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Abstract

In this paper we study the following Cluster Profit Problem. Highly parallelizable re-
quests arrive on network nodes. Each request is associated with a tuple (g, r). The requester
is willing to pay kg if k machines execute the request in parallel. If some machines work
on a request, the machines must pay the request processing costs, r, as well as connection
costs to the request. The problem is to find a profit maximizing assignment of machines to
request, such that each machine works on at most one request. The Cluster Profit Problem
can be viewed as a profit maximizing variant of the Facility Location Problem. We show a
constant-competitive, primal-dual algorithm for the Cluster Profit Problem. We show the
algorithm is game theoretically stable with respect to group deviations on the part of the
participating machines. Finally, we provide a distributed implementation of the algorithm
that uses only local network structure for the required computations.



1 Introduction

In this paper, we study the following Cluster Profit Problem. Consider a network where some
of the nodes can perform computations, we call these nodes machines. Highly parallelizable
requests for computation can come into any node of the network. Each request is associated
with a tuple (g, r). The first parameter signifies that the requester is willing to pay kg if the
request is executed in parallel by k machines. If a set A of machines is assigned to a request, the
machines in A must collectively pay r, the cost required to satisfy the request. The machines in
A must also pay communication costs equal to the sum of the shortest paths from each machine
in A to the request. The Cluster Profit Problem is to assign each machine to at most one
request such that the profit to the system is maximized. The Cluster Profit Problem is formally
defined in Section 2.

Though we have chosen the cluster setting in specific to describe Cluster Profit Problem
(CPP), it has generally applicable interpretations.

First, the problem can be viewed as a variant of Facility Location Problem [4]. Suppose,
we are given a graph where some nodes are labeled as customers and some as facilities. Each
facility is associated with a tuple (g, r). The number r signifies the opening cost of the facility.
The number g signifies the quality of the facility, stating that each customer is willing to pay
g for being connected to this facility. If we connect a customer to a facility, we are required
to pay a shipping cost equal to the distance from the customer to the facility. We are also
required to pay a facility’s opening cost if we connect any customer to the facility. Finding a
profit maximizing assignment of customers to facilities is exactly CPP. In contrast, the standard
Facility Location Problem has no quality values. Instead we must assign each customer to a
facility and minimize the overall cost of the assignment.

Second, CPP can be viewed as an instance of a coalition formation problem. In a general
coalition formation setting, we are given a set of tasks and a set of agents. We would like to
partition the agents and assign each resulting subset to some task [15]. Often, we would like
to have the partition and subsequent assignment of tasks maximize some utility function [14].
CPP can be viewed as a coalition formation problem, where the tasks are the requests, the
agents are the machines, and the utility function is defined by the profit.

Cluster computation in a large scale distributed system motivates at least three desirable
properties of an algorithm for CPP. First, the algorithm should approximately maximize the
revenue of the system. Lemma 4.8 shows that CPP is NP-hard, thus, unless NP = P, we cannot
hope for an efficient algorithm that gives the maximum revenue.

Second, the algorithm should be resilient to selfish behavior of the system’s participants. If a
system is spread across nodes owned by several entities, each entity may have its selfish interests
override the algorithm’s requirements. Thus, we would like an algorithm that is resilient to such
group deviations.

Third, the algorithm should use only local computations, without the need for global knowl-
edge of the network structure. In a large scale distributed system, nodes may enter and leave the
network continuously, thus it may be impractical to keep track of the global network structure.
An algorithm relying only on local network structure would be more scalable to such a large,
dynamic system.

1.1 Main Contributions

In this paper, we design an algorithm with the previously mentioned desirable properties: ap-
proximate optimality, group stability, and local computability. Specifically in Section 3, we
describe an algorithm for CPP called Algorithm ALG with the following properties:
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1. We show ALG gives a constant competitive approximation. In specific, we show Theorem
1 stating that ALG operating on an instance of CPP gains at least a constant fraction of
the profit of an optimal algorithm operating on the same instance, but with edge lengths
increased by a constant factor. See Section 4 for further details.

2. We show ALG is resilient to group deviations. In Section 5.3, we define the notion of
competitive stability. Competitive stability is similar to the game theoretic core [17],
however, under competitive stability, players incur a small penalty for deviating from
the protocol. We show that the coalitions formed by ALG are competitively stable. In
specific, we show Theorem 2 stating that every subset of the machines gains at least a
constant fraction of the profit they would gain under an optimal deviation, if deviating
increases communication costs by a constant factor. See Section 5 for further details.

3. We explain how to implement ALG in a distributed fashion. In Theorem 3 we analyze the
distributed algorithm’s time and message complexity. In specific, we show that if the set
of machines is U and the set of requests is V, the algorithm terminates in O(|V|) phases
using O(|U||V|2) local messages. See Section 6 for further details.

1.2 Related Work

Our paper most closely parallels work on the Facility Location Problem (FLP). FLP has been
studied for decades [10, 7, 4]. Of this work, the works closest to our own are a sequence of
papers using primal-dual algorithms for approximating the FLP. Jain and Vazirani describe a
greedy primal-dual algorithm that gives a 3-approximate solution to the FLP [9]. Mettu and
Plaxton give an alternate interpretation of the Jain and Vazirani algorithm that is more suitable
for implementing in a distributed manner [12]. Jain et al. give an algorithm based on similar
ideas as Jain and Vazirani, but use an alternate analysis technique called a factor-revealing LP
to improve the approximation factor [8].

Our algorithm is based on a similar approach as the Jain and Vazirani algorithm, however,
it is designed for CPP, which is a fundamentally different problem than FLP. FLP minimizes
the cost of an assignment, but CPP maximizes the profit of an assignment. As there can
be assignments with high costs that also yield high profits, a facility location algorithm that
finds the approximately lowest cost assignment provides no guarantees on maximizing the profit
earned. Therefore, algorithms for FLP do not apply directly to our problem.

In analyzing our algorithm, we use a factor-revealing LP analysis. However, we extend the
factor-revealing LP technique of Jain et al. by combining it with competitive analysis to show
our algorithm is constant competitive. In addition, we use an interpretation similar to that of
Mettu and Plaxton as a basis for our distributed algorithm.

Recently, game theoretic stability in distributed systems has been studied [5, 3, 11]. Most
work concentrates on showing that a particular distributed system is in Nash equilibrium. In a
system in Nash equilibrium, we are guaranteed that no individual has incentive to unilaterally
deviate. However, Nash equilibrium does not provide guarantees against group deviation.

Group deviations are best modeled with the core equilibrium, a notion from cooperative
game theory [17]. Pal and Tardos develop a method of cost sharing in a Facility Location Game,
using ideas from the primal-dual facility location approximation algorithms [13]. Furthermore,
Pal and Tardos show their cost sharing method is in the approximate core.

Contrasting with the work on Nash equilibrium, we show our algorithm is resilient to group
deviations. Our stability results are similar to the results of Pal and Tardos, in that both
depend on the underlying primal-dual algorithm. Since the facility location algorithms are
approximately optimal, Pal and Tardos show their cost sharing method is in the approximate
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core. On the other hand, our algorithm is competitively optimal and we show our profit shares
are competitively stable. Furthermore, our proof technique is different from the proof technique
of Pal and Tardos.

2 The Cluster Profit Problem

In this section, we formally define the Cluster Profit Problem (CPP). Let a graph G = (N , E)
with a non-negative distance metric d be given. Let a subset of the nodes, U ⊆ N , denote a set
of machines. Let a subset of nodes, V ⊆ N , receive requests for computation. The request at
machine v ∈ V is associated with a tuple of non-negative real numbers, (gv, rv). The number gv

denotes that the requester is willing to pay gv for each machine that is assigned to the request.
If set A of machines is assigned to request v, the machines in A must collectively pay rv, the cost
required to satisfy the request, and

∑
u∈A du,v, where du,v is the distance of the shortest path

from machine u to the request v. The goal of our algorithm is to find a coalition configuration,
or assignment of machines to requests, such that each machine is assigned to at most one request
and the profit to the system is maximized.

By Lemma 4.8, CPP is NP-hard. To provide theoretical guarantees, we must introduce
two more parameters. First, we introduce a constant ω such that rv ≤ ωgv. In essence, this
restriction requires the requester to pay at least the resource cost, as long as ω machines are
working on the request.

Informally, our results show a constant-competitive approximation algorithm. As in the
competitive algorithms literature [1], our algorithm competes with a small, constant factor
advantage over the optimal algorithm, OPT. We introduce a constant θ. If our algorithm
operates on a graph G with distance metric d, we compare with OPT operating on a graph G′

with distance metric θ ·d. Thus, our algorithm has the small competitive advantage of distances
that are shorter by the constant factor θ.

Formally, fix a maximization problem and an algorithm A1 for solving the maximization
problem. Let OPT be an algorithm achieving an optimal solution to the problem. We say
algorithm A1 is γ-competitive under an instance transformation L if for all instances x we have
OPT(L(x)) ≤ γA1(x). In our paper, the transformation L consists of increasing the distances
by a constant factor θ.

3 Algorithm Description

We use an algorithmic approach inspired by a long sequence of papers starting with an ap-
proximation algorithm to the set cover problem to some recent papers on the Facility Location
Problem [8, 2, 12, 16]. The key idea behind the algorithm is to greedily find a subset of machines
and a request such that the corresponding assignment gives the maximum profit density.

Informally, we use the concept of a star, S = (vS ,AS), to denote a tuple of a request, vS,
and a set of machines, AS [8]. In our presentation, we abuse notation slightly by writing u ∈ S
and |S| when we mean u ∈ AS and |AS|, respectively. Define the profit of a star S = (v,A) as
pS = (|S| · gvS

−
∑

u∈S du,v − rvS
). Correspondingly, the profit density of the star S is pS/|S|.

Our greedy algorithm finds the star S = (vS ,AS) with the highest profit density and assigns
the machines in AS to work on the request vS . The algorithm then sets the resource cost rvS

to zero and finds the next best star unless there are no unassigned machines left or the profit
density of all remaining stars is negative.

Formally, let xS be a binary variable denoting whether a star S has been picked. Let T
denote the set of all stars. Finding the profit maximizing coalition configuration can then be
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expressed with the following integer program:

max
∑

S∈T

pS · xS (P)

s.t.
∑

S∈T :u∈S

xS ≤ 1 for all u ∈ U (1)

xS ∈ {0, 1} for all S ∈ T (2)

Lemma 3.1. The dual of the non-integer-constrained relaxation of P is

min
∑

u∈U

αu (D)

s.t.
∑

u∈U

max(0, gv − αu − du,v) ≤ rv for all requests, v ∈ V.

αu ≥ 0 for all u ∈ U

Proof. A relaxation of P can be obtained by substituting Equation (2) with xS ≥ 0. We do not
require the upper bound xS ≤ 1, since it is already imposed by Equation (1).

We take the dual of the relaxed program.

min
∑

u∈U

αu

s.t.
∑

u∈S

αu ≥ pS for all S ∈ T (3)

αu ≥ 0 for all u ∈ U

We re-write Equation (3) several times to show the desired result. First, we begin by
substituting the definition of pS .

∑

u∈S

αu ≥ |S| · gvS
−

∑

u∈S

du,vS
− rvS

for all S ∈ T .

Re-arranging, we get
∑

u∈S

(gvS
− αu − du,vS

) ≤ rvS
for all S ∈ T .

The result then follows from Lemma 3.2.

Lemma 3.2. The set of inequalities

∑

u∈S

(gvS
− αu − du,vS

) ≤ rvS
for all S ∈ T . (4)

and
∑

u∈U

max(0, gv − αu − du,v) ≤ rv for all requests, v ∈ V. (5)

are equivalent.
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Proof. To see that any vector α satisfying Equations (4) also satisfies Equations (5), for each
request v consider the star S = (v,A) with A = {u | gv − αu − du,v ≥ 0}. For the reverse
direction, notice that

∑
u∈S(gvS

− αu − du,vS
) is at most

∑
u∈U max(0, gvS

− αu − du,vS
).

One apparent interpretation of the dual variables αu in D is the profit made by the machine
u after paying its distance costs and its share of the resource cost for processing its assigned
request.

We now leverage the interpretation of the dual variables to get to the greedy algorithm
to solve the profit maximization problem. Let gmax be the maximum of all the gv . The idea
behind the algorithm is to start with all dual variables equal to gmax and uniformly decrease
their value. Since we are uniformly decreasing the dual variables, the maximum profit density
star is the star identified by the first equation from Equations (5) that becomes tight. A more
precise description of the algorithm, which we call ALG is as follows:

Initialization Set each αu to gmax.

Loop Decrease αu for each machine in u ∈ U at a uniform rate until one of the following
happens:

1. If αu becomes zero or U is empty, then we stop the algorithm.

2. If some inequalities of type (5) become tight, pick one arbitrarily. Say we picked the
inequality corresponding to v. Assign all machines in A = {u | gv−αu−du,v ≥ 0, u ∈
U} to request v. Set rv = 0 and U = U −A and proceed with the uniform decrease
once again.

4 Analysis

4.1 A Clarifying Example

In this section, we run ALG on a specific instance. In this example the graph has 2n nodes, and
(θ, ω) = (1, n − 1). ALG has an approximation ratio of n on this example instance. Running
ALG on this instance firstly serves as a clarifying example of the algorithm. Secondly, the
instance exemplifies the need for the parameters θ and ω, since without restrictions on these
two parameters the algorithm produces a non-constant approximation factor.

un

u3

u2

u1

1
n

0

0

0

0

0

...
...

vn (λ, 0)

v3 (λ, 0)

v2 (λ, 0)

v1 ( 2
n

+ λ, 0) 1
n

0

v∗ (1 + 1
n
, (n − 1) · (1 + 1

n
))

Figure 1: An instance of the Cluster Profit Problem. There are n machines u1, . . . , un. There
are n+1 requests v1, . . . , vn and v∗. In the figure, each request v is followed by the tuple (gv , rv)
for the request and the edges are labeled with their distances.

Let us run ALG on the instance described in Figure 1.
ALG begins by initializing the vector of dual variables α to 1 + 1

n
, since gmax = 1 + 1

n
in

our instance. The algorithm decreases the variables uniformly until they are all equal to 1
n

+ λ.
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At this time, the inequality of type (5) for request v1 becomes tight. It is straight forward to
verify that no other inequality of type (5) is tight. The algorithm assigns machine u1 to request
v1, removes u1 from U , sets rv1

to zero, and continues decreasing the remaining dual variables
uniformly. When the remaining dual variables are all equal to λ, each of the inequalities for v2

through vn become tight. Again, it is straight forward to verify that no other inequality is tight.
For i from 2 to n, the algorithm assigns machine ui to request vi. At this point, all machines
are assigned and the algorithm terminates.

The total profit of the solution found by ALG is 1
n

+n ·λ. However, if we assign all machines
to request v∗, then the total profit is 1. Thus, as we let λ go to zero, we find that for this
instance, ALG has an approximation ratio of n.

4.2 Analysis

To analyze ALG, we use a variation of a proof technique called a factor revealing LP, which
has a lengthy development history but was formalized by Jain et al. [8]. What follows is an
overview of our proof structure.

Suppose, as is the case with this paper, we are trying to find an approximation algorithm to
an integer constrained maximization problem. Let us call the problem variables π, the problem
we are trying to solve P, and its optimal value OPTVALP. We write P(π) to denote the objective
function value at vector π .

The general approach of a primal-dual algorithm is as follows. First, we relax the integer
constraints in the primal program, the problem we are trying to solve, and find the dual of the
relaxed problem. Let us call the variables in this dual α, and the dual problem D. Similarly
as with P, we write D(α) to denote the objective function value at vector α. After expressing
D, we proceed by finding a real-valued dual variables α′ feasible in D and a corresponding
integer-valued primal variables π′ feasible in P. We hope to find α′ and π′ in such a way
so we can show D(α′) ≤ γ · P(π′). If we succeed, we have γ-approximate algorithm since
P(π′) ≤ OPTVALP ≤ D(α′) ≤ γ · P(π′), where the middle inequality is a result of weak
duality. See Vazirani for further details on primal-dual algorithms [18]. The main difficulty
when applying the direct primal-dual approach is finding the required mapping from a feasible

real-valued dual variables α′ to a feasible integer-valued primal variables π′.
The approach of a factor revealing LP may help when finding the required mapping is

difficult. When applying the factor revealing LP method, we do not insist that α′ be feasible
D. Instead, we find an π′ feasible in P, as in the original primal-dual method, along with a α′

which is infeasible in D but has the property that D(α′) = P(π′). Notice that if α′ were feasible
in D, we would have found an optimal solution by weak duality. We proceed by attempting
to find a γ, which must be greater than 1 by the argument in the preceding sentence, such
that γα′ is feasible in D. We then have D(γα′) = γD(α′) = γP(π′), where the first equality
comes from the fact that the objective function of D is linear. The vectors π′ and γα′ have
the required properties finish the original primal-dual argument. Thus, when using the factor
revealing LP analysis method, we need not find a complex combinatorial mapping from feasible
real-valued dual variables to feasible integer-valued primal variables. Instead we try to find
a γ with which we can scale infeasible dual variables so they become feasible. As the factor
revealing LP method’s name suggests, finding the required γ can often be reduced to solving a
series of LPs, which may be easier than finding the required combinatorial mapping. See Jain
et al. for further details on the factor revealing LP method [8].

In our work, we must vary the factor revealing LP method slightly, since our results show a
competitive approximation ratio. When showing a competitive approximation ratio, we compare
our algorithm to an optimal algorithm which has slightly less resources. We use P and D to
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denote the primal and relaxed dual pair for the instance on which the our algorithm is competing.
We will use PL and DL to denote the primal and relaxed dual pair for the resource hampered
instance on which the optimal algorithm is competing. Similar to the factor revealing LP, we
find an π′ feasible in P and α′ infeasible in D such that P(π′) = D(α′). However, we then
find γ such that γα′ is feasible in the optimal algorithm’s DL. We can then show the required
OPTVALPL ≤ DL(γα′) = γDL(α′) = γD(α′) = γP(π′), where second equality comes from the
fact that the objective functions in DL and D are the same. The major change from the factor
revealing LP method is that we are looking for a scaling γ which makes α′ feasible in DL instead
of D.

By the same reasoning as that for P, and D in Section 3 along with the definition of θ from
Section 2, we obtain an expression for DL.

min
∑

u∈U

αu (DL)

s.t.
∑

u∈U

max(0, gv − αu − θdu,v) ≤ rv for all requests, v ∈ V.

αu ≥ 0 for all u ∈ U

Theorem 1. For a constant γ, ALG operating on an instance of CPP is γ-competitive against

an optimal algorithm operating on the same instance, but with distances increased by a constant

factor θ.

Proof. By Lemma 4.7, ALG constructs a vector x feasible in P and a vector α such that
P(x) = D(α). By Lemma 4.4, there exists a constant γ, only dependent on the constants ω and
θ, such that γα is feasible in DL.

Let OPTVALPL be the value of the optimal algorithm. By weak duality we have OPTVALPL ≤
DL(γα). By the linearity of the objective function of DL, we have DL(γα) = γDL(α). Since
the objective function of D and DL are the same, we have γDL(α) = γD(α). From the pre-
ceding paragraph, we have that γD(α) = γP(x). Thus, we have shown the desired result
OPTVALPL ≤ γP(x).

Lemma 4.1. Let ALG finish with variables α′. Let

zk = min
µ

max
g,r,α,d

µ

s.t.

kgv − rv − θ

k∑

i=1

di,v ≤ µ

k∑

i=1

αi

αi ≤ αi−1 for all i in {2, ..., k}

αi ≤ αj + di + dj for all i, j in {1, ..., k}

θdi ≤ g for all i in {1, ..., k}

r ≤ ω · g

k∑

j=i

max(0, g − αi − dj) ≤ r for all i in {1, ..., k}

αi, di, r, g ≥ 0 for all i in {1, ..., k}

If γ ≥ supi≥1(zi), then γα′ is feasible in DL.
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Proof. Fix a request v, and consider evaluating µα′ in the corresponding inequality of DL

∑

u∈U

max(0, gv − µα′
u − θdu,v) ≤ rv

Let there be k machines with α′
u such that gv − α′

u − θdu,v ≥ 0. These are the only machines
for which scaling matters. We re-name the machines α′

1, . . . , α
′
k such that α′

i−1 ≥ α′
i. In other

words, we are simply ordering the machines by the time of of their assignment to a request,
with machines assigned earlier coming first in the ordering. To see this, notice that α′ decreases
as ALG progresses. In addition, for all k machines, we have that gv − α′

u − θdu,v ≥ 0 which
implies that gv ≥ θdu,v, since α′

u is always at least 0.
We rewrite the inequality in the previous paragraph using the naming scheme we have

described

k∑

i=1

(gv − µα′
i − θdi,v) ≤ rv.

We rearrange the above inequality to get

kgv − rv − θ
k∑

i=1

di,v ≤ µ
k∑

i=1

α′
i.

Let µ′ be the minimum µ which satisfies the above equation. In the next paragraph, we
argue that the values µ′, gv, rv , α

′
1, . . . , α

′
k, d1,v , . . . , dk,v are feasible in zk. Given this feasibility,

since γ ≥ supi≥1(zi), we have γ ≥ zk ≥ µ′. Thus,

kgv − rv − θ
k∑

i=1

di,v ≤ µ′

k∑

i=1

α′
i ≤ γ

k∑

i=1

α′
i.

Thus, γα′ is feasible in the inequality for v in DL. The same argument holds for all requests v,
thus γα′ is feasible in DL.

All that remains to be shown is that the vector of values from the preceding paragraph is
feasible in zk. The values are feasible in the first inequality of the definition of zk by the definition
of µ′. They are feasible in the second constraint by our ordering on α′

1, . . . , α
′
k. Feasibility in

the third constraint comes from Lemma 4.2. Feasibility in the fourth inequality comes from the
fact that for all k machines we have g − αi − θdi ≥ 0. Feasibility in the fifth inequality comes
from our constraints on what requests can come into the system, in other words, the definition
of ω. Feasibility in the final constraint comes from Lemma 4.3. The non-negativity constraints
are also satisfied by the definition of CPP and ALG.

Lemma 4.2. Let ALG finish with variables α. For any two machines u, u′ and request v,

αu ≥ αu′ − du,v − du′,v.

Proof. If αu ≥ αu′ , we are done.
Assume αu < αu′ . In other words, machine u′ is connected to a request, say v′, before αu

stops decreasing.
If gv′ − αu − du,v′ > 0, then machine u should connect to request v′ before we lower rv′ to

zero. In other words, u must be in the first set of machines which we connect to v′, and we
must have αu ≥ αu′ , which is a contradiction with the assumption in the previous paragraph.
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Thus, we have

gv′ − αu − du,v′ ≤ 0

gv′ − du,v − du′,v − du′,v′ ≤ αu,

where the last statement comes from the triangle inequality. Since u′ connects to v′, we have
gv′ − αu′ − du′,v′ ≥ 0 which we can then use to continue re-writing

gv′ − du′,v′ − du,v − du′,v ≤ αu

αu′ − du,v − du′,v ≤ αu

Lemma 4.3. Let ALG finish with variables α. Consider a request v and any k machines and

the corresponding α1, . . . , αk, ordered such that αi−1 ≥ αi. For all i = 1, . . . , k, we have

k∑

j=i

max(0, gv − αi − dj,v) ≤ rv.

Proof. Assume
∑k

j=i max(0, gv − αi − dj,v) > rv.
If for all l ∈ {i, . . . , k}, we have αl ≤ αi, then all machines in the set {i, . . . , k} are unassigned

when ALG has decreased α to αi. But, this is a contradiction since ALG would assign the entire
set of machines {i, . . . , k} to v when the α are at λ > αi such that

∑k
j=i max(0, gv−λ−dj,v) = rv.

Thus, there exists l ∈ {i, . . . , k}, such that αl > αi. But, this is a contradiction with the
ordering on α1, . . . , αk.

Lemma 4.4. Let ALG finish with variables α. Then, there exists a constant γ, only dependent

on the constants ω and θ, such that γα is feasible in DL.

Proof. By Lemma 4.1, we know that if γ ≥ supi≥1(zi) then γα is feasible in DL.
Let γ∗ and k∗ be constants as in Lemma 4.5. Then, we have

sup
i≥1

(zi) ≤ max(z1, . . . , zk∗ , γ∗)

By Lemma 4.6, we have
sup
i≥1

(zi) ≤ max(k∗, γ∗)

Thus, setting γ to the constant max(k∗, γ∗) gives the desired result.

Lemma 4.5. There exist constants γ∗ and k∗, only dependant on the constants ω and θ, such

that supk≥k∗(zk) ≤ γ∗.

Proof. Suppose we are trying to solve for zk. We would like to find a µ, such that for all settings
of the remaining variables,

k

µ
g −

1

µ
r −

θ

µ

k∑

i=1

di ≤
k∑

i=1

αi, (6)
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We find a setting for µ by using the inequalities imposed on g, r, α, d. One of these inequalities
is

k∑

j=i

max(0, g − αi − dj) ≤ r for all i in {1, ..., k},

which we can relax to

k∑

j=i

(g − αi − dj) ≤ r for all i in {1, ..., k}.

Multiplying the inequality for i by a scaling factor φi and summing all the resulting inequalities,
we have

k∑

i=1

φi

k∑

j=i

(g − αi − dj) ≤ r

k∑

i=1

φi.

Expanding the double summation on the left hand side, we have

g
k∑

i=1

φi(k − i + 1) −
k∑

i=1

αiφi(k − i + 1) −
k∑

i=1

di

i∑

j=1

φj ≤ r
k∑

i=1

φi.

We can re-arrange to get

g

k∑

i=1

φi(k − i + 1) − r

k∑

i=1

φi −
k∑

i=1

di

i∑

j=1

φj ≤
k∑

i=1

αiφi(k − i + 1). (7)

Recalling that our goal is to show Inequality (6), we can now see that it is reasonable to set
φi to 1

(k−i+1) in Inequality (7). With these values, Inequality (7) reduces to

kg − r
k∑

i=1

1

k − i + 1
−

k∑

i=1

di

i∑

j=1

1

k − i + 1
≤

k∑

i=1

αi. (8)

We proceed with some intuition. Comparing Inequality (8) to the goal Inequality (6), we
notice that there is some slack in the coefficient of g, but the coefficients of r and di are too
large. Thus, we cannot yet claim we have shown the desired result. Instead, we will use the
inequalities

r ≤ ωg

θdi ≤ g for all i in {1, ..., k},

which must hold by the definition of zk, to siphon some of the excess coefficient of g to reduce
the coefficients of r and di.

More formally, we introduce non-negative parameters sr, sd1
, sd2

, . . . sdk
, each representing

the amount of g coefficient which we will siphon to the specified destination. Using the two
inequalities in the above paragraph and Inequality (8), we have

(k − sr −
k∑

i=1

sdi
)g − r(−

sr

ω
+

k∑

i=1

1

k − i + 1
) −

k∑

i=1

di(−θ · sdi
+

i∑

j=1

1

k − i + 1
)

≤ kg − r

k∑

i=1

1

k − i + 1
−

k∑

i=1

di

i∑

j=1

1

k − i + 1
≤

k∑

i=1

αi. (9)

10



Thus, as long as we can find a setting of the variables s satisfying

k − sr −
k∑

i=1

sdi
≥

k

µ

−
sr

ω
+

k∑

i=1

1

k − i + 1
≤

1

µ

−θ · sdi
+

i∑

j=1

1

k − i + 1
≤

θ

µ
for all i in {1, . . . , k}

we would show that zk ≤ µ. We proceed by simplifying the above expression and finding values
of µ, k for which it holds, given constants ω and θ.

We simplify the inequalities in the previous paragraph, by setting sd =
∑k

i=1 sdi
and sum-

ming the last inequality over all i. We must then more simply show there exist sr and sd such
that

k − sr − sd ≥
k

µ

−
sr

ω
+

k∑

i=1

1

k − i + 1
≤

1

µ

−θ · sd +

k∑

i=1

i∑

j=1

1

k − i + 1
≤

kθ

µ

Noting that
∑k

i=1

∑i
j=1

1
k−i+1 = k and

∑k
i=1

1
k−i+1 ≤ 1 + log k, we can further simplify and

strengthen the inequalities we must satisfy to

k − sr − sd ≥
k

µ

−
sr

ω
+ (1 + log k) ≤

1

µ

−θ · sd + k ≤
kθ

µ

Setting sr = sd = k
2 (1− 1

µ
) satisfies the first inequality. If we set µ to any value γ∗ such that

(1 −
1

γ∗
)
θ

2
≥ 1,

we satisfy the third inequality. Finally, the middle inequality is then satisfied for any k ≥ k∗

where k∗ is the least integer satisfying

1 − 1
γ∗

2ω
k∗ ≥ 1 + log k∗

Thus, we have shown zk ≤ γ∗ for any k ≥ k∗.

Lemma 4.6. The value of zk is at most k.
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Proof. We would like to show that regardless of the setting of g, r, α, d, assigning k to µ is always
feasible in zk.

From the sixth constraint in zk, we have

r ≥
k∑

j=1

max(0, g − α1 − dj)

≥
k∑

j=1

(g − α1 − dj)

≥
k∑

j=1

(g −
k∑

i=1

αi − dj)

= kg − k
k∑

i=1

αi −
k∑

j=1

dj)

≥ kg − k
k∑

i=1

αi − θ
k∑

j=1

dj ,

where the last inequality comes from the fact that θ ≥ 1.
Rearranging, we have

kg − r − θ

k∑

j=1

dj ≤ k

k∑

i=1

αi.

Thus, setting µ to k is always feasible in zk.

Lemma 4.7. ALG constructs a vector x′ feasible in P and a vector α′ such that P(x′) = D(α′)

Proof. The solution constructed by ALG is the assignment of machines to stars. Each variable
αu can be interpreted as the profit of machine u, after paying its distance to its assigned request
and its share of the computational resource expense. We only assign machines to requests when
the corresponding inequality of type (5) is tight. Thus, at the time of assignment for a request,
the algorithm has deducted enough to pay for the resource expense of the request. The lemma
can be fully formally proved by induction on the number of machine to request assignments by
the algorithm.

Lemma 4.8. The Cluster Profit Problem is NP-Hard.

Proof. We prove this by reducing the Facility Location Problem (FLP) to CPP. It is known
that FLP is NP-Hard. Let an instance of FLP be given by the set of facilities ,F ; the set of
clients ,J ; the cost for opening each facility p ∈ F , fp; and the cost for connecting a client j ∈ J
to facility p, cj,p. We create an instance of CPP by letting the set of requests and machines be
(V,U) = (F ,J ). We define the resource cost of a request p as rp = fp. The distance cost of a
machine j to a request p is given by dj,p = cj,p. Let g be a constant greater than the sum of
the maximum facility opening cost and the maximum connection cost. For each request p we
set gp = g. The value of g ensures that for each machine it is more profitable to work on any
request than not work at all.

In this instance of CPP, regardless of what requests are serviced the total revenue generated
is g · |U|. So the optimal solution to CPP instance is the one that minimizes the overall resource
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and connection costs. Therefore the solution of CPP instance is also a solution to the FLP
instance.

Using Lemma 4.5, given values for θ and ω, it is possible to numerically compute the
minimum value of γ for which ALG is γ-competitive. We can do so by solving for the first k∗

values of zk and taking the maximum between those values and γ∗, where k∗ and γ∗ are as
in the lemma. Figure 2 describes the results of such numerical evaluations. In specific, it is
interesting to notice the following trends: fixing ω, as θ goes to one, γ goes to infinity; fixing ω,
as θ goes to zero, γ goes to one; if we fix θ, then γ varies almost linearly with ω.

γ

θω

γ

120
100
80
60
40
20
0

1
0.8

0.6
0.4

0.2
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80
60

40
20

120
100
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60
40
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Figure 2: The exact competitiveness factor, γ, as a function of the parameters ω and θ. In the
experiments, ω was varied between 20 and 100, while θ was varied between 0 and 1. As θ goes
to zero, the approximation factor γ approaches one. As θ goes to one, γ approaches infinity.
For the mid-ranges of θ, the approximation factor γ varies almost linearly with ω. In other
words, as ω goes to one, so does γ; as ω goes to infinity, so does γ.

5 Competitive Stability

In this section, we prove game theoretic stability results for ALG.

5.1 Standard Game Theoretic Definitions

In coalitional game theory, a game is usually defined by a characteristic function V : 2P → ℜ+,
where P is the set of players and ℜ+ are the non-negative real numbers [17]. In a profit max-
imizing game, V (A) represents the maximum amount of profit the players in A can guarantee
themselves, without the cooperation of the remaining players.

A payoff vector π is in the core of a coalitional game if

∑

a∈A

πa ≥ V (A) for all A ⊆ P (10)

∑

a∈P

πa ≤ V (P). (11)
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The inequalities of type (10) represent a stability mandate. The inequality of type (10) for
A demands that the players A receive at least as much payoff in vector π as the subset could
receive playing optimally on their own. Thus, for a payoff vector in the core, no subset of the
players has incentive to reject the payoff vector and play on its own.

Inequality (11) is a conservation of wealth constraint. Inequality (11) demands that the
vector π does not give away more payoff than the game allows the entire set of players to
receive. See [17] for more details on the core of a coalitional game.

5.2 The Cluster Coalition Game

The Cluster Profit Problem gives rise to a natural coalitional game, which we call the Cluster
Coalition Game. The players of the game are the set of machines U , and the characteristic
function V (A) is the maximum amount of profit the machines in A can achieve if they work on
their own.

We express V (A) using the terminology of Section 3. For a subset of machines A, let TA
denote the stars which include only machines from A. We can then write

V (A) = max
∑

S∈TA

pS · xS

s.t.
∑

S∈TA u∈S

xS ≤ 1 for all u ∈ U

xS ∈ {0, 1} for all S ∈ TA

Goemans et al. have shown that the core of a related Facility Location Game are often
empty [6]. However, even if the core of the Cluster Coalition Game were non-empty, it would
be NP-hard to find a core vector. Notice that Inequality (11) along with Inequality (10) with
A = P imply that

∑
a∈P πa = V (P). On the other hand, Lemma 4.8 shows that determining

V (P) is NP-hard. Thus, finding a vector in the core of the Cluster Coalition Game s also
NP-hard.

5.3 Competitive Stability Definition

As described in Section 5.2, there is little hope of finding a vector in the core of the Cluster
Coalition Game. However, we can still show stability properties for the coalitions found by
ALG. In this section, we give a natural definition of competitive stability.

Fix a profit maximization game parameterized by a vector x and defined by the characteristic
function V x. A payoff vector π is γ-competitively stable under a transformation L if it satisfies:

∑

a∈A

πa ≥
1

γ
V L(x)(A) for all A ⊆ P

∑

a∈P

πa ≤ V x(P).

Notice that this definition parallels the definition of a competitive algorithm from Section 2. In
applications of competitive stability, similar as in the applications of competitive analysis, the
transformation L typically decreases some resource in the system. We give an example in the
following paragraphs. For notational brevity, we assume the parameter x to be implicit and
from here on write V L and V instead of V L(x) and V x, respectively.
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Consider the following natural example of competitive stability. A large Internet company
running a Cluster Coalition Game with millions of machines which the company does not
own. The company suggests coalitions to the participating machines. If the machines follow the
company’s suggestion, they may use the company’s proprietary bandwidth to communicate. On
the other hand, if they deviate, the machines must use some other method of communication,
thus incurring slightly larger communication costs. In this example, the transformation L is an
increase in the communication costs.

If the coalitions suggested by the company, and resulting payoff vector to the machines, are
1-competitively stable, then the company is assured that no subset of the machines has incentive
to deviate. If the suggested coalitions are γ-competitively stable, where γ is a small constant,
the company is assured that no subset of machines has a large incentive to deviate.

5.4 Competitive Stability for the Cluster Coalition Game

In this section we show that the coalitions computed by ALG are γ-competitively stable, for
some constant γ with respect to lengthening the graph distances by a constant factor.

Let the Cluster Coalition Game defined in Section 5.2 be parameterized with the distance
metric d. For our proof, the transformation L lengthens the distances by a constant factor θ.
Thus, we have

V L(A) = max
∑

S∈TA

pL
S · xS

s.t.
∑

S∈TA:u∈S

xS ≤ 1 for all u ∈ U

xS ∈ {0, 1} for all S ∈ TA

where the profit of each star, pL
S, is computed in a graph with a distance metric θd. This

definition parallels the example at the end of Section 5.3 and naturally follows the definitions
in Section 2.

Theorem 2. Let ALG compute a vector of dual variables α. For a constant γ, the payoff vector

α is γ-competitively stable in the Cluster Coalition Game, with respect to lengthening the graph

distances by a constant θ.

Proof. The statement follows from Lemmas 5.1 and 5.2.

Lemma 5.1. Let ALG compute a vector of dual variables α. Then,

∑

a∈P

αa ≤ V (P).

Proof. Recall from Section 5.2 that the set of players, P, is the set of machines U .
By Lemma 4.7, ALG constructs a vector x feasible in P and a vector α such that P(x) =

D(α). Since the program for P from Section 3 and V (P) from Section 5.2 is the same, we have
∑

a∈P

αa = D(α) = P(x) ≤ V (P).

The first equality comes from the objective function of D. The second equality comes from
Lemma 4.7. The last inequality comes from the fact that x is feasible in P which has optimal
objective function value V (P).
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Lemma 5.2. Let ALG compute a vector of dual variables α. There is a constant γ such that

for any A ⊆ P, we have ∑

a∈A

αa ≥
1

γ
V L(A)

Proof. Recall that in the Cluster Coalition Game, the set of players P is the set of machines U .
By Lemma 4.4, we have that there exists a constant γ such that γα is feasible in DL. But,

DL is also the expression for the relaxed dual of V L(P). Thus, we have

γ
∑

a∈P

αa = γDL(α) = DL(γα) ≥ V L(P).

The first equality comes from the objective function of DL. The second equality comes from
the linearity of the objective function of DL. The third inequality comes from the fact that γα
is feasible in DL and DL is the non-integer constrained relaxed dual of V L(P).

Lemma 5.3 allows us to apply the same reasoning for any A ⊆ P,

Lemma 5.3. If a vector α is feasible in the non-integer-constrained relaxed dual for V L(P), it

is also feasible in the non-integer-constrained relaxed dual for V L(A) for any A ⊆ P.

Proof. Recall that in the Cluster Coalition Game, the set of players P is the set of machines U .
Let α be feasible in DL, which is the relaxed dual of V L(P)

The expression for the relaxed dual of V L(A) is

min
∑

u∈A

αu

s.t.
∑

u∈A

max(0, gv − αu − θdu,v) ≤ rv for all requests, v ∈ V.

αu ≥ 0 for all u ∈ A,

For A ⊆ U , α is feasible in the above program since A ⊆ U implies

∑

u∈A

max(0, gv − αu − θdu,v) ≤
∑

u∈U

max(0, gv − αu − θdu,v) ≤ rv.

6 Distributed Algorithm

The main purpose of this section is to describe and analyze a distributed implementation of
ALG.

In ALG we attached a profit variable to each of the machines and let it reduce uniformly.
However for the distributed algorithm it is more intuitive to think of balls being grown around
each of the requests. We define a ball Bv(R) to be the set of machines that are within a
distance R from the request v. For each machine u, we call a request v local if u ∈ Bv(gv);
correspondingly u is a local machine for v. Throughout the distributed algorithm, let Av(R)
denote the set of unassigned, local machines that are within distance R from v.

We proceed with a short sketch of the distributed algorithm. Initially, we label all requests
as undecided. The distributed algorithm proceeds in phases. Each phase is as follows. Every
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undecided request makes a profit offer to some of its local machines. Each machine accepts the
highest profit offer received. If for a request v, all recepients of v’s offer accept, we switch the
label of v from undecided to open. We then proceed to the next phase.

More formally, each machine u maintains three lists: Opened local requests, Ou; Closed

local requests, Cu; and Undecided local requests, Uu. In addition, each machine keeps a variable
Pv for each local request v that denotes the profit offer it has received from v. The value of Pv

maybe updated as the algorithm proceeds in phases. We define Pmax
u be the maximum profit

offer that machine u has from any local opened request, i.e. Pmax
u = maxv∈Ou

(Pv).
Each requests v maintains the set Av(gv). For any unaccepted request v, we define a safe-

machine list, Mv , and a safe fill-radius,tv , such that

Mv = {u | u ∈ Av(tv), gv − tv ≥ Pmax
u }

∑

u∈Mv

(tv − du,v) = rv

tv ≤ gv

Sometimes, no such pair of Mv and tv may exist. This is by design, since in such cases the
request v is moved to the closed list of all local machines.

In the distributed algorithm, the request v makes an offer of tv to the machines in Mv.
Each machine u ∈ Mv, can then calculate its profit when working on v as Pv = gv − tv. The
definition of safe-fill radius ensures that every machine in Mv receives more profit from working
on v than from working on any local, opened request.

We now give the distributed algorithm for the Cluster Profit Problem. Each phase consists of
several rounds. We annotate a round i occurring at the request as REQi and the one occurring
at the machine as MACi. The distributed algorithm is as follows.

Initialization Every request v, sends gv to its local machines. Each machine sends its distance
value du,v to all its local requests and sets Pv = gv

Phase The algorithm proceeds in phases until each machine is either assigned or cannot be
assigned because all its local requests are in the Closed list. Each phase has the following
five rounds:

REQ1: Each undecided request v calculates the safe-fill radius, tv. If no safe-fill radius
exists, then v sends 〈Close〉v to machines in Bv(gv) and stops further communication.
Otherwise, v sends tv to machines in Bv(gv).

MAC1: If a machine u receives a 〈Close〉v then it puts v in the Closed list. Otherwise, it
updates the corresponding profit variable to Pv = gv − tv. Let v′ = maxv{Pv|v ∈
Uu ∪ Ou}. Machine u sends an 〈Accept〉u message to v′ and a 〈Reject〉u message to
all other local requests.

REQ2: If a request v receives all 〈Accept〉u messages from u ∈ Mv, then it has enough
machines to pay for its costs so it sends 〈Open〉v to all local machines, and stops
further communication.

MAC2: If a machine u receives 〈Open〉v then it puts v to its Opened list and sets Pv =
gv −max(du,v, tv). If u ∈ Mv then it gets assigned to v and sends 〈Inactive〉u to all
other local requests. If u receives no messages in this round then it gets assigned to
the request v in its Opened list that has the maximum Pv .

REQ3: If a request v receives 〈Inactive〉u then it removes u from Av(gv).

17



Lemma 6.1. ALG and the above Distributed Algorithm compute the same assignment of ma-

chines to requests.

Proof sketch:

Let v be the first request to which machines are assigned by ALG. Let B be the first set of
machines assigned to v. We know that the value of αu is the same for all machines in B, since
they are assigned at the same time. Let that value be α and let c = gv − α. In the first phase
of the distributed algorithm, the safe-machine list and the safe-fill radius pair for v is (B, c). To
see this, note that ∑

u∈B

(c − du,v) =
∑

u∈B

(gv − αu − du,v) = rv,

and that u ∈ B iff gv − αu − du,v ≥ 0, thus gv − αu ≥ du,v.
Let some machine u ∈ B receive a competing offer sent by a request v′. Suppose the safe-

fill list and safe-fill radius pair for v′ is (A, c′). Then, we know
∑

u∈A(c′ − du,v′) = rv′ . Let
c′ = gv′ − α′. Substituting, we have

∑
u∈A(gv′ − α′ − du,v′) = rv′ . But, since the machines in B

are the first to be assigned to any request, we must have α ≥ α′. From the definition of c and
c′, we get gv − c ≥ gv′ − c′. Thus, all requests in B accept the offer from v. One can formally
complete the proof of the lemma by using induction on the number of assignment steps.

6.1 Time and Message Complexity

In this section we show that the distributed algorithm terminates in O(|V|) rounds and each
machine communicates only O(|V|2) local messages. The key idea is to notice that in each phase
atleast one request is moved from the Undecided list to either the Opened or the closed list.

Lemma 6.2. In each phase either at least one undecided request is either opened or closed.

Proof. In each phase, every undecided request v calculates the corresponding safe fill-radius, tv,
and sends it to the local machines. If no such fill radius exists then the request would declare
itself closed. Otherwise let request v be the request with the maximum value of gv − tv. By the
definition of self-fill radius and safe-machine list, no machine in Mv can receive a better offer
from an opened request. By the choice of v, no machine in the safe-machine list Mv can receive
a better offer from an undecided request. Thus v is opened.

Theorem 3. The distributed algorithm terminates in O(|V|) phases. Each machine exchanges

O(|V|2) local messages and the total number of local messages exchanged during the execution

of the algorithm is O(|U||V|2).

Proof. By lemma 6.2, in each phase atleast one undecided request is either opened or closed.
So within |V| phases, all requests are either opened or closed and the assignments are complete.

During any phase a machine and request pair exchanges a constant number of local messages.
So each machine exchanges atmost O(|V|) messages per phase, resulting in O(|V|2) messages
per machine. The total number of messages exchanged during the execution of the algorithm
is O(|U||V|2).
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