
Improving Stepping Stone Detection Algorithms using
Anomaly Detection Techniques

Abhinay Kampasi
Department of Computer Sciences

The University of Texas at Austin
Austin, TX, USA

abhinay@cs.utexas.edu

 Yin Zhang
 Department of Computer Sciences

 The University of Texas at Austin
 Austin, TX, USA

 yzhang@cs.utexas.edu

Giovanni Di Crescenzo
Telcordia Technologies, Inc.

Piscataway, NJ, USA
giovanni@research.telcordia.com

Abhrajit Ghosh
Telcordia Technologies, Inc.

Piscataway, NJ, USA
aghosh@research.telcordia.com

Rajesh Talpade
Telcordia Technologies, Inc.

Piscataway, NJ, USA
rrt@research.telcordia.com

ABSTRACT
Network attackers frequently use a chain of compromised
intermediate nodes to attack a target machine and maintain
anonymity. This chain of nodes between the attacker and the
target is called a stepping stone chain. Various algorithms have
been proposed to detect stepping stones, timing correlation based
algorithms being one of them. However, the existing timing based
algorithms are susceptible to failure if the attacker actively tries to
evade detection using jitter or chaff. We have developed three
anomaly detection algorithms to detect the presence of jitter and
chaff in interactive connections. Experiments performed on Deter
using real-world traces and live traffic demonstrate that the
algorithms perform well with very low false positives and false
negatives and have a high success percentage of about 99%.
These algorithms based on response times from the server and
causality of traffic in both directions of an interactive connection
have made the existing stepping stone detection framework more
robust and resistant to evasion.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General -
Security and protection

General Terms
Algorithms, Security

Keywords
Anomaly Detection, Stepping Stones, Intrusion Detection,
Evasion, Jitter, Chaff

1. INTRODUCTION
Network attackers frequently use a chain of compromised
intermediate nodes called stepping stones to attack a target
machine because it helps them to maintain anonymity. This is a
big concern for intrusion detection systems because even if an
intrusion is detected, only the last host from which the attack was
launched is identified whereas the actual attack came from a
different host. Over the last few years many stepping stone
detection algorithms have been proposed. Some of the first
algorithms were content-based [3] and created thumbprints of
streams and compared them looking for good matches. Other
techniques rely on the content not changing significantly between
different streams. However, content-based techniques are
expensive because they involve payload analysis and also getting
access to packet payload is not always possible due to privacy
concerns. Another serious limitation is that much of the
interactive traffic today is encrypted and hence content
comparison is not possible. Other approaches have looked at
comparing the number of packets between connections [1].
Considering the fact that most interactive traffic is encrypted and
packet payload is not always accessible, one of the most
successful techniques for stepping stone detection has been
timing-based that tries to correlate timing of packets across
different connections. The algorithm proposed by [8] splits
connections into ON and OFF periods and then correlates the end
of OFF periods. All references to a stepping stone detection
algorithm in the rest of the paper refer to [8] but are generally
applicable to any timing-based stepping stone detection
algorithm.

Figure 1: Stepping stone chain between attacker and target

The stepping stone chain between the attacker and target is shown
in Figure 1. The attacker can evade the existing stepping stone
detection algorithm if he injects sufficient amount of timing jitter

or chaff packets at any of the intermediate stepping stones. We
have leveraged Netcat [11] to implement a custom server that
injects jitter and/or chaff in the connection chain. We ran the
custom server in jitter mode, chaff mode and jitter+chaff mode
and successfully evaded the algorithm in each of these modes.

We have developed three anomaly detection algorithms to detect
the presence of jitter and chaff in connections by correlating
traffic in both directions of a connection. As far as we know this is
the first approach to correlate traffic in both directions of an
interactive connection to detect jitter and chaff anomalies. The
“response-time based” algorithm uses the time interval between
sending of a packet from the source and receipt of the response
packet in the form of an echo from the destination to detect jitter.
The “edit-distance based” and “causality based” algorithms rely
on the fact that there is a strong causality relation between two
directions of an interactive connection and are used to detect
chaff. If the attacker tries to obfuscate the traffic using chaff then
this causality relation is broken resulting in the network traffic
appearing anomalous.

We performed experiments on Deter test bed. Real-world traces
from Telcordia Technologies and University of Texas Computer
Sciences department were used along with some traces with jitter
and chaff generated on Deter. The algorithms were also evaluated
on live traffic. The implementation of these algorithms in Bro [2,
9] intrusion detection system shows that they are able to detect
jitter and chaff with a high success rate of about 99% and very
low false positives/negatives. These algorithms coupled with the
stepping stone detection algorithm form an extremely robust
detection framework that the attacker will find difficult to evade.

The main contributions of this paper are summarized below:

(1) The response-time based algorithm is able to detect jitter
anomalies in interactive traffic

(2) The edit-distance and causality based algorithms are able to
detect chaff anomalies in interactive traffic

(3) The timing based stepping stone detection algorithm
combined with the three anomaly detection algorithms forms
an integrated framework that is very difficult to evade

The rest of the paper is organized as follows. Section 2 covers the
related work and Section 3 discusses how an attacker can evade
the existing stepping stone algorithm. The anomaly detection
algorithms are described in Section 4 and the custom server
implementation is explained in Section 5. Section 6 outlines the
new integrated stepping stone detection framework. We evaluate
the algorithms in Section 7 before concluding in Section 8.

2. RELATED WORK
Over the past few years, many algorithms have been proposed for
detecting stepping stones. Content-based algorithms [3] compare
content over different streams looking for a high degree of
correlation. The content-based techniques have many limitations
like high computation costs, restricted access to packet payload
and encrypted traffic. Much of the stepping stone detection
research today focuses on timing based correlation.

The stepping stone detection algorithm proposed by [1] is based
on monitoring the number of packets between connections. This
paper uses computational learning theory and analysis of random

walks to provide provable upper bounds on the number of packets
one needs to observe to confidently detect a stepping stone. This
paper also gives bounds on the amount of chaff that the attacker
would need to inject in order to evade detection without delving
into the issue of actually detecting chaff.

There have been some anomaly detection techniques [4, 5, 6]
proposed to detect stepping stones based on the time difference
between send packet and the corresponding echo packet. This
time difference is very small for normal connections but increases
proportionally with the number of intermediate hosts in the chain.
The response-time based anomaly detection algorithm proposed
by us relies on the same concept but is used to detect the presence
of jitter rather than stepping stones.

3. ALGORITHM EVASION
The ON-OFF timing based stepping stone algorithm can be
evaded by injecting jitter or chaff in the connection chain.

3.1 Stepping Stone Detection Algorithm
The stepping stone algorithm is based on the fact that if two nodes
are part of a stepping stone chain, then the flow of traffic on these
machines will be highly correlated. Each connection is split into a
stream of ON-OFF periods. An OFF period starts if no data traffic
has been observed on a connection for more than Tidle (set to 500
msec). Any packet seen after a connection is in an OFF period
marks the end of the OFF period and the start of an ON period. If
the difference between end times of OFF periods (or start times of
ON periods) across two connections is less than � (set to 80
msec), then these OFF periods are said to be correlated as shown
in Figure 2.

Figure 2: Correlation of packets for connections C1 and C2
based on timing

Let OFF1 and OFF2 denote the total number of OFF periods
within two connections C1 and C2 respectively and OFF1,2 denote
the number of correlated OFF periods. C1 and C2 form part of a
stepping stone chain if (OFF1,2) / min (OFF1, OFF2) > � (set to
0.3).

The experiments performed by the authors were able to detect
most stepping stones with a low percentage of false
positives/negatives. A drawback of the algorithm is its inability to
deal with jitter and chaff. If the attacker actively tries to evade the
timing based algorithm by randomly injecting jitter, chaff or a
combination of the two in the connection then the algorithm is
rendered ineffective.

3.2 Evasion using jitter
If the attacker injects timing jitter or delay of more than � in one
of the connections, then he will be able to evade detection. This is
because OFF periods are considered correlated only if their end
times differ by less than �. However, if the attacker uses a custom
server to explicitly inject jitter greater than � in one of the
connections then the OFF periods between the two connections

will never be correlated and the attacker will be able to evade
detection. In this case, the attacker is exploiting the dependence of
the algorithm on the parameter �.

3.3 Evasion using chaff
If the attacker injects chaff packets randomly in one of the
connections then the ratio of correlated OFF periods to the total
OFF periods will reduce. Injecting sufficient chaff will cause this
ratio to fall below � and the attacker will be able to evade
detection. In this case, the attacker is exploiting the dependence of
the algorithm on the parameter �.

4. ANOMALY DETECTION
We have developed three algorithms to detect jitter and chaff
based anomalies in interactive traffic. The response-time based
algorithm detects jitter while the edit-distance based and causality
based algorithms detect chaff. While, an attacker who is oblivious
to the presence of a traceback solution will be detected using the
timing-based stepping-stone detection algorithm, an attacker who
attempts to evade detection by obfuscating traffic flows by
introducing jitter/chaff will end up having his inter stepping stone
traffic appear anomalous. Hence, the stepping stone detection
algorithm together with the anomaly detection techniques forms a
robust framework that is difficult to evade. All the anomaly
detection algorithms are online and can detect jitter and chaff in
live interactive traffic (as well as traces).

4.1 Response-time Based Anomaly Detection
Let C be an interactive connection where C12 indicates the flow of
packets from client to server and C21 indicates the flow of packets
from server to client. The response-time based algorithm is
formulated on the fact that a Send packet on C12 should be
followed immediately by a response packet on C21 in the form of
an Echo. Packets on C12 are split into ON and OFF periods using
parameter Tidle (set to 300 msec) similar to the stepping stone
detection algorithm. Splitting the connection into ON and OFF
periods drastically reduces the amount of packet processing
without affecting the results. We tested the algorithm with
different values of Tidle ranging from 300 to 500 msec and did not
observe any change in results indicating that the algorithm is not
very sensitive to this parameter. If for every packet sent on C12 at
start of an ON period, we do not see a response packet on C21 in
the form of an echo within (RTT + �RT) then we mark the ON
period as anomalous as shown in Figure 3. The round trip time
(RTT) is calculated using a smoothed version of Jacobson/Karel’s
algorithm. The value of �RT was selected as 50 msec after
analyzing the typical response times of servers in many real-world
traces.

Figure 3: Response-time based anomaly detection algorithm

If the ratio of anomalous ON periods to total ON periods is
greater than �RT (set to 0.67) then we flag the connection as
anomalous. A very small value for �RT may lead to many false
positives while a large value for �RT may lead to many false

negatives. We decided to select a conservative value for this
parameter, which may result in some false negatives. However, it
does not affect the effectiveness of the overall framework because
in order to evade the stepping stone algorithm, the attacker needs
to inject jitter for more than 70% of the packets (as indicated by
parameter � in Section 3.1) and in doing so will be flagged as
anomalous by this algorithm. The pseudo code of the algorithm is
given in Figure 4.

The algorithm may suffer from false positives if the server is
extremely loaded and takes more than �RT (50 msec) time to
respond. However, typical server response times are much smaller
than �RT. Also, if the connection is part of a stepping stone chain
then the response time will increase proportionally to the length
of the chain and may exceed �RT for sufficiently long chains.
Marking such connections as anomalous will not change the
outcome of the stepping stone detection framework as shown in
Section 5. The algorithm may suffer from false negatives if the
attacker types at a very fast speed so that all packets on C12 are
sent within Tidle and are not split into ON and OFF periods.
However, for interactive traffic, typing so fast may be impractical
for the attacker. Also, if the jitter injected is less than �RT then it
will not be detected. However, such low values of jitter will not
allow the attacker to evade the stepping stone detection algorithm.

Initialize ON_Packets = 0, Anomalous_Packets = 0
Split the packets on the forward direction C12 of an interactive
connection into ON and OFF periods using Tidle
For every ack sent on C21 for a data packet sent on C12
 Update RTT using Jacobson/Karel’s algorithm
End
For every packet sent at ON period on C12
 Increment count for ON_Packets
 If response packet on C21 is sent within (RTT + �RT)
 Packet is not anomalous
 Else
 Packet is anomalous
 Increment count for Anomalous_Packets
 Run procedure Check_for_Anomaly
 End
End
Procedure Check_for_Anomaly
 If number of ON_Packets > MIN_ON_PACKETS (set to 10)
 If Anomalous_Packets / ON_Packets >= �RT
 Connection is anomalous due to jitter
 End
 End
End

Figure 4: Pseudo code for response-time based anomaly
detection algorithm

4.2 Edit-distance Based Anomaly Detection
The edit-distance based algorithm relies on the fact that if an
interactive connection is normal then the sequences of time
durations of the associated ON and OFF intervals for two
directions of this connection C12 and C21 are identical or at least
very similar. Two identical sequences have an edit-distance of
zero and similar sequences have an edit-distance close to zero. If
the attacker injects some chaff in the connection then these
sequences become dissimilar and start having a positive edit

distance that increases proportionally to the amount of chaff
injected. This criterion can be used to detect chaff in interactive
connections.

Given streaming sequences of packets along the two directions of
a connection as C12 and C21, we use the methodology described
before to split the packets into ON and OFF periods taking Tidle as
300 msec. The time difference between two ON periods is used to
form a sequence of intervals for C12 and C21. The streaming
sequences are broken into multiple subsequences and the local
edit distance of each subsequence is measured. Given that the
permissible edit distance for a subsequence is �, a connection is
flagged as anomalous if the cumulative edit distance of the
different subsequences is greater than � times the number of
subsequences. After analyzing many normal interactive
connections, the value of � was set to 10. The packet stream is
processed as a collection of subsequences in order to support
online analysis. The pseudo code in Figure 5 explains the
algorithm in greater detail.

Initialize Cumulative_Edit_Distance = 0
Split the packets on two directions C12 and C21 of an interactive
connection into ON and OFF periods using Tidle
Let C12_seq[i] be the sequence of intervals for subsequence i for
forward direction of traffic
Let C21_seq[i] be the sequence of intervals for subsequence i for
reverse direction of traffic
For subsequences of length SEQ_LENGTH (set to 10) for C12
 Let i be the current subsequence number
 Run procedure Edit_Distance (C12_seq[i], C21_seq[i])
 Let local_edit_dist[i] be the edit distance returned
 Cumulative_Edit_Distance += local_edit_dist[i]
 If Cumulative_Edit_Distance > � * i
 Connection is anomalous due to chaff
 End
End
Procedure Edit_Distance (A[1..m], B[1..n])
 Initialize matrix[i, 0] = i for i = 0 to m
 Initialize matrix[0, j] = j for j = 0 to n
 For i = 1 to m
 For j = 1 to n
 x = 0 if |A[i] - B[j]| < αED (set to 50 msec) else x = 2
 matrix[i, j] = min {matrix[i-1, j-1] + x, matrix[i-1, j] + 1,
 matrix[i, j-1] + 1}
 End
 End
 Return matrix[m, n]
End

Figure 5: Pseudo code for edit-distance based anomaly
detection algorithm

4.3 Causality Based Anomaly Detection
The causality based algorithm is used to detect the presence of
chaff in interactive connections. Given streaming sequences of
packets along the two directions of a connection as C12 and C21,
we use the methodology described before to split the packets into
ON and OFF periods taking Tidle as 100 msec.

For interactive traffic, it can be expected that a user types a
command, waits for its output and then types another command.
This typing behaviour gives rise to a pattern of ON periods such

that for every pair of consecutive ON periods on C12 there will be
exactly one ON period on C21 as shown in Figure 6. Similarly, for
every pair of consecutive ON periods on C21 there will be exactly
one ON period on C12.

Figure 6: Exactly one ON period on C21 between two

consecutive ON periods on C12 and vice versa

An ON period on C12 is defined to be anomalous if there is either
zero or more than one ON periods on C21 before the next ON
period on C12. Let �forward be defined as the ratio of the anomalous
ON periods to the total ON periods on C12. Similarly �reverse is
defined for C21. Normal interactive connections will have low
values for both �forward and �reverse. If either of these correlation
metrics has a value greater than 0.67 then the connection is
flagged as anomalous due to chaff. The pseudo code in Figure 7
explains the algorithm in greater detail.

Initialize ON_Packets_Forward = 0, ON_Packets_Reverse = 0,
Anom_Packets_Forward = 0, Anom_Packets_Reverse = 0
Split the packets on the forward direction C12 and reverse
direction C21 of an interactive connection into ON and OFF
periods using Tidle
For every packet sent at ON period on C12
 Increment count for ON_Packets_Forward
 If number of ON periods on C21 before the next ON period on
 C12 = 0 or > 1
 Packet is anomalous
 Increment count for Anom_Packets_Forward
 Run Procedure Check_for_Anomaly
 End
End
For every packet sent at ON period on C21
 Increment count for ON_Packets_Reverse
 If number of ON periods on C12 before the next ON period on
 C21 = 0 or > 1
 Packet is anomalous
 Increment count for Anom_Packets_Reverse
 Run Procedure Check_for_Anomaly
 End
End
Procedure Check_for_Anomaly
 If number of ON_Packets_Forward > MIN_ON_PACKETS
(set to 25)
 If Anom_Packets_Forward/ON_Packets_Forward >= �forward

 OR Anom_Packets_Reverse/ON_Packets_Reverse >= �reverse
 Connection is anomalous due to chaff
 End
 End
End
Figure 7: Pseudo code for causality based anomaly detection
algorithm

The algorithm may suffer from false positives for interactive
connections used for bulk file transfer or for commands with
extremely large outputs because they involve a large number of
packets sent in only one direction. However, for most such cases
the stream of “bulk” packets would only constitute a single ON
period and hence would not affect the overall outcome of the
algorithm.

This algorithm may suffer from false negatives if the attacker
injects chaff at a rate greater than Tidle. The attacker uses a custom
server to inject chaff and this can be done very fast. In order to
counter this and reduce false negatives, the value of Tidle is chosen
to be much smaller than that considered for the other algorithms.
We tested the algorithm by varying values of Tidle from 0 to 500
and did not observe significant changes in results and set Tidle as
100 msec for our experiments. The algorithm may also suffer from
false negatives if the attacker injects chaff alternately in both
directions of the connection.

While a sufficiently aggressive attacker can defeat any of the
proposed algorithms, there is always utility in raising the bar for
the attacker. The integrated framework described in Section 6
consisting of the stepping stone detection algorithm and the
anomaly detection algorithms is extremely difficult to evade.

5. Custom Server Implementation
In order to evaluate the anomaly detection algorithms, we first
needed to evade the existing stepping stone detection algorithm.
For this, we implemented a custom server that injects jitter and/or
chaff during communication between two nodes. We have
leveraged an open source tool Netcat for our custom server
implementation.

5.1 Injecting Jitter
One can inject jitter in customized netcat using the –i option. A
random delay is introduced depending upon the lower and upper
bound specified. Figure 8 summaries the pseudo code for
injecting jitter.

The syntax for this option is: -i lower_bound:upper_bound where
lower and upper bounds are specified in msec.

For every request received from slave
 If JITTER_OPTION is enabled
 Randomly select a number r between lower and upper bound
 Inject a delay of r msec
 End
 Send request to master
End
For every response received from master
 If JITTER_OPTION is enabled
 Randomly select a number r between lower and upper bound
 Inject a delay of r msec
 End
 Send response to slave
End

Figure 8: Pseudo code for injecting jitter

A typical netcat command using this option would be: netcat -L
nodeb:23 -p 9000 –i 80:100 which indicates that netcat has been
setup in tunneling mode to tunnel all data received at port 9000 to

port 23 on the host nodeb and in doing so introduce a random
delay between 80 and 100 msec.

5.2 Injecting Chaff
One can inject chaff in netcat using the –C option. Chaff can be
introduced in either direction at random intervals depending upon
the lower and upper bound specified. Figure 9 summarizes the
pseudo code for injecting chaff.

The syntax for this option is: -C lower_bound:upper_bound:fr
where lower and upper bounds are specified in msec, f indicates
chaff will be sent in forward direction and r indicates chaff will be
sent in reverse direction. At least one of f and r options should be
specified.

A typical netcat command using this option would be: netcat -L
nodeb:23 -p 9000 –C 800:1000:fr which indicates that netcat has
been setup in tunneling mode to tunnel all data received at port
9000 to port 23 on host nodeb and in doing so inject chaff at
random intervals between 800 and 1000 msec in both forward and
reverse directions.

If CHAFF_OPTION is enabled
 Randomly select a number r between lower and upper bound
 If no data received from either slave or master for time r
 If both f and r options are specified, randomly select the
 direction to send chaff else select the specified direction
 Send chaff in the selected direction
 Else
 Do data processing
 End
End
For every request received from slave
 If CHAFF_OPTION is enabled and data is chaff
 Do not send chaff
 Else
 Send request to master
 End
End
For every response received from master
 If CHAFF_OPTION is enabled and data is chaff
 Do not send chaff
 Else
 Send response to slave
 End
End

Figure 9: Pseudo code for injecting chaff

6. INTEGRATED FRAMEWORK
The timing based stepping stone detection algorithm and the three
anomaly detection techniques form an integrated framework for
detecting and tracing back to the source of an intrusion that is
very difficult to evade. If the attacker uses a chain of intermediate
nodes for malicious activity then the stepping stone algorithm will
be able to trace back the attack. Any attempts by the attacker to
evade detection using jitter or chaff will cause the traffic to appear
anomalous and the anomaly detection algorithms will flag the
connections as anomalous.

Figure 8 shows a scenario where the attacker uses jitter/chaff in
one of the connections to evade detection. A-B-C-D form a part of

a stepping stone chain used by the attacker. The attacker injects
jitter/chaff at node B. Suppose that an intrusion is detected on
node D and we want to trace back the attack. We have written an
API for the detection framework that will enable us to do the
same. We describe two of the APIs that will assist us in
demonstrating how the attack can be traced back to node A (and
further downstream if required).

analyzer_report_stepping_stones API is used to report stepping
stones detected by the framework. Given a host name or an IP
address ‘s’ we can iterate through the output of this API to get all
the hosts in the connection chain containing ‘s’.

analyzer_report_anomalies API is used to report jitter/chaff based
anomalies detected by the framework. Given a host name or IP
address ‘s’ we can scan the output of this API to get all the
anomalous connections that ‘s’ was part of.

Figure 10: Stepping stone connection chain A-B-C-D with

jitter/chaff being introduced at node B

Let us now analyse how the framework will trace back the
attacker for this connection chain. Firstly the
analyzer_report_stepping_stones(D) API will indicate that D is
part of the stepping stone chain B-C-D. So we have traced back
the attack till node B. Now analyzer_report_anomalies(B) API
will indicate that B is part of an anomalous interactive connection
A-B. Hence, we have traced back the attack to node A.
Proceeding in this manner we can trace the intrusion all the way
back to the attacker using these two APIs.

7. EVALUATION
All the experiments were performed on Deter test bed. In order to
test the algorithms we wrote a custom server to inject jitter and
chaff in connections. The algorithms were evaluated against real-
world traces from Telcordia Technologies and University of Texas
Computer Sciences department. The algorithms are online and
were also tested on live traffic on Deter.

7.1 Experimental Setup
We used Deter test bed [10] for evaluating the algorithms. Figure
11 shows the two network topologies used for our experiments.
The nodes in these topologies had Linux 2.4.20 as the operating
system with ssh, telnet, tcpdump, bro and netcat installed.

We used traces from Telcordia Technologies and University of
Texas Computer Sciences department to evaluate the algorithms.
The interactive traffic (SSH and Telnet connections) was
extracted from these traces. Topology 1 was used to evaluate the
algorithms on live traffic. Topology 2 was used to generate traces
with jitter and chaff using the custom netcat server. We installed
the custom server on nodeB and nodeC and ran it in jitter, chaff
and jitter+chaff modes.

Figure 11: Deter network topologies

7.2 Bro
The algorithms were implemented in Bro [9] language. Bro is an
open-source, Unix-based Network Intrusion Detection System
(NIDS) that passively monitors network traffic and looks for
suspicious activity. The algorithms were written as policies in
Bro. Each policy script can implement event handlers that are
invoked when certain events are fired by the event engine. The
tcp_packet event was used by our policy scripts for packet level
analysis of network traffic. Various filters can be defined to limit
the amount of packet processing; in our case we only monitored
interactive traffic like telnet/ssh.

7.3 Response-time based algorithm evaluation
The response-time based algorithm is used to detect jitter
anomalies in interactive traffic. We evaluate the algorithm in
terms of its ability to correctly identify all instances of jitter – low
false negatives, and not wrongly identify connections as
anomalous that have no jitter – low false positives.

The evaluation of the algorithm on traces is presented in Table 1.
In traces generated using the custom server running in jitter mode
and jitter+chaff mode, the algorithm detected all jitter instances
correctly with no false negatives. In real-world traces, the
algorithm had 2 instances of false positives.

Trace Details Total
number of
Connections

Anomalies
Detected

False
Positi
ves

False
Nega
tives

Connections
with jitter 10 10 0 0

Connections
with jitter and

chaff
6 6 0 0

Real-world
traces – normal

connections
4450 2 2 0

Table 1: Evaluation of response-time based algorithm on
real-world and custom server traces

The evaluation of the algorithm on live traffic is presented in
Table 2. The algorithm did not have any false positives for

connections with no jitter. The custom server was used to inject
varying amounts of jitter from 20 msec to 320 msec. For each of
these different jitter values 50 connections were established. The
algorithm had 50 false negatives for the 50 connections with jitter
values of 20 msec because this value is less than �RT. However all
these connections were identified as part of a connection chain by
the stepping stone detection algorithm. The algorithm had no false
negatives for connections with a combination of jitter and chaff.

We define percentage of success of an algorithm as the ratio of the
total number of connections with no false positives/negatives to
the total number of connections. Using this criterion the overall
success rate of the response-time based algorithm is 98.99%.

Trace Details Total
number of
Connections

Anomalies
Detected

False
Positi
ves

False
Nega
tives

Connections
with different
values of jitter

250 200 0 50

Connections
with different
values of jitter

and chaff

200 200 0 0

Connections
with no jitter 250 0 0 0

Table 2: Evaluation of response-time based algorithm on live
traffic on Deter

7.4 Edit-distance based algorithm evaluation
The edit-distance based algorithm is used to detect chaff
anomalies in interactive traffic. We evaluate the algorithm in
terms of its ability to correctly identify all instances of chaff – low
false negatives, and not wrongly identify connections as
anomalous that have no chaff – low false positives.

The evaluation of the algorithm on traces is presented in Table 3.
In traces generated using the custom server running in chaff mode
and jitter+chaff mode, the algorithm detected all chaff instances
correctly with no false negatives. In real-world traces, the
algorithm had 62 instances of false positives.

Trace Details Total
number of
Connections

Anomalies
Detected

False
Positi
ves

False
Nega
tives

Connections
with chaff 17 17 0 0

Connections
with jitter and

chaff
6 6 0 0

Real-world
traces – normal

connections
4450 62 62 0

Table 3: Evaluation of edit-distance based algorithm on
real-world and custom server traces

The evaluation of the algorithm on live traffic is presented in
Table 4. The custom server was used to inject chaff at varying
intervals ranging from 100 to 800 msec. The algorithm was able
to detect all anomalies in connections with chaff and a
combination of jitter and chaff. Also, no false positives were
detected for connections with no chaff.

Using the criterion mentioned above, the overall success rate of
the edit-distance based algorithm is 98.81%.

Trace Details Total
number of
Connections

Anomalies
Detected

False
Positi
ves

False
Nega
tives

Connections
with different
values of chaff

200 200 0 0

Connections
with different
values of jitter

and chaff

250 250 0 0

Connections
with no chaff 300 0 0 0

Table 4: Evaluation of edit-distance based algorithm on live
traffic on Deter

7.5 Causality based algorithm evaluation
The causality based algorithm is used to detect chaff anomalies in
interactive traffic. As with the edit-distance based algorithm, low
false positives/negatives are used to evaluate the algorithm. The
evaluation of the algorithm on traces is presented in Table 5. In
traces generated using the custom server running in chaff mode
and jitter+chaff mode, the algorithm detected all chaff instances
correctly with no false negatives. In real-world traces, the
algorithm had 49 instances of false positives.

Trace Details Total
number of
Connections

Anomalies
Detected

False
Positi
ves

False
Nega
tives

Connections
with chaff 17 17 0 0

Connections
with jitter and

chaff
6 6 0 0

Real-world
traces – normal

connections
4450 49 49 0

Table 5: Evaluation of causality based algorithm on real-world
and custom server traces

The evaluation of the algorithm on live traffic is presented in
Table 6. The algorithm did not have any false positives for
connections with no chaff. The custom server was used to inject
chaff at varying intervals ranging from 100 to 800 msec. All
instances of anomalies were detected in connections with chaff
and a combination of jitter and chaff.

Using the criterion mentioned above, the overall success rate of
the causality based algorithm is 99.06%.

Trace Details Total
number of
Connections

Anomalies
Detected

False
Positi
ves

False
Nega
tives

Connections
with different
values of chaff

200 200 0 0

Connections
with different
values of jitter

and chaff

250 250 0 0

Connections
with no chaff 300 0 0 0

Table 6: Evaluation of causality based algorithm on live traffic
on Deter

8. CONCLUSION
We have successfully designed and implemented algorithms that
can detect the presence of jitter and chaff in interactive traffic.
This strengthens the existing timing-based stepping stone
detection algorithms that can be evaded by an aggressive attacker
using jitter and chaff. The anomaly detection algorithms coupled
with the stepping stone detection algorithm provide an integrated
framework that is robust and difficult to evade. All the three
algorithms have very low false positives/negatives and a high
success percentage of about 99%.

Although we designed these algorithms to strengthen existing
stepping stone detection algorithms, the techniques are general in
that they can be used to detect the presence of jitter and chaff in
any interactive connection. Any intrusion detection system that
uses timing of packets to correlate interactive connections can use
the techniques described here to detect anomalous activity.

The attacker can evade detection by installing the custom server
on any random port because the Bro tcp filter will only monitor
interactive traffic on known ports like 22/23. We have performed
some work on identifying anomalous activity on any port. Bro
provides a policy script interconn.bro that can identify interactive
connections [7]. The anomaly detection scripts monitor all
connections flagged as interactive by this script. As a result, the
anomaly detection algorithms can detect anomalous interactive
traffic on any port.

The existing algorithms use magic numbers for various
parameters critical to the success of the algorithm. These
parameters have been defined by comprehensive testing on real-
world traces and live traffic on Deter. Dynamically determining
the values of these parameters is a possible avenue for future work
and may help in further reducing the number of false
positives/negatives.

9. REFERENCES
[1] Blum, A., Song, D. and Venkataraman, S. Detection of

Interactive Stepping Stones: Algorithms and Confidence
Bounds. International Symposium on Recent Advances in
Intrusion Detection (RAID), Lecture Notes in Computer
Science, vol. 3224, Springer, Jan 2004, 258-277.

[2] Paxson, V. Bro: A System for Detecting Network Intruders in
Real-Time, Computer Networks, 31(23-24), 14 Dec. 1999,
2435-2463.

[3] Staniford-Chen, S. and Heberlein, L. T. Holding intruders
accountable on the internet. Proceedings of IEEE
Symposium on Security and Privacy, May 1995, 39-49.

[4] Yang, J. and Huang, S.-H. S. A real-time algorithm to detect
long connection chains of interactive terminal sessions.
InfoSecu '04: Proceedings of the 3rd international conference
on Information security. New York, NY, USA: ACM Press,
2004, 198-203.

[5] Yang, J. and Huang, S.-H. S. Matching tcp packets and its
application to the detection of long connection chains on the
internet. AINA 2005: 19th International Conference on
Advanced Information Networking and Applications, March
2005, 1005-1010.

[6] Yung, K. H. Detecting long connection chains of interactive
terminal sessions. RAID 2002, Lecture Notes in Computer
Science, vol. 2516, Jan 2002, 1-16.

[7] Zhang, Y. and Paxson, V. Detecting Backdoors. 9th
USENIX Security Symposium, Denver, Colorado, USA,
Aug 2000, 157-170.

[8] Zhang, Y. and Paxson, V. Detecting stepping stones. 9th
USENIX Security Symposium, Denver, Colorado, USA,
Aug 2000, 171-184.

[9] Bro Intrusion Detection System. http://www.bro-ids.org/

[10] Deter - Network Security Testbed based on Emulab.
https://www.isi.deterlab.net/

[11] The GNU Netcat project. http://netcat.sourceforge.net/

