
 

Abstract— We developed the first Link Layer Discovery 

Protocol (LLDP) fuzzer with ten test cases to find 

security vulnerabilities in LLDP-enabled network 

devices. The current test cases look for off-by-one 

errors, consistency errors, buffer overflows and stack 

injections. Furthermore, our fuzzer can easily be 

extended with additional test cases.  

 

Index terms— Link Layer Discovery Protocol, Fuzzer, 

Security, Penetration Testing 

 

I. INTRODUCTION 

 

A common issue for system and network 

administrators is finding out which devices are 

connected to their network and finding out more 

information about these. It would be especially useful 

for network administrators in large organizations with 

thousands of connected nodes to discover which 

devices are connected as well as data such as their 

MAC address and IP address. 

 

In 1994 Cisco Systems introduced in their network 

equipment a new layer two protocol which they call 

the Cisco Discovery Protocol (CDP) [1]. The purpose 

of this protocol is to share information about the 

equipment with other devices by multicasting 

messages such that each device can learn about other 

devices on the local network. Other network 

manufacturers such as Foundry Networks and Nortel 

Networks followed suit with FDP [2] and NDP 

respectively. While each of these protocols use a 

similar structure they contain significant differences 

such as the MAC address messages are sent to, the 

type of information that is sent out and how 

information is accessed. This is one of the reasons the 

IEEE ratified the Link Layer Discovery Protocol 

(LLDP) as 802.1AB in 2005 [3]. 

 

The Link Layer Discovery Protocol incorporates all of 

the advantages of the three protocols mentioned above 

in addition to being standardized such that devices 

from different manufacturers are able to exchange 

information with one another. One major problem 

with LLDP however is that messages which devices 

send out are not authenticated. This makes it easy for 

malicious users to send out LLDP packets purporting 

to be from some device on the local network. Some 

administrators may perform tasks based on the 

information they received using LLDP. This may in 

some cases be fatal for the network device whose 

identity was forged in an LLDP packet. For instance, 

a malicious user may choose to forge a message in 

which it states that some router supports Power over 

Ethernet. The administrator may then decide to 

transmit electrical power over the twisted pair cable to 

that device in order to switch it on. If the router does 

not support that functionality this may prove to be 

lethal for that device. At this time there is however no 

plan to introduce an authenticated version of LLDP. 

An additional security issue is that recipients of the 

LLDP packets may not always check that the 

information obtained adheres to the protocol prior to 

storing it locally. This may lead to a large number of 

security vulnerabilities as the malicious user may 

inject any type of information in any LLDP recipient. 

Both of these problems lead to the development of our 

Link Layer Discovery Protocol fuzzer which we 

present in this paper. 

 

In the next section we provide a summary of LLDP. 

In the third section we briefly introduce the reader to 

fuzzers following which we explain the structure and 

test cases included in our fuzzer. In the fourth section 

we show how to simply and efficiently add test cases. 

Finally, we conclude on our work and provide some 

ideas for future work in the fifth section. 
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II. THE LINK LAYER DISCOVERY PROTOCOL 

 

The Link Layer Discovery Protocol is one-way such 

that an agent is not able to solicit information from 

other LLDP agents. An agent only ever transmits 

information about the current status of the device it is 

active on. Information which is transmitted and 

received is stored in a Management Information Base 

(MIB) to allow it to be accessed by a Network 

Management System (NMS) using a protocol such as 

the Simple Network Management Protocol (SNMP). 

While there are several MIBs in an LLDP-enabled 

device only two are required for the protocol to 

function correctly: the LLDP local system MIB and 

the LLDP remote system MIB. The former stores 

information about the local device, which is 

transmitted on the local network, while the latter 

stores information received from neighboring devices. 
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Fig. 1 — The LLDP Agent 

 

An LLDP packet contains two major types of 

information: the LLDP Ethertype (0x88cc) and the 

LLDP Data Unit (LLDPDU). An LLDP packet is 

always sent out to the same Multicast address to 

ensure that it is not forwarded by MAC Bridges that 

conform to the IEEE 802.1D-2004 standard. The 

LLDPDU consists of a series of information elements 

known as TLVs, which stands for Type-Length-

Value. Each element contains the following three 

fields: 

 

1. The type of data being sent 

2. The length in bytes of the data being sent 

3. The value of the information that is being sent 

 

Each LLDPDU must contain four compulsory TLVs 

in addition to any number of optional TLVs. The four 

compulsory TLVs are the Chassis ID TLV, the Port 

ID TLV, the Time To Live TLV and the End of 

LLDPDU TLV. They must always appear in that 

specific order. 

 

The first compulsory TLV, the Chassis ID, whose 

TLV type is 1, identifies the chassis containing the 

LLDP agent. There are several ways to identify the 

chassis, one of which is by its MAC address. Other 

types of information that may be provided include the 

Interface alias, Port Component and Network 

Address. The TLV information string’s length may 

range between 1 and 255 bytes.  
 

TLV type = 1
TLV information 

string length
Chassis ID subtype Chassis ID

7 bits 9 bits 1 byte 1 – 255 bytes

TLV header TLV information string

 
Fig. 2 — The Chassis ID TLV 

 

The second compulsory TLV, the Port ID, whose 

TLV type is 2, identifies the port component of the 

MAC Service Access Point associated with the 

transmitting LLDP agent. This TLV is very similar to 

the Chassis ID with the difference being that it works 

at a more refined level. In addition the transmitting 

agent is able to send an Agent Circuit ID. RFC 3046 

[4] specifies that it is used to encode an agent-local 

identifier of the circuit from which a DHCP client-to-

server packet was received. It is intended for use by 

agents in relaying DHCP responses back to the proper 

circuit. The size of the information string length may 

also vary between 1 and 255 bytes. 
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Fig. 3 — The Port ID TLV 

 

The third compulsory TLV, the Time To Live (TTL) 

TLV, whose TLV type is 3, specifies in seconds how 

long the information contained in an LLDP packet 

may be considered fresh. For instance, if the TTL is 

60 then the recipient agent may automatically discard 

the information received after 60 seconds as it is 

considered out-of-date. If an LLDP packet with a TTL 

of 0 is received the agent may delete all the 

information associated with the sender. 
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Fig. 4 — The TTL TLV 

 

The fourth and final compulsory TLV, the End of 

LLDPDU TLV, whose TLV type is 0, is used to mark 

the end of the LLDP packet. Because there is never 

any payload attached to this TLV the information 

string length is always 0. 
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Fig. 5 — The End of LLDPDU TLV 

 

As shown in figure 6 a number of optional TLVs may 

be added to the LLDP packet between the TTL TLV 

and the End of LLDPDU. These optional TLVs are 

the Port Description TLV, System Name TLV, 

System Description TLV, System Capabilities TLV, 

Management Address TLV and Organizationally 

Specific TLVs. 
 

Chassis ID TLV Port ID TLV Time To Live TLV Optional TLV … Optional TLV
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TLV

 
 
Fig. 6 — The compulsory and optional TLVs 

III. THE LLDP FUZZER 

A. Introduction to fuzzing 

 

Fuzzing is a black-box testing technique used to find 

bugs in software or hardware devices. While regular 

testing techniques must still be used to find bugs, 

fuzzing is used to discover input combinations which 

the developers of the software or hardware device 

under test may not have taken into consideration. 

Prior to building a fuzzer one must understand the 

protocol used to attack the device under test. Once 

knowledge of the protocol has been acquired the 

fuzzer’s architecture can be built. Using the fuzzer 

security researchers generate well-formed and 

malformed network packets aimed at the device under 

test in order to find out whether it was properly set up 

to handle input of legal as well as illegal data. 

B. The LLDP Fuzzer 

 

The LLDP fuzzer we developed aims to find security 

vulnerabilities in the LLDP receiving agent by 

sending malformed packets. We have devised a 

specific set of ten test cases which we feel would find 

vulnerabilities in the device under test. Any one of 

these test cases could prove fatal for the receiving 

agent if illegal or malicious data is not handled 

properly or not discovered prior to its insertion in the 

MIB. In addition, we shall show in the next section 

how to add new test cases. 
 

1) Test Case 1 
 

In the first test case we overload the payload for the 

Chassis ID TLV. The LLDP specification specifies 

that the maximum payload size for the Chassis ID 

TLV is 255 bytes. In this first test case we send 510 

bytes. We correctly store the information string length 

as being 511 bytes. If the receiving agent does not 

perform any verification on the size of the Chassis ID 

TLV when receiving LLDP packets it may only 

assign 255 bytes for this TLV. This may have as a 

result that the Port ID TLV, or any information stored 

in sequence after the Chassis ID TLV, will be 

overwritten with the last 255 bytes of the information 

string. 
 

TLV type = 1
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Chassis ID subtype Chassis ID

7 bits 9 bits 1 byte 510 bytes
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Fig. 7 — Test case 1, sending an overloaded payload for the 
Chassis ID TLV 
 

2) Test Case 2 
 

In the second test case we send an LLDP packet 

which contains a Chassis ID TLV with no payload. 

On parsing this TLV we should expect the receiving 

agent to discard the message because the minimum 

TLV information string length is two bytes: one byte 

for the Chassis ID subtype and at least one byte for 

the information string. 



 

 
 
Fig. 8 — Test case 2, sending a Chassis ID TLV with no payload 
 

3) Test Case 3 
 

In the third test case we investigate whether the TLV 

information string length is tested against the real size 

of the information string in the Chassis ID. In this 

packet we set the TLV information string length to 1 

such that the receiving agent may only reserve a 

single byte for this TLV. However we provide a four-

byte payload. Similarly to the first test case it is 

possible that the Chassis ID information string will 

overwrite the Port ID TLV, if both are stored in 

sequence in the MIB. Otherwise it may overwrite 

random information in the MIB. 
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Fig. 9 — Test case 3, sending a false information string length 
 

4) Test Case 4 
 

In the fourth test case we send a malformed packet 

with a 256 byte Chassis ID information string. This is 

one byte larger than allowed by the protocol. The 

information string length is therefore, including the 

Chassis ID subtype, 257 bytes. In this case we wish to 

find out if the device under test may have an off-by-

one error. 
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Fig. 10 — Test case 4, sending an overloaded payload 
 

5) Test Case 5 
 

In the fifth test case we send a burst of 1000 LLDP 

packets with a TTL TLV of 15 seconds. While each 

LLDP packet is legal according to the protocol we 

wish to test whether the receiving agent may have a 

mechanism in place which would restrict it from 

receiving a large amount of packets in a short period 

of time, especially if the Time To Live TLV states 

that the information received is fresh for 15 seconds. 
 

 
 

Fig. 11 — Test case 5, sending a burst of packets with a TTL of 15 
seconds 
 
 

6) Test Case 6 
 

According to the LLDP specification the End Of 

LLDPDU TLV may never contain any payload. In the 

sixth test case we send a packet with a two-byte 

payload attached to the End Of LLDPDU TLV. In 

addition we leave the information string length field 

to zero. Since the End Of LLDPDU TLV is always 

placed at the end of a packet it has a crucial location 

in terms of finding a vulnerability in the remote 

system. Because the recipient of the packet may not 

allocate any storage for the payload as the information 

string length states that there is no payload, it is 

possible that the payload which in this case is two 

bytes long may overwrite some data located on the 

recipient’s executable stack. This may prove to be 

fatal as the recipient may unknowingly execute 

malicious code injected by the sender in the payload 

of this packet if that payload overwrites memory from 

the executable stack. 

 
Fig. 12 — Test case 6, sending an End of LLDPDU with a non-
zero payload and zero information string length 
 

7) Test Case 7 
 

The seventh test case is very similar in fashion to the 

previous test case. The only difference is that we 

provide the actual payload in the information string 

length. The purpose of this test case is to determine 

whether the recipient of this LLDP packet would 

malfunction if it receives an End Of LLDPDU TLV 

with an information string length not equal to zero. 
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Fig. 13 — Test case 7, sending an End of LLDPDU with payload 
and information string length equal to 2 

 

8) Test Case 8 
 

In the eighth test case we send an illegal System 

Capabilities TLV information string. The optional 

System Capabilities TLV is used to identify the 

primary functions of the sender and whether or not 

these primary functions are enabled. These functions 

may include a repeater capability, bridge capability, 

wireless LAN access point capability or router 

capability. There are in total seven functions with 

another eight reserved for future use. An example of a 

legal message would include information about a 

device being capable of acting as a bridge and 

wireless LAN access point however at the time the 

message is sent only the wireless LAN access point 

functionality is enabled. In this test case the 

malformed packet specifies that the sender’s system 

may only function as a bridge (the third lowest bit 

specifies the bridge functionality) however at the time 

the message is sent the bridge and wireless LAN 

access point functionalities enabled (the fourth lowest 

bit specifies the wireless LAN access point 

functionality). This is an inconsistency which must be 

rejected by the recipient of this packet. In this test 

case we attempt to determine whether the recipient 

has consistency-checks in place. If no such checks are 

present an error may occur. 
 

TLV type = 1
TLV information 

string length = 4

enabled capabilities = 
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7 bits 9 bits 2 bytes 2 bytes

TLV header TLV information string

system capabilities = 

0000000000000100

 
 
Fig. 14 — Test case 8, sending a malformed System Capabilities 
TLV 
 

9) Test Case 9 
 

In the ninth test case we wish to find out whether the 

recipient’s LLDP agent has implemented the protocol 

at its most basic level. In this test case the Port ID 

TLV is missing. According to the specification the 

LLDPDU must be checked to ensure that it contains 

the correct sequence of mandatory TLVs. 
 

 
 
Fig. 15 — Test case 9, sending an LLDPDU with the Port ID TLV 
missing 
 

10) Test Case 10 
 

The tenth test case sends a Chassis ID TLV with an 

IPv4 address yet specifies that it is providing an IPv6 

address. The purpose of this test case is to find out 

whether the recipient’s LLDP agent will fail upon 

receiving the wrong type of IP address even though 

the address provided is a valid version 4 address. 
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Fig. 16 — Test case 10, sending a Chassis ID TLV with a false IP 
version 

IV. HOW TO EXTEND THE LLDP FUZZER 

 

While we have written ten test cases for the LLDP 

fuzzer a major part of this work is also to provide the 

necessary architecture to allow security researchers to 

complement the existing test cases with their own. We 

have ensured that doing so is straightforward by 

automatically setting default values for all the 

compulsory and optional TLVs when instantiating a 

new LLDP packet. The advantage is two-fold. First, it 

is not necessary to set each TLV each time one 

creates a new test case. Second, when performing 

security testing one will usually only modify a single 

parameter in a test case such that every single TLV 

but the one under test will remain similar across 

several test cases. This is done in order to easily 

pinpoint to the source of a vulnerability, if one is 

found. The following test case demonstrates the steps 

required to write a new test case in the LLDP fuzzer. 

 

1. def test_case7(): 

2.     p=lldppacket() 

3.     p.end_of_lldpdu_data_customsize=2 

4.     p.mod_end_of_lldpdu() 

5.     p.mod_assemble_packet() 

6.     p.packet+=new_field(0,65535,"short") 

7.     p.send_packet(self_iface,self_mac) 

 



In the first line we define a new test case. In the 

second line we instantiate a new LLDP packet. This 

new packet comes along with default values set for 

each compulsory and optional TLV. For instance, the 

default value for the Time To Live TLV is 60 

seconds. In the third line we set the information string 

length of the End Of LLDPDU TLV to 2 bytes. The 

mod_end_of_lldpdu() function in the fourth line is 

used to store the modifications in the End Of 

LLDPDU TLV. Similarly, if one were to change the 

value of the Time To Live TLV from 60 seconds to 

120 seconds one would first set p.ttl_payload_data to 

120 followed by p.mod_ttl(). Because we have 

modified a TLV in the LLDP packet we must 

regenerate the packet so we use 

mod_assemble_packet() once we have performed all 

the necessary changes in the TLVs. This function 

assembles the LLDP packet by running through all the 

TLVs. This test case is somewhat unusual as we add a 

payload to the End Of LLDPDU. Thus, in the sixth 

line, following the assembly of the packet, we add a 

two-byte field with the largest integer value that can 

fit in such a field. Finally, in the seventh line we send 

the packet. Two parameters must always be provided 

when sending an LLDP packet: the interface on which 

to send the packet and the MAC address from which 

it should appear to be sent from. 

 

In addition to being able to add new test cases one 

may also create a wrapper to run through a list of 

input combinations. For example, one may wish to 

send LLDP packets with a combination of legal and 

optional TLVs as well as TLVs which are currently 

unassigned. The type numbers for the reserved 

(unassigned) TLVs range from 9 to 126. 

V. CONCLUSION AND FUTURE WORK 

 

We have shown our LLDP fuzzer and ten test cases 

we devised for it. While we have been unable to test 

our fuzzer against a network device we strongly 

believe that at least one of our test cases will prove to 

be problematic when tested on an LLDP-enabled 

device. We have furthermore also created an easy-to-

use architecture such that security researchers may 

add their own test cases as more LLDP-compliant 

devices arise on the market. 

 

The purpose of the LLDP fuzzer is to find security 

vulnerabilities which may not be easily found using 

regular testing techniques. The test cases we have 

devised attempt to find out whether the device under 

test is prone to off-by-one errors, consistency errors, 

buffer overflows and stack injections. 

 

While we have provided a fuzzing architecture for 

LLDP, as there is currently no way to tell whether the 

recipients of the LLDP packets have crashed or 

misbehaved it would be useful to run a module on 

receiving agents. This module could send back the 

information that was stored in the LLDP local MIB 

such that it may be easier to analyze the results of the 

vulnerability testing. In addition, as more LLDP-

enabled devices emerge, newer test cases should be 

devised. 
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