

Abstract— We developed the first Link Layer Discovery

Protocol (LLDP) fuzzer with ten test cases to find

security vulnerabilities in LLDP-enabled network

devices. The current test cases look for off-by-one

errors, consistency errors, buffer overflows and stack

injections. Furthermore, our fuzzer can easily be

extended with additional test cases.

Index terms— Link Layer Discovery Protocol, Fuzzer,

Security, Penetration Testing

I. INTRODUCTION

A common issue for system and network

administrators is finding out which devices are

connected to their network and finding out more

information about these. It would be especially useful

for network administrators in large organizations with

thousands of connected nodes to discover which

devices are connected as well as data such as their

MAC address and IP address.

In 1994 Cisco Systems introduced in their network

equipment a new layer two protocol which they call

the Cisco Discovery Protocol (CDP) [1]. The purpose

of this protocol is to share information about the

equipment with other devices by multicasting

messages such that each device can learn about other

devices on the local network. Other network

manufacturers such as Foundry Networks and Nortel

Networks followed suit with FDP [2] and NDP

respectively. While each of these protocols use a

similar structure they contain significant differences

such as the MAC address messages are sent to, the

type of information that is sent out and how

information is accessed. This is one of the reasons the

IEEE ratified the Link Layer Discovery Protocol

(LLDP) as 802.1AB in 2005 [3].

The Link Layer Discovery Protocol incorporates all of

the advantages of the three protocols mentioned above

in addition to being standardized such that devices

from different manufacturers are able to exchange

information with one another. One major problem

with LLDP however is that messages which devices

send out are not authenticated. This makes it easy for

malicious users to send out LLDP packets purporting

to be from some device on the local network. Some

administrators may perform tasks based on the

information they received using LLDP. This may in

some cases be fatal for the network device whose

identity was forged in an LLDP packet. For instance,

a malicious user may choose to forge a message in

which it states that some router supports Power over

Ethernet. The administrator may then decide to

transmit electrical power over the twisted pair cable to

that device in order to switch it on. If the router does

not support that functionality this may prove to be

lethal for that device. At this time there is however no

plan to introduce an authenticated version of LLDP.

An additional security issue is that recipients of the

LLDP packets may not always check that the

information obtained adheres to the protocol prior to

storing it locally. This may lead to a large number of

security vulnerabilities as the malicious user may

inject any type of information in any LLDP recipient.

Both of these problems lead to the development of our

Link Layer Discovery Protocol fuzzer which we

present in this paper.

In the next section we provide a summary of LLDP.

In the third section we briefly introduce the reader to

fuzzers following which we explain the structure and

test cases included in our fuzzer. In the fourth section

we show how to simply and efficiently add test cases.

Finally, we conclude on our work and provide some

ideas for future work in the fifth section.

Jeremy Hollander
Department of Computer Sciences
The University of Texas at Austin

The University of Texas at Austin, Department of Computer Sciences, Technical Report TR-07-24

A Link Layer Discovery Protocol Fuzzer

II. THE LINK LAYER DISCOVERY PROTOCOL

The Link Layer Discovery Protocol is one-way such

that an agent is not able to solicit information from

other LLDP agents. An agent only ever transmits

information about the current status of the device it is

active on. Information which is transmitted and

received is stored in a Management Information Base

(MIB) to allow it to be accessed by a Network

Management System (NMS) using a protocol such as

the Simple Network Management Protocol (SNMP).

While there are several MIBs in an LLDP-enabled

device only two are required for the protocol to

function correctly: the LLDP local system MIB and

the LLDP remote system MIB. The former stores

information about the local device, which is

transmitted on the local network, while the latter

stores information received from neighboring devices.

Organizationally defined local

device LLDP MIB Extension

(optional)

Organizationally defined

remote device LLDP MIB

Extension (optional)

LLDP local system MIB LLDP remote systms MIB

LLDP Transmit Module LLDP Receive Module

LLDP Agent

PTOPO MIB

(Optional)

Entity MIB

(Optional)

Interfaces MIB

(Optional)

Other MIBs

(Optional)

Local Device

Information

Remote Device

Information

Fig. 1 — The LLDP Agent

An LLDP packet contains two major types of

information: the LLDP Ethertype (0x88cc) and the

LLDP Data Unit (LLDPDU). An LLDP packet is

always sent out to the same Multicast address to

ensure that it is not forwarded by MAC Bridges that

conform to the IEEE 802.1D-2004 standard. The

LLDPDU consists of a series of information elements

known as TLVs, which stands for Type-Length-

Value. Each element contains the following three

fields:

1. The type of data being sent

2. The length in bytes of the data being sent

3. The value of the information that is being sent

Each LLDPDU must contain four compulsory TLVs

in addition to any number of optional TLVs. The four

compulsory TLVs are the Chassis ID TLV, the Port

ID TLV, the Time To Live TLV and the End of

LLDPDU TLV. They must always appear in that

specific order.

The first compulsory TLV, the Chassis ID, whose

TLV type is 1, identifies the chassis containing the

LLDP agent. There are several ways to identify the

chassis, one of which is by its MAC address. Other

types of information that may be provided include the

Interface alias, Port Component and Network

Address. The TLV information string’s length may

range between 1 and 255 bytes.

TLV type = 1
TLV information

string length
Chassis ID subtype Chassis ID

7 bits 9 bits 1 byte 1 – 255 bytes

TLV header TLV information string

Fig. 2 — The Chassis ID TLV

The second compulsory TLV, the Port ID, whose

TLV type is 2, identifies the port component of the

MAC Service Access Point associated with the

transmitting LLDP agent. This TLV is very similar to

the Chassis ID with the difference being that it works

at a more refined level. In addition the transmitting

agent is able to send an Agent Circuit ID. RFC 3046

[4] specifies that it is used to encode an agent-local

identifier of the circuit from which a DHCP client-to-

server packet was received. It is intended for use by

agents in relaying DHCP responses back to the proper

circuit. The size of the information string length may

also vary between 1 and 255 bytes.

TLV type = 2
TLV information

string length
Port ID subtype Port ID

7 bits 9 bits 1 byte 1 – 255 bytes

TLV header TLV information string

Fig. 3 — The Port ID TLV

The third compulsory TLV, the Time To Live (TTL)

TLV, whose TLV type is 3, specifies in seconds how

long the information contained in an LLDP packet

may be considered fresh. For instance, if the TTL is

60 then the recipient agent may automatically discard

the information received after 60 seconds as it is

considered out-of-date. If an LLDP packet with a TTL

of 0 is received the agent may delete all the

information associated with the sender.

TLV type = 3
TLV information

string length = 2
Time To Live

7 bits 9 bits 2 byte

TLV header
TLV Information

String

Fig. 4 — The TTL TLV

The fourth and final compulsory TLV, the End of

LLDPDU TLV, whose TLV type is 0, is used to mark

the end of the LLDP packet. Because there is never

any payload attached to this TLV the information

string length is always 0.

TLV type = 0
TLV information

string length = 0

7 bits 9 bits

TLV header

Fig. 5 — The End of LLDPDU TLV

As shown in figure 6 a number of optional TLVs may

be added to the LLDP packet between the TTL TLV

and the End of LLDPDU. These optional TLVs are

the Port Description TLV, System Name TLV,

System Description TLV, System Capabilities TLV,

Management Address TLV and Organizationally

Specific TLVs.

Chassis ID TLV Port ID TLV Time To Live TLV Optional TLV … Optional TLV
End of LLDPDU

TLV

Fig. 6 — The compulsory and optional TLVs

III. THE LLDP FUZZER

A. Introduction to fuzzing

Fuzzing is a black-box testing technique used to find

bugs in software or hardware devices. While regular

testing techniques must still be used to find bugs,

fuzzing is used to discover input combinations which

the developers of the software or hardware device

under test may not have taken into consideration.

Prior to building a fuzzer one must understand the

protocol used to attack the device under test. Once

knowledge of the protocol has been acquired the

fuzzer’s architecture can be built. Using the fuzzer

security researchers generate well-formed and

malformed network packets aimed at the device under

test in order to find out whether it was properly set up

to handle input of legal as well as illegal data.

B. The LLDP Fuzzer

The LLDP fuzzer we developed aims to find security

vulnerabilities in the LLDP receiving agent by

sending malformed packets. We have devised a

specific set of ten test cases which we feel would find

vulnerabilities in the device under test. Any one of

these test cases could prove fatal for the receiving

agent if illegal or malicious data is not handled

properly or not discovered prior to its insertion in the

MIB. In addition, we shall show in the next section

how to add new test cases.

1) Test Case 1

In the first test case we overload the payload for the

Chassis ID TLV. The LLDP specification specifies

that the maximum payload size for the Chassis ID

TLV is 255 bytes. In this first test case we send 510

bytes. We correctly store the information string length

as being 511 bytes. If the receiving agent does not

perform any verification on the size of the Chassis ID

TLV when receiving LLDP packets it may only

assign 255 bytes for this TLV. This may have as a

result that the Port ID TLV, or any information stored

in sequence after the Chassis ID TLV, will be

overwritten with the last 255 bytes of the information

string.

TLV type = 1

TLV information

string

length = 511

Chassis ID subtype Chassis ID

7 bits 9 bits 1 byte 510 bytes

TLV header TLV information string

Fig. 7 — Test case 1, sending an overloaded payload for the
Chassis ID TLV

2) Test Case 2

In the second test case we send an LLDP packet

which contains a Chassis ID TLV with no payload.

On parsing this TLV we should expect the receiving

agent to discard the message because the minimum

TLV information string length is two bytes: one byte

for the Chassis ID subtype and at least one byte for

the information string.

Fig. 8 — Test case 2, sending a Chassis ID TLV with no payload

3) Test Case 3

In the third test case we investigate whether the TLV

information string length is tested against the real size

of the information string in the Chassis ID. In this

packet we set the TLV information string length to 1

such that the receiving agent may only reserve a

single byte for this TLV. However we provide a four-

byte payload. Similarly to the first test case it is

possible that the Chassis ID information string will

overwrite the Port ID TLV, if both are stored in

sequence in the MIB. Otherwise it may overwrite

random information in the MIB.

TLV type = 1
TLV information

string length = 1
Chassis ID subtype Chassis ID

7 bits 9 bits 1 byte 4 bytes

TLV header TLV information string

Fig. 9 — Test case 3, sending a false information string length

4) Test Case 4

In the fourth test case we send a malformed packet

with a 256 byte Chassis ID information string. This is

one byte larger than allowed by the protocol. The

information string length is therefore, including the

Chassis ID subtype, 257 bytes. In this case we wish to

find out if the device under test may have an off-by-

one error.

TLV type = 1

TLV information

string length =

257

Chassis ID subtype Chassis ID

7 bits 9 bits 1 byte 256 bytes

TLV header TLV information string

Fig. 10 — Test case 4, sending an overloaded payload

5) Test Case 5

In the fifth test case we send a burst of 1000 LLDP

packets with a TTL TLV of 15 seconds. While each

LLDP packet is legal according to the protocol we

wish to test whether the receiving agent may have a

mechanism in place which would restrict it from

receiving a large amount of packets in a short period

of time, especially if the Time To Live TLV states

that the information received is fresh for 15 seconds.

Fig. 11 — Test case 5, sending a burst of packets with a TTL of 15
seconds

6) Test Case 6

According to the LLDP specification the End Of

LLDPDU TLV may never contain any payload. In the

sixth test case we send a packet with a two-byte

payload attached to the End Of LLDPDU TLV. In

addition we leave the information string length field

to zero. Since the End Of LLDPDU TLV is always

placed at the end of a packet it has a crucial location

in terms of finding a vulnerability in the remote

system. Because the recipient of the packet may not

allocate any storage for the payload as the information

string length states that there is no payload, it is

possible that the payload which in this case is two

bytes long may overwrite some data located on the

recipient’s executable stack. This may prove to be

fatal as the recipient may unknowingly execute

malicious code injected by the sender in the payload

of this packet if that payload overwrites memory from

the executable stack.

Fig. 12 — Test case 6, sending an End of LLDPDU with a non-
zero payload and zero information string length

7) Test Case 7

The seventh test case is very similar in fashion to the

previous test case. The only difference is that we

provide the actual payload in the information string

length. The purpose of this test case is to determine

whether the recipient of this LLDP packet would

malfunction if it receives an End Of LLDPDU TLV

with an information string length not equal to zero.

TLV type = 0
TLV information

string length = 0

7 bits 9 bits

TLV header

payload = 65535

2 bytes

TLV information string

TLV type = 0
TLV information

string length = 2

7 bits 9 bits

TLV header

payload = 65535

2 bytes

TLV information string

Fig. 13 — Test case 7, sending an End of LLDPDU with payload
and information string length equal to 2

8) Test Case 8

In the eighth test case we send an illegal System

Capabilities TLV information string. The optional

System Capabilities TLV is used to identify the

primary functions of the sender and whether or not

these primary functions are enabled. These functions

may include a repeater capability, bridge capability,

wireless LAN access point capability or router

capability. There are in total seven functions with

another eight reserved for future use. An example of a

legal message would include information about a

device being capable of acting as a bridge and

wireless LAN access point however at the time the

message is sent only the wireless LAN access point

functionality is enabled. In this test case the

malformed packet specifies that the sender’s system

may only function as a bridge (the third lowest bit

specifies the bridge functionality) however at the time

the message is sent the bridge and wireless LAN

access point functionalities enabled (the fourth lowest

bit specifies the wireless LAN access point

functionality). This is an inconsistency which must be

rejected by the recipient of this packet. In this test

case we attempt to determine whether the recipient

has consistency-checks in place. If no such checks are

present an error may occur.

TLV type = 1
TLV information

string length = 4

enabled capabilities =

0000000000001100

7 bits 9 bits 2 bytes 2 bytes

TLV header TLV information string

system capabilities =

0000000000000100

Fig. 14 — Test case 8, sending a malformed System Capabilities
TLV

9) Test Case 9

In the ninth test case we wish to find out whether the

recipient’s LLDP agent has implemented the protocol

at its most basic level. In this test case the Port ID

TLV is missing. According to the specification the

LLDPDU must be checked to ensure that it contains

the correct sequence of mandatory TLVs.

Fig. 15 — Test case 9, sending an LLDPDU with the Port ID TLV
missing

10) Test Case 10

The tenth test case sends a Chassis ID TLV with an

IPv4 address yet specifies that it is providing an IPv6

address. The purpose of this test case is to find out

whether the recipient’s LLDP agent will fail upon

receiving the wrong type of IP address even though

the address provided is a valid version 4 address.

TLV type = 1
TLV information

string length = 6

Chassis ID =

128.83.120.155

7 bits 9 bits 4 bytes

TLV header TLV information string

Chassis ID

subtype = 5

1 byte

IP version = 6

1 byte

Fig. 16 — Test case 10, sending a Chassis ID TLV with a false IP
version

IV. HOW TO EXTEND THE LLDP FUZZER

While we have written ten test cases for the LLDP

fuzzer a major part of this work is also to provide the

necessary architecture to allow security researchers to

complement the existing test cases with their own. We

have ensured that doing so is straightforward by

automatically setting default values for all the

compulsory and optional TLVs when instantiating a

new LLDP packet. The advantage is two-fold. First, it

is not necessary to set each TLV each time one

creates a new test case. Second, when performing

security testing one will usually only modify a single

parameter in a test case such that every single TLV

but the one under test will remain similar across

several test cases. This is done in order to easily

pinpoint to the source of a vulnerability, if one is

found. The following test case demonstrates the steps

required to write a new test case in the LLDP fuzzer.

1. def test_case7():

2. p=lldppacket()

3. p.end_of_lldpdu_data_customsize=2

4. p.mod_end_of_lldpdu()

5. p.mod_assemble_packet()

6. p.packet+=new_field(0,65535,"short")

7. p.send_packet(self_iface,self_mac)

In the first line we define a new test case. In the

second line we instantiate a new LLDP packet. This

new packet comes along with default values set for

each compulsory and optional TLV. For instance, the

default value for the Time To Live TLV is 60

seconds. In the third line we set the information string

length of the End Of LLDPDU TLV to 2 bytes. The

mod_end_of_lldpdu() function in the fourth line is

used to store the modifications in the End Of

LLDPDU TLV. Similarly, if one were to change the

value of the Time To Live TLV from 60 seconds to

120 seconds one would first set p.ttl_payload_data to

120 followed by p.mod_ttl(). Because we have

modified a TLV in the LLDP packet we must

regenerate the packet so we use

mod_assemble_packet() once we have performed all

the necessary changes in the TLVs. This function

assembles the LLDP packet by running through all the

TLVs. This test case is somewhat unusual as we add a

payload to the End Of LLDPDU. Thus, in the sixth

line, following the assembly of the packet, we add a

two-byte field with the largest integer value that can

fit in such a field. Finally, in the seventh line we send

the packet. Two parameters must always be provided

when sending an LLDP packet: the interface on which

to send the packet and the MAC address from which

it should appear to be sent from.

In addition to being able to add new test cases one

may also create a wrapper to run through a list of

input combinations. For example, one may wish to

send LLDP packets with a combination of legal and

optional TLVs as well as TLVs which are currently

unassigned. The type numbers for the reserved

(unassigned) TLVs range from 9 to 126.

V. CONCLUSION AND FUTURE WORK

We have shown our LLDP fuzzer and ten test cases

we devised for it. While we have been unable to test

our fuzzer against a network device we strongly

believe that at least one of our test cases will prove to

be problematic when tested on an LLDP-enabled

device. We have furthermore also created an easy-to-

use architecture such that security researchers may

add their own test cases as more LLDP-compliant

devices arise on the market.

The purpose of the LLDP fuzzer is to find security

vulnerabilities which may not be easily found using

regular testing techniques. The test cases we have

devised attempt to find out whether the device under

test is prone to off-by-one errors, consistency errors,

buffer overflows and stack injections.

While we have provided a fuzzing architecture for

LLDP, as there is currently no way to tell whether the

recipients of the LLDP packets have crashed or

misbehaved it would be useful to run a module on

receiving agents. This module could send back the

information that was stored in the LLDP local MIB

such that it may be easier to analyze the results of the

vulnerability testing. In addition, as more LLDP-

enabled devices emerge, newer test cases should be

devised.

VI. REFERENCES

[1] Cisco Systems, “The Cisco Discovery Protocol

Packet Format”,

http://www.cisco.com/univercd/cc/td/doc/product/lan/tr

srb/frames.htm#xtocid12, viewed on 04/30/2007

[2] Foundry Networks, “Enabling the Foundry

Discovery Protocol”,

http://www.foundrynet.com/services/documentation/big

iron_rx_config/CDP_FDP.html, viewed on 04/30/2007

[3] The IEEE, “The Link Layer Discovery Protocol”,

http://standards.ieee.org/getieee802/download/802.1AB

-2005.pdf, viewed on 04/30/2007

[4] M. Patrick, “DHCP Relay Agent Information

Option”, RFC 3046, January 2001

