties. First, that a quorum of processes believes it
is safe to decide some value. And second, who the
members of that quorum are. For consensus, only
the first property is necessary. Our insignt is that the
first property can be implemented using secrets. In
IT ByzPaxos, a process can only write a value if it
can reconstruct an appropriate secret. We carefully
structure the protocol such that processes can only
reconstruct secrets that will not lead to safety viola-
tions.

For clarity, we present IT ByzPaxos in three
stages. First, we present IT ByzPaxos as an im-
plementation of a write-once register whose writes
are guarded by proofs of read operations. Second,
we show how to implement such proofs using secret
sharing with an honest dealer. Third, we relax the re-
quirement on the dealer and show how the processes
can generate and disseminate secrets independently.

2 Related Work

IT ByzPaxos follows a long line of work in asyn-
chronous consensus algorithms. Deterministically
solving consensus is impossible in an asynchronous
system with process failures [10]. Researchers have
dealt with this impossibility by proposing proto-
cols that either guarantee liveness only during syn-
chronous periods or guarantee liveness with high
probability. IT ByzPaxos falls in the latter category.

There are a wealth of deterministic asynchronous
consensus protocols that always maintain safety and
provide liveness only during synchronous times.
These protocols share a common technique inspired
by Lamport’s Paxos protocol [11], a deterministic
asynchronous consensus algorithm for crash failures.
Castro and Liskov extended the Paxos protocol to
Byzantine failures in their Practical Byzantine Fault-
tolerance (PBFT) work [6]. Since then, researchers
have proposed a number of variants to the original
algorithm in PBFT [13, 8]. All of these approaches,
however, rely on digital signatures to maintain safety.

The second class of asynchronous Byzantine con-
sensus protocols sacrifices determinism for proba-
bilistic termination. Interestingly, many of the results
in this second class are resilient to computationally
unbounded adversaries, thus not relying on digital
signatures for safety. Bracha introduced a Byzantine
consensus protocol that terminated in expected expo-
nential time in the number of processes [2]. Canetti
and Rabin refined this result to terminate in constant
expected time [5]. Common to these randomized
Byzantine consensus protocols is secrets.

Robust secret sharing, as described by
Shamir [15], enables any group of t out of n
processes to reconstruct a secret while any group
of size less than t gains no information about the
secret. Our approach leverages existing secret
sharing work that enables processes to detect if a
reconstructed value is indeed the actual secret or a
false one. Shamir’s scheme allows a process to be
fooled into believing a falsified value is the secret.
Verifiable secret sharing [7, 14] schemes prevent
such situations but they rely on cryptographic
mechanisms. In IT ByzPaxos, we use Tompa et al.’s
technique [16] to detect when a reconstructed value
corresponds to the actual secret or not. We explain
Tompa’s appoach in more detail in Section 4.3.

2

3 Model

3.1 Problem Statement

In this paper, we focus on binary consensus. Each
process in the system starts with a binary input value,
which it can propose. A binary consensus protocol
guarantees the following properties:

• Agreement : No two correct processes decide
different values.

• Validity : If a correct process decides a value v,
then some process proposed v.

• Termination : Each correct process eventually
decides.

3.2 Model/Assumptions

We consider n processes at most f < dn+1
3 e of

which may be Byzantine and can deviate arbitarily
from the protocol. The remaining processes are cor-
rect, but may be running at arbitrary speeds. We also
assume that each process has access to random bits, a
source of randomness that Byzantine processes can-
not affect.

3.2.1 Network assumptions

The processes may communicate with each other
via authenticated point-to-point links that are asyn-
chronous but reliable. We assume that links are re-
liable to make the presentation simpler. To handle
reliable links, we could implement mechanisms to
resend messages.

We also assume that point-to-point channels are
private, an assumpition that is consistent with previ-
ous works [3, 9, 4] that solve randomized Byzantine
agreement and provide information-theoretic guar-
antees. Thus, an adversary cannot eavesdrop on the

private communication between two correct nodes1.
Private channels do not have to be implemented us-
ing cryptography. A secured and verified switch can
prevent adversaries from eavesdropping on private
communication.

3.2.2 Synchrony assumptions

Since deterministically solving consensus is impos-
sible in an asynchronous setting prone to crash fail-
ures, we require that a consensus protocol always
be safe and be live only during sufficiently long
synchronous periods. Consensus protocols typically
provide this condition using exponentially increas-
ing timeout intervals in which a distinguished pro-
cess proposes a value for other process to decide.

4 IT ByzPaxos (Honest Dealer)

IT ByzPaxos implements a write-once register over
n processes. Each process is responsible for both
issuing read and write requests and acknowledging
such requests. Processes write value-timestamp pairs
to the register and read such pairs out.

The leader for each timestamp is responsible for
writing a value to the register during that times-
tamp. Process i is the leader of timestamp ts if
i ≡ ts mod n. Processes move from one times-
tamp to the next if it seems a decision is stalled,
suggesting that the leader of the current timestamp
is faulty. Timestamps are similar to the views em-
ployed in PBFT.

To ensure that only one value is ever written, pro-
cesses read from the register before writing. If a
leader reads a value v 6= ⊥, then that leader at-
tempts to write v. To guard against Byzantine pro-
cesses that may try to write values different from the

1The private channel is not required for the protocol in Sec-
tion 4

3

ones they read, each read returns a proof of the value
read. Such proofs guard writes, limiting the values
that can be written and ensuring that only one value
is ever written.

When writing a value v for timestamp ts, a proof
is appropriate if it guarantees that the last written
value is v or that no value has or ever will be written
for a timestamp ts′, ts0 ≤ ts′ < ts, where ts0 is the
initial timestamp. Processes ignore write requests
that are not accompanied with appropriate proofs.

We implement these proofs as sequences of se-
crets. For each timestamp ts, a trusted dealer gen-
erates three random secrets, S0

ts, S1
ts, and S⊥ts, corre-

sponding to the values that can be written or when no
value is written. The dealer splits each secret into n
parts and sends each part to a different process such
that n − f parts are necessary and sufficient to re-
construct each secret. We denote process i’s part of
secret Sv

ts as Sv
ts[i]. Processes collect parts for recon-

structing secrets to prove that specific events have or
have not taken place.

• If a process reconstructs a secret Sv
ts, v 6= ⊥,

then no process can reconstruct a secret Sv′
ts ,

v′ 6= ⊥ and v′ 6= v.

• If a process reconstructs a secret S⊥ts, then no
value v 6= ⊥ can be written for timestamp ts.

A process reconstructs an appropriate sequence of
secrets to write value v ∈ {0, 1} for timestamp ts by
either

• reconstructing the secret Sv
ts′ for some ts′ < ts

and reconstructing all secrets S⊥ts′′ such that
ts′ < ts′′ < ts or

• by reconstructing all secrets S⊥ts′′ such that
ts0 ≤ ts′′ < ts

To detect faulty actions, the dealer also distributes
a verification part V v

ts[i] to processs i for each secret

Sv
ts. Process i uses V v

ts[i] to check other processes’
claims about reconstructing Sv

ts.

4.1 The Algorithm (first write)

We now discuss how processes implement the write-
once register and how processes reconstruct secrets
during read and write operations. For reference, Fig-
ure 1 gives the protocol in greater detail.

The leader p for timestamp ts writes a value v to
the register by sending 〈PRE-WRITE, v, ts, proof〉
to all processes. When ts is the initial timestamp
ts0, proof can be NULL since no value can be writ-
ten for an earlier timestamp. We defer a discussion
of the proofs and checking for the next subsection
(Section 4.2).

A process i that receives
〈PRE-WRITE, v, ts, proof〉 from p accepts it
only if the following conditions are met.

1. i is currently in timestamp ts

2. the proof is appropriate for value v and times-
tamp ts

3. i has not sent a WRITE message for ts yet

A process that accepts 〈PRE-WRITE, v, ts, proof〉
sends the message 〈WRITE, v, ts, Sv

ts[i]〉 to all pro-
cesses. If i receives WRITE messages for v, ts from
n − f processes, i uses V v

ts[i] to verify the secret
reconstructed from the secret parts. If i success-
fully verifies the reconstructed secret, then i sends
〈WRITE-ACK, v, ts〉 to all processes. If i receives
n − f WRITE-ACK messages for value v all with
the same timestamp, i decides v.

4.2 The Algorithm (subsequent writes)

IT ByzPaxos provides liveness despite a faulty pri-
mary by allowing processes to timeout for each

4

Process i’s high-level protocol:

let currTS be a non-negative number initialized to 0
let last have three fields: v, ts, and shrs

last.v := ⊥, last.ts := −1, last.shares := NULL
let read-acks be an empty dictionary

while true
wait until i ≡ currTS mod n

v, ts, secret-shares := read()
if read did not return error

write(v, ts, secret-shares)
endif

Implementation of read and write

procedure read()
broadcast 〈READ, currTS〉
wait until read-acks[currTS] is non-NULL

let TS′ be the highest ts′ among the read acks
let V ′ be the value of the read ack for TS′

let shares be a map such that shares[ts] are the shares
used to reconstruct SV ′

TS′ if ts = TS′ ≥ 0 and
S⊥ts for TS′ < ts < currTS

return (V ′, currTS, shares)
on timeout

return e r r o r

on receive 〈READ-ACK, ts, ∗, ∗, ∗, ∗〉j from j
if already received READ-ACK for ts from j

discard
else if there exists n− f read acks for ts such that

a read ack reveals Sv
ts′ for ts′ < ts and v 6= ⊥ AND

the read acks reveal all secrets S⊥
ts′′ for ts′ < ts′′ < ts

read-acks[ts] := n− f read acks
endif

procedure write(v,ts,secret-shares)
broadcast 〈PRE-WRITE, v, ts, secret-shares〉

when receive 〈WRITE-ACK, v, ts〉 from n− f processes
decide v

Responding to read and write messages:

on receive 〈READ, ts〉p
if (ts = currTS AND p ≡ ts mod n)

let ⊥-shares be a map such that ⊥-shares = S⊥t s′

f o r last.ts < ts′ < ts
send 〈READ-ACK, ts, last.v, last.ts, last.shrs,⊥− shares〉i to

p
endif

on receive 〈PRE-WRITE, v, ts, secret-shares〉p
if ((p ≡ ts mod n) AND

(ts ≥ currTS) AND
(have not sent WRITE for ts) AND
((V v

ts′ [i] verifies secret-shares[ts′] for some ts′ < ts AND
V ⊥

ts′′ verifies secrets-shares[ts′′] for all ts′ < ts′′ < ts) OR
(V ⊥

ts′′ verifies secrets-shares[ts′′] for all 0 ≤ ts′′ < ts)))
if ts > currTS

reset timeout
currTS := ts

endif
broadcast 〈WRITE, v, ts, Sv

ts[i]〉a
endif

on receive 〈WRITE, v, ts, Sv
ts[j]〉 from j

if already received WRITE for ts from j
d i s c a r d

else if there exists n− f writes for ts such that
V v

ts[i] verifies that the shares in those writes reveal Sv
ts

if (ts ≥ currTS)
reset timeout
currTS := ts

endif
last.v := v
last.ts := ts
last.shrs := shares in the n− f writes

broadcast 〈WRITE-ACK, v, ts〉
endif

at time timeoutV al
currTS := currTS + 1
timeoutV al := 2× timeoutV al
p := currTS mod n
send 〈TIMESTAMP-CHANGE, currTS〉 to process p

when receive 〈TIMESTAMP-CHANGE, ts〉 from n− f processes
if ts > estTS AND p ≡ ts mod np

currTS := ts
endif

Figure 1: Information-Theoretically Secure Byzantine Paxos with an honest dealer.

5

timestamp, moving to the next timestamp and chang-
ing the primary role to a hopefully correct pro-
cess. Because processes clocks may run at different
speeds, processes exponentially increase the length
of their timeouts so that eventually enough processes
agree on a timestamp long enough to write a value.

Before a primary p for timestamp ts > ts0 at-
tempts to write a value, p first reads from the register.
Process p sends 〈READ, ts〉 to all processses and then
waits for n− f acknowledgments, potentially aban-
doning the read if the timeout for ts expires. Process
i accepts 〈READ, ts〉 only if i is currently in times-
tamp ts.

If i accepts 〈READ, ts〉, i responds with
〈READ-ACK, ts, v′, ts′, S, Seq〉 where:

• If i has never sent a WRITE-ACK then S =
v′ = ts′ = NULL, and Seq is a sequence such
that Seq[ts′′] = S⊥ts′′ [i] for ts0 ≤ ts′′ < ts.

• If i has sent a WRITE-ACK then let v′ and ts′

be the value and timestamp, respectively, such
that 〈WRITE-ACK, v′, ts′〉 is the highest time
stamped WRITE-ACK message that i sent. S
is the set of n − f parts that allowed i to re-
construct Sv′

ts′ , and Seq is a sequence such that
Seq[ts′′] = S⊥ts′′ [i] for ts′ < ts′′ < ts.

A leader p waits to receive n − f read acknowl-
edgments for timestamp ts that allow p to do either
of the following:

case 1: Reconstruct Sv
ts′ , v ∈ {0, 1} and ts′ <

ts, and reconstruct every S⊥ts′′ such that ts′ <
ts′′ < ts

case 2: Reconstruct every S⊥ts′′ such that ts0 ≤
ts′′ < ts

If p accomplishes case 1 or 2 then p bundles the cor-
responding n−f read acknowledgments into proof .

If p accomplished case 1 then the read’s value is v,
and p sends 〈PRE-WRITE, v, ts, proof〉 to all pro-
cesses. If p accomplished case 2 then the read’s value
is ⊥ and p sends 〈PRE-WRITE, inp, ts, proof〉,
where inp is p’s input value.

A set of read acknowledgements proof is ap-
propriate in a message 〈PRE-WRITE, v, ts, proof〉
if they could have led p to send
〈PRE-WRITE, v, ts, proof〉. If a process i re-
ceives a PRE-WRITE with timestamp ts > ts0, i
checks that the attached proof is appropriate using
the verification parts handed out by the dealer.

4.3 Secret Parts & Verification Parts

We now explain how the dealer splits each secret into
n secret parts and n verification parts. We use the se-
cret sharing of Tompa et al. [CITE] in which a par-
ticipant who does not reveal his share can determine
whether a secret corresponds to the actual secret

The intuition behind the technique of Tompa et
al. is that each secret corresponds to a polynomial
and each share corresponds to a random point on that
polynomial. Even if an adversary knows the polyno-
mial, that adversary has a negligible chance of guess-
ing a second polynomial that happens to go through
a participant’s point. However, once a participant re-
veals his share, an adversary can fool that participant.

The dealer splits each secret Sv
ts into n(k + 1)

shares and parcels k + 1 shares out to each of the
n processes. Each process i assembles k of those
shares into its secret part Sv

ts[i] and uses the one re-
maining share to implement V v

ts[i], never divulging
that one share to any other process.

We now show that to meet the lower bound on the
number of processes necessary for Byzantine con-
sensus, 3f + 1, our protocol requires that k > f .
Let t be the threshold number of shares necessary
and sufficient to reconstruct a secret. From the proto-
col, n− f correct processes should be able to recon-

6

struct any secret Sv
ts, so k(n − f) = t. At the same

time, f faulty processes should be unable to recon-
struct Sv′

ts , v′ 6= v, despite having the corresponding
secret parts from the other f correct processes, so
kf + (k + 1)f < t.

Solving for n, we obtain n > 3f+ f
k , showing that

for any k > 0, there exists a lower bound on n neces-
sary and sufficient for correctness. And when k > f ,
our protocol can match the 3f + 1 lower bound on
the number of processes for Byzantine consensus.

4.4 Correctness

We now show that the protocol presented in Sec-
tion 4 solves the consensus problem. We define few
predicates, as in [6], that are useful in the proof.
prepared(i, v, ts): Process i has received (n −
f) WRITE messages with value v and timestamp ts
such that the secret reconstructed from the (n − f)
shares can be successfully verified using the V v

ts[i].
committed(v, ts): prepared(i, v, ts) is true for at
least (n− 2f) correct processes.
committed-local(i, v, ts): prepared(i, v, ts) is true
and process i has received (n − f) WRITE-ACK
messages for value v and timestamp ts.

Lemma 1. Sv
ts can be reconstructed only if at

least (n − 2f) non-faulty processes send the
〈WRITE, v, ts, Sv

ts[i]〉

Proof. Sv
ts is shared among processes such that at

least (n − f) shares are required to reconstruct
the secret. If Sv

ts is to be reconstructed then at
least (n − 2f) non-faulty processes must reveal
their secret parts, Sv

ts[i]. Non-faulty processes re-
veal the secret part Sv

ts[i] if and only if they send
〈WRITE, v, ts, Sv

ts[i]〉.

Lemma 2. if Sv
ts can be reconstructed, then Sv′

ts can-
not be reconstructed for v′ 6= v.

Proof. If both Sv
ts and Sv′

ts are to be reconstructed,
then there must be at least (n − 2f) correct pro-
cesses sending each of 〈WRITE, v, ts, Sv

ts[i]〉 and
〈WRITE, v′, ts, Sv′

ts [i]〉. Since n ≥ 3f + 1,
this means that at least one correct pro-
cess must both〈WRITE, v, ts, Sv

ts[i]〉 and
〈WRITE, v′, ts, Sv′

ts [i]〉. This cannot happen if
v 6= v′ since correct processes only send one
WRITE message for each timestamp.

Lemma 3. If prepared(i, v, ts) is true for a non-
faulty i, then prepared(j, v′, ts) is false for every
non-faulty j and v′ 6= v.

Proof. prepared(i, v, ts) can hold for a non-faulty
process only if Sv

ts can be reconstructed. Since Sv′
ts

cannot be reconstructed for v′ 6= v, prepared(j, v′,
ts) is false for every non-faulty j.

Lemma 4. If committed-local(i, v, ts) is true for a
non-faulty process i, then committed(v, ts) is true.

Proof. By definition, committed-local(i, v, ts) re-
quires that i must have received WRITE-ACK mes-
sages for value v and timestamp ts from at least n−f
processes. Since at least n − 2f of these processes
must be correct and would only send a WRITE-ACK
message if prepared is true, committed(v, ts) should
be true.

Lemma 5. If committed(v, ts) is true, then the se-
crets Sv′

ts or S⊥ts cannot be reconstructed for v′ 6= v.

Proof. If committed(v, ts) is true then prepared(i,
v, ts) holds for at least n − 2f correct processes.
Since these processes will not give out their shares
S⊥ts[i] or Sv′

ts [i], it follows that Sv′
ts or S⊥ts cannot be

reconstructed.

Lemma 6. If committed(v, ts) holds for some v and
ts then in any timestamp ts′ > ts, a non-faulty pro-
cess accepts a pre-write message only if the proposed
value is v.

7

Proof. For a pre-write to be accepted by a non-faulty
process, the message must include a proof that the
non-faulty process accepts.

We show that the primary cannot gather such a
proof by induction on ts′.

Base case ts′ = ts + 1: Sv′
ts cannot be recon-

structed. So, the proof will have to consist of either

• Sv′
ts” for some ts” < ts, and S⊥t for all ts” <

t < ts + 1, or

• S⊥t for all ts0 ≤ t < ts + 1,

In either case, the primary will have to reconstruct
S⊥ts, which is not possible by lemma ??.

Induction step: Assume that no correct non-faulty
accepts any pre-write message for timestamps ts”
such that ts < ts” ≤ ts + k.

The primary in ts + k + 1 cannot send all S⊥ts” for
ts0 ≤ ts” < ts′ because it cannot possibly recon-
struct S⊥ts.

Since Sv′
ts and S⊥ts cannot be reconstructed, the

only way to generate a proof would require Sv′
ts” be

reconstructed for some ts” > ts. This is not possi-
ble as no non-faulty processes would reveal Sv′

ts”[i]
unless it accepts a pre-write message for v′ in times-
tamp ts”.

Thus, by induction, it follows that a primary can-
not gather a proof to propose v′ in any timestamp
ts′ > ts.

Theorem 1 (Validity). If a non-faulty process de-
cides v then v must have been proposed.

Proof. Suppose that a non-faulty process decides
on value v in timestamp ts1. Then predicates
committed-local and prepared must have been true
for value v in timestamp ts1.

Let t0 be the smallest timestamp in which at least
(n−2f) correct processes send the WRITE message
for value v. Since, non-faulty processes only send
the WRITE message on receiving the PRE-WRITE

message from the primary, primary must have either
proposed v or should have sent a proof reconstruct-
ing Sv

t for some t < t0. Since t = t0 is the smallest
timestamp when at least (n − 2f) correct processes
reveal their shares Sv

t [i] (along with the WRITE mes-
sage), it follows that the secret Sv

t cannot be recon-
structed for any t < t0.

Thus the primary in timestamp t0 must have pro-
posed v.

Theorem 2 (Agreement). If a non-faulty process de-
cides v then no non-faulty process can decide a dif-
ferent value.

Proof. WLOG, let process i be the earliest process
to decide. Say it decides on v in timestamp t. Then
it follows that committed-local(i, v, t) is true.

Thus, by lemma ?? no non-faulty process can de-
cide v′ 6= v in timestamp t. Also, by lemma ?? non-
faulty process will not accept a pre-write message
for v′ 6= v for any timestamp ts′ > t. So no non-
faulty process can decide on a different value v′ in
any timestamp ts′ > t.

Theorem 3 (Termination). If the system behaves
synchronously in timestamp ts and the primary is
non-faulty, then all processes will be able to decide
on a value by the end of timestamp ts.

Proof. When the system is synchronous, we assume
that all correct messages sent by non-faulty pro-
cesses to other non-faulty processes would be deliv-
ered before timeout.

Since the system is synchronous, the primary will
be able to collect responses from all the non-faulty
processes. Thus, the primary will either be able to
reconstruct one of S0

t or S1
t or S⊥t for every ts0 ≤

t < ts. Thus, the non-faulty primary will be able to
gather the proof to be able to propose the appropriate
value, v.

8

All non-faulty processes will send the WRITE
message in response to the PRE-WRITE message,
and all these messsages will be received by the
non-faulty processes causing them to send out the
WRITE-ACK message. Since the system is syn-
chronous, the WRITE-ACK messages will also
reach the non-faulty processes within the time out
and all the non-faulty processes will be able to re-
ceive n − f WRITE-ACK messages to be able to
decide on v in timestamp ts if they have not already
decided.

5 Poly-Secret Protocol

5.1 Removing The Honest Dealer

We now show how to remove the honest dealer from
our protocol.

We could entrust this role to an arbitrary process,
but if that process were faulty, then it could distribute
inconsistent shares and impede progress. One idea
is to use verifiable secret sharing to check that dis-
tributed shares are consistent. These solutions, how-
ever, are costly and are still vulnerable if the dealer
process divulges the secret to an adversary.

We sidestep this issue by observing that our pro-
tocol does not require the full power of secret shar-
ing. Secret sharing protocols are traditionally used
to share values, with the implicit assumption that the
value has some significance. IT ByzPaxos is oblivi-
ous to a secret’s value; we only care that the secret is
hard to guess and whether it has been reconstructed
or not.

We show how to implement a protocol that satis-
fies this weaker version of secret sharing, a version
that we used in Section 4 to build IT ByzPaxos. Our
protocol uses poly-secrets.

A poly-secret is a vector of n secrets, each secret
being generated by a process in the system. To avoid
confusion, we refer to these n secrets as individual

secrets. We denote the poly-secret as Sv
ts and the ith

individual secrets of Sv
ts as Sv,i

ts . Process i generates
the ith individual secret for every poly-secret.

Individual secrets are random numbers. After gen-
erating an individual secret, a process divides that
secret into secret and verification parts as per the
honest dealer scheme (Section 4.3). Remember that
a process distributes these parts over point-to-point
private channels.

We refer to a vector of secret parts as a poly-
secret part, and a vector of verification parts as a
poly-verification part. Consistent with the descrip-
tion from Section 4, we denote the poly-secret part
as Sv

tsi and the poly-verification part as V v
ts[i].

Poly-secret and poly-verification parts are either
complete orincomplete. We say a part (secret or ver-
ification) is complete if it contains all the individual
parts generated by correct nodes. Otherwise, the part
is incomplete. Note that a process may not necessar-
ily know whether the poly-part it has is complete or
incomplete. If a process receives subsequent secret-
parts for an already divulged poly-secret part, then
that process adds the new parts to the poly-secret part
and sends an update to its original message. These
resends imply that a correct process who divulges
a poly-secret-part eventually sends a complete poly-
secret part.

A process accepts a poly-secret as reconstructed
only if at least f + 1 individual secrets can be re-
constructed correctly, i.e. can be verified using the
corresponding verification parts. At least one secret
that is reconstructed must have been generated and
shared by a correct process, ensuring that the poly-
secret can only be revealed if enough processes di-
vulge their poly-secret parts.

The condition for a correct process to claim it has
reconstructed a poly-secret is stronger than the con-
dition to actually consider one reconstructed. A cor-
rect process makes such a claim only if it can recon-
struct at least 2f + 1 individual secrets. Thus, if a

9

correct process claims to have reconstructed a poly-
secret, all other correct nodes will accept the claim.

5.2 Using poly-secrets

The high-level consensus protocol using poly-secrets
is similar to the one presented in Section 4 that uses
an honest dealer. Using poly-secrets introduces the
folloming changes:

• Instead of requiring that an honest dealer share
secrets processes divulge those shares, pro-
cesses generate and distribute the poly-secret
and divulge their poly-secret parts.

• Instead of verifying that a reconstructed secret
is the correctvalue or not, we now require that
processes check that enough individual secrets
are revealed or not.

Since a poly-secret can be only be reconstructed if
a correct processes individual secret is reconstructed,
it follows that the poly-secret algorithm satisfies the
safety requirements that the honest dealer protocol
satisfies.

In terms of liveness, we rely on periods of syn-
chrony to ensure that all correct processess receive
the complete poly-shares before the processess time-
out on the leader. This is not an additional constraint
as the algorithm in Section 4 provides liveness guar-
antees only during periods of synchrony.

However, one issue is that in the honest dealer
protocol, if a correct leader accepts that the secret
is reconstructed then all correct servers will accept
the secret as reconstructed. With poly-secrets, how-
ever it is possible that the correct leader accepts a
poly-secret as reconstructed but other correct servers
do not believe the same. If the process claiming
to have revealed the poly-secret is faulty, it could
make the leader accept this claim by reconstructing

fewer than f +1 individual secrets from correct pro-
cessess, while ensuring that the remaining number of
required secrets can only be accepted by the leader2.
In this case, the correct leader may not be able to
make progress as the processess will not accept the
proof from the leader.

To solve this, we allow leaders to detect and
henceforth ignore faulty processes. If a process re-
jects a proof from the leader because more than f
individual secrets that were reconstructed are wrong,
that process responds to the leader that it does not
accept the poly-secret to be revealed. If more than f
nodes (i.e. at least one correct node) do not accept
the poly-secret to be revealed, then the leader infers
that the process claiming to the leader that the poly-
secret was revealed must have been faulty.

Correct leaders ignore processes they have de-
tected as faulty. Thus, after at most f such fail-
ures for each leader, the leader ignores all faulty pro-
cesses. If a leader then accepts a poly-secret to be
revealed, then all other correct processes also accept
the same.

References

[1] F. Bahr, M. Boehm, J. Franke, and
T. Kleinjung. Rsa-200 is factored!
http://www.rsa.com/rsalabs/node.asp?id=2879.

[2] G. Bracha. An asynchronous [(n - 1)/3]-
resilient consensus protocol. In PODC ’84:
Proceedings of the third annual ACM sympo-
sium on Principles of distributed computing,
pages 154–162, New York, NY, USA, 1984.
ACM Press.

2This can happen if these individual secrets are shared incon-
sistently by faulty processess

10

[3] G. Bracha and S. Toueg. Asynchronous con-
sensus and broadcast protocols. J. ACM,
32(4):824–840, 1985.

[4] R. Canetti and T. Rabin. Optimal Asyn-
chronous Byzantine Agreement. Technical Re-
port 92-15, TR 92-15, Dept. of Computer Sci-
ence, Hebrew University, 1992.

[5] R. Canetti and T. Rabin. Fast asynchronous
byzantine agreement with optimal resilience. In
STOC ’93: Proceedings of the twenty-fifth an-
nual ACM symposium on Theory of computing,
pages 42–51, New York, NY, USA, 1993. ACM
Press.

[6] M. Castro and B. Liskov. Practical Byzantine
fault tolerance. In Proc. 3rd OSDI, pages 173–
186, Feb. 1999.

[7] B. Chor, S. Goldwasser, S. Micali, and
B. Awerbuch. verifiable secret sharing and
achieving simultaneity in the presence of faults.
In FOCS, pages 383–395, 1985.

[8] P. Dutta, R. Guerraoui, and M. Vukolić. Best-
case complexity of asynchronous Byzantine
consensus. Technical Report EPFL/IC/200499,
EPFL, Feb. 2005.

[9] P. Feldman and S. Micali. An optimal prob-
abilistic algorithm for synchronous byzantine
agreement. In ICALP ’89: Proceedings of the
16th International Colloquium on Automata,
Languages and Programming, pages 341–378,
London, UK, 1989. Springer-Verlag.

[10] M. Fischer, N. Lynch, and M. Paterson. Impos-
sibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374–382,
1985.

[11] L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems, 16(2):133–
169, 1998.

[12] H. C. Li, A. Clement, A. Aiyer, and L. Alvisi.
The Paxos Register. Technical Report TR-07-
25, The University of Texas at Austin, May
2007.

[13] J.-P. Martin and L. Alvisi. Fast Byzantine con-
sensus. In Proceedings of the International
Conference on Dependable Systems and Net-
works (DSN 05), DCC Symposium, pages 402–
411, Yokohama, Japan, June 2005.

[14] T. Rabin and M. Ben-Or. Verifiable secret shar-
ing and multiparty protocols with honest ma-
jority. In Proceedings of the twenty-first an-
nual ACM symposium on Theory of computing,
pages 73–85. ACM Press, 1989.

[15] A. Shamir. How to share a secret. Comm. ACM,
22(11):612–613, 1979.

[16] M. Tompa and H. Woll. How to share a se-
cret with cheaters. In Proceedings on Advances
in cryptology—CRYPTO ’86, pages 261–265,
London, UK, 1987. Springer-Verlag.

11

