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To implement the hypercube routing scheme in a dynamic,
distributed environment, the following problems must be ad
dressed:

Abstract—Several proposed peer-to-peer networks use hypercube rou
ing for scalability. Consistency of neighbor tables in hypecube routing

guarantees the existence of a path from any source node to adgstination
node. Such consistency, however, can be broken by node fais. To im-

prove the robustness of hypercube routing, we first generate the concept 1. Given a set of nodes ajoin pl’OtOCOl is needed for the nodes

of consistencyto K-consistency for K > 1, which is shown to provide
at least K disjoint paths for any source-destination pair with a probability

close to 1. Our next objective is to design and specify a newijo proto-

col together with a proof that it generates K -consistent neighbor tables for
an arbitrary number of concurrent joins. We first present a conceptual
foundation, called C-set treesfor protocol design and reasoning aboutK-
consistency. We then present a detailed specification of aifpoprotocol, and
a rigorous proof of correctness for the join protocol. The cux of our proof

is based upon induction on C-set trees. Both theoretical amgsis and sim-
ulation results show that the join protocol is scalable to adrge number of

to initialize their neighbor tables such that the tables are
consistent (Hereafter, a “consistent network” means a set
of nodes with consistent neighbor tables.)

. Protocols are needed for nodes to join and leave a consis-

tent network such that the neighbor tables are still consis-
tent after a set of joins and leaves. When a node fails, a
recovery protocol is needed to re-establish consistency of

network nodes. neighbor tables.

Keywords—Peer-to-peer networks, consistencyK -consistency, hyper- 3+ A protocol is needed for nodes to optimize their neighbor
cube routing, join protocol, protocol design and verificaton, C-set tree tables.

Solving all of these problems is beyond the scope of a single
paper. In this paper, we focus on designing a join protocol fo
the hypercube routing scheme to generate neighbor taldes th
are not only consistent, but also resilient to node failu@ar

Structured peer-to-peer (p2p) networks are being invaistity solution to the failure recovery problem for hypercube oyt
as a platform for building large-scale distributed systdiris Nnetworks is presented in companion papers [5, 6].
12, 13, 14, 16]. The primary function of these networks is ob- Neighbor table consistency guarantees the existence dha pa
ject location, That is, mapping an object ID to a node in thisom any source node to any destination node in the network.
network. For efficient routing, each node maintaiddogn) Such consistency however can be broken by the failure of a
pointers to other nodes, called neighbor pointers, wheie single node. To provide resilience to node failures and-faci
the number of network nodes. To locate an object, the averdtfge the design of failure recovery protocols, we introglac
number of application-level hops required@logn).> Each New concepti-consistencyk > 1, which generalizes consis-
node stores neighbor pointers in a table, calleahétighbor ta- tency (1-consistency is the same as consistehdyformally,
ble. The neighbor tables constitute the routing infrastrietfr the neighbor tables of a network afé-consistent if and only
a p2p network. if each table entry in every node stonesn (K, H) neighbors,

An important problem in p2p networks is the design and SpewhereH is the number of nodes in the network that have the
ification of protocols together with a proof that they constr ‘required suffix” (definition in Section 2) of the table entiy
and maintairconsistenneighbor tables for network nodes thaProviding redundancy in neighbor tablés;consistency has the
may join, leave, and fail concurrently. Of interest in thaper following advantages:
is the hypercube routing scheme used in several proposed p2p K -consistency implies consistency ani-consistent
systems [11, 13, 16, 7]. Based on the hypercube routing sehem  neighbor tables provide “static resilience” [2]. More
and additional distributed directory information, it isaganteed specifically, we show in Section 3 thaté-consistent net-
to locate a copy of an object if it exists, and the expected cos  \ork provides at leask disjoint paths from any node to

1 Introduction

of accessing is asymptotically optimal, given that the hbay
tables in the network arensisten{definition in Section 3) and
optimal(that is, they store nearest neighbors) [11].
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any other node with probability approaching 1 asn-
creases (e.g., for = 300 and K = 3, the probability

is lower bounded by 0.99).

K-consistency facilitates design of failure recovery proto
col and supports rapid failure recovery. In the companion

2For simplicity, we will saynetworkinstead ofhypercube routing networknd table

ANI-0319168 and CNS-0434515. This work is a major extensibaur paper presented instead ofneighbor tablevhenever there is no ambiguity.

in [9].
This is true except for CAN [12], in which routing takés(rn'/") hops and- is the
number of dimensions used in the system.

3In [9], we addressed 1-consistency and designed a join gubtbat generates consis-
tent neighbor tables. The major extension in this paperngggization of 1-consistency to
K -consistency.



papers [5, 6], we presented a failure recovery protocol that K -consistency through both theoretical analysis and simula
only uses local information, and integrated it with our joition experiments. In Section 4, our conceptual foundatamn f
protocol presented in this paper. Through extensive simprotocol design is presented and illustrated through ekzenp
lation experiments, we found that féf > 2, all "recov- In Section 5, a detailed specification of our join protocqitis-
erable holes” in neighbor tables due to failed nodes wesented. In Section 6, we present an outline of our correstnes
repaired by the failure recovery protocol @veryexperi- proof for the join protocol and analyze protocol performanc
ment. It was also shown in [5, 6] that the integrated prot¢Petailed proofs are presented in the Appendix.) Lastly, we
cols are able to maintain consistent neighbor tables unddrow how to use the join protocol for network initialization
continuous and frequent node joins and leaves (churn). Section 7, discuss related work in Section 8, and conclude in
e K-consistency benefits neighbor table optimizatiorsection 9.
In [10], we found that with the same set of optimization
heuristics, a largeK value results in neighbor tables that2
provide shorter routes.

To design a join protocol that generatisconsistent neigh- |n this section, we briefly review the hypercube routing sche
bor tables for an arbitrary number of concurrent joins, a mased in PRR [11], Pastry [13], and Tapestry [16]. Consid&ta s
jor difficulty is as follows. For every table entry in a join of nodes. Each node has a unique ID, which is a fixed-length
node’s table, the node needs to discaven(H, K) neighbors random binary string. A node’s ID is representeddyigits of
without any global knowledge, whei€ is the total number of paseb, e.g., a 160-bit ID can be represented by 40 Hex digits
nodes that have the required suffix of the entry ahdould be (4 = 40, b = 16). Hereafter, we will use..ID to denote the ID
any value equal to or greater than 0. (One approach to discodenodez, x[i] theth digit in «-.ID, andzi — 1]...[0] a suffix
enough neighbors for an entry is through broadcasting,fwisic of z.7D. We count digits in an ID from right to left, with the
obviously not scalable.) To solve this problem, we first pres oth digit being theightmostdigit. See Table 1 for notation used

a conceptual foundation, calléttset treesfor protocol design throughout this papér.Also, we will use “network” instead of
and reasoning about-consistency. Second, based on the obhypercube routing network” for brevity.

servation that in d&’-consistent network, it is possible for a node

Background

to store the same neighbor at multiple levels in its neiglior | Notation Definition _ _
. . i (V,N(V)) a hypercube networky” is the set of nodes in the network,
ble, we introduce a concept _cgllaliach levelltis a cons_tralnt N (V) is the set of neighbor tables
on the lowest level that a joining node can be stored in a tablé&] tEe set{% l;d— l}véisaréositive integer
P . d the number of digits in a node’s ID
and is important in the protocol for correctness. 5 the base of each digi
In addition to the join protocol design, we also construct [@z[7] theath digitinz. 1D
H i i | x[¢ —1]...2[0] | suffixofz.ID; denotes empty string if = 0
rigorous proof of correctness for the join protocol (assugni T e neighbor bl of node
reliable message delivery and no node failure or leave). The o digit 7 concatenated with suffi
crux of our proof is based upon induction on C-set trees. lw] the number of digits in suffix (length of suffix.)
. X . . N (i, 7) the set of nodes i, j)-entry ofx.table, also referred
Contributions of this paper are the following: as the(i, §)-neighborsof nodea:
N, (i,7).stze the number of nodes iV, (4, j)

o We definek-consistencyor the hypercube routing scheme N, (7, j) first | the first node iV, (¢, 7)
and demonstrate benefits Af-consistency via both theo-|_cswf(wi,w2) [ thelongest common suffix of, andw,

. . . . . Vi .1 asuffix sebf V', which includes all of the nodes W that has
retical anaIyS|s and simulation expe”ments- pe an ID with suffixi;...lo; denotesV if 1;...1o is the empty string

e \We analyze the goal of a join protocol for the hypercubelV] the number of nodes in sét
routing scheme and present the detailed specification of a Table 1: Notation
new join protocol. The join protocol can also be used for
network initialization. Given a message with destination node DD, the objec-

e We present a conceptual foundati@tset treesfor pro- tive of each step in hypercube routing is to forward the mgssa
tocol design and reasoning abadidtconsistency. By in- from its current node, say, to a next node, say, such that the
duction on C-set trees, we present a rigorous proof that theffix match between.ID andz.ID is at least one digit longer
join protocol generatek™-consistent neighbor tables fan  than the match between/D andz.ID.° If such a path exists,
arbitrary number of concurrent joins the destination is reached @(log, n) steps on the average and

¢ We analyze communication costs of the join protocol as@steps in the worst case, whereis the number of network
function of K as well as of network size, and show that th@odes. Figure 1 shows an example path for routing from source
protocol is scalable to a large number of network nodes. node 21233 to destination node 032814, d = 5). Note that

Note that since we are only concerned with consistency € ID of each intermediate node in the path matches 03231 by

this paper, the assumption of optimal neighbor tables axeai 2t 16ast one more suffix digit than its predecessor.

when we design our join protocol. Interested readers can re-10 implement hypercube routing, each node maintains a

fer to [1, 3, 10] for methods of exploiting node proximity andeighbor tablethat hasd levels withb entries at each level.

optimizing neighbor tables. “In our notation, we us&’, ., to denote a suffix set of. Similarly, W, . i, is

The rest of this paper is organized as follows. In Sectione2, g suffix set of W and (V U W)y,...1, is @ suffix set oft” U W. However, we reserve
brief] . the h b ti h In Secti 3 C1, .1, to denote a C-set, as defined in Section 4.
retly review the nypercube routing scheme. In section s, WesInthis paper, we follow PRR [11] and use suffix matching, vaasrother systems use

present our definition ak-consistency, and discuss advantag@sgefix matching. The choice is arbitrary and conceptuakjgnificant.




(Crzss ) (Caonan ) (1ssan )= ( a023d) Part (b) in the above definition states that if the networksdoe

not have any node with the required suffix of a particulardabl
Figure 1: An example hypercube routing path entry, then that table entry must be empty.

Definition 3.2 Consider two nodes;z and y, in network

Each table entry stores link information to nodes whose IQ§/ N(V)). If there exists a neighbor sequence ffath)
have the entry’s required suffix, defined as follows. Consid u(; ur), k < d, such thatug is z, up is y, andu; 1 €

g eeny

the table in noder. Therequired suffix for entry j at level N, (i,y[i]), i € [k], theny is reachablefromz, or = canreach
i, j € [b], i € [d], referred to as thei(j)-entry of x.table, is Y, in k hops?

j - x[i — 1]...2[0]. Any node whose ID has this required suf- )

fix is said to be ayualified nodefor the , j)-entry ofz.table. Lemma3.1In a network(V,N'(V)), any node is reachable
Only qualified nodes for a table entry can be stored in the ef,ﬁom any other node if condition (a) of Definition 3.1 is satis
try. Note that node: has the required suffix for each ¢[i])- fied by the network.

entry,i € [d], of its own table. For routing efficiency, we fill | emma 3.1 shows that neighbor table consistency guarantees
each node’s table such that, (¢, [i]).first = z forallz € V., the existence of a path from any source node to any destinatio
i € [d]. Figure 2 shows an example neighbor table. The strigde in the network. Such consistency however can be broken
to the right of each entry is the required suffix for that entryy the failure of a single node. To increase robustness anild fa
An empty entry indicates that there does not exist a nodeain th]ate the design of failure recovery protoco]sy our 0r|ggm|
network whose ID has the entry’s required suffix. was to design a new join protocol that constructs-gonnected
Nodes stored in the (j)-entry ofz.table are called th€i, j)-  hypercube routing network, that is, a network in which neigh
neighborsof z, denoted byN, (i, j). Ideally, these neighbors phor tables provide at leadt disjoint paths & > 1) from any
are chosen from qualified nodes for the entry according teesopurce node to any destination node. However, we quickly rea
proximity criterion [11]. Furthermore, node is said to be a jzed that for a network with a small number of nodes and some
reverse{, j)-neighborof nodey if y is an ¢, j)-neighbor ofz.  specific realization of node IDs, itis possible thdt aconnected
Each node also keeps track of its reverse-neighbors. Tke lifetwork does not exist. (Recall that node IDs are randomiy ge
information for each neighbor stored in a table entry cdssiserated_) This is because in hypercube routing, only “cealifi
of the neighbor’s ID and IP address. For clarity, IP addressgodes whose IDs have the suffix required by a table entry can

are not shown in Figure 2. Hereafter, we will use “neighborse stored in the table entry. Instead, we defin-gonsistent
or “node” instead of “node’s ID and IP address” whenever th@ypercube routing) network as follows:

meaning is clear from context. _ .
Definition 3.3 Consider a networkV, N'(V')). The network,

Neighbor table of node 21233 ( b=4, d=5) or N(V), satisfiesK-consistency K > 1, if for any noder,
x € V, each entry in its table satisfies the following conditions:

A~ |01233] 10233 | 0233| 31033 |033 | 22303 |03 | 01100 |0
11233 | 11233| 21233 | 1233| 03133 [133 | 13113 |13 | 33121 |1 @ It Vjgfiz1...2[0] # (), then N,(i,j).size =
21233 [21233| A | 2233| 21233 |233 | 00123 |23 | 12232 |2 min(K, |Viajiz1y..2i0]), ¢ € [dl, j € [b], where
A~ |31233| 03233 |3233| A |333 | 21233 |33 | 21233 |4 N.(i,5) C Viali—1]...z[0]-

level 4 level 3 level 2 level 1 level 0 (b) If Vj-m[i—l]...m[o] = @,i € [d],j € [b], thenNz(iaj) =0.

Definition 3.3 states that in & -consistent network with
nodes, for every node in the network, each of its table estry i
filled with K neighborsif there ar& or more qualified nodes in

_ i the network for that entry; otherwise, all qualified nodésaiy)
3 K-consistent Networks are stored in the entry. To study the resilienceGtonsistent

Constructing and maintaining consistent neighbor talseani netv_vorks in t_he presence of failures, we first conducted.sim—
important design objective for structured p2p networks.naget Ulation experiments as follows. We began by constructing a
present a rigorous definition of consistency and then intced K-consistent network af nodes following Definition 3.3, then

a stronger propertyk -consistency, for the hypercube routindandomly pic_:keqf nodes and let them_fail._Next,_we_' counted the
scheme. number of disconnected source-destination pairs in theorkt

o . By a disconnected source-destination pairy), we mean that
Definition 3.1 Consider a networkV, V'(V)). The network, pothz andy have not failed but: cannot reacly. Each simu-
or N'(V), is consistentif for any nodex, x € V, each entry in |ation is identified by a combination of, b, d, K andf values.

Figure 2: An example neighbor table

its table satisfies the following conditions: For each combination, we ran five simulations and calculated

@) 1 Vjygio1).afo) # 0,4 € [d], j € [b], then there exists a the average vglue of the percentage of source-destinadios p
nodey, y € Vj.ufi_1...(o)» SUch thaty € N, (i, 7). that.became d|sconnected._ _

(0) 1 Vjwii1).zjo) = 0, € [d], j € [b], thenN,.(4, ) = 0. Figure 3 shows some simulation results for percentages of

disconnected source-destination pairs after node failufier

Part (a) in the above definition states that for each table &jjiterent number of failures in a network that initially ha@00
try, if there exists at least one node in the network that hes t,,,4es. First. note that the results are insensitive to the\af
required suffix of the entry, then the entry must not be empty ’

and it is filled with at least one node having the required suffi  ©in this paperk and K are used as different variables.



8 g, %0 Lemma 3.2 In a K-consistent network}V, A/(V)), for any two
nodesz andy,z € V,y € V andx # y, if y &€ z.table, then

there exist at leask’ disjoint paths frome to y.
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Lemma 3.3 In a K-consistent networkV, A/(V)), for any two
nodesx andy, z € V,y € Vandzx # y, if y &€ N,(0,z[0]),
L ewe Y * e e mg g then there exist at leashin (K, |V, o|) disjoint paths fromz to
100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800 y;ify € N, (()7 I[O]), then there exist at |eaﬁﬁn([{7 |V (0] |)_1
Number of failed nodes in the network (f) Number of failed nodes in the network (f) d .o h f Y
(a) b=4, 1=4000 (b) b=16, N=4000 Isjoint paths irome to y.
Figure 3: Percentage of disconnected source-destinatime pProof of Theorem 1: Let A be the event that there exist at
for different K values leastK disjoint paths frome to y, and B be the event thaj ¢

d. In each plot, for eacl value, the two curves for two differ- N.(0,z[0]) (which includegy ¢ x.table andy € x.table Ny &
entd values are almost the same. Second, wReis increased N (0, 2[0])). Note that ify € N (0, [0]), then it must be th_at
from 1 to 2, the percentage of disconnected pairs decreazes é{[O] - x[o]f For any event, let P(.X) denote the probability
matically. Fork = 3, even after 20% of the nodes have failec®’ X - We first deriveP(A A B). _

the number of disconnected source-destination pairssdes Ve knowP(AA B) = P(A|B)P(B). P(A|B) is the proba-
1% of all source-destination pairs. The results also shanith  Pility that there exist at least” disjoint paths from to y, given
creasing the value dffrom 4 to 16 leads to a significant reduc/ ¢ No(0,2[0]). By Lemma 3.3, ify & N,(0,2[0]), then

tion in the percentage of disconnected source-destinptigs. N€re exist at leasnin(X, |V, q)|) disjoint paths from to y.
ThUS,P(A|B) = P(mln(K, |Vy[0]|) = K) = P(|Vy[0]| > K)

This is because with a largér more neighbors are stored in ﬂ ; ) )
table (the number is proportional #blog, n). As expected, S‘g?[f?)lj ?O]K means that there exist at ledstnodes inV” with
d Yiil-

the simulation results show that with more neighbors stame

20

10
’

Percentage of disconnected pairs
w
8

Percentage of disconnected pairs

each entry, a network is more resilience in the presencdlef fa "ot HoMt — b0 — )

ures. (In fact, it is also easier for the network to recovendfr P(AIB) = P(|Vyjo| 2 K) = ;{ o

failures and maintain consistency of neighbor tables, ag/sh

in [5].) To deriveP(B), let K’ be the number of neighbors stored in

Itis easy to see that -consistency is a stronger property thanV,.(0, 2[0]) other thanz itself. Since there are at moat nodes
consistency. In particular, & -consistent networklf > 1,isa stored inN, (0, z[0]) (by Definition 3.3) and one of them is
consistent network. In the balance of this paper, for eacteno(N..(0, z[0]).first = ), we haveK’ < K — 1.

x, we chqoselvm(i,_:r[i]).first to bex its_elf, i € [d], for effi- P(B) =1 P(ye Na(0,2[0]) > 1— 51

cient routing. Multiple neighbors stored in each table gpto- n—1

vide alternative paths from a source node to a destinatideno Combining the above results, we have

and some of them are disjoint. More precisely, two paths from

P(A) > P(AAB)

source node to destination nodg aredisjoint if and only if —  P(AIB)P(B)

any node in each path that is neithenor y does not appear in " O, O — b n — )

the other path. Further, a set of paths frono y aredisjoint if = PB 3 IO

and only if every pair of paths in the set are disjoint. Formaxa Kff L@ OO — b — )
ple, leta, b, andc denote nodes. Then the following paths are > (1-—7)> )

1=K

disjoint: 2 — y,z — a — y,andz — b — ¢ — y.”

Theorem 1 In a K-consistent network,(V, N'(V)), where

||
Figure 4(a) plots the lower bound of the probability thatrée
V| = nandn > K, for any two nodesg andy, = € gure 4(a) p p y

. exist at least( disjoint paths for every source-destination pair
.V’ v eV and.x 7 v, 2 '°.W.ef. bound of the probqbll- in a K-consistent network, wherie = 16 andd = 40.8 Ob-

ity that there exist a},!e?‘SKd d'fl,?'m paths fromz to y is serve that when increases, the lower bound approaches 1. For
(1- 5y <@ ’Z)g((fd;l; =1, whereC(X,Y) is  example, the lower bound is higher than 0.99/os 300 and

the number of"-combinations ofX objects. K =3.

To prove Theorem 1, we first present two lemmas. Proofs of W complement the above analysis with simulation exper-
these lemmas are presented in Appendix A. Lemma 3.2 Ség}gents. A set of simulations were conducted to evaluate the
that in a-consistent network, if destination nogeis not a number of disjoint paths for each source-destination jpait'+
neighbor stored in the table of nodethen at leasfs disjoint consistent networks with different values &f, b, d andn. In
paths exist frome to y. However, if destinationy is stored in ©ach simulation, each node has a randomly generated ID, and
«.table, then a tight lower bound of the number of disjoint path§® Neighbor table of each node was constructed according to

from z to y depends upon whethgris stored inN. (0, z[0]). Definition 3.3, withV,, (i, ;v[z'].).ﬁr.st = x.for alz e V,ie [d].. .
Lemma 3.3 summarizes all the cases. Then for each source-destination pair, the number of disjoi

paths from source to destination was counted. For each com-
bination ofb, d, n and K values, we ran five simulations and

"Note that nodes here are user machines in a p2p network. Thsspossible for
two disjoint paths in & -consistent (hypercube routing) network to share a routé¢he
underlying Internet. This would not be a concern since msuéee generally much more 8 = 16 andd = 40 are commonly used values. Results for lower bounds of the
resilient than user machines. probability with other values df andd show the same trend.
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T 7 1 & ] T T TEEEEEY 5), and V..: {13061,31701,11261,10353}. If K = 1,
R 58 8 X °jj:*x§§§§§§ then VN = Vo = {11261} (Vagy = {11261} and
£ o098 - o
g o . 0985 OO Voge1 = @, thUS|Vv2‘61| > 1 and and|V0261| < 1, then by
T Definition 4.4, V,VoUlY = Vog); if K = 2, thenV,Nolhy =
2 o 0978 Vo1 = {11261,13061}; if K = 3, thenV Nty = v} =
g K=2 —— 097 K=2 ——
8 0w | K3 0.965 B K3 {11261,13061,31701}.
K5 O K5 O
% 10 200 250 00 350 400 450 500 % 150 200 250 300 350 400 450 500 Definition 4.5 Suppose a set of nodés, = {leimxm}, m >
Numberofnz;e)s|nlhenetwork(n) Numberafzgd)es|nthenetwork(n) 2, JOIn a netWOrk<‘/7N(V)> The JOlnS arendependermf for

H Notif
Figure 4: (a) Lower bound of the probability that there exitst ar}gfogg"ff nodess andy, x € W,y € W,z # ¢, V7" 0

leastK disjoint paths for each source-destination pair, (b) Sim¥

ulation results on the fraction of source-destinationgaith at Definition 4.6 Suppose a set of nodé¥, = {z1,...xm}, m >

leastK disjoint pathsbh = 16, d = 40 2, join a network(V, N(V)). The joins aredependentif for
any pair of nodes: andy, x € W,y € W, z # y, one of the

obtained the average value of the ratio of the number of seuréollowing is true:
destination pairs that have at ledstdisjoint paths to the total | v Notify VyNutify £,
number of source-destination pairs. Figure 4(b) presentes | Ju,u € W, u 2 Au y, such thatyNetify ¢ 7 Notify
of our simulation results. Observe that the results in Fgl(a) andV/Notify — 7 Notify r “
are much closer to 1 than the corresponding lower boundtsesul v “ |
in Figure 4(a), as expected. For example, the fraction ofceu  In designing the protocol for a node to join network
destination pairs with at leagt disjoint paths is greater than (V. NV (V)), we make the following assumptions: ¥) # () and
0.996 forn = 300 and K = 3. (V,N(V)) is aK-consistent network, (ii) each joining node, by
some means, knows a nodéinnitially, (iii) messages between
. nodes are delivered reliably, and (iv) there is no node ielet
4 COﬂCGthBJ Foundation (leave or failure) during the joins.
In a distributed p2p network, global knowledge is difficut (
In this section, we first present definitions and assumptionsnot impossible) to get. Therefore, a node should utilizelloc
be used in our protocol design and proofs. Then we analygformation to construct or update neighbor tables. Unber t
the goals and tasks for a join protocol to produ€econsistent assumption that there is no node deletion during joins, itiomd
neighbor tables for the hypercube routing scheme, and piresg)) in Definition 3.3 can be satisfied easily, since once a node

the concept oC-set trees has joined, it always exists in the network. Hence, giveii-a
consistent network(V, N'(V')), and a se¥¥ of joining nodes,
4.1 Definitions and assumptions the goals of the join protocol are to construct neighboresbl

for joining nodes and update tables of existing nodes suah th
Definition 4.1 Let ¢} be the time when node begins joining  eventually conditiorfa) in Definition 3.3 is satisfied in network
a network, and be the time whem becomes an S-node (to(y U W, (VU W)). More specifically:
be defined in Section 5). The period frefnto ¢¢, denoted by

[t2,t¢], is thejoining period (or join duration) ofz. e Goal 1: For each noder, 2 € W, and for eachi()-

o entry inz.table, i € [d] andj € [b], eventuallymin (K, H)
Definition 4.2 Suppose a set of nodé$, = {z1,...xn}, m = nodes with suffixj - z[i — 1]...z[0] are stored in the entry,
2, join a network. If the joining period of each node does not  whereH = |(V U W)jafi—1]...[0]-
overlap with that of any other, then the joins aequential e Goal 2: For each nodey, y € V, and for eachi( j)-
Definition 4.3 Suppose a set of nodé®, = {z1,...am}, m > entry iny.table, i € [d] andj € [b], it N, (i, j).size <
2, join a network. Lett® = min(t} ,...t2 ) andt¢ = K before the joins an@V;.,;—1)..y0) 7 0, eventually the
max(tS, , ..., t5 ). If for each noder, = € W, there exists a entry is updated and storesin(K, H) nodes with suffix

nodey, y € W andy # z, such that their joining periods over- j - yli —1]...y[0], whereH = [(V U W);.y(i-1]...y0]-
lap, and there does not exist a sub-interval#ft¢] that does
not overlap with the joining period of any nodelifi, thenthe 4.2 C-set tree for K -consistency

joins areconcurrent.
If multiple nodes join a network sequentially, then the pdo

not interfere with each other, because when a node joins, any
node that joined ealier has already been integrated intoghe
work. Also, if multiple nodes join a network concurrentlydan
the joins are independent, then intuitively the joins dointer-
fere with each other either, because the sets of hodes s th
Intuitively, V.V°*f is the set of nodes iV that need to joining nodes need to notify do not intersect and none of the
update their neighbor tables to satisfy-consistency con- joining nodes needs to store any other joining node in itketab
ditions after the joins, ifx were the only node that joins The most difficult case isoncurrentand dependent joinghere
(V,N(V)). For instance, suppose = 10261 (b = 8,d = the views different joining nodes have about the currentrask

Definition 4.4 Suppose a set of nodé¥, = {x1,....k,}, m >
1, join a K-consistent networkV, N'(V)). For any nodex,
x € W, if Vi) apo)| = K and|Vyp o < K, k € [d],
thenV . ,_1)...z[0) IS thenotification set of = regardingV” (or
noti-set, in short).



may conflict. For example, if nodes 30633 and 41633 join con-e If W;, ;.. # 0,2 <j<d-kl,.]lj €[], then set
currently, each of them may think of itself as the only nod#wi Ci;..1,w isachildof selCy, | 4, ..

suffix 633 in the network. If handled incorrectly, views otth , . .

joining nodes may not converge eventually, which would itesu GivenV, W and K, the tree template is determme_d. The
in inconsistent neighbor tables. value of K affects the tree template through the noti-sets of

We first | the desirabl Its of multiple ioi godes inWW. Suppose&s = 1 in the above example. Then, by
ing :nlijrzzlézi :e8 ejlri ;)ressuusp(z)srgua Igeei J(());nsot?;g Definition 4.4, nodes 41633 and 30633 hguel233 as their
W — {30633, 41633 ’3315}3 jo.in a K -consistent network Noti-set, and node 33153 h4§3013, 14233 as its noti-set.
V,N(V)), V : {02760 14233, 53013, 62332, 7243@nd And there would be two separate C-set trees instead of one, as
K = 2. Then by Definition 4.4, all nodes W have the same shown in Figure 5(c).

noti-set, which isl5.° Consider a joining node, say 33153. AtIO ThethSk of tEeAOin pr(;;tocol Is to C&nsf:“éc:)and update Inei.gh
the end of joins, for any to reach 33153y € V, there should or ta ”es S(;JC t atf‘r|)|aij sare esLaC|s € gtv;]/eecn o
exist a neighbor sequence uy, ..., us) such that is v, us is ceptuallynodes are filled into each C-set and the C-set tree is

33153, and the IDs af; to u4 have suffix 3, 53, 153, and 3153,real|zed. For ms_tance, in the above_ exampie # 2), when
respectively. Since before the join$, N (V)) is K-consistent, 14233 updates its (_1,3_)-ent_ry and fills 30633 into the entry,
y must have stored at least one neighbor with suffix 3, Whi&fnceptually 30633 is filled |nt6733_. For different seguences
is a node inV;. Let the set of 1, 5)-neighbors of nodes i 0 protocol message exchange, dlffer_ent nodes could_ bell fille
be Css, the set of £, 1)-neighbors of nodes iffs; be Ciss, ... into each C-set, which would result in different realizato
and the set of4| 3)-neighbors of nodes 63153 be Cs3153. We of the tree tgmplate. we USBet(V’.W’ K) o denote the C-
call these set§-setsand the sequence of sets frafto Cs s seet tree regllzed S\t the end_of aI_I joins, defined below, where
form aC-set path Generally, from any node il to each node t* = max(t;,, ..., 7, ), as defined in Section 4.1.

in I, there is an associated C-set path, and all the paths formfinition 4.8 Suppose a set of nodé¥, = {x1, ..., 2,,, }, m >
tree rooted al’s, called aC-set treeas shown in Figure 5(a). 2, join a K -consistent networkl, N'(V)), and for any node;,

x € W, VNetify =V, |w| = k. Then the C-set tree realized at
timet¢, denoted asset(V, W, K), is defined as follows:

3

(14233 5301

e V,, is the root of the tree.

(G o LetClw ={z,2€¢ VUW)j,w A (Fu,u €V, ANz €
= Nu(k,11))}, wherel; € [b]. ThenCy, ., is a child ofV,, if
Ciyw # D ANAWy,. # 0.

(a) Tree template, K=2 (b) Tree realization, K=2 () Tree template, K=1 e Let Clj...lyw — {SC,LL‘ c (V U W)lj...llvw A (3u7u c

Figure 5: C-set tree examples Clyyvw T € Ny(k+j—1,1;))}, where2 < j < d—k

The above example is a special case of multiple joins, where ‘éndll""’lj E [b]'dwencli-“ll"é is achild ofCy,_,..1,., If
the noti-sets of all nodes iV are the same (namelyj; in the w7 0 ANAWY 10 # 0.

example). Generally, the noti-sets of all nodedlihmay not  |ntuitively, to obtain the C-set tree realized at the endIbf a
be the same. Then, nodes with the same noti-set belong to jhi@is, we take a snapshot of all of the neighbor tables at time
same C-set tree and the C-set trees for all nodé&’iform a  ¢¢ and construct a C-set tree realization as follows. First, fo
forest. Each C-set tree can be treated separately. Henttes ineach node:, u € V,,, and for each; such that; € [b] and
balance of this subsection, our discussion is focused aomgesi Wi, # 0, put all (,1;)-neighbors ofu into Cy, ., if u has
C-set tree. such neighbors. Next, for each nodev € Cj,.., and for

We next present formal definitions for a C-set tree. In whafachi, such that, € [b] andWi,;,., # 0, put all (c + 1, 12)-
follows, we usd to denote one digit, € [b], andl;...l; to denote neighbors ofv into Cy,;, ..., and so on. Note that in a C-set tree
a string of j digits (we defing;...l; to be the empty string if realization fork = 1, C-sets only contain nodes I, while
J = 0). Note that C-set trees are conceptual structures usedfigf K > 2, a C-set may also contain nodeslip, the root set
protocol design and reasoning abdutconsistency. They are of the tree. Figure 5(b) shows one possible realization ef th
notimplementech any node. tree template in Figure 5(a). Observe that since for any node
Definition 4.7 Suppose a set of nodely = {z1,..,2,,}, % We setNy(i,xz[i]).first = x for routing efficiency;i € [b],

m > 1, join a K-consistent networkV, N'(V)), and for any oncex is filled into a C-set, it is automatically filled into those
nodex, = € W, VNotifv — V, where|lw| = k. Then the C- descendants of the C-set in the tree, whose suffix is alsdia suf
settree temp|ate associated WltW, W, and K, denoted by of z.ID. For instance, if both 14233 and 53013 store 30633 in
C(V,W, K), is defined as follows: (1, 3)-entry, then conceptually 30633 is filled @33 and conse-
quently, 30633 Cg33, Cogas and030633.

The concept of C-set tree not only helps us in protocol design
but also guides us in reasoning abd{#consistency. To prove
that by the end of all joins, the neighbor tables have beer con

9That is, nodes i3, 14233 and 53013, need to update their neighbor tables whatructed and updated such that they satisfy Aheonsistency
nodes inW join: each of them should update its, 3)-entry to store two neighbors with conditions, our approach is to prove the foIIowicgrectness

suffix 33 eventually; and each should update its5)-entry to store one neighbor with . X .
suffix 53 eventually. conditions, based on the C-set tree realization.

e V, is the root of the tree (the root is not a C-set);
o If Wy,., # 0,1 € [b], then seCC;, ., is a child ofV,,, and
[ - wis the associated suffix 6f;, ..;



(1) eset(V,W,K) has the same structure &(V,W, K). In an 1-consistent network, a neighbor, sgyis only stored
Also, for any C-set incset(V, W, K), sayC,,, it contains at one level in the table of a nodg givenxz # y. More
at leastK nodes with suffixw’ if there exist at leasK  specifically,z is only stored at levek in y.table, wherek =
nodes in(V U W), ; otherwise, it contains all nodes in|csuf(z.ID,y.ID)|, sincey itself is stored inV,, (i, z[i]) for all
(VUW),. level<, 0 < ¢ < k (bothz andy have the required suffix for

(2) For each nodg, y € V,, (root of the C-set tree), andthese entries). Fak > 2, however, it is possible foy to store
for each C-seC;..,, I € [b], such that’ is a suffix of =z at any level that is no higher than leviel- Thus, levelk is
y.ID, y has storednin(K, |C].|) nodes with suffiX - '  the highest level that can be stored ig.table. In constructing
in N, (k',1), wherek’ = |w'|. a correctness proof for the join protocol, we found that a-con

(3) For each node, x € W, the C-set whose suffix is.]D  straint on the lowest level thatcan be stored ipy.table is also
is a leaf C-set in the tree. Let pathdenote the path from needed. We call it théowest attach-levedf x, or simply the
this leaf C-set to the root of the tree. Then, for any C-setftach-levebf = for notational convenience.

gl_w/,t sgchcthattcl_lw/ is a ;}-seft] alor;g pgﬂ?’ o}r{a(s;blmg Definition 5.1 Theattach-levelof nodez in the table of node
-set of a C-set along pathy-x has storednin(K; |Ci.. ) y(@#£vy)isj, 0<j<d-— 1, determined as follows. (Lét

H T ! ! /I !
nodes with suffiXx - w’ in N,.(k',1), k' = |o/|. denotelcsuf (z.1D, y.ID)|.)

By the end of joins, if condition (1) is satisfied, then for gve L Cry . _ i
C-set that exists in the tree template (recall that givei’, and : j ; (i)illlc t]r:]ggé’ exili]s)tszelefle'll(sfg(r:r?ltlhlég i z i IZ N, (i —
K, the tree template is dertermined), it also exists in the itee 1 afi — 1)).size = K and,N (i a:[z"]).sz’ze_< K fgr all
alizlation andfish not empty. I:/Ioreove;, for each C-sEt inhthe tr z'” i< il < ke ' yr
realization, if there exist at leadt nodes inV U W that have I - ‘
the suffix of the C-set, then the C-set is filled with at lesist  * " atach-level does not existif, (k, x[k]). size = K.
nodes with the suffix; otherwise, all nodeslinu W that have
the suffix are included in the C-set. If conditions (1) andg®) 5.2 Protocol specification
satisfied, then every table entry in the neighbor tables déso UDDOSE a set of noded” ioin a K-consistent network
in V that needs to be updated has been updated and satis &%\?’(V}) Fiqure 6 resenté the state variables of a ioinin
K-consistency conditions. If conditions (1) and (3) aress,atino’de @ nbdegiﬁﬁ/) ?\lote for each neiahbor in its tabJIe ag
fied, plus that each joining node has copied neighbor pc::'ntehrode also Stores th.e neiahbor's stat gh' h cars bedi t’
from nodes inV/, then for any joining node, its table has been . neighbors state, which caiy iedicat-
constructed such that every table entry satisfiesonsistency ng that the ne|ghb0r 'S N statu:s__systerm_r r |_ndlcat|ng that
conditions. Hence, the above three correctness condjtions It Is not yet. Vgnables n .th.? first part in Figure 6 are also
gether with each joining node’s copying neighbors from modé'sed by nodes i, where initially for each node, u € V,

in V, ensure that the network fs-consistent after the joins. .u'smws = In_system u.'tc.lble IS pqpulatgd W'th r_19des I
in such a way that satisfies conditions in Definition 3.3, and

u.state(v) = S for every neighbow that is stored in:.table.

5 Join Protocol for K-consistency Figure 7 presents the protocol messages. Figures 8 to 1@mres
the pseudocode of the protocol, in whighy, © andv denote

In this section, we present our design of a new join protocBPdes, and, j andk denote integers. Note that when any node,
that constructs and maintairié-consistent neighbor tables for®» Stores a neighbor, say, into N, (i, j), = needs to send a
an arbitrary number of nodes to join a network that initiatly RYNGhNOtiMsgy, x.state(y)) toy if y # =, andy should reply
K-consistent. In our protocol, each node keeps its own sfQ- if z.state(y) is not consistent withy.status. For clarity
tus, which could beopying waiting, notifying andin_system of presentation, we have omitted the sending and recepfion o
When a node starts joining, its status is setapying these messages in the pseudocode.

A node with statuin_systenis called ar5-node otherwise, it
is aT-node. Briefly, in statuscopying a joining nodegz, copies

neighbor information from some S-nodes to construct most pa | :status € {copyingwaiting, notifying in_system, initially copying
N (i, j): the set of {, j)-neighbors ofz, initially empty

State variables of a joining node:

of its table. In statusvaiting, = tries to “attach” itself to the z.state(y) € {T, S}, the state of neighbay stored inz. table.
network, i.e., to find an S-node that will store it as a neighbo | (% 7): the setof reversé(j)-neighbors of, initially empty
which indicates that conceptually it is filled into a C-setie z.att_level: an integer, initially 0.

C-set tree. In statusotifying, « seeks and notifies nodes thatare | Q- asetof nodes from which waits for replies, initiallyempty

. Qn: asetof nodes: has sent notifications to, initiallgmpty
conceptually in the subtree rooted at the parent set of t8etC- | @;: asetof nodes that have sena JoinWaitMsginitially empty
x is filled into. Lastly, when it finds no more node to notify, Qsr: Qsn: asetof nodes, initiallpmpty

changes status io_systemand becomes an S-node.

Figure 6: State variables

5.1 Lowest attach-level Action in status copying In statuscopying a joining node,
' z, fills most of its table entries by copying neighbor informa-

We first present an important concept, caladest attach-level tion from S-nodes, as follows. To construct its table atlieye
We will discuss the cases where the concept is applied lateriic [d], = needs to find a node;, that is an S-node and shares
protocol specification. the rightmost digits with it so thatz can send £pRstMsdo g;



Messages exchanged by nodes:

CpRstMsgsent byz to request a copy of receiver’s neighbor table.

CpRIyMsgf . table), sent byz in response to £pRstMsg

JoinWaitMsg sent byz to notify receiver of the existence afand
request the receiver to stogg whenz . status is waiting.

neighbors into its table. ThdoinWaitMsgx sends to a node,
sayy, serves as a notification tpthatz is waiting to be stored
in y's table. Wheny receives theJoinWaitMsgfrom z, there
are two cases. (1) I is still a T-node, it stores the message

JoinWaitRlyMsgK, ¢, =.table), sent byx in response to doinWaitMsg
whenz. status isin_systemr € {negative, positivg, i: an integer.
JoinNotiMsgg, =.table), sent byz to notify receiver of the existence
of z, whenz. status is notifying i: an integer.
JoinNotiRlyMsgt, Q, x.table, f),
sent byz in response to doinNotiMsg
r € {negative, positivg, Q: a set of integersf € {true, falsg.
InSysNotiMsgsent byx whenz. status changes tan_system
SpeNotiMsgt, y), sent or forwarded by a node to inform receiver of
the existence ofj, wherez is the initial sender.
SpeNotiRlyMsg, y), response to §peNotiMsg
RvNghNotiMsg{, s), sent byz to notify y thatx is a reverse neighbor
ofy,s € {T,S}.
RvNghNotiRlyMsg{), sent byz in response to &vNghNotiMsg
s = S'if z.status isin_systemotherwises = T'.

Figure 7: Protocol messages

otherJoinWaitMsg this time tou, u =

to be processed after it has become an S-node. (@)idfan
S-node, it checks whether there exists an attach-level for
its table. If an attach-level exists, say leyely storesxz into
level-j through levelk, wherek = |csuf(z.ID,y.ID)| and
k > j, and sends doinWaitRlyMs@positive j, y.table) to
inform = that the lowest levek is stored is level. Level-j
then becomes thattach-level of z in the network, stored by
x in x.att _level. If an attach-level does not exist for y sends
JoinWaitRlyMs@negative —1, y.table) to z. After receiving
the reply (positive or negative}, searches the copy @ftable
included in the reply for new neighbors to update its owneabl

Upon receiving a negative reply from x has to send an-
Ny(k, xlk]).first, k =

to request a copy of;.table. We assume that each joining node s, (2.7D, y.1D)|.1° This process may be repeated for sev-

knows a node ii/. Let this node bey, for z. Fromgg.table,

eral times (at most times since each time the receiver shares

x searches for a node that shares the rightmost digit withdt agt |east one more digit with than the previous receiver) un-
is an S-node. Let this node pe. = then contactg, to request tj| ; receives a positive reply, which indicates thahas been

a copy ofg;.table. From g;.table, x searches for a nodes,

stored by an S-node and therefore attached to the network.

that shares the rightmost two digits with itand is an S-nade, then changes status twtifying Figure 9 presents actions for
So on. _Flgure 8 deplcF.c_, thg action in this status. _The subm®Uuta node upon receivingpinWaitMsgandJoinWaitRlyMsg Sub-
SetNeighbor()is specified in Figure 13. (For clarity of presenyoutinesCheckNgh. Table()and Switch To.S.Node()are speci-

tation, we have omitted the sending o€aRstMsdrom z to g,
and the reception of @pRIlyMsgfrom g to z.)

In statuscopying each time after receiving @pRIyMsg «
checks whether it should change statusviiting. Supposer
receives £pRIlyMsgromy. Then the condition for to change
status towaitingis: (i) There exists an attach-level forin the
copy ofy.table included in the reply, or (ii) an attach-level does
not exist forx in the copy ofy.table but nodeu is a T-node,
whereu = N, (k,z[k]).first andk = |ecsuf (z.ID,y.ID)|. If
the condition is satisfied, thenchanges status waiting and
sends doinWaitMsgo y (case (i) holds) or ta (case (ii) holds).
Otherwise,x remains in statusopyingand sends £pRstMsg
to u.

Action ofz on joining (V, N'(V')), given nodeyg, go € V:
4: initially 0. p, g: @ node, initiallygog. s € {T", S}, initially S.

xz.status = copying
for(i = 0;¢ < d; i++) { Ny (2, z[7]). first = x; x.state(z) =T}
while (g # null ands == S) { // copy levels neighbors ofy
h=-1;k=|csuf(z.ID, g.ID)|;
while (i < k A h == —1){
for (j =0;5 < b; j++)
for (eachv, v € N (4, j))
for (I =4,1 < k, I++) { SetNeighbor(, v[l], v, g.state(v)); }
if ((foreachl, s <1 <k, Ng(l, z[l]).size < K) A h==—1)
{p=g;g=null; h =1}
i+ .
} J
if (h==—1){ p=g; 9= Np(k,z[k]). first; s =p.state(g);}
z.status = waiting;
if (¢ == null){SendJoinWaitMsgo p;Q,, = Q, U {p};Q,- =Q, U {p};}
else{ SendJoinWaitMsgto g; Q, = Qn U {9} Q- =Q, U {g}; }

Figure 8: Action in statusopying

Action in status waiting
of z is to find an S-node in the network to storeas a neigh-

fied in Figure 13.

Action ofy on receiving JoinWaitMsg from:

k=|csuf(x.ID,y.ID)|;h=—-1;5=0;
if (y.status ==in_system{
while (j < kA h==-1){
if (foreachl, 7 <1 <k, Ny (I, z[l]).size < K){
h=j;for (I = j;1 < k; l++) { SetNeighbor(, =[], z, T); }
Jelsej++;

)

if (h == —1) SendJoinWaitRlyMsg(negativé, y.table) to z;

elseSendJoinWaitRlyMsg(positive, y.table) to x;
telseQ; =Q; U {z};

Action ofz on receiving JoinWaitRlyMsg( ¢, y.table) from y:

Qr=Q, — {y}i k=|csuf(z.1D,y.ID)|; z.state(y) = S;
if (r == positive {

xz.status = notifying z.att level =1,

for (j =4; 5 < ki j+4) { R (4, #[j]) = Ra (4, x[5]) U {y}: }
}else{ // a negative reply, needs to send anoth@nWaitMsg

v=Ny(k, z[k]).first,

SendJoinWaitMsgto v; Q. = Qn U{v}; Qr = Qr U {v};

}
CheckNgh Tablefy.table);
if (z.status == notifying A Q, == ¢ A Qs, == ¢) Switch.To_S_Node();

Figure 9: Action on receiving JoinWaitMsg and JoinWaitR-
lyMsg

Action in status notifying In statusnotifying, = searches

and notifies nodes that share the rightmgstigits with it,

= z.att_level, so that these nodes will update their neigh-

bor tables if necessary. starts this process by sendidginNo-
tiMsg, which includes both.att_level and a copy ofr.table,

to its neighbors at levelsand higher. EaclioinNotiMsgserves
as a notification as well as a request for a copy of the recsiver
table. Upon receiving doinNotiMsg a receiverg, storese into

all (¢, z[i])-entries that are not full wit neighbors yet, where
In statuswaiting, the main task =.att_level < i < [csuf(z.ID,z.1D)|, searches the copy of

1% can be any node itN,, (k, z[k]). We choose it to beV,, (k, z[k]).first consis-

bor by sending ouoinWaitMsg another task is to copy moretently in our protocol implementation.



x.table for new neighbors to updates table, and then replies to notify, it changes status in_systemand becomes an S-node.

to x with z.table included in the reply. From the reply,iffind It then informs all of its reverse-neighbors, i.e., nodes thave

any node, say, in z.table such thaty shares the right mogt storedr as a neighbor, that it has become an S-nodehtis de-

digits with 2, ; = x.att_level, and if x has not senfoinNo- layed processingoinWaitMsgfrom some nodes, it should pro-

tiMsg to v before,z will notify v by sending aloinNotiMsgto cess these messages and reply to these nodes at this time. Fig

it. Meanwhile,z searches the copy eftable for new nodes to ure 12 and Figure 13 presents the peudocode for this part.

update its own table. Figure 10 presents actions for a node on

receivingJoinNotiMsgandJoinNotiRlyMsg Action ofy on receiving a InSysNotiMsg from
So far, three cases for a nogé¢o know another nodg have y.state(z) = S;

been presented: (i) copiesy in statuscopying (ii) = receives

a JoinWaitMsgor a JoinNotiMsgfrom y, and (iii) « receives a

message fromx, which includesz.table, andy is in z.table.

There is one more case, as shown in Figures 10 and 11. SupeheckNghTableg.table) at z:

Figure 12: Action on receiving InSysNotiMsg

pose in statusotifying x ;ends aJoinNotiMsgto Y. Wheny for (eachu, u € Ny (4, ) Au # i € [d].j € [b]) {
receives the message,yfis an S-node and finds thatis not ]{co :(\;s_uf%wi 2&?3‘32& zéi-;;géféu);[h] -

. . =1, SRy , U , Uy S)y
included inN,.(k, y[k]), wherek = |csuf(x.ID,y.ID)|, then if (z.status == notitying A k > a.attlevel Au & Qn) {
y sets a flagf to be true in its reply. (Note thatis a qualified SendJoinNotiMsg . att-level, x.table) to u;

node for N, (k,y[k]).) Seeing the flag in the reply, sends a }Q” =Qn U {u)i Qr =Qr U uki

SpeNotiMsgt, y) to u; to inform it abouty if « has not done }

so and ifk > wx.att_level, whereu; = Ny(k,y[k]).first. If SetNeighborg, j, u, s) atz:

whenu; receives theSpeNotiMsgg, ) from z, its (k1, y[k1])- if (u# @ A Ny(i,5).size < K Au & Ny(i, 7))
entry is already filled withKX neighbors andy is not one of {Na(i,5) = No (i, j) U {uls @.state(u) = s}
them, k1 = |esuf(ui.ID,y.ID)|, it forwards the message | SwitthTo.SNode() at:

to ug, whereus = N, (k1,ylki]).first. This process stops | @-status=insystema.state(x) =S; )
. . for (eachv of x’s reverse neighbors) SemaSysNotiMsgto v;
when a receiver stores or has stogeih its table and sends @ | for (each noder, u € Q,) {

i k=lcsuf(x.ID,u.ID)|;h=—1;3j=0;
SpeNotiRlyMsg(, ) to z. (The process can be repeated at most Wh“\e o S(k m.u. _1)\{ J

d times.) Figure 11 depicts the actions on receiipgNotiMsg if (for eachl, j < I < k, No (1, u[l]).size < K){
andSpeNotiRIyMsg h=yj;for (I = h;l < k; l1++) { SetNeighbor(, u[l], w, T); }
Jelsej++;
)i
Action ofy on receiving JoinNotiMsd( x.table) from z: if (h # —1) SendJoinWaitRlyMsg(positivey, z.table) to u;

elseSendJoinWaitRlyMsg(negativéy, x.table) to u;

Q: a set of integers, initially empty }

k=|csuf(x.ID,y.ID)|; f =false . .
for (j =4 j < k, j++){ SetNeighbor(j, z[j], =, T);} Figure 13: Subroutines
for (j =i;j < k, j++) {if (@ € Ny(5,2[3]) {Q =Q U {5}:}}
if (y & Naz(k,ylk]) A y.status ==in_system f = true;

if (Q # 0) SendJoinNotiRlyMsg(positiveR), y.table, f)to x;
elseSendJoinNotiRlyMsg(negative), y.table, f)to z;

CheckNgh.Table.table); 6 Protoco' Analysis
Action ofz on receiving JoinNotiRlyMsg( Q, y.table, f) fromy:
if (r==positivg {for (eachi in Q) Ry, (i, z[i]) = Rx (i, z[i]) U {y}:} In this section, we present our correctness proof for thegoo-
Qr=Qr —{y}; k=|csuf(z.ID,y.ID)|;
i (f == AR S oot Tevei yyg No (ks ylK) Ay & Qo tocql, and eval_uate the_ proto_col perfor_mance through bath t
SendSpeNotiMsgt,y) to N (k, y[k]). first; oretical analysis and simulation experiments. We only gmes
C%&&ﬁﬁé@%ﬁ;; = Qor U{vh} important lemmas and proof outlines in this section. Prasf d
if (Qr == ¢ A Qsr == ¢) Switch.To_S.Node(); tails are included in Appendix B.
Figure 10: Action on receiving JoinNotiMsg and JoinNotiR- o
lyMsg 6.1 Correctness of join protocol
Action ofur on receiving SpeNotiMsg( g) from o: We prefse:\r_wttwo theorgms. Suppose an ark_Jitrary r!urnber ofnode
k= |esuf(y 1D, u.1D)|: SetNeighborts, y[&], v, ) join an initially K—con5|stent. n.etwork by using the join protocol.
it (y & Nu(k, y[K]) Theorem 2 states that the join process of each node eventuall
JoendSpeNotiMsgt, v) to Nu(k, y[K]).first; terminates, and Theorem 3 states that at the end of joins, the
SendSpeNotiRlyMsgf, y) to z; resulting network isk -consistent. Recall that, denotes the
starting time of the join duration of node ¢ denotes the end
Action ofz on receiving SpeNotiRlyMsg(y) from u: of the join duration ofr, andt® denotesnax(t , ..., 5 ).
or = Qor— {y}; if (Qr==¢ andQ,,==¢) Switch.To.S.Node();
Qor = Qer— {y}: 1 (Qr==¢ andQ,,==4) Switch To.S.Node( Theorem 2 Suppose a set of nodd¥; = {x1,...xm}, m > 1,

Figure 11: Action on receiving SpeNotiMsg and SpeNotiRoin a K-consistent networkV, N'(V)). Then, each node,
lyMsg x € W, eventually becomes an S-node.

Action in status in_system Whenz has received replies Proof of Theorem 2: First, consider a joining node, in status
from all of the nodes it has notified and finds no more nodwmpying = eventually changes statuswaitingbecause it sends



at mostd CpRstMsgand each receiver of @pRstMsgreplies Assumption 1 (for Propositions 6.1 to 6.7)

to = with no waiting. Second, consider a joining node,in A set of nodesyy = {z1, ...,z }, m > 2, join a K-consistent
statuswaiting. In this status;y sendsloinWaitMsgto at most network (V, A/(V)) concurrently and for anyz, = € W,
d nodes. We next show that for eadbinWaitMsgit sends out, V,V°*/¥ =V, and|w| = k.

x eventually receives a reply. If the receiver ad@nWaitMsg

4, is an S-node, thep replies with no waiting; ify is not yet Propositions 6.1 states that every joining node is filled int

an S-node, then it is a joining node in stahatifyingand will >0 < C-setin the C-set tree by the end of joins. Notedhiat
' J 9 9 the suffix of the root set in the C-set tree, as stated in Assump

wait until it become; an S_-node before replylng.rtg'ljhus, 0 tion 1. Propositions 6.2 and 6.3 state that correctnesstons
complete the proof, it suffices to show that any joining nade |

statusnotifying eventually becomes an S-node. Last, considé%r/)e?nd(ggé;tﬁﬁgt;h Slecéf:oﬁésaﬁsaeﬁﬁ?d ;Br/i:mf:ef'p; )C

a joining node.z, in statusnoifying There are two types of Pro y(')sition 6.4 stajtéé 1that for a C-set tﬁgt naxdkge{on_ S 'to
messages sent lin this statusJoinNotiMsgandSpeNotiMsg 0 f’ 1), of a.siblin G-t of & Cooat belangs o { ;égl )

z only sendsloinNotiMsgto a subset of nodes i U IV that o I 9 h neiahb ith hg p fjh'
share the rightmostdigits with itself,i = z.att_level, and each x eventug y stores enogé:; nﬁ'g ors V;"t. t © Sutlix Ob t atd(i-
receiver of aloinNotiMsgreplies toz with no waiting. Also,z iet_' Lo 6r3|£1 S?“%ﬁbcggi:oﬁg 4e f%iaamnp gjgelilgjure Sé ) and le
only sendsSpeNotiMsdo a subset of nodes iV’ that share the */, - By Frop o y 633, ~1633,
rightmosti+1 digits with it1* EachSpeNotiMsgs forwarded at Cigas, andCiogz; (the former three are the C-setbelongs to,
mostd times before a reply is sent tg and each receiver of the

and Cgs3 is a sibling C-set 0f’433), sayCgss, eventuallyz
message replies to or forwards the message to another nod%oresrnln(K’ ) ne|ghbprs n '.ts %, 6)-entry, wheref] is the
. g total number of nodes with suffix 633 in U W. Proofs of the
with no waiting. Therefore; eventually becomes an S-nodik. . . . :
propositions are based on induction upon the C-set treizeeal
Theorem 3 Suppose a set of noddd] = {z1,....0m}, m > attimete.
1, join a K-consistent networkV, N'(V)). Then, at time*, " .
. ; Proposition 6.1 For each noder, z € W, there exists a C-set
(VUW,N(V UW)) is a K-consistent network. Ciotvon 1 < j < d—k, such that by time®, = € Ci, ...

To prove Theorem 3, we first divide nodeslini into differ- wherel;...l; - w is a suffix ofc. I D.
ent groups, where nodes in the same group fmncurrently
and any two nodes that are in different groups j@quentially
Next, for each group of concurrent joins, we divide nodes i
that group into several sub-groups, such that joins of naues (a) Clyotrw SVUW), iy @ndCh, gy 2 Vit
the same sub-group agependentvhile joins of any two nodes  (b) if [(VUW)y, 4,..| < K,thenCy, 1,0 = (VUW),, 1,0
that are in different sub-groups arelependent(We will dis-  (c) if [(V UW),,. 1| > K, then|Cy, 4,.0| > K.
cuss how to do the node divisions later in this section.) \&# st
by presenting Lemmas 6.1 to 6.4, which state the correctfes
the join protocol for a single join, sequential joins, corremt
and independent joins, and concurrent and dependent joins.

Proposition 6.2 If Wy, 1, # 0,1 < j < d — k, then by time
the followings are true:

groposition 6.3 Consider any node, x € V,,. For any C-set
Cri;oty-w 0<j <d—k—1andl € [b],ifl;..I; - wis a suffix
of2.ID, thenN,(k + j,1).size = min(K, |(V U W)y, 1,0|)
holds by time*.

Lemma 6.1 Suppose noder joins a K-consistent network

<V,N(V)> Then, at timef;, <V U {I},N(V U {I})> is akK- Proposition 6.4 For any .C-set,Cl].”_vll.w, 1 < J S d— k,
consistent network. l1,...J; € [b], the following assertion holds by timé: For

eachz, z € ;4. andx € W, Ny(k +j — 1,1).size =
Lemma 6.2 Suppose a set of N0dd8; ={x1,...2m}, M > 2. min(K, |(V U W)L, 1v.0l). ] € [,

join a K-consistent networkV, N'(V')) sequentially. Then, at

timete, (VU W, N (V UW)) is a K -consistent network. For any noder, x € W, we definethe first C-setz belongs
to for = in a C-set tree realization to be (@),.., if © € C,.;

(II) Clj...llw fij >1,ifze Olj.,.ll-w andzx ¢ Oljfl.nll'UJ'
Proposition 6.5 states that for any ancestor C-set of thie firs
C-set noder belongs to (or for any sibling C-set of such an
ancestor C-set); eventually stores enough neighbors with the
Lemma 6.4 Suppose a set of noded] ={z1,...2zm}, m > suffix of that C-set (or of that sibling C-set). For instancen-
2, join a K -consistent networkV, A'(V')) concurrently. If the sider again the example in Figure 5(b) and node 41633. The
joins aredependentthen at timet®, (V U W, N(V UW)) is first C-set 41633 belongs to &s33. There is one ancestor C-
K-consistent. set 0of Cg33, C33, Which also has a sibling C-sefs3. Then by

To prove Lemma 6.4, consider any two node8insayz and Proposition 6.5, 41633 has storedn (K, |(V U W)z3|) neigh-
y. If their noti-sets are the same, i.&.N%fy — VNotify ‘thenz bors in its (, 3)-entry by timet®; moreover, 41633 has stored
. aR:E Notify,

andy belong to the same C-set tree rooted A, otherwise min(K, |(V'U W)ss|) neighbors in its {, 5)-entry by timet*.
they belong to different C-set trees. We consider nodesén th Based on Propositions 6.4 and 6.5, we prove Proposition 6.6,

same C-set tree first. To simplify presentation in the foitayv Wh'Ch. s],}afjez th:_;\t coerreli:ltnessh co_ndgon (3).' .stateéj én'(sgéé 6
propositions, we make the following assumption: Is satisfied by time*. Note that in Propositions 6.3 and 6.6,

l-1;...11-wis the required suffix of th& + j, )-entry inx.table,
in simulations, we observed th&peNotiMsds rarely sent. wherek = |w| Next, based on Propositions 6.2, 6.3, and 6.6,

Lemma 6.3 Suppose a set of noded] ={z1,...xm}, m >

2, join a K-consistent networkV, N'(V)) concurrently. If the
joins areindependentthen at time®, (VU W, A (V U W)) is

K-consistent.
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we prove Proposition 6.7, which states that by tirheevery ta- (VNotity c yNotifu) n (Y Notify < v Notifv) then
ble entry in the network satisfids-consistency conditions and put bothy andu in G;.
hence the network i&-consistent. (Recall that Propositions 6.1 5 |cremeni and repeat steps 1 to 3 urUi G —

. G =

to 6.7 are stated under the assumption, Assumption 1.)
Then, we get group$G;, 1 < ¢ < [}. It can be checked that

v, Notify v Notify — () for any noder, « € G;, and any node,
y € Gj,wherel <i<[,1<j<l andi# j. ByLemmas6.3
and 6.4, the lemma holds. |

Proposition 6.5 For any z, = € W, suppose’y;. ;.. is the
first C-setx belongs to, wheré;...I; - w is a suffix ofz.ID,
1<j<d-k. Thenforany, 0 <i < j, andanyl,! € [b],
Ny(k+i,1).size = min(K,|(VUW)i, 1 wl) -

Proposition 6.6 For any noder, & € I1', if (V-UTW )y, i, # Proof of Theorem 3: It m = 1, then by Lemma 6.1, the
0, wherel;..l; - wis a suffix oft.ID,0 < j < d— k — 1,and theorem holds. _ R _ _
I € [b], thenN,(k + j,1).size = min(, [(V U W)ii;. 0, -0|) If m > 2, then according to their joining periods, nodes in
holds by time®. W can be s_,eparated into sevgrr_;ll groups;, 1 <i <}, sucn _
o , that nodes in the same group join concurrently and noded-in di
Proposition 6.7 For each nodex, © < V U W, Ni(i + ferent groups join sequentially. Let the joining period @f
k. j)-size = min(K, [(V' U W) o1 0p0]]) hOldS by ime®,  pe b, Ge 1 1°< j < 1, wheret!, = min(t%,z € G;) and
i€ [d],j € b]. te, zlmax(te r € G;). We number the groups in such a way
So far, we have proved correctness of the join protocol fer thhattg, < tb . Then, if|G1| > 2, by Lemma 6.5, at timeg, ,
case where a set of nodes join dependently and all 10|n|ng$loqv U Gl,N(V U G1)) is a K-consistent network; ifG1| = 1,
belong to the same C-set tree. Next, Proposition 6.8 extiieds then by Lemma 6.1{V U G1, N (V U G;)) is a K-consistent
result to joining nodes that belong to different C-set treks network at timet¢, . Similarly, by applying Lemma 6.5 (or
states that for any joining node, sayfor any suffix that exists [ emma 6. 1) toGg, ..., G1, we conclude that eventually, at time
in a different C-set tree other than the anéelongs to, if the e (VUW,N(VU W)> is a K -consistent network. [
suffix is also the required suffix of a table entryairtable, then

eventuallyz has stored enough neighbors in that table entry.
(Note that in Proposition 6.8, ws is the required suffix for the é.Z Protocol performance
(k2,1)-entry inz.table.) Based on the propositions, we can thegve first analyze the communication cost of each join. Here
prove Lemma 6.4 and Lemma 6.5. we only present results for the number of messages of type
Proposition 6.8 Suppose a set of noded/ = {z1,...2m}, CpRstMng.oinWaitMsg andJoinN_otiMsg12 since these mes-
m > 2, join a K-consistent networkV, V’(V)) concurrently. Sages may include a copy of a neighbor table and thus could be
LetG(V,,) = {z,x € W,V Nolv =V, } G(V,,) = {y,y € Digin size. The other types of messages are all small in size.
W, VNouly = V,,,}, wherew; # w, andws is a suffix ofv;. Let (See Figure 7.) Ananly5|s of numbers of small messages can be
ks = |ws|. Then, by time®, for anyz, = € G(V,, ), the follow- foundin Appendlx C. Ingeneral, the number of each type of the
ing assertion holdsN,, (ks, 1).size = min(K, |(V U W).,|), Smallmessagesis at mdsflogn), and some of these messages
L€ b can be piggy-backed by probing messages to reduce the cost.
LetC'(X,Y’) denote the number af-combinations ofX ob-
jects,n denote the number of nodes in the initial network, and
m denote the number of joining nodes. Moreover, we define
two functions,Q;(r) and P;(r), to be used in Theorems 4 to 6,
WhereQ:(r) > K,0 < P,(r) < 1, andY " P(r) = 1. We
note that when? > r, Q;(r) is approximatelyk’ + %

Proof of Lemma 6.4: . (Outline) First, separate nodeslifi
into groups{G(V,,,,), 1 < i < h}, wherew; # wj if i # j, such
that for any noder in W, = € G(V,,,) if and only if VVotify =
Vuir 1 <4 < h. Then, by Propositions 6.3, 6.7, and 6.8, the
lemma holds.

Lemma 6.5 Suppose a set of nodé&, = {z1,...xm }, m >
join a K -consistent networkV; A/(V)) concurrently. Then at
timete, (VU W, N (V UW)) is a K-consistent network.

Proof of Lemma 6.5: (Outline) First, separate nodes i
into groups, such that joins of nodes in the same group are de-
pendent and joins of nodes in different groups are mutuaty i

Definition 6.1 Let P;(r) denote a function defined as follows,
wherer andi denote integers; > 1and0 <: <d — 1.

o If 1 <r < K, thenP;(r) = 1fori =0andP;(r) = 0 for
1<i<d-1;
e If r > K, then

initi it= =0): SR, OO -1,5)C 0= r—j) . .
dependent, as follows (initially, Izet1 1andGy = 0): — P(r) = 0 C(bdj—l,r) ) fori = 0;
1. Pick any node, z € W— J;_; G;, and putz in G;. _ Pr) =
2. Foreach nodg,y € W— Uj:1 G, S O T 1,5) SR (B b ek j)

(a) if there exists a nodg z € G, such tha{ VYo" n CE 1)

VNetify £ (), then puty in G; or whereB = (b~ DK forl <i <d — 1,

(b) ifthere exists anode z € G;, and anode, v € G, - P(r)=1- Z o Pj(r)fori=d—1.
such that the following is truetl, /v c V,No"v)A  Definition 6.2 Let Q;(r) denote a function defined as follows,
(VNotify c v Notify) then puty in G;; or wherer andi denote integers; > 1and0 <i < d — 1.

(C) if there exists a nOde z € G“ and a nOdeu 12The number of replies to these messages are the same sinesteqnd replies are
ueW-— U7 1 G , such that the following is true: one-to-one related.
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Figure 14: Theoretical upper bound of expected number of mésdgure 15: Cumulative distribution of messages sent byrarjgi
sages vsn, for different values o andm, b = 16, d = 40 node,n = 3200, m = 800,b = 16,d = 40

o If 1 <r < K, thenQ;(r) =r; length in the underlying network. For the experiments regzbr
o If r > K, then in this section, a topology of 2112 routers was used, with0400
_ SR O(D,) b r—j) nodes (end hosts) randomly attached to the routers. Théocend-
@i(r) = K+ _ Cl—K—1Lr) end delays were in the range of 0 to 329 ms, with the average
whereD = 54" — K — 1. being 113 ms. In each simulation, we let all joins start at the

Theorem 4 Suppose a set of nodd¥, = {z1,...xm}, m > 1, Same time, which maximizes the number of nodes that join con-

join a K -consistent network, N'(V)), |V| = n. Then, for any currently and dependently and thus maximizes the average jo

x, z € W, an upper bound of the expected number of CpRstMggr{ﬂiO”S- _ _
and JoinWaitMsg sent hyis Zd_l(i +2)P(n+m—1). Figure 15 summarizes results from experiments where 800

_Z_:O ) nodes joined a network that initially had 3,200 nodes. Fig-
Theorem 5 Suppose noder joins a K-consistent network e 15(a) shows simulation results of cumulative distidut
VNV, VI = i lThen, the expected number of JoinNOg¢ the number ofCpRstMsgand JoinWaitMsgsent by joining
tiMsg sent byz is > 3;— Qi(n — K)Pi(n) — 1. nodes, and Figure 15(b) shows results of cumulative distrib
Theorem 6 Suppose a set of Nodé&, = {z,...a,,}, m > 1, tion of the number ofloinNotiMsgsent by joining nodes. As
join a K-consistent networkV, N'(V)), [V| = n. Then for shown in the fl_gl_Jr_e, the number @‘pRst_Msgand JoinWait-
any noder, = € W, an upper bound of the expected number d\(lsg_sent by a joining node is sma_ll, Wh|_cr_1 is less than seven
JoinNotiMsg sent by is Z?;()l Qi(n+m—1—K)Pi(n). in Figure 15(a). Moreqver, majority of joining podes sent a
_ _ small number ofJoinNotiMsg For example, in Figure 15(b),
Proofs of the above theorems are presented in Appendix{gy i — 3, more than 75% joining nodes sent less than ten
Here we only present the intuitions for proving Theorem EﬂoinNotiMsg”
SUpposeVa_aNmfy_ = V.. Since only noder joins, = needs Bt the theoretical analysis and simulation results st t
to sendJoinNotiMsgto all nodes inV,"""V, except the one \yhen the value ofk increases, communication cost also in-
it sendsJoinWaitMsgto. Let X' denote the number of nodesgreases. (Besides the numbedoinNotiMsg numbers of small
in V., i.e., X = [V,|. Then the number ofoinNotiMsgz  messages also increase with[4].) Clearly, there is a tradeoff
sends out isX — 1. LetY = |w| and P(Y = i) denote pepyeen benefits and maintenance overhead Ist@onsistent
the probability ofY’ = 4. To computeE(X — 1), we have petwork for differents values. Detailed study of the tradeoff is
E(X) = B(E(X|Y)) = Y (B(X|Y = )P(Y = i)). presentedin [5].
It can then be proved thal(X[Y = i) = Qi(n — K) and  |astly, we study lengths of join durations through simuati
P(Y = i) = Pi(n), wheren = |[V|. experiments. For each simulation setup, we ran five expetine
Figure 14 plots the upper bounds presented in Theorem 4 a@gchbtain the average join durations. Figure 16(a) pres@nts
Theorem 6, whereZ(CP + JW) is the expected number of erage join durations for 1000 nodes joining networks ofediff
CpRstMsgndJoinWaitMsgsent by a joining node, anfl(JN)  ent sizes (different values of), where K = 1. Each error-
is the expected number dbinNotiMsg Notice that for a fixed par shows the minimum and maximum join durations observed
value of K, both upper bounds are insensitive to the valug:of jn the five experiments for that simulation setup. Figureb)6(
(number of joins), and increase very slightlyralsecomes large. presents the average join duration as a function,ofor dif-
Moreover, for the same values afandm, the upper bound ferent values of<. From the results, we observe that the aver-

of E(JN) increases wheik' value increases, while the upperage join duration is short in general, and increases vegitji
bound of E(C'P + JW) decreases wheR value increases.  whenn increases (in some cases, e.g., for= 4, it even de-
Next, we study performance of the protocol through simul@reases when increases).

tion experiments. We have implemented our join protocol in

detail in an event-driven simulator. To generate netwopioto-

gies, we used the GITM package [15]. We simulated the send- *3ror the results shown in Figure 15(a), the average numb@p&istMsgndJoinWait-
ing of a message and the reception of a message as eventsyBUEN:ajon 1ot ves s L 1ors fore i s o L
abstracted away queueing delays. The end-to-end delay Qfnd4.017, respectively. For the results shown in Figure)1Hfe average number 3bin-
message from its source to destination was modeled as a rfi¥sowas 6.714 forit = 1, 11.649 fork = 2, 13 97 forkl = 3, and 14.781 for

X X i 4; the corresponding theoretical upper bounds are 8.63824418.033, and 19.842,
dom variable with mean value proportional to the shorte#it paespectively.
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7 Network Initialization

To initialize aK -consistent network af nodes, we can put any
one of the nodes, say, in V, and construct.table as follows.

o N, (i,z[i]).first = x, x.state(x) = S, i

€ [d].
o N,(i,7)=0,i€[d],je b andj # z[i].

9 Conclusions

For the hypercube routing scheme used in several proposed
p2p systems [11, 13, 16, 7], we introduced the propertief
consistency, and showed th&tconsistent neighbor tables are
resilient even when a large fraction of nodes in the netwailk f
We then presented the detailed specification of a new join pro
tocol for the scheme. Furthermore, we presented a condeptua
foundation, C-set trees, for guiding our protocol desigth ma-
soning aboutk -consistency. By induction on C-set trees, we
proved that the new join protocol generatésconsistent neigh-
bor tables for an arbitrary number of concurrent joins. Tke e
pected communication cost of integrating a new node into the
network is shown to be small by both theoretical analysis and
simulations. The join protocol presented in this paper dao a
be used to initialize & -consistent network.

An observation from a companion study [5] is that networks
in which each node maintains a larger number of consistent
neighbor pointers are not only more resilient, but they aéso

Next, let the other. — 1 nodes join the network by executingcover more quickly and completefisom node failures. From

the join protocol, each is given to start with. Then, when all
of the joins terminate, & -consistent network is constructed.

8 Related Work

our analytic and simulation results, we found that the impro
ment in network resilience frolk = 1 to K = 2 is dramatic.
We conclude that hypercube routing networks shouldibe
consistent withX” > 2. However, the larger thé&’, the higher

is the maintenance overhead. Thus, we recommeRdvalue

of 2 or 3 for p2p networks with a high rate of node dynamics;
for p2p networks with a low rate of node dynamiés,may be
higher than 3 if additional route redundancy is desired.

In PRR [11], a static set of nodes and pre-existence of consis
tent and optimal neighbor tables are assumed. CAN [12] and

Pastry [13] each has join, leave, and failure recovery pat
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Appendix
A Proofs of Lemmas 3.2, 3.3

Proof of Lemma 3.2: We prove the lemma by constructiig
disjoint paths frome to y. ConsiderN,(0,y[0]). y & x.table
impliesy ¢ N.(0,y[0]). Hence, there must exidt neigh-
bors inN,(0, y[0]); otherwise,N,(0,y[0]).size < K implies
[Vyio)] < K and all nodes iV, g, includingy, would be stored
in N (0, y[0]).

We denote the/l paths to be constructed &% to Px_;.
Also, we useu; to denote thejth node in path?;. Accord-

ing to Definition 3.2, we need to establish paths as follows:

P, = {uf,...,uf},i € [K],1 <k <d, whereu) = z, uF =y,
andul € N;1(j — 1,y[j —1]),1 < j < k. First, letu? = z
for each patnPl-, i € [K]. Next, starting withP, for each path
P;, letu! = v, such that € N,(0,y[0]) andv ¢ P, for all
1,0 <1 <i—1,thatis,v is notincluded in path$, to P;_,
(this is easy to achieve since there &eodes inV, (0, y[0])).
Letj =1, f = min(K, |V,[;..40]), @nd execute the following
steps (referred to as rounyl

1. For each pattP;, i € [K], if uZ = y, then markP; as

H. Liu and S. S. Lam. Consistency-preserving neighbor

C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
nearby copies of replicated objects in a distributed emviro
ment. InProc. of ACM Symposium on Parallel Algorithms

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and Scott

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service

D(|nclud|ng nodeu},

Tapestry: A resilient

paths asP, to P,_1, and the other paths i®’ as P, to
P;_,. Then, for any pathP;, h < i < I — 1, we have
ul[7] # ylj]- In the next two steps, we will assign a node
tow! ™! for each pathP; in { Py, Pyy1, ..., Pr_1}.

If f > I, then starting withP,,, for each pathP;, h <

i < 1—1,letu)™ = v, suchthaw € N (j,y[j]) and

v # ut foralll,0 <1 <i—1. Such a node must
exist, since there argdifferent nodes invV, (4, y[j]), and

at most/ — 1 of them are already assignéd to other paths
in P’ (where there ard — 1 paths other tha®;) for the

(4 + 1)th position.

If f < I, then (i) starting withPy, for pathP;, h < i <
f—1,letul™ = v, such thaw € N, (j,y[j]) andv #
wtt foralll,0 <1 < i— 1, and (ii) for each pattP;,
f<i<I-1,letu!™ =y, becausef < I indicates

[ < K,i.e,|Vy. 4ol < K, so every node iy 0]
includingy, isin N, (] yl7))-

3.

4.

Next, increasg by 1 and execute the above four steps for an-

tgther round if there still exist paths that are not markedh&io

yet. Eventually, each path will be marked “done”, since the n
work is aK - conS|stent network, and a path exists from any node
€ [K]) toy (see Lemma 3.1).
So far we have establlshdd paths fromz to y. We then
prove that they are disjoint. First, we point out that any two
paths, sayP; and P;, among theK paths are different from
each other, since at least is different fromu;.

Second, we need to prove the following claim, which states
that for any two paths, the nodes at thi position are different
if none of the nodes is the destination nade

Claim A.1 For any two paths?; and P, if u] # y andu] # v,
j>1, thenu{ #+ ul7
Proof of Claim A.1: Prove by induction. Base step & 1):
According to the way we assign nodesuth for each pathP;,
i’ € [K], we know thatu} # u;.

Inductive step: Suppose # ul j > 1, whereu! # y and

j+1 i+1 +1
Jf y. We next prove that:! " # u]" " if ne|theru{ nor
J

isy. .
o If u![j] = y[j] andu][j] = y[j], then accordmg to step 2
in each round of path constructiar),”" = v/ andu] ™" =

ul, thusul t # ™!

o If ul[j] # y[ ] or&l[ i| # y[j], then without loss of gener-
ality, supposml[ | # y[j]. Also, suppose in this round of
node assignment (rounydt+ 1), path P; is re-numbered as
Py (see step 2), path, is re-numbered a8/, andi’ < I’

(if w![j] = y[j], then according to step 2, we haie< I’;
otherwise, we supposé < I). Letv = u!*". Accord-

ing to step 3 (or 4) in path constructionif ™' # y, then

”1 is chosen in such a way that it is not the same as any

(j + 1)th node in the Oth path to thé&h path (the paths that
are re-numbered as the Oth path to ttie path in round
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j+1). Henceg! ™ # v, ie,uf ™ #ul ™.

1, join a K-consistent networkV, A(V)). Then, at time®,
(VUW,N(V UW)) is a K-consistent network.

Third, by Claim A.1, we can show (by contradiction) that To prove Theorem 3, we first prove some auxilary lemmas
among thek paths we have constructed, no path is of the foreind propositions. Table 2 shows the abbreviations we wdl us
(z,....z,...,x, ..., ), Wherez # . Suppose there exists a pattfor protocol messages in the proofs, and Table 3 presents the

P; of the above form, that is, there exists a p#&thsuch that
for the nodes in?;, u? = z, v/ = z, andu!™" = z, where

notation used in the following proofs. Moreover, we define
“strongly reachable” as follows.

. +1 - . . . Lo i i
j > 0. u/" = windicates that:.]D shares the rightmost pefinition B.1 Consider two nodesgz and y, in network

J + 1 digits with y.I D, then,z[0] = y[0] andz € N,(0,y[0]).
Hence, there must exist a path such thatu; = = (accord-
ing to the way we assign nodes$ for each pathP;). Thus,
P, is not the same path wit®;. Then, by step 2, in pati#,,
ul = .. = ul = u/t" = 2. Next, by Claim A.1, for any
other pathPy, h # I, u] # u for1 < j/ < j + 1. Hence,
no j’th node in any path other thaR, could be noder for
1 < j' < j+ 1. We conclude with;/ ™" # z, which contradicts
with the assumption? ™" = 2.

Based on the above results, we prove that Eheaths are
disjoint. Consider any two pathB; and P,. By Claim A.1,
u] # uj, that is, thejth node inP; is different from thejth
node inP;. We next show that{ is different from any;’th node
in P, j/ < j, by contradiction. Supposé = uJ . Then since
ul has suffixy[j]...y[0], so does:’ . According to step 2 in path
constructiony = uf *' = ... = u. Thus, we getd = v}, a
contradiction. Similarly, we can prove thai is different from
any j'th node inP,, for j* > j. Therefore, any node i®; that
is notx or y does not appear in any other path Thus, thekK
paths are disjoint. ]

Proof of Lemma 3.3: By Lemma 3.2, ify & x.table, then there
exist at leasK disjoint paths fromx to y. Also, as shown in the
proof of Lemma 3.2, ify ¢ x.table, thenN,.(0, y[0]).size = K

and thusmin(K, |Vyq|) = K. Hence, the lemma holds when

y & xz.table. If y € x.table, howevery ¢ N.(0,x[0]), then,
N.(0,y[0]).size = min(K, [Vy|). Similar to the proof for
Lemma 3.2, we can construetisjoint paths fronx toy, where
h = min(K, |Vyq]). If y € z.table andy € N,(0,z[0]), then
y[0] = z[0]. Recall thatr € N,(0,z[0]). Similar to the proof
for Lemma 3.2, we can construkt— 1 paths frome toy, h =
min(K, [V,|), where in assigning nodes tg for each path,
we only consider the nodes in s¥t, N’ = N, (0, z[0]) — {z}.
(If we also consider in assigning nodes ta}, two of the paths
maybe the same path that goes directly frorto y: path P;,
whereu; = z and pathP, whereu; = y.) Hence, at least — 1
disjoint paths exist from to y. |

B Proofs of Lemmas 6.1 t0 6.5

In this section, we present our proof for the lemmas presiénte
Section 6.1 in detail. Recall that we made the following agsu
tions in designing the join protocol: (i) The initial netvkois a

K-consistent network, (ii) each joining node, by some mea

knows a node in the initial network initially, (iii) messagbe-

(V,N(V)). If there exists a neighbor sequence (a path),
(up, upt1.,ug), 0 < h < k < d, such thatu,, = =z,

up = y, andu;11 € Ny, (4,y[i]), h < i < k — 1, where

h = |esuf (z.ID,y.ID)|, then we say thaj is strongly reach-
ablefromz, or x canstrongly reachy, in k hops.

Protocol Message | Abbreviation
CpRIyMsg CPRly
JoinWaitMsg Jw
JoinWaitRlyMsg JWRIly
JoinNotiMsg JN
JoinNotiRlyMsg JINRIly
SpeNotiMsg SN
SpeNotiRlyMsg SNRIly
RvNghNotiMsg RN
RvNghNotiRlyMsg| RNRIly

Table 2: Abbreviations for protocol messages

Definition
x can strongly reacly within & hops
the action that: sends aNor aJWto y

Notation
(z = Yw

J
r =

jn

Ty the action that sends aNto y
z 8y the action that: sends alWto y
xSy the action that: sends &CPto y
A(z) theattaching-nodeof =, which is the node that

sends a positivdWRIyto =
the timex changes status io_systemi.e., the end
of 2’s join process,

max(t e, )

7°

x

7°

Table 3: Notation in proofs

The following facts, which can be easily observed from the
join protocol, are used frequently in the proofs. (In whdt fo
lows, unless explicitly stated, when we sayc¢an reach,”, we
mean % can strongly reach”.)

Fact B.1 Messages of typ€P, JW, and JN are only sent by
T-nodes.

Fact B.2 If nodez sends out alWRly at timet, thenz is al-
ready an S-node at time

FactB.3 If A(z) = u, thenx.att level < h, whereh =
lesuf(z.ID,u.ID)|, and for eachj, z.att_level < j < h,
x € Ny(h,z[h]) afteru receives thdWfromz. Also,z changes
status from waiting to notifying immediately after it reces the
positiveJWRIy from .

FactB.4 If A(x) = w and z.attlevel = k, 0 < k <
|esuf(x.ID,u.ID)|, then beforeu receives aJW from z,

r{gu(j,x[j]).size < Kforall j, k <j <|esuf(z.ID,u.ID)|.

Fact B.5 A joining nodey, only sends dNto y if = is in status

tween nodes are delivered reliably, and (iv) there is no nodetifying and|csuf(x.ID,y.I1D)| > z.att_level.

deletion (leave or failure) during the joins. We also asstimaé

the actions specified in Figures 8, 9, 10, 11, and 12 are atonﬁ@

Theorem 3 Suppose a set of noddd] = {z1,....c;n}, m >

15

ctB.6If 2 2% y happensy will send a reply that includes
y.table to x immediately. Moreover, eaciN sent byz includes
x.table.



Fact B.7 x sends a message of tyjpd or INto y at mostonce & in the table ofg, such thatN, (i, z[i]).size < K, for all
(z does not send both types of messageg.to h <i < |esuf(z.ID,g.I1D)|. And sinceV,_1)...[0 = K,
Volk..afo) < K, and(V,N'(V)) is K-consistent, then before
is stored in any other node’s tabl¥, (i, z[i]).size > K for0 <
i < k—1,andN,(k,z[k]).size < K. Therefore, by copying

Proposition B.1 Suppose a set of node8 = {z1,...,zm}, neighbor information from nodes i, by the timex changes
m > 1, join a consistent networl’, \'(V)). Consider node:,  status towaiting, N (i,).size = min(K. |V

x € W. Letu = A(z) and lett be the timeu sends its positive iy (f |1’

reply, JWRIy, to . Suppose one of the following is true, wher% then N, (i, 5). Slze = K since|Vj.ypi_1)...p0 > K; for
- Jrxli—1]...x - ’

y € VUWandy # a: (i, z[i]))-entry,k < i < d — 1, for any nodey, if y € Vz[i],..x[()]v

e 2 2% y happens; theny € N,(¢, z[{]). Moreover, since € N, ( x[i]), i € [d], it

follows that fork <i < d—1, N, (i, 2[i]) = Vyi)..2j0) Uiz} =

. . VI .o Therefore, entries im.tabe satisfy the condltlons in
Then, if at timet, (y — =2)a, 2 € V U W, and gl o0

Fact B.8 By timet¢, = has received all of the replies for mes-
sages of typ€P, JW, JN, andSNit has sent out.

jrx[i—1]. 1[0]|)
i) 17 # @li]; If]—:v[]and0<z<

® Yy =1uU.

lesuf(x.ID,2.ID)| > w.attlevel, thenz - = happens be-  After = changes status fromopyingto waiting, it sends a

fore timet;. JW to nodeg, which will then storez in N, (k,z[k]) (and
Proof:  Since at timet, y can reachz, there must ex- levels higher thark if « and g share a suffix that is longer
ist a neighbor sequence at time (un, whii, .. ug), h = thanx[k — 1]...z[0]) and sends back a positi&VRIly Thus,

lesuf (y.ID, 2.ID)|, such thatu, = y, uq = z, anduzﬂ c z.attlevel = k. Next, z nee_ds to not_ify any node, z €

N, (4, 2[i]) forh < i < d— 1. Note that the ID of each node in Velx—11...«/o] about its join. Since the initial network i -

the sequence has suffigh — 1]...y[0] (which is the same with Consistent, thugg — z), at the timeg sends the positive
z[h — 1]...2[0]). JWRIyto z. By Proposition B.1,z EN eventually hap-
Next, we prove the following claimfor nodes in{un, uny1, pens. Therefore, eventually, (i, z[i]) = Vyp).. 20 U {2}, i.€.,

Lual, If 2 2% y happens, them 23 w; eventually happens for V=06 (i) = Vi .oy b < @ < |esuf(xID,2.ID)|. The

eachz htl<i<d. other entries remain unchanged. Itis trivial to checkthaiun-
First, observe that at time,  is still in statuswaiting, if changed entries satisfy conditions in Definition 3.3 for tiesv
jn . . network. [ |

x — y happens, it must happen after timeby Facts B.4. Let

k = z.att_level. If z 2% y happens (i.e.z sends aINto y,
then it must be thak < |csuf(z.ID,w;.ID)|, by Fact B.5. g RN / _
Thereforey must share the suffix|k — 1]...z[0] with . Onthe * € W, by timetg, N, (i, §).size = K if [Vjafi-1)...af0)] 2 K
other hand, it is given thdtsu f (x.ID, 2.1D)| > k, thusz also and No (i, j) 2 V afi=1l.ofo] Vw00 < K.

shares suffix:[k — 1]...z[0] with . Since bothy andz have suf- Corollary B.2 Suppose a set of nodd$, ={z1,...xmm }, m >
fix 2[k—1]...z[0] in their IDs, it follows that each node along thel, join a K-consistent networkV, N'(V)). Then for any node
path fromy to z, {up, upy1, ..., uq} Shares suffix[k—1]...z[0]. =,z € W,andanynodeg,y € V, (x — y)q by timets.

Thus,k < |csuf(x.ID,u;.ID)|for eachi, h <i < d. Then, if

z 13 u; happensh < i < d — 1 from theJNRIlyu; sends tar,
z findsu;, from the reply and then sendsI&l to w;, 1. Thus,
the above claimi |s true

Therefore, itz % y happens, then eventually ™ ua will  proof: Prove by induction on¢ , 1 < i < m. By Lemma 6.1,
happen, where, = z. The proposition holds in the first case. | emma 6.2 holds when = 1. Assume wherl < i < m,

If y = u, thatis,y is the attching-node af, then by Fact B.3, | emma 6.2 holds. Then at time,, (V. UW/ , N(VUW")is
k < |esuf(x.ID,y.ID)|. From theJWRIyy sends tor, z Will 3 k-consistent network, wher@” = {z1,...,2;}. Since the
find uy,+1 and sends dN'to uy1. Then similar to the above npodes join sequentially’ ., > t¢.. Thus, whenw;,1 joins, the
argument, it can be shown that 2% u; eventually happens, network, which is composed of nodesituV’, is K -consistent
h+1<i<d. Thereforez 2% u, will happen,u, = z. m and there is no other joins in the period ctf; [H, e +1]

N _ By Lemma 6.1, at time; , , (V U {z1,...,zip1 ), N(V U

Lemma 6.1 Suppose node joins a K-consistent network {z,, ..., 2;,,})) is K-consistent. Hence, Lemma 6.2 also holds
(V,N(V)). Then, attimeg¢, (V U{z}, N(V U{z}))isaK- fori+1. m
consistent network.

Corollary B.1 Suppose a set of nodd&, ={x1,....£;}, m >
1, join a K'-consistent network/, N'(V')). Then for any node,

Lemma 6.2 Suppose a set of nodé&, ={z1,...x:n }, m > 2,
join a K-consistent networkV, A/(V)) sequentially. Then, at
timete, (VU W, N(V UW)) is a K-consistent network.

Lemma B.1 Suppose a set of nodds§, = {z1,..., 2}, m >
Proof: Suppose/ Ny =V, 1 o), thatis,[ Vi o] < 2, join aK—consister_n networkV, N'(V)) indepeodently. For
K and |Vy_1)..200)) = K. LetV' = V U {z}. Then any noder, z € W, if [Viafim1).0p0)] < K, 0 <i <d—1,

ngh 1<l = Viwli-t).ao) if 5 # fi], © € [d], and %/?C[b%/tie{nxgvUW’)j»m[i—l]mm[O] = Viali-1]...a[o], Where
:E[’L] mOl) z[l] -z[0 U{.I'} B . L.
Let g be the last node that sends &CP to in statuscopy- Proof: We prove by contradiction.  AssuméV U

ing. Then it must be thag € V,,—1)....[0): Because the condi- W’);..1i—1)..210) 2 Vj.ali-1]...z[0). Then there exists a least a
tion for z to change status is thatfinds there exists a level- nodey such thaty € W’ andy.ID has suffixj - z[i — 1]...z[0].
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Since |V} qfi—1)..z/) < K andj - z[i — 1]..z[0] is a suf-
fix of y.ID, we rewrite it as|Vypjypi—1)..c0)] < K. Let
VNoufy = V45 yo- Then by the definition of/No'fv,
we Know |V, iy1ir—1)...40)] < K. Therefore, we know’ < i.
Sincey[i — 1]...y[0] = «[¢ — 1]...2[0] andé’ < 4, we know
yli" = 1]..y[0] = z[i’ — 1]...2[0].

Now consideV Vo Suppose/ N = V(i 11 0. If
1 <3< 1, thean[j_l]mm[O] D Vm[z’—l]w[O]u if / < j <
d—1, thean[j_l],,,m[o] C Vm[i/—l]...m[O]- ThUS-Vm[j—l]...m[O] N
Valr—1...af0) 7 0, 1€, Vi) afo) N Vyjir—1)...y00) 7 0. Then
we getV,Norifv n y Netify o4 (). However, by Definition 4.5,
v Netify v Netify — (). Contradiction. [ |

Corollary B.3 Suppose a set of nodé&, = {1, ..., }, join
a K-consistent networkV, N'(V)). LetG(V,,) = {z,xz €
VvvvaOtify = le}' G(sz) = {yvy € VvvvyNOtify = Vw2}'
If V,, NV,, = 0, then for any noder, z € G(V,,), (V U
G (Vi) joali=1...xl0) = Vi-ali=1)...xf0] T |Vjafi=1]...2]0)] < K.

Lemma 6.3 Suppose a set of noddd] ={xz1,...xxm}, m >
2, join a K-consistent networkV, N'(V')) concurrently. If the
joins areindependentthen at time®, (VU W, A (V U W)) is
K-consistent.

Proof: Consider any node, x € W. If [Vj. -1} .20l
K, then by Corollary B.1, by timet¢, N,(i,j).size
K. It |Vigiz1..210) < K, then by Lemma B.1, we
have (V. U W);.ufi—1)..a[0] Viali-1]..z0) fOr j #
,T[Z], and (V U W)j-z[ifl]...z[o] = Vj-m[ifl]...x[o] U {CL‘} for

J zi], ¢ € |[d] andj € [b]. Then, by Corol-
lary B.1, N, (i,j).size = |Vj.z[i—1)...z0| fOr j # 2li]; and
N.(i,7).siz¢ = |Vjgi—1)..z/ + 1 for j = z[i], where
N.(i,7) = Vjg[i—1)..2[0) U {z}. Therefore, entries in the ta-
ble of 2 satisfy conditions in Definition 3.3.

Next, consider any nodg, y € V, and the(i, j)-entry in
y.table, i € [d) andj € [b]. If |Vj-y[i—l]...y[0]| > K, then
Ny(i,7).size = K since the initial network ig{-consistent. If
Viegli-1]..yio)] < K andWj.yji1..yi0) = 0, thenNy (i, j) =
Vigli-1)..pio) = (VU W)jyi)yiol- FIVyii-1..y0] < K
andWj.i—1)..yj0] 7# @, then there exists a node x € W,
such thay - y[i — 1]...y[0] is a suffix ofz. By Lemma B.1z is
the only node if?” has the suffixj - y[i — 1]...y[0]. Similar to

the argument in proving Lemma 6.1, we can prove that y
happens before tim&. Hence,N,(i,j) =
{z} = (VUW)jyli-1)...y00)-

The above results are true for every noddin Hence, by
timetc, (VUW,N(V UW)) is aK-consistent network. W

Proposition B.2 Suppose a set of noded] = {z1,...,Zm },
m > 1, join a K-consistent networkV, N'(V)). For any two

nodest andy, z € W andy € VU W, if z - y happens, then
by timete, (y — z)q4.

>

jyli—1]...y[0] YU

Proof: Initially, let i = 0 anduy = y. Let the timeu, sends its

reply tox bet;. Also, leth = |csuf(x.ID,y.ID)|.

(1) If at tme ¢, =z S ]\71,‘I (hz,x[hl]), h;
|esuf (x.ID,u;.ID)|, then (y — =x)4, Since a neigh-
bor sequence from to x, (ug, w1, ..., u;, x), €Xists, where

Uy =Y.
(2) If at time t;, Ny, (h;,x[h;]).size ¢

< K and z

17

Ny, (hi, z[hi]), hi = |esuf (x.ID,u;. I1D)|, thenu, stores
z into N, (h, z[h]). Hence,(y — z)q4, Since a neighbor
sequence fromy to z, (ug, w1, ..., u;, ), €Xists, where
Uy =Y.

If at time t;, Ny, (hi,x[h;]).size K and z ¢
Ny, (hi, z[h;]), then fromu;’s reply (either aJWRlyor a
JNRIy; both includesu;.table), x findswv in u;.table. Let
uiy1 = v and|esuf(z.ID,u;1.ID)| = h;i41. Let the
time z receives the reply from bet; ;. If z 25 w; hap-
pens, thenr is in statusnotifying at time¢;,; and since
hir1 > h; > x.att_level, x needs to send ANtO u;1; if

3 u; happens, then s in statusvaitingat timet; . ; and

needs to send;; aJW. Thereforey ER u;+1 eventually
happens (beforg).
(4) Increment and repeat steps (1) to (4).

3)

We claim that steps (1) and (4) are repeated at md#nes,
because

e Atroundi, h; > h;_1.

e At eachround, h; < d — 1. The reason is that.ID is
unigue in the system, therefore, any other node can share
at mostd — 1 digits (rightmost) withz.

Hence, eventually there exists a nodg,1 < ¢ < d—h, such
thatz € Ny, (hi, z[h;]), whereh; = [csuf(x.1D,u;.1D)|.
Therefore, eventually, there exists a neighbor sequeince §r
to «, which is o, w1, ..., u;, ), whereuy, = y. Moreover,
at time ¢S, = must have received all replies it expects, which
include the reply frome;. Hence, at time$, (y — z)q4. ]

Before we present Proposition B.3, we introduce a concept,

contact-chaing, u). Suppose; %> u or y - u happens. Then
we can construct a chain of nodes tlyatontacts after it sends

out the message ta We begin with the casg > « happens.

If v %> u happens, thenontact-chain(y, v) is a sequence of
nodes, constructed as follows: L&t = u, ¢ = 0, and putug in
the chain initially. Lefcsuf(u;.ID,y.ID)| = h;, i > 0.

(1) If afteru receives the message framy € N, (hi, y[hi]),
thenw; is the last node in the chain.

(2) If afteru receives the message framy € N, (hs, y[hi]),
then |etui+1 = Nul(hl,y[hl])ﬁﬂst Add Ujt1 to the

chain. (It can be shown that %> u,,, eventually hap-
pens.) Incrementand repeat the two steps.

Similarly, if y = u happens, then there also exists a chain of
nodes, ¢o, u1, ...,u; ), j > 0, such thatyy = u, andy requests
neighbor tables fronag to u;, whereu, 1 = Ny, (3, y[i]).first,
and y finds that an attach-level for it exists in the copy of
uj.table in the CPRIly from w;. y then sends aW to u;.
Concatenateu, u1, ..., u;) with contact-chaing, «;), we get
contact-chainy, u), i.e., contact-chain u).

Proposition B.3 If y L wor y — u happens, then there exists
a contact-chaing, u).

Proof: If y EX u, and if afteru receives the message from
v, y € Ny(h,y[h]), then{u} is the contact-chain, where =
lesuf(y.ID,u.ID)|.



Otherwise, leti = 0 anduy = wu, and suppose aftei;
receives the message fromy € Ny, (h:,y[hi]). Leth;, =
|esuf(y.ID,u;. ID)| andu; 11 = Ny, (hi, y[hi]).first.

First, we show thay %> u;,; eventually will happen. The
reason is as follows. (1) If the messagsent tou; is JN, then
it must be that; > y.att_level. u; 1 Shares more digits with
thanu, does. Hencéy; 1 > h; > y.att_level. Therefore, after
y knowswu; 1 from w;’s reply, it will send aJNto u;41. If the
message sent tou; is JW, thenu,; must replyy with a negative
JWRIysince it didn’t storey. According to the join protocoly
will send out anothedW, this time tow; 1.

Second, we show that th_ere exists a last node in the chaip. nr

That is, the step that after 2 u;, y is not stored byu;, andy

sends another messageuo; (y 2> ;) will not be repeated
infinitely. Because:

e Atroundi, h; > h;_1.

e At eachround, h; < d — 1. The reason is that.ID is
unique in the system, therefore, any other node can sh
at mostd — 1 digits (rightmost) withz.

Similarly, we can show that a contact-chajng) exists if
y = u happens. [ ]

Proposition B.4 Suppose a set of noddd] = {z1,...,Zm },
m > 2, join a K'-consistent networkV, N'(V)). Letz andy be
two nodes V. Suppose there exists anade: € VUW, such

that by timet¢, % u has happened, angd % u or y -5 u has
happened. lfcsuf(z.ID,y.ID)| = h andz.att_level < h,
then by time,,,,, ¢, = max(¢¢, t;), atleast one of the following
is true: z € Ny (h, z[h]) or Ny(h,z[h]).size = K.

Proof:
Case 1 |csuf(u.ID,z.ID)| > h. Let the timeu replies tox
bet,, and the time: replies toy bet,,.

If t. < t,, then after receiving the notification from(i.e.,
timet,), u will storex in N, (h, z[h]) if Ny (h,z[h]).size < K
beforet, (xz.att_.level < h, hencew can storex at level
h). Sincet, < t,, at timet,, eitherxz € N,(h,xz[h]) or
Ny (h, x[h]).size K is true. Next, fromu’s reply that
includesu.table, y copies nodes inV, (h,z[h]) (after time
t, but before timet,,). Thus, eitherx € N,(h,x[h]) or
Ny(h, z[h]).size = K by timet,,,.

If t, > t,, then consider the nodgscontacts after it sends
the CP message ta, i.e.,contact-chaing,u). Supposeontact-
chainfy,u) is (uo, u1, ...,uyr, uyy1), Whereug = vanduyq =

y. Then, for each node in the chain, eithery = u; ory EN
happensp < i < f. Observe thatcsuf(x.ID,u;.ID)| > h
(because eachy.1 D has suffixz[h — 1]...2[0] since bothuy.I D
andy.ID have this suffix), thereforé¢suf(z. 1D, u;.I1D)| >
x.att_level for eachi, 0 < i < f. We then prove the following
claim:

Claim B.1 (Property of contact-chainy, »)) If after y has re-

Proof of Claim B.1: Base stepAttimet,, link (uo, u1) already
exists (otherwisey; = y). Therefore, the link also exists at
time ¢, (we have assumed > t,). = then learng from ug’s

reply. If the reply is aINRIy, thenz 2% «; eventually happens
because.att_level < h (by the assumption of the proposition);
if the reply is aJWRIy thenz will send anothedWto u, that

is 2 2% u, will happen. Thusgz - u,; eventually happens.
Inductive step Assume the claim holds for afl, 0 < j < 4,
0 < i< m-—1. Lett; be the timeu,;;1 sends its reply to
y, andts be the timeu;; sends its reply tac. Then it must
bet; < to, otherwise, at time, eitherz € N, (h,z[h])
wiss (R, x[h]).s02€ K is true, which implies aftery
copies nodes fromu;1's reply, eitherz € Ny(h,z[h]) or
Ny(h,z[h]).size = K is true, which contradicts with the as-
sumption of the claim. Hence, linki{;1, u;1+2) exists at time
t; as well ag,. Consequentlyy knowsu,; o fromu;,1's reply
and will notify ;41 if it has not done so (similar to the argument
in the base step; sends either dWor aJNto u;41). ]

It can then be shown that if after receiving all of the replies
from ug to uy, Ny(h,z[h]).size < K andz ¢ N, (h,z[h]),

then eventually: - y happens. Thus, the proposition holds in
Case 1.

Case 2 |csuf(u.ID,z.ID)| < h. Then, it follows
that |csuf(u.ID,x.ID)] lesuf(u.ID,y.ID)|. Let
lesuf(uID,x.ID)| = K, thenz[h'] = y[h'], sincex[h —

1]..2[0] = y[h — 1]...y[0] andh’ < h. Let the timeu receives
the message from (either aJwor aJN) bet;, and the timeu

receives the message franfa CP, JW, or aJN) bet,.

(1) If t1 < tq, andx € N, (R, z[h']) aftert;, then fromu’s
reply toy, y findsz and copies: into y.table (if y sends &P or

aJWto u) ory 25 2 happens. Hence, aftgrreceives the reply
fromu, x € Ny(h, z[h]) or Ny (h, z[h]).size = K.

(2) If t1 < to, andz ¢ N, (W, z[h']) after t;, then
N, (W, z[h']) has storedK nodes by timet;. Letov =

Ny (W', z[h']).first. Thenz < v will happen (if the message
« sent tou is JN, thenz 25 v happens; otherwise, 25 v hap-

pens). Similarlyy 2 v ory - v will happen, since at time
to > t; andN, (K, z[h']) already stored( nodes byt;.
(3) If t1 > to, andy € N, (h/, z[h']) by timet;, thenz finds

y fromw's reply. Thenz 22 y will happen since:. att_level < h
(either that (1) copiesy into z.table and sends dNto y later,
if = has sent dWto u, or (2) z sends alN to y right after it
receives thdNRIlyfrom u).

D) If t; > ta,y € N, (A, z[h']) by timet;, and the message
y sends tas is aJWor JN, thenN,,(h/, z[h']) must have stored
K nodes by timel, (otherwise,u would storey at timets).

Letv = N, (', z[h']).first. Then bothz 2% v andy % v
eventually happen.
(5) If t1 > to, y & Ny (K, z[h']) by timet;, the message

are

ceived all replies fromy, to u; and copied nodes from neighborsends tou is a CP, and N,,(h/, z[h']) has storedX nodes by

tables included in the repliesy, (h, z[h]).size < K andx ¢

N, (h, z[h]), thenz % u; 1 happens eventually, < i < f.

We prove the above claim by induction ann what follows,
we say that link(w;, u;41) exists at timet, if w11 € wu;.table
by timet.
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timet,, thenz % v andy - v eventually happen.

(6) If t1 > to, y & Ny (K, z[h']) by timet;, the message
sends ta: is aCP, andN,,(h’, z[k']) has not stored nodes by
time to, theny must send dWto u after it receives th€PRly



fromu. Then, itis the same with the case thaf> v andy - v z[k]. Consequentlygiio € Ciiy v, - Gr—1 € Cl_y 1.y w)

both happen. andgn, € Cy,,_, .1, Hencer € Cypnya, .., -w- u
In (2), (4), and (5), we have that both %> v andy = v _

happen. Moreover, shares more digits witlr andy thany.  Corollary B.4 For each noder, z € W, there exists a node

If |esuf(v.ID,z.ID)| > h, then by applying the arguments inSuch thatu = A(z), andu belongs to a C-set inset(V, W) or

Case 1 (replacing with v), we can show that the proposition < Ve

holds. If|esuf(v.ID,z.I1D)| < h, then arguments in Case 2 N . )

can be applied, where either we conclude that the propasitiBroposition 6.2 If Wi, .., #0,1 < j < d — k, then by time

holds in (1), (3) and (6), or we get that %> v’ andy < v’ £, the followings are true:

happen, where’ shares more digits with andy thanv. Inthe (@) Ci;..;,.0 € (VU W)y, 0y.0 @0dCh, 110 2 Vit o
latter case, we repeat the above steps repeatedly untitepa s (b) if [(VUW),, 1,0 < K, thenCy, 1.0 = (VUW)y, 050
we find a nodev, such that: %> w andy % w both happenand (€) FI(VUW)i, 10| = K, then|Cy; 1.0 > K.
lesuf(w.ID,x.ID)| > h. Then by applying the arguments inproof:  Consider seC,. ;,..,. For any nodeu, u € V,, if
Case 1 (by replacing with w), we conclude that the propositiony,. 1D has suffixi;...l; - w, thenu € Cy,. 4, .., by the definition
holds. B of cset(V,W). Hence, part (a) holds trivially.

We prove parts (b) and (c) by contradiction. Assume
|Clj...l1'w| < h, whereh = |(V @] W)lj...ll»w| if |(V U
W)lj...ll'wl < K,andh = K if |(V U W)lj...ll'UJ| > K.

If |Cy,...1,-w| < h, then there exists a node such thatr ¢
Wi, .10 andx & Cy;. 4,... By Corollary B.4, there exists a
nodeu, such thats = A(z) andu.ID has suffixw.

First, consider the case wheje= 1, thenz € W, ., and

¢ Cy,... Sinceu = A(z) andu.ID has suffixw, then it

ust be that: € V,,. However, by Definition 4.8, this implies
x € (.. A contradiction. Second, consider the case where
j > 1. Suppose: € Ci,. 1,.., Wherel;...l; - w is a suffix of

Lemma 6.4 Suppose a set of noddd] ={xz1,...xxm}, m >
2, join a K-consistent networkV, (V")) concurrently. If the
joins aredependentthen at timet®, (V U W, N(V U W)) is
K-consistent.

To prove Lemma 6.4, consider any two node8insayx and
y. If their noti-sets are the same, i.€, "/ = V,No!ifv, thena
andy belong to the same C-set tree rooted A", otherwise
they belong to different C-set trees. We consider nodeseén t
same C-set tree first and prove Propositions 6.1to 6.7. Ten,
prove Proposition 6.8, which states when joining nodesriglo
0 differgnt C-set trees, their neighbor table§ .eventlﬁﬂljsfy bothu.ID andz.ID. By the definition ofcset(V, W), « €
K -consistency conditions. Based on Proposition 6.7 andd?ro _ Lis1 = ali + k], and hencey € C. for all
sition 6.8, we present our proof of Lemma 6.4. To simplify-pre,, + -1« f+l ’ bl

T ) . 7, i+ 1 < i <d-—k, wherely...l; - wis a suffix ofx.ID.
sentation in the following propositions, we make the folilogv Therefore, it must be that+ 1 > j, i.e..i > j (otherwise
assumption: ' S €t =) '

x € Cy,..1,.0)- However, by Corollary B-5|Clj/.,.l1-w| > K for

Assumption 1 (for Propositions 6.1 to 6.7) 1 <j" <i,thus,|Cy, 4,.0] > K. A contradiction. u

A set of nodeslV = {z1,...,z,m }, m > 2, join a K-consistent pronosition B.5 Consider any noder, = € W, if = ¢

neth.rk (V,N(V)) concurrently and for anyr, = € W, Ciovrotnwandz & C 1w 1 < j < d—Fk—1, (orif

Vv =V, and|w| = k. z € (.., respectively), then

(a) there exists a node, v € Cj,..1,., (or v € V), such that

x € Ny(j+k,lj11) (orz € Ny(k,lh)) and A(z) = v;
(b) z.att level = j + k (or z.att_level = k).

Proposition 6.1 For each noder, z € W, there exists a C-set
Cl..liwr 1 < j < d—k, such that by time®, x € Cj,. 1.0,
wherel;...l; - w is a suffix ofr.ID.
Proof: Considercontact-chaing,g), whereg is the node that Proof: By Corollary B.4, there exists a node such that
x is given to start its join process. Suppasmtact-chaing,gq) A(z) = u. Suppose: € Cy,. 1,.., andx € N, (i + k, x[i + k]),
iS (uo, u1,...uf, usp1), Whereug = g andusi1 = z. Then wherei+kis the attach-level af in w.table,0 < i < d—k—1.
uy is the node that sends a positif&/Rlyto x (see Defini- Hencex € Cj, . 4,..., Wherel; 1 = x[i 4+ k] and according to
tion of acontact-chain [8]). Let the lowest levek; storesz  the algorithm; setsz.att_level =i + k.
in ur.table (the attach-level oft) be levelh, thenk < h < Then it must be that > j. Otherwise, ifi < j, then since
lesuf(u.ID,z.ID)| (recallk = |w|, as defined in Assump- = € Cj,,. 1, ., it follows thatz € Cj, 1,0, < i < d—k,
tion 1). Create a new sequenegg (.., g») based orcontact- thusz € Cj; .., ..., Which contradicts with the assumption in the
chain(,g) as follows: proposition.

Next, we show that < j, proving by contradiction. Assume
i > j. Thusi;...l; - w is a longer suffix thar;...l; - w. Since
2 only sendsIN to nodes with suffixe[i + & — 1]...z[0] (i.e.
suffix [;...l; - w), other nodes can only know through these

e Letgo =gandj =0.
e Foreach,0<:<h-—1,letg;11 = g; if ¢;[i] = «[i] and
i < h—1;if g;[i] # «z[i] andi < h — 1, letg; = u; and

mcr_ease,y. nodes plus node. (Note thatx would not be a neighbor at

® Gh=1s any level lower than leveli(+ k) in tables of these nodes, be-
Then,g;, € V,,, becausg;, € V andgi[k — 1]...gx[0] = z[k — cause when a node, copiesz, from z.table, wherez is one
1]...z[0]. Hencegi+1 € Ci, .., Wherel; = z[k], sincegr+1 € of the nodest has sentINto or z = w, if « is stored at lev-
Ny, (k, z[k]) (by the definition ofcontact-chaiflandgy1[k] = els no lower than level—+ k in z.table, theny will not store
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x at a level lower thar + k. See Figures 10 and 13.) Givertimet¢.

thatz € Ci;p, yw @andz & Ci; iy, Dy the definition of EN u, happens andl, < t,, then attime,, N,,, (k+j —
cset(V,W), there must exist one nodg y € Ci,..i,w @Nd 1 1) gize < K, thereforep, storesz into N, (k +j — 1,1;).
y # x, suchthat: € Ny(j+k,l;1) by timet°. y can notstore Then, py timet,, = € N, (k+ j — 1,1;). In what follows,
v by receiving a)Wfrom z, since that indicates(v) = y and e only consider the case thate N, (k +j — 1,1;) before
i = 7, which contradicts with the assumption that j. Also as u, receives thedW from y. In this cagey learnsz from u,’s
discussed above, sin¢e> j, « will only sendJNto nodes with - y\wRy (i) If y also stores: into N,(k+3j—1,1,), then trivially,

suffix l;...l1 -w and thus will not send 3N to y. Hencey knows
x through another node, There are three possible casesiy(i)
copiesz from z during c-phase; (ii)y knowsz through a reply
(a JWRIlyor aJNRIy) from z or aJN from z; (iii) y receives a
SNinforming it aboutz, which is sent or forwarded by. Both
cases (i) and (ii) are impossible, becauszn only storer at a
level no lower than + & (see Figure 11), thus whencopiesz
from z.table, it can not fillz into a level lower thar+ & (again,
see Figure 13). Now consider case (iii).zIsends or forwards
a SNto y, then|csuf(z.ID,y.ID)| > |csuf(x.ID,z.ID)|,

since bothe.7 D andy.I D have the same desired suffix of an en-(2)

try in z.table. However, we know thafcsuf(x.ID,y.ID)| <
lesuf(x.ID, 2.ID)|, becausdcsuf(z.ID,y.ID)| = j + k,
lesuf(x.ID,2.ID)| =i+ kandi > j. Therefore, case (iii) is
impossible, either. Thus, we conclude that ;.

Sincei > j andi < j, we conclude that = j. Hence,
u € Cy;..1,.w andx.att_level = j + k, whereu = A(x). [ |

Corollary B.5 If (. 4,., is the first C-setr belongs to2 <
Jj<d-kthen|Cy ;.o > Kforl<i<j.

Proof:
of nodes, {o,...,g91), Wwhereh = j + k, based oncontact-

(y — x)q by timet;. (ii) Otherwisey 2, 2 eventually happens
(lesuf(x.ID,y.ID)| > k+ j > y.att level).

(1) If by the timex receives the notification from, « is still

a T-node, them: - v must happen eventually, where=
Ny(h,z[h]).first, h = |csuf(z.ID,y.ID)|. Thus,(v —
x)q 1S by timet¢, which implies{y — x)4 by time¢¢,
since there exists a neighbor sequefige, v1, ..., vy, x),
where(v,v1, ..., vf, x) is the neighbor sequence framto
x.
If by the time x receives the notification frony, x is
already an S-node, them will set a flag to betrue
in its reply to y (see Figure 10). Seeing the flag,
y will send a SNy, z) to v, v Ny(h, z[h)). first,
h = lesuf(z.ID,y.ID)|. v will either storex into
Ny (b, z[R]), W lesuf(v.ID,z.ID)|, or forward
SNy, x) to N,(h',x[h']).first), until eventuallyz is or
has been stored by a receiver of the mes&d@, =) (see
Figure 11) and &NRlyis sent back tg. Thus, by time?¢,
(v — x)4. Therefore{y — x)4 by timet;. m

Considercontact-chaing,g) and construct a sequence

Corollary B.6 If y ERgS happens, where € W andy € W,

chain(z,g), in the same way described in the proof of Propeand|csuf(x.ID,y.ID)| > y.att level, then(y — x)4 by time

sition 6.1. Thusg;[i’ —1]...go[0] = x[¢' — 1]...2[0], 0 < ¢/ < h.
Assume|Cy,  1,.»| < K. We know thatgy:; € Ci,. 4.
Then, by the definition otontact-chaing,g), gr+1 is a node
that x has sent &CP or aJWto. If |C),. 1,.| < K, then
it must be thatN,, ., (k + i, z[k + i]).size < K (implied by
Definition 4.8), and hencéV,, .. (h', z[h']).size < K, where
k+i<h <lesuf(x.ID,gri;.ID)|. Thenz would not send a
CPto gr41, Since when: finds N, . (k+i, z[k+i]).size < K,
it will change status tavaiting and send aWto gx;. How-
ever, ifz has sent dWto gx,, theng,, would storer since
an attach-level of: in gi;.table exists, whiche € Cj;  j, ... A
contradiction with that th€;; _;, ., is the first C-setr belongs

to,5 > 1. |

Proposition B.6 Consider a nodey, y € W, and letu, =
A(y). SUppos&’;; .., ., is the first C-sey belongstol < j <
d—k. Thenforanode, x € W andx.ID has suffix;_;...l;-w,
if % u, happens, or: € N, (j+k—1,1;) beforeu, receives
theJWfromy, then by time,,;, t,, = max(t5, %), (y — z)q.

x Yy
Proof: Lett, be the timeu, sends its positivéWRIyto y, and

t, be the timeu, receives the notification from if = % w,
happens. Since, = A(y),y € Ci,..;,.o andy € Ci,_, 1,0,
by Proposition B.5u, € C,_,..1,. (0ru, € V,, if j = 1) and
y.att_level = k + j — 1. Also, we know that before timg,,
Ny, (k+j—1,1).size < K (by Fact B.4).

If 2 % u, happens and, > t,, thenz knowsy from u,’s
reply andz % y will happen. By Proposition B.2y — )4 by
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by, tey = max(ts, ty).
Proof: See case (2) in the last part of the proof of Proposi-
tion B.6. ]

Proposition B.7 Consider any node, x € V,,. For any C-set,
Cri;_y.ty-w b1, djo1 € [blandl € [b],if 11 ...1; -w is a suffix
ofz.ID, then,

(a) for any nodey, y € Ciy, , ., andy € W,y 5
happens before timé;

(b) No(k 4 j — 1,1).size = min(K, [(V U W), . 0,0
holds by time*.

Proof: For any nodey, y € Ciy,_,..1,.w, if y € W, then by
Proposition B.5y.att_level < j+k —1 and there exists a node
u, such thatu = A(y). Then{u — z), by the timeu sends
its JWRIyto y. (If u € V, then(u — x)4 because the initial
network is consistent; it. € W, then by Corollary B.2{u —

x)4.) By Proposition B.1y -  has happened bsf, since
lesuf(x.ID,y.ID)| > j — 1+ k > y.att_level. Moreover, by
Proposition B.2{x — y)4 by timet;. Also, by Corollary B.2,
(y — x)q by timet;. Therefore, part (a) holds.

Since the initial network isK-consistent, we know that
before any join happensV,(k + j — 1,1) = Vi, ,. 1w
since |Viy,_,.,o| < K. Part (a) shows that for any

Y,y € Cuy .0 andy € W, y 5 2 eventually
happens. It then follows thatv,(k + j — 1,1).size =
min(K, [(V U W)y, _,..0,.0]) by time ¢, since by Propo-



sition 6.2, Ol'l]‘fl...ll'u) = (V U W)l-lj,l...llw if |(V U
W)l-ljfl...l1~w| < K, and |Cl-lj,1...l1~w| > K if |(V U
Wit yohw] > K. [ ]

Proposition 6.3 Consider any node, xz € V,,. For any C-set
Cri;.yw 0<j <d—k—1andl € [b],ifl;..I; - wis a suffix
ofx.ID, thenNy(k + j,1).size = min(K, [(V U W)y, 1,.0])
holds by time*©.

Proof: By Proposition B.7 (b), the proposition holds. N

Proposition B.8 For any C-set,Cj; .i,., 1 < j < d —F,
l1,...]; € [b], the following assertions hold:

(@ If |Wy,..1,.0| > 2, then for any two nodes;, andy, where
€ Cly. 0y €Chytyw @ #y, andz andy are both

in W, by timet,,, at least one oft %> y andy % x has
happened, where,, = max(t;,t;). Moreover, at time
tay, (x = y)a and(y — z)a.

(b) For eachz, 2 € Ci, 4.0 andax € W, Ny(k + j —
1,1).size = min(K, [(V U W), ..0,.0]) by timete,
wherel € [b].

Proof: We prove the proposition by induction gn
Base step:j = 1. Consider nodes andy, x € W andz €
Cl.wyy € Wandy € Cy.,, wherel; € [b], 1 € [b] (I may or
may not be the same with), andz # y. By Proposition B.5,
there exists a node,, u, € V,,, such thatu, = A(z) (thus,
x € Ny, (k,1)). Likewise there exists a node,, u, € V,,
such thaty € N, (k,1) andu, = A(y). By Proposition B.5,
x.att_level = y.att_level = k. Therefore, both: EN u, and
y -+ u, happens. Also, by part(a) of Proposition Bi7:% u,
happens. Likewise; > u, happens. By Proposition B.6; —
z)q and(z — y)q by timet,,.

Let ¢; be the timeu, sends its reply ta, ¢ be the timeu,
sends its reply t@, t5 be the timeu, sends its reply tg, and

t4 be the timeu,, sends its reply ta.. Clearly,t, > t;, because

atty, x is in statuswaiting, while att4, z is in statusnotifying
Likewise,to > t3. Note that at time, u,, storescin N, (k, 1),
and at timefs, u, storesy in N, (k,[).

<
<
<

Figure 17: Message sequence chart for base case

If t; > to, then it must be&, > ¢3, as shown in Figure 17(a).

By Fact B.4,N,_(k,l).size < K before timef;. Thus, at time
ta, Ny, (k,1).size < K. Sincey.ID also has suffiX - w, u,
storesy in N, (k, 1) at timet,. Consequently, frona,,’s reply,
x knowsy and stores; in N, (k,1). (In the copy ofu,.table
included inu,’'s reply, Sinceesuf(z.ID,y.ID)| > k+ 1 and

z.att_level = k, z 2> y will happen.
If t; < ts, then consider the following cases.

o If t3 > t4, as shown in Figure 17(b), then this case is sym-

metric to the case where > to, by reversing the role of
andy.

e If t3 < t4, as shown in Figure 17(c), then from’s reply,
x knowsy and will notify y if it has not done so. Similarly,
y knowsz from u,’s reply and will notify z if it has not
done so.

Then, ifl = [y, that is, bothz andy belong to(}, .., part
(a) of the proposition holds, since we have shown above that a

least one of: % y andy 2 & will happen before time,,,, and
(x — y)q and{y — z)4 by timet,,,.

Part (b) of the proposition also holds, since we have shown
above that for any, | € [0, z % yory % z will hap-
pen. Thus, eventually knowsy, for eachy, y € C;., and
y € W. By Corollary B.1,N,(k,l) 2 V,..,. Then, eventually,
N (k,1).size = min(K, |[(VUW)..)|.

Inductive step: Next, we prove that if the proposition holds at
jythenitalsoholdsat+ 1,1 <j<d—k—1.

Observe that if statement (a) is true, then statement (b)és t
if l = z[k+j— 1] (i.,e. | = [;). The reason is as follows.
Statement (a) shows that for any other node’in ;,..,, say

y, eventually at least one af % y andy - = happens. Ei-
ther way,z gets to knowy. If 2 has not stored( neighbors in
N.(k + 35 — 1,1;) by the time it knowsy, it will store y into
that entry. By Proposition 6.2nin(K, [(V U W), .1,.0]) =
min(K, |Cy;..1,.w]). Thus, by timet®, either thatz has stored
K neighbors inN,(k + j — 1,1;), or it has stored all nodes in
Cl.i,..1,- if the number of nodes in this C-set is less thfan
Based on the above observation, in what follows, when we
prove statement (b), we focus on the case whe#é€ ;.
Consider node;, = € C;._, .. 1,.., and the following cases:

g1
e Caseliz € (., wandx & Cy,. 4.0

— l.aln this case, we prove part(a) of the proposition
holds. If|Cy,,,...,.| > 1, then consider any nodg
y€Clyytiw y #randy € W:

* 1.a.1y € Clj...ll'UJ'
* 1.a.2y S Clj...ll'UJ'

— 1.blIn this case, we prove part(b) of the proposition
holds. Consider any nodg y € Ciy;..1,.., Where
l 75 l; andCl.lj,,,ll,w 75 0:

* 1.b.1y € Clj...ll'w'
* 1.b.2y S Clj...ll-w-
e Case 2.2 € (.1, w@Ndx € Cy; 4.0

— 2.aTo prove part(a) of the proposition holds, consider
anynodey,y € Cy;,, .10,y # xandy € W

* 2a1y ¢ Clj...llw-
* 2.a.2y S Cl]‘...ll'UJ'

— 2.b To prove part(b) of the proposition holds, con-
sider any nodey, y € Cy;..1,.., Wherel # [; and
Crijotyow #0:

* 2.b.1y € Clj...l]'w'
* 2b2y S Clj...l]'w'

We will use the following Claim in our proof:

Claim B.2 Suppose Proposition B.8 holds gt1 < j < d —
E=1.1txecCy,, .00y € Cry..1,.0, Wherel € [b], however,
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v & Cy 1.0 andy € Cy,. .0, then eitherz EX y ory ENgS

eventually happens.

Proof of Claim B.2: Observe that the first C-setbelongs to
is Ci,,,...1,-w» and the first C-sey belongs to isCy.;;..1,.... By
Proposition B.5, there exists anodg u, € Cj, .., .., such that
u; = A(x). Likewise, there exists a nodg), u, € Ci;. 1, .w,
such thatu,, = A(y). Figure 18(a) and (b) illustrate the rela-
tionship of the four nodes, where in Figure 18(a¥; /1, and

in Figure 18(b)/ # ;1.

(2)

(b)
Figure 18: C sets and message sequences, case 1.a.1 and case

1.b.1
Let the timeu, sends the positivdWRlIyto x bet,, and the

(c)

time u, sends the positivdWRlyto y bet,. Without loss of
generality, supposg, < t,, as shown in Figure 18(c). Then
at timet,, bothu, andu, are already S-nodes (by Fact B.2).
Since it is assumed that the proposition holdg, dty part(a) of
the proposition, by time,, u, andu, already can reach each
other. Hence, by the timg receives the reply from,,, u, and

u, can reach each other. By Proposition Bylj% u, eventually
happens. Suppose. receives the notification fromat timet,,

replies tou,, x € u,.table. By Facts B.1and B.2, < t,.
By FactB.4,N, (I +Fk,l;41).size < K beforet,. Hence,
Nu, (I + k,lj41).size < K at timet, and thereforey,
storesr in N, (I+k,1;,1) attimet,. By Proposition B.6,
(y — @)a-

Supposeé, > t,, as shown in Figure 19(b). then first con-
sider the case that after, receives the notification from
Uy, Uy € Uy.table. Then fromu,’s reply, z knowsu,, and
will notify w,,, becausécsuf(uy.ID,z.ID)| > I+ k =

z.att_level (see Fact B.5). Hence, - u, happens. By
Proposition B.6,(y — z)4by t,,. Second, consider the
case that aftet, receives the notification from,, u, ¢
ug.table, thenN, (h,uylh]).size = K at timet,, h =
lesuf(uz.ID,uy ID)|. Letwv = N, (h,uylh]).first.
Then,u, knowswv fromu,’s reply Sinceu,.att level < 1—

1+kand|esuf(v.ID,u,.ID)| > h > I+k,u, % veven-
tually happens. Likewise; knowswv from u,'s reply after

timet, andz - v eventually happens, singeatt_level =
I+ k and|csuf(v.ID,u,.ID)| > I+ k. Then, by Propo-
sition B.4, by timet,y,, tzu, = max(t;,ti ), either that
€ Ny, (I +Ek,lj11)0r Ny, (I +k,lj11) = K. Ny, (I +
k,l;11) = K isimpossible, becaus®,, (1 +k,lj+1) < K
before timet,, andt, > t,,, (we have assumeqg > i,
andt, > t;, by Fact B.2). Thusx € Ny, (I +k,lj41) at
time tm By Proposition B.6{y — x)q4 by toy.

clearly,t, > t,, hencet, > t,. Then, fromu,’s reply,y knows (iii) v, € W andu, € W. Then, by assuming the proposi-

 and will notify z if it has not done so. Thug,'—j> x eventually tion holds atj, eitheru,, ER Ug OF Uy ER u, happens.

happens. Likewise, if, < ¢, thena: 2, y eventually happens. i i
(1) If uy, = u, happens and, < t,, then following the same

arguments in part (1) of the above case (i) (¢ V and
Uy € W), (y — x)q by tay.

(2) If uy 2, u, happens and, > t,, then following the same
arguments in part (2) of the above case (i) (¢ V and
Uy € W)! <y - I>d bytmy

If u, 2> uy happens, let, be the timeu,, sends its notifica-
tion to ,,, then by Facts B.1 and B.2, it must be> ¢,
as shown in Figure 19(c). At timg,, u, already knows
uy. Then, there are two cases to considey:€ u,.table
oru, ¢ us.table at timet,. Following the same argument
as in part (2) of case (ii), it can be proved thigt— ).

Hence, at least one a)f—> = andz %> y eventually happendll
Case l.a.1l. By Proposition B.5, there exists a nodg,
uy € Cyj..1,.w, SUCh thaty, = A(z) andz.att_level = j + k.
Likewise, there exists a node,, u, € Cj,. 1,.., such that
uy = A(y) andy.att_level = j + k. Let the timeu, sends
the positive]WRIyto = bet,, and the time.,, sends the positive
JWRIyto y bet,. Without loss of generality, supposg < t,.

By Claim B.2,y % z happens. By Proposition B.2; — y)4
by timet;.

Next, we need to shoyy — x)4 by timet,,. Consider the
following cases:

(i) ux € V andu, € V, oru, € W andu, € V. Inthese

(3)

two cases(u, — uy)a by timet,. By Proposition B.1z - u, Case 1.a.2 First, observe that in this casgatt_level < j +
happens beforg. Then by Proposition B.§y — )q. . k—1 < |esuf(yID,z.ID)|. Letu, = A(x), thenu, €
(i) u, € V andu, € W. By Proposition B.7u, % u, Ci;. 1,... Thus bothu, andy belong toC; . ;,..,, as shown in

happens. Let, be the time that, receives the notification Figure 20(a). Ifu, € V, then by Proposition B.7y EN Uy

fromu,,. happens by;. If u, € W, by assuming the proposition holds at
y y y 4, we know that by the time both, andy are S-nodes, they can
W ! s o reach each other; moreover, at least ong & u, andu, > Yy
W R U7 LN
P et AN happens.
\ ta \ Let t; be the timeu, sends itsIWRIyto x. Also, lett, be
X X X

the timeu,, receives the notification fromif y ER u, happens;
otherwise, let; be the timeu, sends a natification tg.

(a) (b) (c)

Figure 19: Message sequence chart for case 1.a.1

(i) If t1 < to, then atty, z € Ny, (k + J,lj+1). Thenty
must be the time that, receives the notification from
(by Fact B.2, at times u, is already an S-node and will

(1) Suppose, < t4, as shown in Figure 19(a). By Fact B.3,
z € Ny, (I + k,l;j4.1) after timet,. Therefore, when,

22



Y argument, eithey € N,(j + k,1) or Ny(j + k,1) = K

e b1 2N N afterx receives,’s reply and copies nodes from)..table.
R \ .
X ts The above analysis shows that for each nadey ¢
(o . Cui;..1,-w, €ither that after time,, y € N, (j + k,1), No(j +

k,l) = K, or x eventually is notified byy. By Proposi-
Figure 20: Message sequence chart for case 1.a.2  tion 6.2, |Clt;. 0y 0| = min(K, [(V U W), 1,.0]). Hence,
Ny (j + k,1).size = min(K, |(V U W), 0,0])-
not send out notifications), as _shown in Figure 20(b) . ThySsse 2.b Consider nodey, y € Cli...1,.0. Again, we only
y knowsz from u,'s reply that mcIud_eSLI.table, andwill  ~nsider the case whegee W (if y ]e V, by Corollary B.1,
notify z if it has not done so. Thug, %> 2 happens by time y ¢ N.(j + k,1) by timet°). (i) If y € Cy;..4,.., then bothe
tc. By Proposition B.2(z — y)q. Also, sincey ERg. hap- andy belong toC’lj_j_ll.w. By assuming the proposition holds at
pens, andesuf(z.ID,y.ID)| > k+j+1 > y.att_level, j atleastone of > y ory - x happens. Hence, eventually
by Corollary B.6,(y — x)a by ts. knowsy. (i) If y & Cy,. 1.0, thenA(y) € Ci,.4,.0. Letu, =
(i) f ¢4 > ¢, andy 5 u, happens, then it must be thatA(y), andt, be the timeu,, sends its positivéWRIyto y. Recall
y € Ny, (I + k,1;41) after timet,. By Fact B.4,N,,, (I + that in this case, both andu, belong toCy; .i,.... If u, € W,
k,ljy1).size < K beforety, thusN,, (I +k,1j+1).size < then by assuming the proposition holdg aat least one of -

K beforeig. Then, by Proposition B.6x — y)a. More- u, or u, % x happens; ifu, € V, then by Proposition B.7,

Z\r:(ejr{ciuf_(; ? Dh a;p?gr;'s, <bjciu?aé;_lsfgéo:iti g n+BI€2 zL u, happens. Let, be the timeu,, sends its notification to
(y — x)q. h - L orif Uy Lo happens; otherwise, l&f be the timeu, receives

eLhe notification frome. If ¢, < t,, then by timet,, u, already

argument above in case (ii), it must be that N, (I + nowse. Then .by t|mety', Nu, (5 + k,1) size < K, and.thus

k,1,41) after timet,, and therefore(z — y)q and(y — attimet,, Ny, (j + k,1).size < K. Henceu,, will store z into
Ak 2 N, (j + k,1) attimet,. Hence, attime,, z € N, (j + k,1).

. Moreoverz % y happens. _ :
?a Vet = y napp Then, fromu,’s reply, y knowsz and will send aNto z (y EN

Case 2.a.1 This case is symmetric to case 1.a.2. ), which enables: to know the existence of. If ¢, > t,,
Case 2.a.2 In this case, both andy also belong ta;, ;... thenattimel,, y € Ny, (j + k,1). Hence, fromu, 'reply (or
u,'s notification),z knows the existence af. So far, we have
shown that whethey € Cj, ., .., or not,z eventually knows.
This is true for anyy, y € Cy.;...1,... By Proposition 6.2 and
So far, we have proved that part (a) of Proposition B.8 holdgorollary B.1,N, (j+ &, 1).size = min(K, [(VUW )11, _1,.0])-
Next, we prove part (b). As we mentioned before, here we foctherefore, part (b) of the proposition holds in Case 2.b. Bl

on the case whe l:.
el CorollaryB.7 If x € Cy;..1,. andCry;_, .1y 7# 0,1 € [0],

Case 1.b Consider node;, y € Cpy,. 1, If y € V, then
W ) then for any nodg, vy € C.;,_,..1,.. and z, at least one of
by Corollary B.1,y € N,(j + k,1) by imet®. Hence, in what . followinyg assger'ﬁons ilslimlje:ll y#

follows, we only consider the case wheyec Cy,,..,.., and _

yeW. Q)lfy & Cy,..4,.. (Case 1.b.1), then by Claim B.2, 1. y L 2 has happened by timeé;

eitherz % y ory 2> « eventually happens. In either case, 2- By timet;, eithery € Ny(j — 1+ k1) or No(j — 1 +

= eventually knowsy. Therefore, eithery € N,(j + k,1) k,1).size = K holds.

or No(j + k,l).size = K at the timex knowsy. (2) If proof: Proof of the corollary is implied by the proof of Propo-
y € C;..1,0 (Case 1.b.2), then by assuming the propositiogition B.8. If = € V, then by Proposition B.7, the corol-
holds atj, we havey % wu, or u, - y happens ifu, € W; lary holds. Ifz € W andy € V, then by Corollary B.1,
andy <> u, happens ifu, € V, by Proposition B.7. Let, be Y € N,(j — 1+ k,1), hence, the corollary also holds. In what

the timew, sends its positivdWRIyto z. Lett, be the timeu, °lOWS, we consider the case wheres I andy € IV
j First, supposef = 1. Consider a noder, x € (i, ..,

receives the _notification from if_y i>_ u, happens; otherwise, I, = z[k]. In the proof of base case in Proposition B.8, we
lett, be the timeu, sends a notification tg. have shown that for any node andy € C.. # 0, 1 € [8], at

o If y 5 u, happens and, < t, (thent, is the timeu, least one ofy % z orz % y happens eventually. j % =
receives the notification from), theny knowsz fromu,’s happens, the the proposition holds. Otherwise, if anly> y
reply andy - = happens. happens, them knowsy beforett. Hence, eithey € N, (k,1)

e If y - u, happens and, > t,, then eithery € N, (j + O Nau(k,l).size =K. .
k,1)or N,,, (j + k,1) = K attimet,, and therefore, either _Second, suppose < j < d — k. Consider a node, = <
y € Ny(j+k,1)or Ny(j+k,1).size = K afterz receives Cl;...1.-w, there are following cases:

Ug'S reply (WRIy and copies nodes from,.table. e ¢ Cy, , ... Consideranynodg,y € Cri, , i -
e If u, - y happens, then, > t,. Similar to the above First, suppose ¢ Ci,_,..1,... By Claim B.2, at least one

(iii) If ¢t1 > t2 anduy, EX y happens, then following the sam

By assuming Proposition B.8 holds atpart(a) holds in case
2.a.2 trivially.
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of y J zandz L y happens eventually. ERS

reply, hencey € N, (i — 1+ k,l) or Ny (i — 1 + k,1).size after

happens, then the proposition holds. Otherwise, if only receives the reply from; . (ii) If y ER gi+r happens, then

z > y happens, them knowsy beforetS. Hence, either
YyE N (j—1+k1)orNy(j —1+k,l).size = K by tc.
Second, supposg € Ci;_,..1,.w. By the proof of Case

1.b in proving Proposition B.8, either %> z eventually
happens, or thag € N,(j + k,I) or N(j + k,1) =
afterz receivesu,’'s reply JQWRIyY and copies nodes from
uy.table, whereu, = A(z).

r € Cj;_,.1,+. Again, consider any nodg, y €
Cii,_y..1,-w First, supposey € Cj,_,. 1,.., then both
r andy belong toC;, ,..4,... By part(a) of Proposi-
tion B.8, at least one o % y ory - x happens
eventually. Similar to the argument above, at least one
the following is truey % x, y € N,(j — 1 + k,1) or
N.(j—1+k,l).size = K.

Second, supposg & Cy.i;_ . By the proof of Case

2.b in proving Proposmon B. 8 e|theyr 2. z eventually
happens, orthat € N,(j + k,1) or N,(j + k,1) = K af-

by Proposition B.4, at least one of the following is true: ioye

vy € Np(i — 1+ k1), orthatN, (i — 1 + k,l).size = K.
Smce this conclusion is true for eaghy € Cj.;, .1, .., plus that
Vid,.pw C Ng(i — 14 k,1) by time t© (by Corollary B.1),

we conclude thatV,(: — 1 + k,l).size = min(K, |(V U

W)it;..10-0]) by timete.
If (VU W), 1. > K, then by Proposition 6.2,
|Cy1, 1,0 > K. Next, consider any nodg y € Ciy, 1,

andy € W. Let the timeg, . receives the message ( either a
CPor aJW) from x bet,. Then, by Corollary B.7, at least one
of the following is true:y € Ny, ., (i — 1+ k,1) by timet,, or
N (i = 1+ k,1).size = K by timet,, or thaty s giix hap-
pens. (i) Ifattimet,, Ny, (i—1+k,1).size = K, thenN,(i—
14 k,l).size = K. (ii) Ifattime t1, Ny, , (i —1+k,[).size <
K andy € Ng%(' 1+ k1), theny € N,(i — 1+ k,l) or

N (i—1 + k,l).size = K afterz receives the reply from; .

(i) If v 5 g, happens, then by Proposition B.4, by time
eithery € N, (i—1+k,l)or N, (i—1+k,!l).size = K. There-

terz receivesu,,’s reply (or notification) and copies nodesgre, for anyy,y € Ciy,..1,.0, eitherthaty € N, (i — 1+ k,1)

from u,.table, whereu, = A(y). ]

Proposition 6.4 For any C-set,Cj, .i,.., 1 < j < d—F,
li,...]; € [b], the following assertion holds by timé: For
eachz, r € Cj; 4.0 andz € W, Ny(k +j — 1,1).size =
Inin(K, |(V U W)l'lj—lvnll'UJD’ l e [b]

Proof: By Proposition B.8(b), the proposition holds. ]

Proposition 6.5 For anyz, z € W, suppose’;;.. ;.. is the
first C-setx belongs to, wheré;...I; - w is a suffix ofz.ID,
1<j<d-—k Thenforany, 0 < i < jandanyl,! € [b],
Ny(k+i,1).size = min(K,|(VUW)i,. 1 wl) -

Proof: Considercontact-chaing,g), whereg is the node that
is given to start its join process. Suppasmntact-chaing,g)
is (uo,u1,..uf,ury1), Whereuy = g, uy is the node that
sends an positivéWRIyto x (see Definition of aontact-chain
in [8]) and uf41 = z. T the lowest levelus storesxz in
uy.table (the attach-level of) is level (by Proposition B.5),
thenk < j < |esuf(u.ID,x.ID)| (recallk is defined in As-
sumption 1). Create a new sequengg (.., g;) as described in
the proof of Proposition 6.1, such thegy = g, g; = uy, and
gi-.ID shares suffixe[i’ — 1]...z[0] with z.ID, 0 < ¢/ < j.
Then, it is easy to check that, € V,,, andgi' . € Ci,..1; 0,
1 <4 <j. Thus,givx € C), . 1,.w- Sinceg;y is a node in
contact-chaing,g), eitherz % g, orz % g, happens. No
matter which happens, let the tipg, ;. sends the reply te be
t1.

If (VU W), e < K, then by Proposition 6.2,
Cl-li...ll»w = (V U W)l»li,...ll»wv i.e., for eacty, RS Wl-li...ll-wa
y € Chi,..1,»- Next, consider any nodg, v € Wiy, i, .-

Then, if g, € W, by Corollary B.7, at least one of the fol-

lowing is true: y € Ng,.(i =1+ k1) by time t; (&1 >

tg. x) Or thaty 2 i+ happens by timeg; if gix €V,

theny < ¢, eventually happens by Proposition B.7. (i) If

Yy € Ny, (i — 1+ k,1) by timety, thenz knowsy from g; 1's

by timet¢, or N, (i — 1 + k,l).size = K by timet:. Hence,
N, (i — 1+ k,l).size = K by timet©. u
Proposition 6.6 For any noder, z € W, if (VUW )4, 1,0 #

0, wherel;...l; - wis asuffixofr./D,0 < j <d—k—1,and
Il € [b], thenN,(k + j,1).size = min(K, [(V U W)y, 05.0])
holds by time*.

Proof: |If (V U W)l-li...ll-w 1-l;...
the proposition holds. ItV U W), 1,0 D Vii,..1,-w, then
consider C-seCy;...i,.... SUPPOSE’;;. ;,.., is the first C-setr
belongsto0 < j < d— k. If j > ¢, by Proposition 6.5, the
proposition holds. Ifi < 4, then by part(b) of Proposition B.8,
the proposition holds. |

1,-w, by Corollary B.1,

Proposition 6.7 For each noder, z € VU W, N,(i +

k j) size = min(K, [(V U W);.11i-1]...20)]) holds by timet*,
€ [d. j € [b).

Proof: First, pick any node;, x € W.

e If 0 <i < k, then by Corollary B.1, the proposition holds.

o If i = kand|Vj.,;—1)..2[0]] > K, then again by Corol-
lary B.1, the proposition holds.

o Ifi =k, Vg1 < K, howeverW; .;i_1. 20 #
(,ork < i < d—1, then by Proposition 6. 6 the proposmon
holds.

Second, consider nodes¥n Picky, y € V.

o If (V U W)_]y[z—l]y[O] ‘/j-y[i—l]...y[O]i then given
that (V,N(V)) is a K-consistent network,N,(i +
k,l).size = min(K, |Vj.yi-1...4[0]) min(K, |(V U
W) jyli—1]...yj0))- The proposmon holds.
If Vigriz1)..y0) € (VU W) y1iz1]...y0)» thenw must be
a suffix of j - y[i — 1]...y[0], which can be deduced from
Assumption 1 Nty =V, for anyz, x € W), thus
y €V, fw=j-y[i—1]..y[0], thenV,, = Vjyli—1]...y[0]
and|V,,| > K by Assumption 1. Thu®V, (i + k,).size =
K. If w # j-yli — 1]...y[0], thenw must be shorter than
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J - y[i — 1]...y[0]. By part (b) of Proposition B.7N,(i + {G(V,,),1 < i < h}, wherew; # w; if i # j, such that for

k,1).size = min(K, |(V U W);.yi-1...y0]) DY timeze.
The proposition holds. n

Propositions 6.1 to 6.7 are based on the assumption that all

joining nodes belong to the same C-set tree. Next, we conside
the case where the joining nodes belong to different C-eestr

Proposition 6.8 Suppose a set of noddd] = {z1,....tm },
m > 2, join a K-consistent networkV, N'(V')) concurrently.
LetG(V,,) = {z,x € W,V No'lv =V, }, G(V.,,) = {y,y €
W, VNetily =V, }, wherew; # w, andw; is a suffix ofu; . Let
ka2 = |wz|. Then, by time®, for anyz, x € G(V,,, ), the follow-
ing assertion holdsN, (kz,1).size = min(K, |(V U W)p.w, ),
lelb.

Proof:

() If [Vi.w,| > K, thenN,(ks,1).size = K by Corollary B.1.

(i) If |Viw,| < K andW,.,,, = 0 then N, (kz,1).size =
Vi.w, by Corollary B.1.

(i) If |Vi.w,| < K andW,.,, # 0, then it must be that
Wiw, = G(V,)i-w,, that is, the set of nodes W with suf-
fix I - wy are the same set of nodes @¥(V,,,) with suffix
l-wy. We proveW,.,, = G(V,,)1.., by contradiction. Sup-
pose there exists a nodez € W,.,,, howeverz € G(V,,),
i.e., VNotify =V, wherews # wy. Then, by the definition
of VNotlv [ |V,,,| > K and|V,k,).w,| < K, whereks = |ws|.
Since|V,..,| < K, and both - ws andws are suffixes ok.ID,
thenws must be a suffix ofvy (if | - wy is a suffix ofws, then
Viws 2 Vg, and thugV,...,| > |V.,,| > K, which contradicts
with [Vi.w,| < |V, < K). And sincews # ws, |wa| > |ws].
Hencez[ks] - ws is a suffix ofw, since both of them are suffixes
of z.ID. -|—|’]l.IS,‘/;[kS].W3 D Vi thUS|VZ[k3].w3| > |Vi,| > K,
which contradicts WithV. x,]...,| < K (by assuming/Votifv =
Vis)-

For anyz, € G(V,,), considercontain-chaing,g), where
g is the nodex is given to start joining, and create a sequence
of nodesgy, g1, ---, g», following the same way as discussed in
the proof of Proposition 6.1, wherg = g, g, = A(u), and
g; shares one more digit withthang, 1, 1 < i < h. Clearly,
ks < k1 < h. Thengy, has suffixvue and thugy, € V,,,. Also,

x5 gi, orz % g, happens.
Next, we show that there exists a nodediV,,,) such that
it eventually notifiesy,. Consider any node, v € C;.,,, and
v € W (by Proposition 6.2, such a node must exist). By Propo-
sition B.5, there exists a node,, such thatu, = A(x) and

u, € V,,,. Hencep % u, happens. By Proposition B.&,% u
eventually happens for eachu € V,,, (by the timeu, replies
tov, (u, — u), already holds since the initial network is consis-

tent). Sinceyy, € V,,,, we knowv EN gk, eventually happens.
Then, by Proposition B.4, by tim&, eitherv € N, (k2,!)

or N,(ke,l).size = K is true. This conclusion is true for

eachv, v € (), andv € W. That is, N,(ke,l).size =

min(K, |Cr..,|). By Proposition 6.2, min(K,|Ci..,) =

| min(K, |(VUW),..,|. Therefore, by time®, N, (k2,!).size =

min (K, [(VUW)1e,|). |

With the above propositions, we now can prove Lemma 6.4.
Proof of Lemma 6.4: First, separate nodes IfY into groups
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any noder in W, z € G(V,,) if and only if V,Votiy

= Vwil

7

1<i<h. LetQ ={w;,1<i<h}. Then, attime®,

Consider a noder, z € V. If [V 1200 = K,
then N,.(i, j).size = K since initially (V, N'(V)) is K-
consistent. fiV;..i—1)...2j0 < K andWj. 1), 2[0] =
0, then N, (i,j).size = |ij-z[i71]...z[0]| = [(V U
W)j.ali-1]...z[0]|-

If |Viglioa)..zo)] < K andWjpi1y. 0i0) # 0, theng -
x[i—1]...z[0] € 2, because we know that for anyw € €2,
|[V,| > K by Definition 4.4. Also, we know that there must
existaw;, w; € §, such that, is a suffix ofj-x[i—1]...x[0],
sinceW = Ul G(V,,,) and any node id+(V/,, ) has suffix
wy, wy € .

Claim B.3 Suppose |V}.;[i—1]...z[0]] < K and
Wiali-1]..xl0) 7 Also suppose there ex-
ists a w;, such thatw; € €, w; is a suffix of
j - zxli — 1)..2[0], and |w| > |wn| for any wp,
wr, € Q and wy, is a suffix ofj - x[i — 1]...z[0].
Then,Wj.oi—1)..x0) = G(Vi)j.wfi—1]...2[0]-

Proof of Claim B.3:  Clearly, G(V,);.2[i—1]...z[0]
W;.afi=1]...z[0). We only need to showWV;.,(;_1)...2(0)
G(Vi,)j-ali-1)..z[0]- In other words, we need to show that
for any nodey, y € Wi.(i—1)...00), V' = V., (thus
y € G(Vay)jali-1)...z[0))-

For any nodey, y € W;.o(i—1)..x[0], J - z[i — 1]...z[0] is @
suffix ofy.ID. Sincew is a suffix ofj - z[¢ — 1]...z[0] and
w; # j - x[i — 1]...2[0], w; is also a suffix ofy.ID. By the
definition of G(V,,,), we know thatV,,,| > K. In order to
prove Vot =V, , we need to show thaV/ .., | <
K, wherek; = |w;|. We prove it by contradiction. Assume
Vylk)wi| = K, thenV Notly =V, wherey[k] - w; is a
suffix ofw,.. Hencew; is a suffix ofw, andw; # w,. Since

y € W,w, € Q. On the other handy, must be a suffix
of j - xfi — 1]...z[0], since itis givenV;.,;—1...20)| < K.
However,w; is picked in such a way that for any,, such
thatw;, € Q andwy, is also a suffix of;j - z[i — 1]...z[0],
|wi] > |ws|. Thereforew, must be a suffix ofv;, which
contradicts with the above conclusian; is a suffix ofw,
andw; # wy. |
By part (b) of Proposition B.7 N,(i,j).size =
min(K, [(V U G(VL,))j.z[i-1]...z[0])- Then, by Claim B.3,
N (i, j).size = min(K, |[(V U W),.z[-1]...2[0]]) DY time
te.

Consider a node;, € W. Then there exists &,

1 < f < h,suchthatr € G(wa). @i If |Vj-z[i—1]...z[o]| >
K, then N,.(i,j).size = K by Corollary B.1. (ii)

If |‘/j»m[i—1]...m[0]| < K and Wi ali-1)..zl0) = @, then
Ny (i, 4).s1ze = |Vjgpi—1]...a0)]] = [(VUW)jafi—1]...2[0]
again, by Corollary B.1.

@) If [V}wfiz1)...2i0)] < K andWj.o(;_1..200) # 0, then
j -zt —1]..z[0] ¢ Q. Since bothv; andz[i — 1]...z[0]
are suffixes ofc.ID, we next consider two casesy is a
suffix of z[¢ — 1]...z[0] or vice versa. It is a suffix of
x[i — 1]...z[0], then for any node, y € W.zn—1)...2[0]

y € G(V,,) (that is, z andy are in the same C-set
tree). By Proposition 6.6V, (7, j).size = min(K, (V U

<
<



G(V,))jafi—1]...af0)) thusN, (3, 5).size = min(K, (VU C  Proofs of Theorems 4 to 6
W) jafi-1)...z[0))- _ L
If z[i — 1]...z[0] is a suffix ofwy, then there must exist a The messages exchanged during a node’s join can be catego-
wi, w; € Q andw; # wy, such thaty, is the longest suffix fized into tze f0||CI>WIn9 sets:

ool — i 1. CPandCPRly
of j - z[¢i — 1]...z[0] among2. Then, by Claim B.3, for any 5 JWandJWRRY
nodey, y € Wjzfi—1)..zf0p ¥ € G(V,,,) (x andy arein 3" JNzndJNRI ,
different C-set trees). Note that sinkie.m[i_l],,,m[oﬂ <K 4, SNandSNRK(
and|V,,| > K, itisimpossible thaj - z[i — 1]...z[0] = w;. 2. INSysNotiMsg
Hencew, is a suffix ofz[i — 1]...z[0], which is a suffixv .

6. RNandRNRly
Thereforew, is a suffix ofw;, then by Proposition 6.8 where messages in sets 1, 2 and 3 could be big in size, since the
) fy bag ]
N (i,7).size = min(K, (V UG(V,,))j.2[i-1]...z[0]), thus

may include a copy of a neighbor table, while messages in sets
SO 4,5 and 6 are small in size. In Section 6.2, we have presented
Na (i, j)-size = min(K, (V-UW)j.ofi-1)...cf0)- B the number (or expected number) for messages in sets 1, 2 and 3

Lemma 6.5 Suppose a set of nodé&, = {z1,...2m }, m > 2,
join a K-consistent networkV, V'(V')) concurrently. Then at
timete, (VU W, N (V UW)) is a K-consistent network.

Proof of Lemma 6.5:  First, separate nodesi# into groups,

such that joins of nodes in the same group are dependent
joins of nodes in different groups are mutually independast
follows (initially, leti = 1 andG; = 0):

1. Pick any node;, z € W— Uj;ll G;, and putz in G;.
2. For each nodg, y € W—;_, G},

(a) if there exists a nodg z € G, such tha{V,Vo"#v n
V. Netify £ (), then puty in G;; or

(b) ifthere existsanode z € G;, and anode, v € G;,
such that the following holdg, Vet c v, Notifv)

(VNotity c v Notifv)), then puty in G;; or

(c) if there exists a node, z € G;, and a nodey,
ueW— U;-:1 G; , such that the following holds:
(V;JNotify C VuNotify) A (V'ZNotify C VuNotify)), then
put bothy andw in G;.

3. Increment and repeat steps 1 to 3 urLt_ﬂ;.:1 Gj=w.

Then, we get group&G;, 1 < i < [}. Moreover, for any node
z,x € G;, andanynodg, y € G;, wherel <i <[, 1<j <],
andi # j, it holds thatV, Vot 0y Notify — (). Otherwise, if
v Notfy v Netify £ (), suppose < j, then according the step
2 abovey would be included inG; rather than inG;. Hence,

for any two nodes that are in different groups, their joins ar f1<i<d

independent. Similarly, it can be checked that for any twdaso
in a group, their joins are dependent.

Then, for any suffix, if (G;), # 0and|V,| < K,1<i<
I, then by Corollary B.3(V U W), = (VU G)).

Consider any noder. If |V, 1. 20l = K, then
N, (i,7).size = K since initially (V, V(V)) is K-consistent.
If |Viali—1.ep0] < K and Wi n-1). o0 0, then
N (i, 7)-size = [Vjgiim1)..fo)]l = [(VUW)jelio1)...cf0]-

If |Viaiot]..zo)] < K and Wjpio1). 000 # 0, then
(VU W)zl .zl = [(VUGf)jai-1). 0, Where
(Gy)jafi-1]..xl0) # 0. By Lemma 6.4,N.(i,j).size =
min(K, |(V U Gf)j-z[ifl]...z[o]Dv hence, Nm(z,j)szze

1n [8], we presented an example of how to group nodes follgwirese steps fak =
1. See Footnote 16 in [8].
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sent in a node’s join process. In this section, we presemtfgro

of Theorems 4, 5 and 6, and analyses of numbers of messages

in sets 4, 5 and & Recall that we have defined two functions,
Q.(r) andP;(r), in Section 6.2.

Lemma C.1 Suppose a set of nodé§, = {z1,...x},m > 1,
ﬁﬂﬂ a K-consistent networkV, N'(V')). For any nodez, z €
W, supposé/Notfy = V. LetY = |w|. Then the probability
thatY equalsi given|V| = n, i € [b], is P;(n), whereP;(n) is
as defined in Definition 6.1.

Proof: First, let P;(n) denote the the probability that equals
i,1 € [b], given|V| = n. We next prove thaP;(n) is as defined
in Definition 6.1.

If Y = 4, it indicates thafV,,| > K and|V,};..| < K.
Thus, Pi(n) = P(IV,| > K A V0] < K), i.e., Pi(n)
P(|Veicay. afo)] = KA Vap. 2] < K).

Next, we computé’;(n), for0 <i < d — 1. In general, IDs
of nodes inl” are drawn fromb® — 1 possible values. That s, for
anyy, y € V, y.ID could be any value from O &' — 1 except
z.ID.

If i = 0, then|V,q| < K, i.e., there is less thai' nodes
in V with suffix 2[0]. Suppose there arke nodes inV with
suffix z[0], 0 < h < K. Then, IDs of thesé nodes are drawn
fromb?—! — 1 possible values (all possible IDs with suffif)]
exceptz.ID); while IDs of the othem — h nodes are drawn
fromb? — b?~! valuesy = |V|. Therefore,

SR oM =1, /)00 - b n - )
C(b?—1,n)

Po (TL) =

— 1, then|Vi—1). 20) > K| and|Vyp. 2p0] <
K. That is, there are onl nodes inV with suffix z[]...2[0],

where0 < h < K, however, there aré! nodes inV with
suffix z[i — 1]...z[0], K < H < n. Then, IDs of theh nodes

with suffix z[i]...z[0] are drawn fromb?—i~! — 1 possible values
(any ID with suffix z[i]...z[0] exceptz.ID), H — h IDs are
drawn from(b—1)b4~"~! possible values (any ID that has suffix
x[i — 1]...x[0] but does not have suffix[:]...z[0]), andn — H
IDs are drawn fromb?® — b%—? possible values (any ID that does
not have suffixc[i — 1]...z[0]). Let B = (b — 1)b?~*~1. Hence,
forl<i<d-—1,P(n)is

min(n,B —3 .
D) o(B, k)OO — b7 0 — k — )

C(b* —1,n)

PO el S WD

15The messages in sets 5 and 6 can be piggy-backed by probisggessto further save
communication costs.



Finally, fori = d — 1, since each ID is unique, I D is differ-
entthan the ID of any node . Therefore|V,4_1;.. 20| = 0,
and thug V41, 20| < K is always true for{ > 1.

Py_1(n) P(IVera—1)..e0)] < K A Vipa—a)...cf0| = K)
= P(|Viia-2..cl0 = K)
= 1= P(|Vyja—g..2/0)| < K)
= 1= P([Vap| <K
\/(|Vw[0]| > KA |Vm[1]w[0]| < K) V...
V(| Vaida=3)..xf0)]] = K A Vaja—2)...z0] < K))
d—2
= 1-> Pi(n)
1=0
Therefore P;(n) is as defined in Definition 6.%,€ [b]. |

Theorem 4 Suppose a set of nodé§, = {x1,...xm}, m > 1,

join a K'-consistent network, A'(V)), |V| = n. Then, for any 0 tomin
x, x € W, an upper bound of the expected number of CpRstMﬁ%m bd

and JoinWaitMsg sent hyis Zf;ol (t+2)Pi(n+m—1).

Proof: In statuscopying = send<CP to nodegy, g1,..., untilx

receives £PRIlyfrom nodey;, such that: finds that there exists
an attach-level for itself ig;.table. Note thatg;, shares at least

one more digit withz thang;,_1, forall1 < ¢+ < 4. Then,x
sendsJWto g;, git1, ..., Untilz receives a positiv@WRIlyfrom
nodeg,. Again, g, shares at least one more digit withthan
g1 forall i +1 < ¢/ < h. Hence, the number &P z has
sentisi + 1, and the number ofWzx has sentig — i + 1. The
total number ofCP andJWz has sent ig + 2.

Let (V. UW’)Netify — v, whereW’ = W — {z}. Assume
|w| = 4. Then, in the worst case, sendsCP to nodes{go, g1,
..»gi },» Whereg,, shares exactly digits withz forall 1 <’ <1
(thatis,g; only shares one more digit withthang; ). Then,
x send<CPto nodes|g;, g;+1, -...g; }, whereg; shares’ digits
with z forall i + 1 < i’ < h. Since(V U W’)Netify = v/, and

|w| = j, whenz sends aJWto g;, which is a node that sharesProof:

Jj digits with it, there must exist an attch-level in the tableyp
for x. According to the above analysis, the total numbe€Bf
andJWz has sent ig + 2, assumindw| = j.

u, = A(x). Then,z sends aWto u,, however, sendsINto

any other node i/, (by Proposition B.1, for any node iw,

other thanu,, = will send aJN). Hence, the number afN «

sendsi4V,| — 1. LetY = |w|andZ = |V, |. By Lemma C.1,
the probability thal” equalsi is P;(n), given|V| =n .

U
—

(E(Z]Y =i))Pi(n)

E(Z) = E(E(Z]Y)) =, 1)

-
Il
=)

We next deriveE(Z|Y = i)). Y = i indicates thal/, =
Vili—1]..xj0)- SinceVNev =V, we know|V,| > K, that
is, [Vaji—1]..2j0)) = K. Therefore, among the nodes ¥y at
least K of them have suffixc[i — 1]...z[0] in their IDs. Let
X be the expected number of nodes with suffix — 1]...x[0]
among the remaining — K nodes inV. Thus,E(Z|Y =1i) =
K + E(X). Suppose there agenodes among the — K nodes
that have suffixc[i — 1]...«[0]. Thenj could be any value from
(n— K,b%"" — K —1). IDs of thesej nodes are drawn
—i_ K —1 possible values (there &l all possible IDs
with suffix z[i — 1]...2[0], andK of them are already assigned to
K nodes inV, and one is assigned 9. IDs of the remaining
n — K — j nodes are drawn frori¥ — b?~* possible values.
Hence,E(X) is

. d—1 . .
ST opd i - K~ 1,5)C (b — b — K — )
Ci—K—-1,n-K)

Thatis,E(Z]Y =i) = Q;(n— K).** PlugE(Z|Y = i) into
Equation 1, we geE(Z). The expected number dN z sends
duringits joinisE(Z) — 1. |

Theorem 6 Suppose a set of nodés, = {z1,...xm}, m > 1,
join a K-consistent networkV, N'(V)), |V| = n. Then for
any noder, x € W, an upper bound of the expected number of
JoinNotiMsg sent by is Zf;ol Qin+m—1—-K)P;(n).

Consider any node, x € W. LetJ be the number
of JN sent byz when it joins with other nodes concurrently.
SupposeV/, Nty = V. LetY = |w|. By Lemma C.1, the
probability thatY” equals, i € [d], is P;(n), given|V| = n. No

LetY = |w|. Similarly to the proof of Lemma C.1, it can matter how many nodes join concurrently withz. att_level >

be shown that the probability th&t equals;j is P;(n +m — 1)
([VUW’'| =n+m —1). Let Z be the total number aEP and
JWz has sent. Therefore, we have

E(Z) = E(E(Z|Y))
d—1
= Y (BQZIY =i))Pi(n+m—1)
=0
d—1
= > (i+2)P(n+m-1)
=0

Y. Moreover,z only sendsIN to a subset of nhodes whose IDs
have suffixc[k — 1]...x[0], excluding noder itself, wherek =
x.att_level. These nodes are a subset of nodes with suffix
Let Z = |(VUW), — {z}|. Hence,J < Z, which is true
for every joining node. Therefor&(J) < E(Z). To compute
E(Z), we have

d—1
E(Z) = E(E(Z]Y)) = ) (E(Z]Y =1))Fi(n)
i=0
Since VNetify =V, we know |V,,| > K, that is,

|Vali—1]..z[0)] > K. Therefore, among the nodeslif at least

Theorem 5 Suppose node joins a K-consistent network K of them have suffixc[i — 1]...2[0] in their IDs. LetX be
(V,N(V)), [V| = n. Then, the expected number of JoinNo-

tiMsg sent byz is 30" Qi(n — K)P;(n) — 1.

Proof: SupposeV Nty = V,. Thenz needs to notify all
the nodes inl,,. By Proposition B.5, there exists a nodg,
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B p? > n — K, thenE(X) ~ ("b’if(). That is, the ID space can be consider
asb’ bins, withxz[i — 1]...z[0] being one of them. Each bin has a capacity limitation of

b — b¢~%. Assigningn — K IDs randomly can be considered as throwing- K balls
into the bins randomly. Thus, the expected number of baliadginto bin z[i — 1]...z[0]

is % if none of the bins were overflowed in the process.



the expected number of nodes with suffix — 1]...z[0] in the Let X = (W, 20/, the expect number of nodes I
remainingn — K nodes inV, plus the expected number ofwhose IDs have suffix[i — 1]...z[0]. We haveX = .
nodes with suffixz[i — 1]...z[0] in W — {x}. Thatis, X is Hence,E(X|Y = i) = 34 (d — i — 2+ 1). Summarize the
the expected number of nodes with suffif — 1]...2[0] among results, we get
n — K +m — 1 nodes. Similar to the proof of Theorem 5, we

haveE(ZlY = i) = K+ E(X) = Qin+m — 1 — K).

d—1
PlugE(Z|Y = i) to the above equation, we g&tZ), which is _ D
an upper bound of?(J), the expected number dN sent by a E(S) = H)(E(DD/ =)Pi(n)
joining node. [ | i1
Next, we present an upper bound of the expected number of < Y (BE(ZIY =i))Pi(n)

messages in set 8NandSNRIy We say that a®Nis initialized
by z, if it is in the form of SN, y), wherey could be any node
other thanz. Such a message is initially sent out:byo inform
the receiver about the existenceyofit may be forwarded a few
times before a reply is sent backitoFor examplez may send

a SN, y) to u1, u; forwards the same messagewtsy andus
sends a reply ta: without further forwarding the message. In
this example, there areSN(z, y) and oneSNRIy(, y) transmit- ]
ted in the network’
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(B((K =1+ X)[Y =i))Pi(n)

T

= (K_1+b%)(d_i_2)a(n)

~
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o

Corollary C.1 Suppose a set of noded/ = {z1,...,xm}, To get the expected number of messages in sétSysNo-
m > 2, join a consistent networkl, N'(V)). Then for any tiMsg, supposd/N°'» = V,,. Then according to the join pro-
nodex, z € W, an upper bound of the expected number of mewcol, only a node with suffix may fill z into its neighbor table.
sages in the form of Sh(y) or SNRIy(:, y) sentduring {,¢¢]  (If a node’s ID does not share any digits with then clearly it
isK —14+ Zj:—ol(bi% + K —1)(d —i — 1)Pi(n), wheren = will not choosezr as a neighbor; if a node;, shares a suffix
[V]. W' with z, || < |w|, thenN,(k', z[k']).size = K beforex
joins, thusz is not stored iny’s table, either.) Letk denote the
number of reverse-neighborsef At the end of its join, to each
reverse-neighbor; needs to send BnSysNotiMsg Hence, the
(tjptal number of messages in set FisSince the ID of a reverse-
neighbor ofr has suffixv, the number of nodes i U W with

suffix w is an upper-bound aR. As defined in Theorem 6, this

upper-bound iif;ol Qi(n+m—1—K)P;(n).

The number of messages in the last set, set 8)(i#h), be-
causer needs to inform each neighbor thabecomes a reverse-
neighbor of it, by sending BN SomeRNmay be replied (when
the status of the receiver kept hyis not consistent with the
status of the receiver). Actually, sorN can be piggy-backed
with some other messages, suchJ&#¢Rlyand JNRIly. Hence,
the number of messages in set 6 that is sent by a joining node is
at most2db.

Proof: Consider any node, z € W. Supposé/ Nt =V,
|w| = i, andj = z.att_level, thenj > i. Let D = {y, SN, v)
is sent out byr during [, ¢¢]}. (Recall thatt® is the timex
starts joining, and, is the timex becomes an S-node, as define
in Section 4.1.) Then, for a particulgry € D, SN, y) is only
sent out byr once. Anyy, y € D, must share suffix[j]...«[0]
with z. Thus,D < |(V U W)z[j]...z[0]| <|(VU W)m[i]___z[()”.
LetY = |w|. Thenjw| =i indicatesY” = i. Let.S be the total
number of SN, y) or SNRIyf, y) sent during the join process
ofx,y #x. LetZ = |(V UW)gp...2[0- Then the number of
message in the form &N, y) initiated by is at mostZ — 1
(z will not send ouSN(, x)). Since|V, ;.. z[0]| < K, we know
Z < (K —1) 4 |Wypy...z[0)|. For eaciSNsent out by, it can
be forwarded at most — i — 2 times (which includes the first
time that it is sent out by). This is because for eaghy € D,
that the first receiver of the message shares at feast digits
with y (both IDs ofy and the first receiver must have suffip +
1]...y[0]), the last receiver of the message shares at mest
digits withy, and each receiver along the path shares at least one
more digit withy than the previous receiver does. Lastly, for
eachSN(, y) sent out byz, there is one corresponding reply,
SNRIyf, y), from the last receiver of thBN¢, v).

"\We observe from simulations that it is rarely the case thatdersends out a8N
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