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Abstract
We completely solve an open problem of Kushilevitz and Nisan (1997)

in communication complexity. Let Rpub
ε ( f ) and Dµε ( f ) denote the randomized

and µ-distributional communication complexities of f , respectively (ε a small
constant). Yao’s well-known Minimax Principle states that

Rpub
ε ( f ) = max

µ

{
Dµε ( f )

}
.

Kushilevitz and Nisan (1997) ask whether this equality is approximately pre-
served if the maximization is taken over product distributions only, rather
than all distributions µ:

Rpub
ε ( f ) ?

=

(
max
µ product

{
Dµε ( f )

})O(1)

.

We refute this hypothesis in the strongest possible terms. Namely, we
show the existence of a function f : {−1,+1}n × {−1,+1}n → {−1,+1} for
which maxµ product

{
Dµε ( f )

}
= O(1) but Rpub

1/3( f ) = Ω(n). Furthermore, f has
discrepancy O(2−n(1/2−ε)),which is almost the smallest possible. In particular,
f is a hardest function for every major model of communication. Yet, the
distributional method restricted to product distributions can certify at best an
Ω(1) communication lower bound for f .

Our result also gives an essentially optimal separation, Ω(1) vs.
O(2−n(1/2−ε)), between discrepancy under product and nonproduct distribu-
tions, improving on the author’s recent result (Sherstov 2007). Finally, we
give an essentially optimal separation, O(1) vs. Ω(N1−ε), between between
the statistical-query complexity and sign rank of an N × N sign matrix. This
settles a open question recently posed by the author (Sherstov 2007) and
completes the taxonomy of the main complexity measures of sign matrices.



1 Introduction

Among the primary models of communication complexity is the randomized
model [10, Chapter 3]. Let X and Y be finite sets. Two parties, Alice and Bob,
have access to disjoint parts x ∈ X and y ∈ Y of the input to a fixed function
f : X × Y → {−1,+1} and must therefore communicate to evaluate f (x, y). They
can use an unlimited number of shared random bits. On every input, the players
must compute the correct value with probability at least 2/3. The cost of a protocol
is number of bits exchanged in the worst case. The randomized complexity Rpub

1/3( f )
of a function f is the cost of the best protocol for f .

A closely related notion is that of distributional complexity. Let µ be a proba-
bility distribution on X × Y. The µ-distributional communication complexity of f ,
denoted Dµ1/3( f ), is the cost of the optimal deterministic protocol for f with error
at most 1/3 with respect to µ. Using the Minimax Theorem for zero-sum games,
Yao [16] gave a simple proof that

Rpub
1/3( f ) = max

µ

{
Dµ1/3( f )

}
,

where the constant 1/3 can be replaced by any other. Yao’s equation has been the
basis for essentially all lower bounds on randomized communication complexity:
one defines a probability distribution µ on X × Y and argues that the cost Dµ1/3( f )
of the best deterministic protocol with error at most 1/3 over µ must be high.

The main design question, then, is what distribution µ to consider. While prod-
uct distributions µ(x, y) = µX(x)µY (y) are easier to analyze, they do not always
yield the optimal lower bounds. A standard example of this phenomenon is the
set disjointness function DISJ on n-bit strings: every product distribution µ has
Dµ1/3(DISJ) = O(

√
n log n) (see [10]), although Rpub(DISJ) = Θ(n) (see [6, 14]).

Let
D×1/3( f ) def

= max
µ product

{
Dµ1/3( f )

}
.

The above considerations motivated Kushilevitz and Nisan (1997) to pose the fol-
lowing problem:

Research Problem (Kushilevitz and Nisan [10, p. 37]). Can restricting the distri-
bution µ to be a product distribution affect the resulting lower bound on Rpub( f ) by
more than a polynomial factor? Formally, is Rpub

1/3( f ) = (D×1/3( f ))O(1)?

Since its formulation, this problem has seen little progress. Kremer, Nisan,
and Ron [9] studied its restriction to one-way protocols and obtained a separation
of O(1) vs. Ω(n) for the “greater than” function GT. Unfortunately, a function can
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have vastly different communication complexity in the one-way and usual (two-
way) randomized models. Such is the case of GT, whose two-way randomized
complexity is a mere O(log n).

Another step toward solving the Kushilevitz-Nisan question has been recently
taken by the author [15]. Namely, we gave an exponential separation between the
discrepancy under product and nonproduct distributions, for an explicit function.
In particular, we showed that the use of nonproduct distributions is indeed essential
to the discrepancy method, a common technique for communication lower bounds.

This paper solves the Kushilevitz-Nisan problem completely and in its original
form. We prove the existence of a function f : {−1,+1}n × {−1,+1}n → {−1,+1}
with D×1/3( f ) = O(1) and Rpub

1/3( f ) = Ω(n). In fact, the prove the following more
delicate result:

Theorem 1.1. Let ε > 0 be an arbitrary constant. Then there exists a function
f : {−1,+1}n × {−1,+1}n → {−1,+1} with all of the following properties:

D×ε ( f ) = O(1),

Rpub
1/3( f ) = Ω(n),

disc×( f ) = Ω(1),

disc( f ) = O(2−n( 1
2−ε)).

The notation disc×( f ) stands for the smallest discrepancy of f under a product
distribution, by analogy with D×( f ).

A key aspect of Theorem 1.1 is that the function f in question has exponen-
tially small discrepancy. Indeed, its discrepancy essentially meets the Ω(2−n/2)
lower bound for any function on n bit strings (see Proposition 2.7 below). As a
result, f has communication complexity Ω(n) not only in the randomized model,
but also in the nondeterministic and various quantum models. Furthermore, the
communication complexity of f remains Ω(n) even if one simply seeks a random-
ized/quantum protocol with exponentially small advantage on every input (say,
2−n/4). Finally, it is clear from our proof (see Remark 3.4) that f has complex-
ity Ω(n) in the unbounded-error model [13], which has an even weaker success
criterion.

To summarize the previous paragraph, f has the highest communication com-
plexity in every major model. Yet, the distributional method restricted to product
distributions can certify at best an Ω(1) lower bound. In this sense, we refute the
hypothesis of the Kushilevitz-Nisan problem in the strongest possible terms.
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Finally, Theorem 1.1 also improves on our previously obtained [15] exponen-
tial separation for discrepancy. In that earlier work, we constructed an explicit
matrix A ∈ {−1,+1}2

n×2n2

with disc×(A) = Ω(1/n4) and disc(A) = O(
√

n/2n/4).
Theorem 1.1 amplifies this gap to what is essentially optimal, although the func-
tion is no longer explicit.

We now consider a different contribution of this work, which pertains to the
complexity measures of sign matrices. This comparatively new area studies ma-
trices with ±1 entries from a complexity-theoretic point of view, focusing on their
algebraic rather than combinatorial structure. The study of sign matrices has strong
ties to classical complexity theory, computational learning, and functional analysis,
and has drawn considerable interest [1–5, 11, 12, 15].

Fundamental complexity measures of A are:

• disc×(A), the smallest discrepancy of A under a product distribution;

• sq(A), the statistical-query (SQ) dimension of A viewed as a concept class.
(This quantity arises in Kearns’ statistical query model of learning [7] and
turns out be be intimately linked with discrepancy.)

• dc(A), the dimension complexity of A, also known as “sign-rank”;

• mc(A), the margin complexity of A;

• disc(A), the smallest discrepancy of A under an arbitrary distribution.

Precise definitions of these quantities appear in Section 2. Among the early find-
ings is the following inequality due to Ben-David et al. [1]:

dc 6 O(mc(A)2 log(M + N)) for every A ∈ {−1,+1}M×N .

Linial and Shraibman [11] showed that mc(A) and 1/ disc(A) are always within a
factor of 8. The author [15] has recently extended these two results to the following
picture:

∣∣∣∣∣∣∣∣
exponential gap

achievable -�

∣∣∣∣∣∣∣∣
1

disc×(A)
=poly sq(A) 6poly dc(A) 6poly mc(A) ≈

1
disc(A)

The symbols 6poly and =poly in the above diagram have their intuitive meaning; we
give precise statements in Section 2.2. The only missing piece from this diagram
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is the gap between sq(A) and dc(A), which is left as an open problem in [15]. We
solve this problem, showing that the gap between sq(A) and dc(A) can be arbitrary:

Theorem 1.2 (SQ dimension vs. dimension complexity). Let ε > 0 be an arbitrary
constant. Then there exists a matrix family A ∈ {−1,+1}N×N with

sq(A) = O(1)

and dc(A) = Ω(N1−ε).

It is easy to show (see Section 2.2) that dc(A) 6 min{M,N} for every A ∈
{−1,+1}M×N . In this light, Theorem 1.2 gives essentially the best gap that can exist
by definition. This completes our taxonomy to the following overall picture:

∣∣∣∣∣∣∣∣
arbitrary gap
achievable -�

∣∣∣∣∣∣∣∣
exponential gap

achievable -�

∣∣∣∣∣∣∣∣
1

disc×(A)
=poly sq(A) 6poly dc(A) 6poly mc(A) ≈

1
disc(A)

Our Techniques. A key feature of our approach is to view a sign matrix both as
a communication problem and as a set of Boolean functions to learn (namely, the
matrix rows). This perspective invites the use of tools from communication com-
plexity and learning theory. One of the ingredients in our proofs is a simulation
due to Kremer, Nisan, and Ron [9] that links the one-way communication com-
plexity of a matrix to its VC dimension. We also recall a combinatorial fact due to
Ben-David et al. [1] about matrices with low VC dimension. To combine these two
results, we use the above taxonomy of complexity measures.

2 Preliminaries

This section surveys facts from communication complexity, sign matrices, and
learning theory that figure in our proofs.

2.1 Communication Complexity

We consider Boolean functions f : X×Y → {−1,+1}. Typically X = Y = {−1,+1}n,
but we also allow X and Y to be arbitrary sets, possibly of unequal cardinal-
ity. We identify a function f with its communication matrix A = [ f (x, y)]y,x ∈
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{−1,+1}|Y |×|X|. In particular, we use the terms “communication complexity of f ”
and “communication complexity of A” interchangeably (and likewise for other
complexity measures, such as discrepancy). The two communication models of
interest to us are the randomized model and the deterministic model, both reviewed
in Section 1.

For a fixed distribution µ over X × Y , the discrepancy of f is defined as

discµ( f ) = max
X′⊆X,
Y′⊆Y

∣∣∣∣∣∣∣∣
∑

(x,y)∈X′×Y′
µ(x, y) f (x, y)

∣∣∣∣∣∣∣∣ .
We define disc( f ) = minµ{discµ( f )}. We let disc×( f ) denote the minimum dis-
crepancy of f under product distributions. The discrepancy method is a powerful
technique that lower-bounds the randomized and distributional complexity in terms
of the discrepancy:

Proposition 2.1 (Kushilevitz and Nisan [10, pp. 36–38]). For every Boolean func-
tion f (x, y), every distribution µ, and every γ > 0,

Rpub
1/2−γ/2( f ) > Dµ1/2−γ/2( f ) > log2

γ

discµ( f )
.

A definitive resource for further details is the book of Kushilevitz and Nisan [10].

2.2 Sign Matrices

We frequently use “generic-entry” notation to specify a matrix succinctly: we write
A = [F(i, j)]i, j to mean that the (i, j)th entry of A is given by the expression F(i, j).
A (Euclidean) embedding of a matrix A ∈ {−1,+1}M×N is a collection of vectors
u1, . . . ,uM ∈ R

k and v1, . . . , vN ∈ R
k (for some k) such that 〈ui, v j〉 · Ai j > 0 for all

i, j. The integer k is the dimension of the embedding. The quantity

γ = min
i, j

|〈ui, v j〉|

‖ui‖ · ‖v j‖

is the margin of the embedding. The dimension complexity dc(A) is the smallest
dimension of an embedding of A. The margin complexity mc(A) is the minimum
1/γ over all embeddings of A.

Let ei denote the vector with 1 in the ith component and zeroes elsewhere.
The following is a trivial embedding of a sign matrix A = [ a1 | . . . | aN ] ∈
{−1,+1}M×N : label the rows by vectors e1, . . . , eM ∈ R

M and the columns by
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vectors 1√
M

a1, . . . ,
1√
M

aN . It is easy to see that this embedding has dimension M

and margin 1/
√

M. By interchanging the roles of the rows and columns, we obtain
the following well-known fact:

Proposition 2.2. Let A ∈ {−1,+1}M×N . Then

1 6 dc(A) 6 min{M,N},

1 6mc(A) 6 min{
√

M,
√

N}.

We say that a matrix R ∈ RM×N sign-represents a matrix A ∈ {−1,+1}M×N , denoted
A = sign(R), if Ai jRi j > 0 for all i, j. Observe that the dimension complexity of a
sign matrix is the minimum rank of any real matrix that sign-represents it.

Let X be a finite set. For a family C of functions X → {−1,+1}, define its
statistical query (SQ) dimension sq(C ) to be the largest integer d for which there
are functions

f1, f2, . . . , fd ∈ C

and a probability distribution µ on X such that∣∣∣∣∣ E
x∼µ

[ fi(x) f j(x)]
∣∣∣∣∣ 6 1

d
for all i , j. (2.1)

For a sign matrix A ∈ {−1,+1}M×N , we define sq(A) to be the SQ dimension of the
rows of A viewed as functions {1, 2, . . . ,N} → {−1,+1}. It is a simple exercise to
show that any functions f1, f2, . . . , fd that satisfy (2.1) must be linearly indepen-
dent, and thus

sq(A) 6 rank(A) for all A. (2.2)

The SQ dimension is an important quantity in learning theory. It was originally
defined as a complexity measure in Kearns’ statistical query model of learning [7].
But, as we shall see shortly, it naturally fits in our taxonomy of complexity mea-
sures of sign matrices.

At this point, we have introduced five complexity measures of a sign matrix:
disc×(A), sq(A), dc(A), mc(A), and disc(A). They are related in an elegant way, as
follows:

1
disc×(A)

=poly sq(A) 6poly dc(A) 6poly mc(A) ≈
1

disc(A)

This diagram summarizes work by different authors at different times. We now
traverse it left to right, giving precise quantitative statements.
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Theorem 2.3 (Sherstov [15, Thm. 7.1]). Let A be a sign matrix. Then√
sq(A)

2
<

1
disc×(A)

< (2 sq(A))2.

Theorem 2.4 (Sherstov [15, Thm. 3.2]). Let A be a sign matrix. Then

sq(A) < 2 dc(A)2.

Theorem 2.5 (Ben-David, Eiron, and Simon [1]). Let A ∈ {−1,+1}M×N . Then

dc(A) 6 O(mc(A)2 log(M + N)).

Theorem 2.6 (Linial and Shraibman [11]). Let A be a sign matrix. Then

1
8

mc(A) 6
1

disc(A)
6 8 mc(A).

The following observation is immediate from Proposition 2.2 and Theorem 2.6:

Proposition 2.7. Let A ∈ {−1,+1}M×N . Then

disc(A) >
1

8 min{
√

M,
√

N}
.

2.3 Learning Theory

Let X be a finite set, such as X = {−1,+1}n. A concept class C is any set of
functions X → {−1,+1}. We identify C with the sign matrix A whose rows are
indexed by functions of C , columns indexed by inputs x ∈ X, and entries given by
A( f , x) = f (x). In other words, A’s rows are precisely the functions of C . In what
follows, we use C and its corresponding sign matrix interchangeably.

Let µ be a probability distribution over X. Then the following is a natural notion
of distance between functions:

∆µ( f , g) def
= Pr

x∼µ
[ f (x) , g(x)].
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A concept class C is learnable to accuracy ε and confidence δ under distribution µ
from m examples if there is an algorithm L that, for every unknown f ∈ C , takes
as input i.i.d. examples x1, . . . , xm ∼ µ and their labels f (x1), . . . , f (xm), and with
probability at least 1 − δ produces a hypothesis h with ∆µ(h, f ) 6 ε. The latter
probability is over the random choice of examples and any internal randomization
in L.

For a sign matrix A (and thus its corresponding concept class), define its
Vapnik-Chervonenkis (VC) dimension vc(A) to be the largest d such that A fea-
tures a 2d ×d submatrix whose rows are the distinct elements of {−1,+1}d. The VC
dimension is a combinatorial quantity that exactly captures the learning complexity
of a concept class. This is borne out by the following classical theorem:

Theorem 2.8 (VC Theorem; see [8, Thm. 3.3]). Let C be a concept class and µ a
distribution. Then C is learnable to accuracy ε and confidence δ under µ from

O
(
1
ε

log
1
δ
+

vc(C )
ε

log
1
ε

)
examples.

Theorem 2.8 almost matches the information-theoretic lower bounds on the
number of examples necessary. These lower bounds come in different flavors; for
example, see [8, Thm. 3.5]. We will need the following specialized version, which
we state with a proof for the reader’s convenience.

Proposition 2.9 (Information-theoretic barrier). Let µ be a probability distribution
and C be a concept class such that ∆µ( f , f ′) > ε for every two distinct f , f ′ ∈ C .
Then learning C to accuracy ε/2 and confidence δ under µ requires log |C |+log(1−
δ) examples.

Proof. Let L be a learner for C that uses m examples. View L as a deterministic
function L(x1, y1, . . . , xm, ym, r) that takes training examples and a random string
as input and outputs a hypothesis. With this notation, we have:

E
f∈C

[
Pr

x1,...,xm,r

[
∆µ( f , L(x1, f (x1), . . . , xm, f (xm), r)) 6

ε

2

]]
> 1 − δ.

Reordering the expectation and probability operators yields

E
x1,...,xm,r

[
Pr
f∈C

[
∆µ( f , L(x1, f (x1), . . . , xm, f (xm), r)) 6

ε

2

]]
> 1 − δ.
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Thus, there is a fixed choice of x1, . . . , xm, r for which

Pr
f∈C

[
∆µ( f , L(x1, f (x1), . . . , xm, f (xm), r)) 6

ε

2

]
> 1 − δ. (2.3)

With x1, . . . , xm, r thus fixed, algorithm L becomes a deterministic mapping from
{−1,+1}m to the hypothesis space. In particular, L can output at most 2m different
hypotheses. Equation (2.3) says that L succeeds in producing an ε2 -approximator
for at least (1−δ) |C | functions in C . Since no hypothesis can be an ε2 -approximator
for two different functions in C , we have 2m > (1 − δ) |C |. �

For a thorough introduction to computational learning theory, see the textbook
by Kearns and Vazirani [8].

3 Communication Gap

In this section, we prove our main results concerning communication under product
vs. nonproduct distributions. We first recall an elegant simulation that relates the
communication complexity of a sign matrix to its VC dimension.

Theorem 3.1 (Kremer, Nisan, and Ron [9, Thm. 3.2]). Let A be a sign matrix,
ε > 0 an arbitrary constant. Then D×ε (A) = O(vc(A)).

Proof (Kremer, Nisan, Ron [9]). Let X and Y be the finite sets that index the
columns and rows of A, respectively. Let µ = µX × µY be a given product dis-
tribution. Consider the following public-coin randomized protocol for A. Alice
and Bob use their public coin to pick points

x(1), x(2), . . . , x(m) ∈ X

independently at random, according to µX . Here m is a parameter we will fix later.
Next, Bob sends Alice the values

A(y, x(1)), A(y, x(2)), . . . , A(y, x(m)).

At this point, Alice identifies any y′ ∈ Y with

A(y′, x(1)) = A(y, x(1)),

A(y′, x(2)) = A(y, x(2)),
...

A(y′, x(m)) = A(y, x(m)),
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and announces A(y′, x) as the output of the protocol.
In learning-theoretic terms, the protocol amounts to Alice learning the un-

known row Ay of the matrix A from random labeled examples distributed according
to µX . By the VC theorem (Theorem 2.8), any row A′y consistent with m = O(vc(A))
labeled examples will, with probability ε/2, have ∆µX (A′y, Ay) 6 ε/2. In particular,
Alice’s answer will be correct with probability at least 1− ε (with respect to µX and
regardless of Bob’s input y).

To summarize, we have obtained a public-coin randomized protocol for A with
cost O(vc(A)) and error at most ε over µ = µX × µY . By a standard averaging
argument, there must be a deterministic protocol with the same cost and error at
most ε. �

Our next ingredient is a combinatorial fact about sign matrices.

Definition 3.2 (Zarankiewicz matrices). Let Z (N, c) denote the set of N × N ma-
trices with ±1 entries that contain no submatrix of size c × c with all entries equal
to 1.

The key property of Z (N, c) for our purposes is the following result:

Theorem 3.3 (Ben-David, Eiron, and Simon [1, Thm. 12]). Let c > 2 be a fixed
integer. Then all but a vanishing fraction of the matrices in Z (N, c) have dimension
complexity Ω(N1− 2

c ).

We are now in a position to prove the main result of this section.

Theorem 1.1 (Restated from p. 2). Let ε > 0 be an arbitrary constant. Then there
exists a function f : {−1,+1}n × {−1,+1}n → {−1,+1} with all of the following
properties:

D×ε ( f ) = O(1),

Rpub
1/3( f ) = Ω(n),

disc×( f ) = Ω(1),

disc( f ) = O(2−n( 1
2−ε)).

Proof. Let c = 2d1/εe. Theorem 3.3 ensures the existence of A ∈ Z (2n, c) with
dc(A) = Ω(2n(1−ε)). Then

disc(A)
Thm. 2.6
6

8
mc(A)

Thm. 2.5
6 O

(√
n

dc(A)

)
= O

(
2−n( 1

2−ε)
)
. (3.1)
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By Proposition 2.1, we immediately conclude that

Rpub
1/3(A) = Ω(n). (3.2)

On the other hand, it is clear that every matrix in Z (2n, c) has VC dimension at
most 2c. Theorem 3.1 now implies that

D×ε (A) = O(1). (3.3)

In light of (3.3), Proposition 2.1 shows that

disc×(A) = Ω(1). (3.4)

The theorem follows from (3.1)–(3.4). �

Remark 3.4. It is clear from the proof that the function f in question satisfies
dc( f ) > 2Ω(n). This is equivalent to saying that f has communication complexity
Ω(n) in the unbounded error model of Paturi and Simon [13].

4 SQ Dimension and Dimension Complexity

The purpose of this section is to exhibit a large gap between the SQ dimension and
dimension complexity of an N × N sign matrix. We start with a technical lemma.

Lemma 4.1 (VC and SQ dimensions). Let C be a concept class. Then

sq(C ) 6 2O(vc(C )).

Proof. Let sq(C ) = d > 2.Our goal is to show that vc(C ) = Ω(log d).By definition
of the SQ dimension, there is a distribution µ and and functions f1, . . . , fd ∈ C such
that

∆µ( fi, f j) >
1
2
−

1
2d

for all i , j. In particular, ∆µ( fi, f j) > 1/4. Thus, the information-theoretic bar-
rier (Proposition 2.9) shows that learning C to accuracy 1/10 and confidence 1/2
requires

m > Ω(log d)

examples. Yet by the VC Theorem (Theorem 2.8), the number of examples needed
is at most

m = O(vc(C )).

Comparing these lower and upper bounds on m yields the desired result. �
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We are now prepared for the main result of this section:

Theorem 1.2 (Restated from p. 4). Let ε > 0 be an arbitrary constant. Then there
exists a matrix family A ∈ {−1,+1}N×N with

sq(A) = O(1)

and dc(A) = Ω(N1−ε).

Proof. Let c = 2d1/εe. By Theorem 3.3, there exists a matrix A ∈ Z (N, c) with

dc(A) = Ω(N1−ε). (4.1)

On the other hand, it is clear that every matrix in Z (N, c) has VC dimension at
most 2c. Therefore, Lemma 4.1 shows that

sq(A) 6 2O(c) = O(1). (4.2)

The theorem follows from (4.1) and (4.2). �

5 Further Notes on the VC and SQ Dimensions

In Section 4, we obtained a separation between between the SQ dimension and
dimension complexity. Instrumental to that result was the relationship between two
learning-theoretic quantities, the VC and SQ dimensions. This section concludes
with a closer look at them.

For a given sign matrix A, and let vc(AT) denote the VC dimension of the
columns of A when viewed as Boolean functions. Define sq(AT) analogously. It is
well-known that there are matrices A with an exponential gap between vc(A) and
vc(AT). For example, the 2n × n matrix IND whose rows are the distinct vectors in
{−1,+1}n satisfies:

vc(IND) = n, vc(INDT) = blog nc.

This gap is in fact the largest possible since

vc(AT) > blog vc(A)c for all A.

The reason for this inequality is as follows. If vc(A) = d, then A contains a
submatrix of size blog dc × 2blog dc whose columns are all the possible vectors in
{−1,+1}blog dc.
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By contrast, the gap between sq(A) and sq(AT) is always at most polynomial.
Specifically, the author has shown [15, Cor. 7.1.1] that(

1
32

sq(C )
)1/4

< sq(C T) < 32 sq(C )4 for all A. (5.1)

This result follows from Theorem 2.3 and the fact that disc×(A) = disc×(AT).
Finally, we examine the relationship between the VC and SQ dimensions for

the same matrix. The result were are about to state is an extension of Lemma 4.1
above.

Proposition 5.1. Let A be a sign matrix. Then:

max{12 vc(A), vc(AT)} 6 sq(A) 6 2O(min{vc(A),vc(AT)}).

Proof. It is clear from the definitions that

sq(A) > vc(AT) and sq(A) > 2blog vc(A)c >
1
2

vc(A).

On the other hand, Lemma 4.1 shows that

sq(A) 6 2O(vc(A)).

In view of (5.1), we also have

sq(A) 6 2O(vc(AT)).

These four inequalities complete the proof. �

We now show that Proposition 5.1 is best possible in that the quantity sq(A)
really can range anywhere between the stated lower and upper bounds.

• Consider the following sign matrix A of size 2n × 2n:
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The 2n × n submatrix IND is as defined earlier. It is clear that vc(A) =
vc(AT) = n. By (2.2), we have sq(A) 6 rank(A) 6 2n.

• Consider now the 2n × 2n Hadamard matrix

A = [PARITY(x1 ∧ y1, . . . , xn ∧ yn)]x,y.

Here again one can show that vc(A) = vc(AT) = n. However, we now have
sq(A) = 2n since the rows of A are orthogonal.

To summarize, in both examples above we have vc(A) = vc(AT) = n, and thus
Proposition 5.1 implies that

n 6 sq(A) 6 2O(n).

In the first example it turns out that sq(A) 6 2n, while in the second sq(A) = 2n.

Hence, Proposition 5.1 cannot be strengthened in general.
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