
Neighbor Table Construction and Update for Resilient
Hypercube Routing in P2P Networks

Huaiyu Liu and Simon S. Lam

TR-07-31 July 12, 2007

Abstract—Several proposed peer-to-peer networks use hypercube rout-
ing for scalability. Consistency of neighbor tables in hypercube routing
guarantees the existence of a path from any source node to anydestination
node. Such consistency, however, can be broken by node failures. To im-
prove the robustness of hypercube routing, we first generalize the concept
of consistencyto K-consistency, for K ≥ 1, which is shown to provide
at leastK disjoint paths for any source-destination pair with a probability
close to 1. Our next objective is to design and specify a new join proto-
col together with a proof that it generatesK-consistent neighbor tables for
an arbitrary number of concurrent joins. We first present a conceptual
foundation, called C-set trees, for protocol design and reasoning aboutK-
consistency. We then present a detailed specification of a join protocol, and
a rigorous proof of correctness for the join protocol. The crux of our proof
is based upon induction on C-set trees. Both theoretical analysis and sim-
ulation results show that the join protocol is scalable to a large number of
network nodes.

Keywords—Peer-to-peer networks, consistency,K-consistency, hyper-
cube routing, join protocol, protocol design and verification, C-set tree

1 Introduction

Structured peer-to-peer (p2p) networks are being investigated
as a platform for building large-scale distributed systems[11,
12, 13, 14, 16]. The primary function of these networks is ob-
ject location, That is, mapping an object ID to a node in the
network. For efficient routing, each node maintainsO(log n)
pointers to other nodes, called neighbor pointers, wheren is
the number of network nodes. To locate an object, the average
number of application-level hops required isO(log n).1 Each
node stores neighbor pointers in a table, called itsneighbor ta-
ble. The neighbor tables constitute the routing infrastructure of
a p2p network.

An important problem in p2p networks is the design and spec-
ification of protocols together with a proof that they construct
and maintainconsistentneighbor tables for network nodes that
may join, leave, and fail concurrently. Of interest in this paper
is the hypercube routing scheme used in several proposed p2p
systems [11, 13, 16, 7]. Based on the hypercube routing scheme
and additional distributed directory information, it is guaranteed
to locate a copy of an object if it exists, and the expected cost
of accessing is asymptotically optimal, given that the neighbor
tables in the network areconsistent(definition in Section 3) and
optimal(that is, they store nearest neighbors) [11].

Huaiyu Liu is with Communication Technology Lab, Intel Corporation, Hillsboro, OR
97124 USA (E-mail: huaiyu.liu@intel.com). Simon S. Lam is with the Department of
Computer Sciences, The University of Texas at Austin, Austin, TX 78712-0233 USA (E-
mail: lam@cs.utexas.edu, Fax: 1-512-471-8885). Researchsponsored by NSF grants no.
ANI-0319168 and CNS-0434515. This work is a major extensionof our paper presented
in [9].

1This is true except for CAN [12], in which routing takesO(rn1/r) hops andr is the
number of dimensions used in the system.

To implement the hypercube routing scheme in a dynamic,
distributed environment, the following problems must be ad-
dressed:2

1. Given a set of nodes, a join protocol is needed for the nodes
to initialize their neighbor tables such that the tables are
consistent. (Hereafter, a “consistent network” means a set
of nodes with consistent neighbor tables.)

2. Protocols are needed for nodes to join and leave a consis-
tent network such that the neighbor tables are still consis-
tent after a set of joins and leaves. When a node fails, a
recovery protocol is needed to re-establish consistency of
neighbor tables.

3. A protocol is needed for nodes to optimize their neighbor
tables.

Solving all of these problems is beyond the scope of a single
paper. In this paper, we focus on designing a join protocol for
the hypercube routing scheme to generate neighbor tables that
are not only consistent, but also resilient to node failures. Our
solution to the failure recovery problem for hypercube routing
networks is presented in companion papers [5, 6].

Neighbor table consistency guarantees the existence of a path
from any source node to any destination node in the network.
Such consistency however can be broken by the failure of a
single node. To provide resilience to node failures and facil-
itate the design of failure recovery protocols, we introduce a
new concept,K-consistency, K ≥ 1, which generalizes consis-
tency (1-consistency is the same as consistency).3 Informally,
the neighbor tables of a network areK-consistent if and only
if each table entry in every node storesmin(K, H) neighbors,
whereH is the number of nodes in the network that have the
“required suffix” (definition in Section 2) of the table entry. By
providing redundancy in neighbor tables,K-consistency has the
following advantages:

• K-consistency implies consistency andK-consistent
neighbor tables provide “static resilience” [2]. More
specifically, we show in Section 3 that aK-consistent net-
work provides at leastK disjoint paths from any node to
any other node with probability approaching 1 asn in-
creases (e.g., forn = 300 and K = 3, the probability
is lower bounded by 0.99).

• K-consistency facilitates design of failure recovery proto-
col and supports rapid failure recovery. In the companion

2For simplicity, we will saynetwork instead ofhypercube routing networkand table
instead ofneighbor tablewhenever there is no ambiguity.

3In [9], we addressed 1-consistency and designed a join protocol that generates consis-
tent neighbor tables. The major extension in this paper is generalization of 1-consistency to
K-consistency.

1

papers [5, 6], we presented a failure recovery protocol that
only uses local information, and integrated it with our join
protocol presented in this paper. Through extensive simu-
lation experiments, we found that forK ≥ 2, all ”recov-
erable holes” in neighbor tables due to failed nodes were
repaired by the failure recovery protocol ineveryexperi-
ment. It was also shown in [5, 6] that the integrated proto-
cols are able to maintain consistent neighbor tables under
continuous and frequent node joins and leaves (churn).

• K-consistency benefits neighbor table optimization.
In [10], we found that with the same set of optimization
heuristics, a largerK value results in neighbor tables that
provide shorter routes.

To design a join protocol that generatesK-consistent neigh-
bor tables for an arbitrary number of concurrent joins, a ma-
jor difficulty is as follows. For every table entry in a joining
node’s table, the node needs to discovermin(H, K) neighbors
without any global knowledge, whereH is the total number of
nodes that have the required suffix of the entry andH could be
any value equal to or greater than 0. (One approach to discover
enough neighbors for an entry is through broadcasting, which is
obviously not scalable.) To solve this problem, we first present
a conceptual foundation, calledC-set trees, for protocol design
and reasoning aboutK-consistency. Second, based on the ob-
servation that in aK-consistent network, it is possible for a node
to store the same neighbor at multiple levels in its neighborta-
ble, we introduce a concept calledattach level. It is a constraint
on the lowest level that a joining node can be stored in a table
and is important in the protocol for correctness.

In addition to the join protocol design, we also construct a
rigorous proof of correctness for the join protocol (assuming
reliable message delivery and no node failure or leave). The
crux of our proof is based upon induction on C-set trees.

Contributions of this paper are the following:

• We defineK-consistencyfor the hypercube routing scheme
and demonstrate benefits ofK-consistency via both theo-
retical analysis and simulation experiments.

• We analyze the goal of a join protocol for the hypercube
routing scheme and present the detailed specification of a
new join protocol. The join protocol can also be used for
network initialization.

• We present a conceptual foundation,C-set trees, for pro-
tocol design and reasoning aboutK-consistency. By in-
duction on C-set trees, we present a rigorous proof that the
join protocol generatesK-consistent neighbor tables foran
arbitrary number of concurrent joins.

• We analyze communication costs of the join protocol as a
function ofK as well as of network size, and show that the
protocol is scalable to a large number of network nodes.

Note that since we are only concerned with consistency in
this paper, the assumption of optimal neighbor tables is relaxed
when we design our join protocol. Interested readers can re-
fer to [1, 3, 10] for methods of exploiting node proximity and
optimizing neighbor tables.

The rest of this paper is organized as follows. In Section 2, we
briefly review the hypercube routing scheme. In Section 3, we
present our definition ofK-consistency, and discuss advantages

of K-consistency through both theoretical analysis and simula-
tion experiments. In Section 4, our conceptual foundation for
protocol design is presented and illustrated through examples.
In Section 5, a detailed specification of our join protocol ispre-
sented. In Section 6, we present an outline of our correctness
proof for the join protocol and analyze protocol performance.
(Detailed proofs are presented in the Appendix.) Lastly, we
show how to use the join protocol for network initializationin
Section 7, discuss related work in Section 8, and conclude in
Section 9.

2 Background

In this section, we briefly review the hypercube routing scheme
used in PRR [11], Pastry [13], and Tapestry [16]. Consider a set
of nodes. Each node has a unique ID, which is a fixed-length
random binary string. A node’s ID is represented byd digits of
baseb, e.g., a 160-bit ID can be represented by 40 Hex digits
(d = 40, b = 16). Hereafter, we will usex.ID to denote the ID
of nodex, x[i] theith digit in x.ID , andx[i − 1]...x[0] a suffix
of x.ID . We count digits in an ID from right to left, with the
0th digit being therightmostdigit. See Table 1 for notation used
throughout this paper.4 Also, we will use “network” instead of
“hypercube routing network” for brevity.

Notation Definition
〈V,N (V)〉 a hypercube network:V is the set of nodes in the network,

N (V) is the set of neighbor tables
[ℓ] the set{0, ...,ℓ − 1}, ℓ is a positive integer
d the number of digits in a node’s ID
b the base of each digit
x[i] theith digit in x.ID

x[i − 1]...x[0] suffix of x.ID; denotes empty string ifi = 0
x.table the neighbor table of nodex
j · ω digit j concatenated with suffixω
|ω| the number of digits in suffixω (length of suffixω)
Nx(i, j) the set of nodes in(i, j)-entry ofx.table, also referred

as the(i, j)-neighborsof nodex

Nx(i, j).size the number of nodes inNx(i, j)
Nx(i, j).first the first node inNx(i, j)
csuf (ω1 , ω2) the longest common suffix ofω1 andω2

Vli...l0
asuffix setof V , which includes all of the nodes inV that has
an ID with suffixli...l0; denotesV if li...l0 is the empty string

|V | the number of nodes in setV

Table 1: Notation

Given a message with destination node ID,z.ID, the objec-
tive of each step in hypercube routing is to forward the message
from its current node, sayx, to a next node, sayy, such that the
suffix match betweeny.ID andz.ID is at least one digit longer
than the match betweenx.ID andz.ID .5 If such a path exists,
the destination is reached inO(logb n) steps on the average and
d steps in the worst case, wheren is the number of network
nodes. Figure 1 shows an example path for routing from source
node 21233 to destination node 03231 (b = 4, d = 5). Note that
the ID of each intermediate node in the path matches 03231 by
at least one more suffix digit than its predecessor.

To implement hypercube routing, each node maintains a
neighbor tablethat hasd levels with b entries at each level.

4In our notation, we useVli...l0
to denote a suffix set ofV . Similarly, Wli...l0

is
a suffix set ofW and(V ∪ W)li...l0

is a suffix set ofV ∪ W . However, we reserve
Cli...l0

to denote a C-set, as defined in Section 4.
5In this paper, we follow PRR [11] and use suffix matching, whereas other systems use

prefix matching. The choice is arbitrary and conceptually insignificant.

2

21233 0323133121 13331 30231

Figure 1: An example hypercube routing path

Each table entry stores link information to nodes whose IDs
have the entry’s required suffix, defined as follows. Consider
the table in nodex. The required suffix for entry j at level
i, j ∈ [b], i ∈ [d], referred to as the (i, j)-entry of x.table, is
j · x[i − 1]...x[0]. Any node whose ID has this required suf-
fix is said to be aqualified node for the (i, j)-entry ofx.table.
Only qualified nodes for a table entry can be stored in the en-
try. Note that nodex has the required suffix for each (i, x[i])-
entry, i ∈ [d], of its own table. For routing efficiency, we fill
each node’s table such thatNx(i, x[i]).first = x for all x ∈ V ,
i ∈ [d]. Figure 2 shows an example neighbor table. The string
to the right of each entry is the required suffix for that entry.
An empty entry indicates that there does not exist a node in the
network whose ID has the entry’s required suffix.

Nodes stored in the (i, j)-entry ofx.table are called the(i, j)-
neighborsof x, denoted byNx(i, j). Ideally, these neighbors
are chosen from qualified nodes for the entry according to some
proximity criterion [11]. Furthermore, nodex is said to be a
reverse(i, j)-neighborof nodey if y is an (i, j)-neighbor ofx.
Each node also keeps track of its reverse-neighbors. The link
information for each neighbor stored in a table entry consists
of the neighbor’s ID and IP address. For clarity, IP addresses
are not shown in Figure 2. Hereafter, we will use “neighbor”
or “node” instead of “node’s ID and IP address” whenever the
meaning is clear from context.

0

1

2

3

033

133

233

333

03

13

23

33

01100

33121

12232

21233

22303

13113

00123

21233

31033

21233

0233

1233

2233

3233

10233

21233

03233

01233

11233

31233

21233

11233

21233

level 4 level 3 level 2 level 1 level 0

03133

Neighbor table of node 21233 (b=4, d=5)

Figure 2: An example neighbor table

3 K-consistent Networks

Constructing and maintaining consistent neighbor tables is an
important design objective for structured p2p networks. Wenext
present a rigorous definition of consistency and then introduce
a stronger property,K-consistency, for the hypercube routing
scheme.

Definition 3.1 Consider a network〈V,N (V)〉. The network,
or N (V), is consistentif for any nodex, x ∈ V , each entry in
its table satisfies the following conditions:

(a) If Vj·x[i−1]...x[0] 6= ∅, i ∈ [d], j ∈ [b], then there exists a
nodey, y ∈ Vj·x[i−1]...x[0], such thaty ∈ Nx(i, j).

(b) If Vj·x[i−1]...x[0] = ∅, i ∈ [d], j ∈ [b], thenNx(i, j) = ∅.

Part (a) in the above definition states that for each table en-
try, if there exists at least one node in the network that has the
required suffix of the entry, then the entry must not be empty
and it is filled with at least one node having the required suffix.

Part (b) in the above definition states that if the network does
not have any node with the required suffix of a particular table
entry, then that table entry must be empty.

Definition 3.2 Consider two nodes,x and y, in network
〈V,N (V)〉. If there exists a neighbor sequence (apath),
(u0, ..., uk), k ≤ d, such thatu0 is x, uk is y, and ui+1 ∈
Nui(i, y[i]), i ∈ [k], theny is reachablefromx, or x canreach
y, in k hops.6

Lemma 3.1 In a network〈V,N (V)〉, any node is reachable
from any other node if condition (a) of Definition 3.1 is satis-
fied by the network.

Lemma 3.1 shows that neighbor table consistency guarantees
the existence of a path from any source node to any destination
node in the network. Such consistency however can be broken
by the failure of a single node. To increase robustness and facil-
itate the design of failure recovery protocols, our original goal
was to design a new join protocol that constructs aK-connected
hypercube routing network, that is, a network in which neigh-
bor tables provide at leastK disjoint paths (K > 1) from any
source node to any destination node. However, we quickly real-
ized that for a network with a small number of nodes and some
specific realization of node IDs, it is possible that aK-connected
network does not exist. (Recall that node IDs are randomly gen-
erated.) This is because in hypercube routing, only “qualified”
nodes whose IDs have the suffix required by a table entry can
be stored in the table entry. Instead, we define aK-consistent
(hypercube routing) network as follows:

Definition 3.3 Consider a network〈V,N (V)〉. The network,
or N (V), satisfiesK-consistency, K ≥ 1, if for any nodex,
x ∈ V , each entry in its table satisfies the following conditions:

(a) If Vj·x[i−1]...x[0] 6= ∅, then Nx(i, j).size =
min(K, |Vj·x[i−1]...x[0]|), i ∈ [d], j ∈ [b], where
Nx(i, j) ⊆ Vj·x[i−1]...x[0].

(b) If Vj·x[i−1]...x[0] = ∅, i ∈ [d], j ∈ [b], thenNx(i, j) = ∅.

Definition 3.3 states that in aK-consistent network withn
nodes, for every node in the network, each of its table entry is
filled with K neighbors if there areK or more qualified nodes in
the network for that entry; otherwise, all qualified nodes (if any)
are stored in the entry. To study the resilience ofK-consistent
networks in the presence of failures, we first conducted sim-
ulation experiments as follows. We began by constructing a
K-consistent network ofn nodes following Definition 3.3, then
randomly pickedf nodes and let them fail. Next, we counted the
number of disconnected source-destination pairs in the network.
By a disconnected source-destination pair, (x, y), we mean that
bothx andy have not failed butx cannot reachy. Each simu-
lation is identified by a combination ofn, b, d, K andf values.
For each combination, we ran five simulations and calculated
the average value of the percentage of source-destination pairs
that became disconnected.

Figure 3 shows some simulation results for percentages of
disconnected source-destination pairs after node failures, for
different number of failures in a network that initially had4,000
nodes. First, note that the results are insensitive to the value of

6In this paper,k andK are used as different variables.

3

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800

P
e
rc

e
n
ta

g
e
 o

f
d
is

co
n
n
e
ct

e
d
 p

a
ir
s

Number of failed nodes in the network (f)

d=16, K=1
d=64, K=1
d=16, K=2
d=64, K=2
d=16, K=3
d=64, K=3

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800

P
e
rc

e
n
ta

g
e
 o

f
d
is

co
n
n
e
ct

e
d
 p

a
ir
s

Number of failed nodes in the network (f)

d=8, K=1
d=40, K=1
d=8, K=2

d=40, K=2
d=8, K=3

d=40, K=3

(a) b=4, n=4000 (b) b=16, n=4000

Figure 3: Percentage of disconnected source-destination pairs
for differentK values

d. In each plot, for eachK value, the two curves for two differ-
entd values are almost the same. Second, whenK is increased
from 1 to 2, the percentage of disconnected pairs decreases dra-
matically. ForK = 3, even after 20% of the nodes have failed,
the number of disconnected source-destination pairs is less than
1% of all source-destination pairs. The results also show that in-
creasing the value ofb from 4 to 16 leads to a significant reduc-
tion in the percentage of disconnected source-destinationpairs.
This is because with a largerb, more neighbors are stored in a
table (the number is proportional toKb logb n). As expected,
the simulation results show that with more neighbors storedin
each entry, a network is more resilience in the presence of fail-
ures. (In fact, it is also easier for the network to recover from
failures and maintain consistency of neighbor tables, as shown
in [5].)

It is easy to see thatK-consistency is a stronger property than
consistency. In particular, aK-consistent network,K ≥ 1, is a
consistent network. In the balance of this paper, for each node
x, we chooseNx(i, x[i]).f irst to bex itself, i ∈ [d], for effi-
cient routing. Multiple neighbors stored in each table entry pro-
vide alternative paths from a source node to a destination node,
and some of them are disjoint. More precisely, two paths from
source nodex to destination nodey aredisjoint if and only if
any node in each path that is neitherx nory does not appear in
the other path. Further, a set of paths fromx to y aredisjoint if
and only if every pair of paths in the set are disjoint. For exam-
ple, leta, b, andc denote nodes. Then the following paths are
disjoint: x → y, x → a → y, andx → b → c → y.7

Theorem 1 In a K-consistent network,〈V,N (V)〉, where
|V | = n and n ≥ K, for any two nodes,x and y, x ∈
V , y ∈ V and x 6= y, a lower bound of the probabil-
ity that there exist at leastK disjoint paths fromx to y is

(1 − K−1
n−1)

∑n

i=K
C(bd−1,i)C(bd−bd−1,n−i)

C(bd,n)
, whereC(X, Y) is

the number ofY -combinations ofX objects.

To prove Theorem 1, we first present two lemmas. Proofs of
these lemmas are presented in Appendix A. Lemma 3.2 says
that in aK-consistent network, if destination nodey is not a
neighbor stored in the table of nodex, then at leastK disjoint
paths exist fromx to y. However, if destinationy is stored in
x.table, then a tight lower bound of the number of disjoint paths
from x to y depends upon whethery is stored inNx(0, x[0]).
Lemma 3.3 summarizes all the cases.

7Note that nodes here are user machines in a p2p network. Thus,it is possible for
two disjoint paths in aK-consistent (hypercube routing) network to share a router in the
underlying Internet. This would not be a concern since routers are generally much more
resilient than user machines.

Lemma 3.2 In aK-consistent network,〈V,N (V)〉, for any two
nodes,x andy, x ∈ V , y ∈ V andx 6= y, if y 6∈ x.table, then
there exist at leastK disjoint paths fromx to y.

Lemma 3.3 In aK-consistent network,〈V,N (V)〉, for any two
nodes,x andy, x ∈ V , y ∈ V andx 6= y, if y 6∈ Nx(0, x[0]),
then there exist at leastmin(K, |Vy[0]|) disjoint paths fromx to
y; if y ∈ Nx(0, x[0]), then there exist at leastmin(K, |Vy[0]|)−1
disjoint paths fromx to y.

Proof of Theorem 1: Let A be the event that there exist at
leastK disjoint paths fromx to y, andB be the event thaty 6∈
Nx(0, x[0]) (which includesy 6∈ x.table andy ∈ x.table ∧ y 6∈
Nx(0, x[0])). Note that ify ∈ Nx(0, x[0]), then it must be that
y[0] = x[0]. For any eventX , let P (X) denote the probability
of X . We first deriveP (A ∧ B).

We knowP (A∧B) = P (A|B)P (B). P (A|B) is the proba-
bility that there exist at leastK disjoint paths fromx to y, given
y 6∈ Nx(0, x[0]). By Lemma 3.3, ify 6∈ Nx(0, x[0]), then
there exist at leastmin(K, |Vy[0]|) disjoint paths fromx to y.
Thus,P (A|B) = P (min(K, |Vy[0]|) = K) = P (|Vy[0]| ≥ K).
|Vy[0]| ≥ K means that there exist at leastK nodes inV with
suffix y[0].

P (A|B) = P (|Vy[0]| ≥ K) =

n
X

i=K

C(bd−1, i)C(bd − bd−1, n − i)

C(bd, n)

To deriveP (B), let K ′ be the number of neighbors stored in
Nx(0, x[0]) other thanx itself. Since there are at mostK nodes
stored inNx(0, x[0]) (by Definition 3.3) and one of them isx
(Nx(0, x[0]).first = x), we haveK ′ ≤ K − 1.

P (B) = 1 − P (y ∈ Nx(0, x[0])) ≥ 1 −
K − 1

n − 1

Combining the above results, we have

P (A) ≥ P (A ∧ B)

= P (A|B)P (B)

= P (B)

n
X

i=K

C(bd−1, i)C(bd − bd−1, n − i)

C(bd, n)

≥ (1 −
K − 1

n − 1
)

n
X

i=K

C(bd−1, i)C(bd − bd−1, n − i)

C(bd, n)

Figure 4(a) plots the lower bound of the probability that there
exist at leastK disjoint paths for every source-destination pair
in a K-consistent network, whereb = 16 andd = 40.8 Ob-
serve that whenn increases, the lower bound approaches 1. For
example, the lower bound is higher than 0.99 forn = 300 and
K = 3.

We complement the above analysis with simulation exper-
iments. A set of simulations were conducted to evaluate the
number of disjoint paths for each source-destination pair in K-
consistent networks with different values ofK, b, d andn. In
each simulation, each node has a randomly generated ID, and
the neighbor table of each node was constructed according to
Definition 3.3, withNx(i, x[i]).first = x for all x ∈ V , i ∈ [d].
Then for each source-destination pair, the number of disjoint
paths from source to destination was counted. For each com-
bination ofb, d, n andK values, we ran five simulations and

8b = 16 andd = 40 are commonly used values. Results for lower bounds of the
probability with other values ofb andd show the same trend.

4

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

150 200 250 300 350 400 450 500

L
o
w

e
r

b
o
u
n
d
 o

f
p
ro

b
a
b
ili

ty

Number of nodes in the network (n)

K=2
K=3
K=4
K=5

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

150 200 250 300 350 400 450 500

F
ra

ct
io

n

Number of nodes in the network (n)

K=2
K=3
K=4
K=5

(a) (b)

Figure 4: (a) Lower bound of the probability that there existat
leastK disjoint paths for each source-destination pair, (b) Sim-
ulation results on the fraction of source-destination pairs with at
leastK disjoint paths.b = 16, d = 40

obtained the average value of the ratio of the number of source-
destination pairs that have at leastK disjoint paths to the total
number of source-destination pairs. Figure 4(b) presents some
of our simulation results. Observe that the results in Figure 4(a)
are much closer to 1 than the corresponding lower bound results
in Figure 4(a), as expected. For example, the fraction of source-
destination pairs with at leastK disjoint paths is greater than
0.996 forn = 300 andK = 3.

4 Conceptual Foundation

In this section, we first present definitions and assumptionsto
be used in our protocol design and proofs. Then we analyze
the goals and tasks for a join protocol to produceK-consistent
neighbor tables for the hypercube routing scheme, and present
the concept ofC-set trees.

4.1 Definitions and assumptions

Definition 4.1 Let tbx be the time when nodex begins joining
a network, andtex be the time whenx becomes an S-node (to
be defined in Section 5). The period fromtbx to tex, denoted by
[tbx, tex], is thejoining period (or join duration) ofx.

Definition 4.2 Suppose a set of nodes,W = {x1,...,xm}, m ≥
2, join a network. If the joining period of each node does not
overlap with that of any other, then the joins aresequential.

Definition 4.3 Suppose a set of nodes,W = {x1,...,xm}, m ≥
2, join a network. Lettb = min(tbx1

, ..., tbxm
) and te =

max(tex1
, ..., texm

). If for each nodex, x ∈ W , there exists a
nodey, y ∈ W andy 6= x, such that their joining periods over-
lap, and there does not exist a sub-interval of[tb,te] that does
not overlap with the joining period of any node inW , then the
joins areconcurrent.

Definition 4.4 Suppose a set of nodes,W = {x1,...,xm}, m ≥
1, join a K-consistent network〈V,N (V)〉. For any nodex,
x ∈ W , if |Vx[k−1]...x[0]| ≥ K and |Vx[k]...x[0]| < K, k ∈ [d],
thenV x[k−1]...x[0] is thenotification set of x regardingV (or
noti-set, in short).

Intuitively, V Notify
x is the set of nodes inV that need to

update their neighbor tables to satisfyK-consistency con-
ditions after the joins, ifx were the only node that joins
〈V,N (V)〉. For instance, supposex = 10261 (b = 8, d =

5), and V = {13061, 31701, 11261, 10353}. If K = 1,
then V Notify

x = V261 = {11261} (V261 = {11261} and
V0261 = ∅, thus |V261| ≥ 1 and and|V0261| < 1, then by
Definition 4.4,V Notify

x = V261); if K = 2, thenV Notify
x =

V61 = {11261, 13061}; if K = 3, then V Notify
x = V1 =

{11261, 13061, 31701}.

Definition 4.5 Suppose a set of nodes,W = {x1,...,xm}, m ≥
2, join a network〈V,N (V)〉. The joins areindependent if for
any pair of nodesx andy, x ∈ W , y ∈ W , x 6= y, V Notify

x ∩
V Notify

y = ∅.

Definition 4.6 Suppose a set of nodes,W = {x1,...,xm}, m ≥
2, join a network〈V,N (V)〉. The joins aredependent if for
any pair of nodesx andy, x ∈ W , y ∈ W , x 6= y, one of the
following is true:

• V Notify
x ∩ V Notify

y 6= ∅.
• ∃u, u ∈ W , u 6= x ∧ u 6= y, such thatV Notify

x ⊂ V Notify
u

andV Notify
y ⊂ V Notify

u .

In designing the protocol for a node to join network
〈V,N (V)〉, we make the following assumptions: (i)V 6= ∅ and
〈V,N (V)〉 is aK-consistent network, (ii) each joining node, by
some means, knows a node inV initially, (iii) messages between
nodes are delivered reliably, and (iv) there is no node deletion
(leave or failure) during the joins.

In a distributed p2p network, global knowledge is difficult (if
not impossible) to get. Therefore, a node should utilize local
information to construct or update neighbor tables. Under the
assumption that there is no node deletion during joins, condition
(b) in Definition 3.3 can be satisfied easily, since once a node
has joined, it always exists in the network. Hence, given aK-
consistent network,〈V,N (V)〉, and a setW of joining nodes,
the goals of the join protocol are to construct neighbor tables
for joining nodes and update tables of existing nodes such that
eventually condition(a) in Definition 3.3 is satisfied in network
〈V ∪ W,N (V ∪ W)〉. More specifically:

• Goal 1: For each nodex, x ∈ W , and for each (i, j)-
entry inx.table, i ∈ [d] andj ∈ [b], eventuallymin(K, H)
nodes with suffixj · x[i − 1]...x[0] are stored in the entry,
whereH = |(V ∪ W)j·x[i−1]...x[0]|.

• Goal 2: For each node,y, y ∈ V , and for each (i, j)-
entry in y.table, i ∈ [d] andj ∈ [b], if Ny(i, j).size <

K before the joins andWj·y[i−1]...y[0] 6= ∅, eventually the
entry is updated and storesmin(K, H) nodes with suffix
j · y[i − 1]...y[0], whereH = |(V ∪ W)j·y[i−1]...y[0]|.

4.2 C-set tree forK-consistency

If multiple nodes join a network sequentially, then the joins do
not interfere with each other, because when a node joins, any
node that joined ealier has already been integrated into thenet-
work. Also, if multiple nodes join a network concurrently and
the joins are independent, then intuitively the joins do notinter-
fere with each other either, because the sets of nodes that these
joining nodes need to notify do not intersect and none of the
joining nodes needs to store any other joining node in its table.
The most difficult case isconcurrent and dependent joins, where
the views different joining nodes have about the current network

5

may conflict. For example, if nodes 30633 and 41633 join con-
currently, each of them may think of itself as the only node with
suffix 633 in the network. If handled incorrectly, views of the
joining nodes may not converge eventually, which would result
in inconsistent neighbor tables.

We first analyze the desirable results of multiple joins by us-
ing an example (b = 8, d = 5). Suppose a set of nodes,
W = {30633, 41633, 33153}, join a K-consistent network
〈V,N (V)〉, V = {02700, 14233, 53013, 62332, 72430}, and
K = 2. Then by Definition 4.4, all nodes inW have the same
noti-set, which isV3.9 Consider a joining node, say 33153. At
the end of joins, for anyy to reach 33153,y ∈ V , there should
exist a neighbor sequence (u0, u1, ..., u5) such thatu0 is y, u5 is
33153, and the IDs ofu1 to u4 have suffix 3, 53, 153, and 3153,
respectively. Since before the joins,〈V,N (V)〉 is K-consistent,
y must have stored at least one neighbor with suffix 3, which
is a node inV3. Let the set of (1, 5)-neighbors of nodes inV3

beC53, the set of (2, 1)-neighbors of nodes inC53 beC153, ...,
and the set of (4, 3)-neighbors of nodes inC3153 beC33153. We
call these setsC-setsand the sequence of sets fromV3 to C33153

form aC-set path. Generally, from any node inV to each node
in W , there is an associated C-set path, and all the paths form a
tree rooted atV3, called aC-set tree, as shown in Figure 5(a).

C33

C633

C53

C1633 0633C

C30633

C153

C3153

C33153C41633

C53

C153

C33153

C3153

V314233 53013

C33

C633

C41633 C30633

0633CC1633

V3
14233 53013

C41633 C30633

C53

C153

C3153

C33153

V3

0633CC1633

C633

V

14233 30633

41633 30633

41633

41633

33153

33153

33153

V

14233 53013

30633

30633

33153

V33
14233

(a) Tree template, K=2 (c) Tree template, K=1(b) Tree realization, K=2

Figure 5: C-set tree examples

The above example is a special case of multiple joins, where
the noti-sets of all nodes inW are the same (namely,V3 in the
example). Generally, the noti-sets of all nodes inW may not
be the same. Then, nodes with the same noti-set belong to the
same C-set tree and the C-set trees for all nodes inW form a
forest. Each C-set tree can be treated separately. Hence, inthe
balance of this subsection, our discussion is focused on a single
C-set tree.

We next present formal definitions for a C-set tree. In what
follows, we usel to denote one digit,l ∈ [b], andlj...l1 to denote
a string ofj digits (we definelj ...l1 to be the empty string if
j = 0). Note that C-set trees are conceptual structures used for
protocol design and reasoning aboutK-consistency. They are
not implementedin any node.

Definition 4.7 Suppose a set of nodes,W = {x1, ..., xm},
m ≥ 1, join a K-consistent network〈V,N (V)〉, and for any
nodex, x ∈ W , V Notify

x = Vω, where|ω| = k. Then the C-
set tree template associated withV , W , and K, denoted by
C(V, W, K), is defined as follows:

• Vω is the root of the tree (the root is not a C-set);
• If Wl1·ω 6= ∅, l1 ∈ [b], then setCl1·ω is a child ofVω , and

l1 · ω is the associated suffix ofCl1·ω;

9That is, nodes inV3, 14233 and 53013, need to update their neighbor tables when
nodes inW join: each of them should update its (1, 3)-entry to store two neighbors with
suffix 33 eventually; and each should update its (1, 5)-entry to store one neighbor with
suffix 53 eventually.

• If Wlj ...l1·ω 6= ∅, 2 ≤ j ≤ d − k, l1,...,lj ∈ [b], then set
Clj ...l1·ω is a child of setClj−1...l1·ω.

Given V , W andK, the tree template is determined. The
value of K affects the tree template through the noti-sets of
nodes inW . SupposeK = 1 in the above example. Then, by
Definition 4.4, nodes 41633 and 30633 have{14233} as their
noti-set, and node 33153 has{53013, 14233} as its noti-set.
And there would be two separate C-set trees instead of one, as
shown in Figure 5(c).

The task of the join protocol is to construct and update neigh-
bor tables such that paths are established between nodes;con-
ceptuallynodes are filled into each C-set and the C-set tree is
realized. For instance, in the above example (K = 2), when
14233 updates its (1,3)-entry and fills 30633 into the entry,
conceptually 30633 is filled intoC33. For different sequences
of protocol message exchange, different nodes could be filled
into each C-set, which would result in different realizations
of the tree template. We usecset(V, W, K) to denote the C-
set tree realized at the end of all joins, defined below, where
te = max(tex1

, ..., texm
), as defined in Section 4.1.

Definition 4.8 Suppose a set of nodes,W = {x1, ..., xm}, m ≥
2, join a K-consistent network〈V,N (V)〉, and for any nodex,
x ∈ W , V Notify

x = Vω, |ω| = k. Then the C-set tree realized at
timete, denoted ascset(V, W, K), is defined as follows:

• Vω is the root of the tree.
• Let Cl1·ω = {x, x ∈ (V ∪ W)l1·ω ∧ (∃u, u ∈ Vω ∧ x ∈

Nu(k, l1))}, wherel1 ∈ [b]. ThenCl1·ω is a child ofVω, if
Cl1·ω 6= ∅ andWl1·ω 6= ∅.

• Let Clj ...l1·ω = {x, x ∈ (V ∪ W)lj ...l1·ω ∧ (∃u, u ∈
Clj−1...l1·ω∧x ∈ Nu(k+j−1, lj))}, where2 ≤ j ≤ d−k

andl1,...,lj ∈ [b]. ThenClj ...l1·ω is a child ofClj−1...l1·ω, if
Clj ...l1·ω 6= ∅ andWlj ...l1·ω 6= ∅.

Intuitively, to obtain the C-set tree realized at the end of all
joins, we take a snapshot of all of the neighbor tables at time
te and construct a C-set tree realization as follows. First, for
each nodeu, u ∈ Vω , and for eachl1 such thatl1 ∈ [b] and
Wl1·ω 6= ∅, put all (k, l1)-neighbors ofu into Cl1·ω, if u has
such neighbors. Next, for each nodev, v ∈ Cl1·ω, and for
eachl2 such thatl2 ∈ [b] andWl2l1·ω 6= ∅, put all (k + 1, l2)-
neighbors ofv into Cl2l1·ω, and so on. Note that in a C-set tree
realization forK = 1, C-sets only contain nodes inW , while
for K ≥ 2, a C-set may also contain nodes inVω , the root set
of the tree. Figure 5(b) shows one possible realization of the
tree template in Figure 5(a). Observe that since for any node
x, we setNx(i, x[i]).first = x for routing efficiency,i ∈ [b],
oncex is filled into a C-set, it is automatically filled into those
descendants of the C-set in the tree, whose suffix is also a suffix
of x.ID. For instance, if both 14233 and 53013 store 30633 in
(1, 3)-entry, then conceptually 30633 is filled inC33 and conse-
quently, 30633∈ C633, C0633 andC30633.

The concept of C-set tree not only helps us in protocol design,
but also guides us in reasoning aboutK-consistency. To prove
that by the end of all joins, the neighbor tables have been con-
structed and updated such that they satisfy theK-consistency
conditions, our approach is to prove the followingcorrectness
conditions, based on the C-set tree realization.

6

(1) cset(V, W, K) has the same structure asC(V, W, K).
Also, for any C-set incset(V, W, K), sayCω′ , it contains
at leastK nodes with suffixω′ if there exist at leastK
nodes in(V ∪ W)ω′ ; otherwise, it contains all nodes in
(V ∪ W)ω′ .

(2) For each nodey, y ∈ Vω (root of the C-set tree), and
for each C-setCl·ω′ , l ∈ [b], such thatω′ is a suffix of
y.ID, y has storedmin(K, |C′

l·ω|) nodes with suffixl · ω′

in Ny(k
′, l), wherek′ = |ω′|.

(3) For each nodex, x ∈ W , the C-set whose suffix isx.ID

is a leaf C-set in the tree. Let path-x denote the path from
this leaf C-set to the root of the tree. Then, for any C-set,
Cl·ω′ , such thatCl·ω′ is a C-set along path-x, or a sibling
C-set of a C-set along path-x, x has storedmin(K, |Cl·ω′ |)
nodes with suffixl · ω′ in Nx(k′, l), k′ = |ω′|.

By the end of joins, if condition (1) is satisfied, then for every
C-set that exists in the tree template (recall that givenV , W , and
K, the tree template is dertermined), it also exists in the tree re-
alization and is not empty. Moreover, for each C-set in the tree
realization, if there exist at leastK nodes inV ∪ W that have
the suffix of the C-set, then the C-set is filled with at leastK

nodes with the suffix; otherwise, all nodes inV ∪ W that have
the suffix are included in the C-set. If conditions (1) and (2)are
satisfied, then every table entry in the neighbor tables of nodes
in V that needs to be updated has been updated and satisfies
K-consistency conditions. If conditions (1) and (3) are satis-
fied, plus that each joining node has copied neighbor pointers
from nodes inV , then for any joining node, its table has been
constructed such that every table entry satisfiesK-consistency
conditions. Hence, the above three correctness conditions, to-
gether with each joining node’s copying neighbors from nodes
in V , ensure that the network isK-consistent after the joins.

5 Join Protocol for K-consistency

In this section, we present our design of a new join protocol
that constructs and maintainsK-consistent neighbor tables for
an arbitrary number of nodes to join a network that initiallyis
K-consistent. In our protocol, each node keeps its own sta-
tus, which could becopying, waiting, notifying, andin system.
When a node starts joining, its status is set tocopying.

A node with statusin systemis called anS-node; otherwise, it
is aT-node. Briefly, in statuscopying, a joining node,x, copies
neighbor information from some S-nodes to construct most part
of its table. In statuswaiting, x tries to “attach” itself to the
network, i.e., to find an S-node that will store it as a neighbor,
which indicates that conceptually it is filled into a C-set inthe
C-set tree. In statusnotifying, x seeks and notifies nodes that are
conceptually in the subtree rooted at the parent set of the C-set
x is filled into. Lastly, when it finds no more node to notify,x

changes status toin systemand becomes an S-node.

5.1 Lowest attach-level

We first present an important concept, calledlowest attach-level.
We will discuss the cases where the concept is applied later in
protocol specification.

In an 1-consistent network, a neighbor, sayx, is only stored
at one level in the table of a nodey, given x 6= y. More
specifically,x is only stored at level-k in y.table, wherek =
|csuf (x.ID, y.ID)|, sincey itself is stored inNy(i, x[i]) for all
level-i, 0 ≤ i < k (bothx andy have the required suffix for
these entries). ForK ≥ 2, however, it is possible fory to store
x at any level that is no higher than level-k. Thus, level-k is
the highest level thatx can be stored iny.table. In constructing
a correctness proof for the join protocol, we found that a con-
straint on the lowest level thatx can be stored iny.table is also
needed. We call it thelowest attach-levelof x, or simply the
attach-levelof x for notational convenience.

Definition 5.1 Theattach-levelof nodex in the table of node
y (x 6= y) is j, 0 ≤ j ≤ d − 1, determined as follows. (Letk
denote|csuf (x.ID, y.ID)|.)

• j = 0 if Ny(i, x[i]).size < K for all i, 0 ≤ i ≤ k;
• j = i if there exists a leveli, such that0 < i ≤ k, Ny(i −

1, x[i − 1]).size = K, andNy(i′, x[i′]).size < K for all
i′, i ≤ i′ ≤ k;

• an attach-level does not exist ifNy(k, x[k]).size = K.

5.2 Protocol specification

Suppose a set of nodesW join a K-consistent network
〈V,N (V)〉. Figure 6 presents the state variables of a joining
node (a node inW). Note for each neighbor in its table, a
node also stores the neighbor’s state, which can beS indicat-
ing that the neighbor is in statusin systemor T indicating that
it is not yet. Variables in the first part in Figure 6 are also
used by nodes inV , where initially for each nodeu, u ∈ V ,
u.status = in system, u.table is populated with nodes inV
in such a way that satisfies conditions in Definition 3.3, and
u.state(v) = S for every neighborv that is stored inu.table.
Figure 7 presents the protocol messages. Figures 8 to 12 present
the pseudocode of the protocol, in whichx, y, u andv denote
nodes, andi, j andk denote integers. Note that when any node,
x, stores a neighbor, sayy, into Nx(i, j), x needs to send a
RvNghNotiMsg(y, x.state(y)) to y if y 6= x, andy should reply
to x if x.state(y) is not consistent withy.status. For clarity
of presentation, we have omitted the sending and reception of
these messages in the pseudocode.

State variables of a joining nodex:

x.status ∈ {copying, waiting, notifying, in system}, initially copying.
Nx(i, j): the set of (i, j)-neighbors ofx, initially empty.
x.state(y) ∈ {T, S}, the state of neighbory stored inx.table.
Rx(i, j): the set of reverse(i, j)-neighbors ofx, initially empty.

x.att level: an integer, initially 0.
Qr : a set of nodes from whichx waits for replies, initiallyempty.
Qn: a set of nodesx has sent notifications to, initiallyempty.
Qj : a set of nodes that have sentx a JoinWaitMsg, initially empty.
Qsr , Qsn: a set of nodes, initiallyempty.

Figure 6: State variables

Action in status copying In statuscopying, a joining node,
x, fills most of its table entries by copying neighbor informa-
tion from S-nodes, as follows. To construct its table at level-i,
i ∈ [d], x needs to find a node,gi, that is an S-node and shares
the rightmosti digits with it so thatx can send aCpRstMsgto gi

7

Messages exchanged by nodes:

CpRstMsg, sent byx to request a copy of receiver’s neighbor table.
CpRlyMsg(x.table), sent byx in response to aCpRstMsg.
JoinWaitMsg, sent byx to notify receiver of the existence ofx and

request the receiver to storex, whenx.status is waiting.
JoinWaitRlyMsg(r, i, x.table), sent byx in response to aJoinWaitMsg,

whenx.status is in system. r ∈ {negative, positive}, i: an integer.
JoinNotiMsg(i, x.table), sent byx to notify receiver of the existence

of x, whenx.status is notifying. i: an integer.
JoinNotiRlyMsg(r, Q, x.table, f),

sent byx in response to aJoinNotiMsg.
r ∈ {negative, positive}, Q: a set of integers,f ∈ {true, false}.

InSysNotiMsg, sent byx whenx.status changes toin system.
SpeNotiMsg(x, y), sent or forwarded by a node to inform receiver of

the existence ofy, wherex is the initial sender.
SpeNotiRlyMsg(x, y), response to aSpeNotiMsg.
RvNghNotiMsg(y, s), sent byx to notify y thatx is a reverse neighbor

of y, s ∈ {T, S}.
RvNghNotiRlyMsg(s), sent byx in response to aRvNghNotiMsg,

s = S if x.status is in system; otherwises = T .

Figure 7: Protocol messages

to request a copy ofgi.table. We assume that each joining node
knows a node inV . Let this node beg0 for x. Fromg0.table,
x searches for a node that shares the rightmost digit with it and
is an S-node. Let this node beg1. x then contactsg1 to request
a copy ofg1.table. Fromg1.table, x searches for a node,g2,
that shares the rightmost two digits with it and is an S-node,and
so on. Figure 8 depicts the action in this status. The subroutine
SetNeighbor()is specified in Figure 13. (For clarity of presen-
tation, we have omitted the sending of aCpRstMsgfrom x to g,
and the reception of aCpRlyMsgfrom g to x.)

In statuscopying, each time after receiving aCpRlyMsg, x

checks whether it should change status towaiting. Supposex
receives aCpRlyMsgfromy. Then the condition forx to change
status towaiting is: (i) There exists an attach-level forx in the
copy ofy.table included in the reply, or (ii) an attach-level does
not exist forx in the copy ofy.table but nodeu is a T-node,
whereu = Ny(k, x[k]).first andk = |csuf (x.ID, y.ID)|. If
the condition is satisfied, thenx changes status towaiting and
sends aJoinWaitMsgtoy (case (i) holds) or tou (case (ii) holds).
Otherwise,x remains in statuscopyingand sends aCpRstMsg
to u.

Action ofx on joining〈V,N (V)〉, given nodeg0, g0 ∈ V :

i: initially 0. p, g: a node, initiallyg0. s ∈ {T , S}, initially S.

x.status = copying;
for (i = 0; i < d; i++) {Nx(i, x[i]).first = x; x.state(x) = T ;}
while (g 6= null ands == S) { // copy level-i neighbors ofg

h = −1; k = |csuf(x.ID, g.ID)|;
while (i ≤ k ∧ h == −1){
for (j = 0; j < b; j++)
for (eachv, v ∈ Ng(i, j))
for (l = i, l ≤ k, l++) { SetNeighbor(l, v[l], v, g.state(v)); }

if ((for eachl, i ≤ l ≤ k, Ng(l, x[l]).size < K) ∧ h == −1)
{ p = g; g = null; h = i; }

i++;
}
if (h == −1){ p = g; g = Np(k, x[k]).first; s = p.state(g);}

}
x.status = waiting;
if (g == null){SendJoinWaitMsgto p;Qn = Qn ∪ {p};Qr = Qr ∪ {p};}
else{ SendJoinWaitMsgto g; Qn = Qn ∪ {g}; Qr = Qr ∪ {g}; }

Figure 8: Action in statuscopying

Action in status waiting In statuswaiting, the main task
of x is to find an S-node in the network to storex as a neigh-
bor by sending outJoinWaitMsg; another task is to copy more

neighbors into its table. TheJoinWaitMsgx sends to a node,
sayy, serves as a notification toy thatx is waiting to be stored
in y’s table. Wheny receives theJoinWaitMsgfrom x, there
are two cases. (1) Ify is still a T-node, it stores the message
to be processed after it has become an S-node. (2) Ify is an
S-node, it checks whether there exists an attach-level forx in
its table. If an attach-level exists, say level-j, y storesx into
level-j through level-k, wherek = |csuf (x.ID, y.ID)| and
k ≥ j, and sends aJoinWaitRlyMsg(positive, j, y.table) to
inform x that the lowest levelx is stored is level-j. Level-j
then becomes theattach-level ofx in the network, stored by
x in x.att level . If an attach-level does not exist forx, y sends
JoinWaitRlyMsg(negative, −1, y.table) to x. After receiving
the reply (positive or negative),x searches the copy ofy.table

included in the reply for new neighbors to update its own table.
Upon receiving a negative reply fromy, x has to send an-

otherJoinWaitMsg, this time tou, u = Ny(k, x[k]).first , k =
|csuf (x.ID, y.ID)|.10 This process may be repeated for sev-
eral times (at mostd times since each time the receiver shares
at least one more digit withx than the previous receiver) un-
til x receives a positive reply, which indicates thatx has been
stored by an S-node and therefore attached to the network.x

then changes status tonotifying. Figure 9 presents actions for
a node upon receivingJoinWaitMsgandJoinWaitRlyMsg. Sub-
routinesCheckNgh Table()andSwitchTo S Node()are speci-
fied in Figure 13.

Action ofy on receiving JoinWaitMsg fromx:

k = |csuf(x.ID, y.ID)|; h = −1; j = 0;
if (y.status == in system) {

while (j ≤ k ∧ h == −1) {
if (for eachl, j ≤ l ≤ k, Ny(l, x[l]).size < K) {
h = j; for (l = j; l ≤ k; l++) { SetNeighbor(l, x[l], x, T); }
}elsej++;
}
if (h == −1) SendJoinWaitRlyMsg(negative,h, y.table) to x;
elseSendJoinWaitRlyMsg(positive,h, y.table) to x;

}elseQj = Qj ∪ {x};

Action ofx on receiving JoinWaitRlyMsg(r, i, y.table) fromy:

Qr = Qr − {y}; k = |csuf(x.ID, y.ID)|; x.state(y) = S;
if (r == positive) {

x.status = notifying; x.att level = i;
for (j = i; j ≤ k; j++) { Rx(j, x[j]) = Rx(j, x[j]) ∪ {y}; }

}else{ // a negative reply, needs to send anotherJoinWaitMsg
v = Ny(k, x[k]).first;
SendJoinWaitMsgto v; Qn = Qn ∪{v}; Qr = Qr ∪ {v};

}
CheckNgh Table(y.table);
if (x.status == notifying∧ Qr == φ ∧ Qsr == φ) Switch To S Node();

Figure 9: Action on receiving JoinWaitMsg and JoinWaitR-
lyMsg

Action in status notifying In statusnotifying, x searches
and notifies nodes that share the rightmostj digits with it,
j = x.att level , so that these nodes will update their neigh-
bor tables if necessary.x starts this process by sendingJoinNo-
tiMsg, which includes bothx.att level and a copy ofx.table ,
to its neighbors at levelsj and higher. EachJoinNotiMsgserves
as a notification as well as a request for a copy of the receiver’s
table. Upon receiving aJoinNotiMsg, a receiver,z, storesx into
all (i, x[i])-entries that are not full withK neighbors yet, where
x.att level ≤ i ≤ |csuf (x.ID, z.ID)|, searches the copy of

10u can be any node inNy(k, x[k]). We choose it to beNy(k, x[k]).first consis-
tently in our protocol implementation.

8

x.table for new neighbors to updatez’s table, and then replies
to x with z.table included in the reply. From the reply, ifx find
any node, sayv, in z.table such thatv shares the right mostj
digits with x, j = x.att level , and if x has not sentJoinNo-
tiMsg to v before,x will notify v by sending aJoinNotiMsgto
it. Meanwhile,x searches the copy ofz.table for new nodes to
update its own table. Figure 10 presents actions for a node on
receivingJoinNotiMsgandJoinNotiRlyMsg.

So far, three cases for a nodex to know another nodey have
been presented: (i)x copiesy in statuscopying, (ii) x receives
a JoinWaitMsgor aJoinNotiMsgfrom y, and (iii) x receives a
message fromz, which includesz.table, andy is in z.table.
There is one more case, as shown in Figures 10 and 11. Sup-
pose in statusnotifying, x sends aJoinNotiMsgto y. Wheny

receives the message, ify is an S-node and finds thaty is not
included inNx(k, y[k]), wherek = |csuf(x.ID, y.ID)|, then
y sets a flagf to be true in its reply. (Note thaty is a qualified
node forNx(k, y[k]).) Seeing the flag in the reply,x sends a
SpeNotiMsg(x, y) to u1 to inform it abouty if x has not done
so and ifk > x.att level , whereu1 = Nx(k, y[k]).first . If
whenu1 receives theSpeNotiMsg(x, y) from x, its (k1, y[k1])-
entry is already filled withK neighbors andy is not one of
them, k1 = |csuf(u1.ID, y.ID)|, it forwards the message
to u2, whereu2 = Nx(k1, y[k1]).first . This process stops
when a receiver stores or has storedy in its table and sends a
SpeNotiRlyMsg(x, y) to x. (The process can be repeated at most
d times.) Figure 11 depicts the actions on receivingSpeNotiMsg
andSpeNotiRlyMsg.

Action ofy on receiving JoinNotiMsg(i, x.table) fromx:

Q: a set of integers, initially empty

k = |csuf(x.ID, y.ID)|; f = false;
for (j = i; j ≤ k, j++){ SetNeighbor(j, x[j], x, T);}
for (j = i; j ≤ k, j++) {if (x ∈ Ny(j, x[j])) {Q = Q ∪ {j};}}
if (y 6∈ Nx(k, y[k]) ∧ y.status == in system) f = true;
if (Q 6= ∅) SendJoinNotiRlyMsg(positive,Q, y.table, f) to x;
elseSendJoinNotiRlyMsg(negative,∅, y.table, f) to x;
CheckNgh Table(x.table);

Action ofx on receiving JoinNotiRlyMsg(r, Q, y.table, f) fromy:

if (r==positive) {for (eachi in Q) Rx(i, x[i]) = Rx(i, x[i]) ∪ {y};}
Qr = Qr − {y}; k = |csuf(x.ID, y.ID)|;
if (f == true∧ k > x.att level ∧ y 6∈ Nx(k, y[k]) ∧ y 6∈ Qsn){

SendSpeNotiMsg(x,y) to Nx(k, y[k]).first;
Qsn = Qsn ∪ {y}; Qsr = Qsr ∪ {y};}

CheckNgh Table(y.table);
if (Qr == φ ∧ Qsr == φ) Switch To S Node();

Figure 10: Action on receiving JoinNotiMsg and JoinNotiR-
lyMsg

Action ofu on receiving SpeNotiMsg(x, y) fromv:

k = |csuf(y.ID, u.ID)|; SetNeighbor(k, y[k], y, S);
if (y 6∈ Nu(k, y[k]))

SendSpeNotiMsg(x, y) to Nu(k, y[k]).first ;
else

SendSpeNotiRlyMsg(x, y) to x;

Action ofx on receiving SpeNotiRlyMsg(x, y) fromu:

Qsr = Qsr− {y}; if (Qr==φ andQsr==φ) Switch To S Node();

Figure 11: Action on receiving SpeNotiMsg and SpeNotiR-
lyMsg

Action in status in system When x has received replies
from all of the nodes it has notified and finds no more node

to notify, it changes status toin systemand becomes an S-node.
It then informs all of its reverse-neighbors, i.e., nodes that have
storedx as a neighbor, that it has become an S-node. Ifx has de-
layed processingJoinWaitMsgfrom some nodes, it should pro-
cess these messages and reply to these nodes at this time. Fig-
ure 12 and Figure 13 presents the peudocode for this part.

Action ofy on receiving a InSysNotiMsg fromx:

y.state(x) = S;

Figure 12: Action on receiving InSysNotiMsg

CheckNgh Table(y.table) at x:

for (eachu, u ∈ Ny(i, j) ∧ u 6= x, i ∈ [d], j ∈ [b]) {
k = |csuf(x.ID, u.ID)|; s = y.state(u);
for (h = i; h ≤ k; h++) { SetNeighbor(h, u[h], u, s); }
if (x.status == notifying∧ k ≥ x.att level ∧ u 6∈ Qn) {
SendJoinNotiMsg(x.att level, x.table) to u;
Qn = Qn ∪ {u}; Qr = Qr ∪ {u};
}

}

SetNeighbor(i, j, u, s) at x:

if (u 6= x ∧ Nx(i, j).size < K ∧ u 6∈ Nx(i, j))
{ Nx(i, j) = Nx(i, j) ∪ {u}; x.state(u) = s;}

SwitchTo S Node() atx:

x.status = in system; x.state(x) = S;
for (eachv of x’s reverse neighbors) SendInSysNotiMsgto v;
for (each nodeu, u ∈ Qj) {

k = |csuf(x.ID, u.ID)|; h = −1; j = 0;
while (j ≤ k ∧ h == −1){
if (for eachl, j ≤ l ≤ k, Nx(l, u[l]).size < K){
h = j; for (l = h; l ≤ k; l++) { SetNeighbor(l, u[l], u, T); }
}elsej++;
}
if (h 6= −1) SendJoinWaitRlyMsg(positive,h, x.table) to u;
elseSendJoinWaitRlyMsg(negative,h, x.table) to u;

}

Figure 13: Subroutines

6 Protocol Analysis

In this section, we present our correctness proof for the join pro-
tocol, and evaluate the protocol performance through both the-
oretical analysis and simulation experiments. We only present
important lemmas and proof outlines in this section. Proof de-
tails are included in Appendix B.

6.1 Correctness of join protocol

We present two theorems. Suppose an arbitrary number of nodes
join an initiallyK-consistent network by using the join protocol.
Theorem 2 states that the join process of each node eventually
terminates, and Theorem 3 states that at the end of joins, the
resulting network isK-consistent. Recall thattbx denotes the
starting time of the join duration of nodex, tex denotes the end
of the join duration ofx, andte denotesmax(tex1

, ..., texm
).

Theorem 2 Suppose a set of nodes,W = {x1,...,xm}, m ≥ 1,
join a K-consistent network〈V,N (V)〉. Then, each nodex,
x ∈ W , eventually becomes an S-node.

Proof of Theorem 2: First, consider a joining node,x, in status
copying. x eventually changes status towaitingbecause it sends

9

at mostd CpRstMsgand each receiver of aCpRstMsgreplies
to x with no waiting. Second, consider a joining node,x, in
statuswaiting. In this status,x sendsJoinWaitMsgto at most
d nodes. We next show that for eachJoinWaitMsgit sends out,
x eventually receives a reply. If the receiver of aJoinWaitMsg,
y, is an S-node, theny replies with no waiting; ify is not yet
an S-node, then it is a joining node in statusnotifyingand will
wait until it becomes an S-node before replying tox. Thus, to
complete the proof, it suffices to show that any joining node in
statusnotifying eventually becomes an S-node. Last, consider
a joining node,z, in statusnotifying. There are two types of
messages sent byz in this status,JoinNotiMsgandSpeNotiMsg.
z only sendsJoinNotiMsgto a subset of nodes inV ∪ W that
share the rightmosti digits with itself,i = z.att level , and each
receiver of aJoinNotiMsgreplies toz with no waiting. Also,z
only sendsSpeNotiMsgto a subset of nodes inW that share the
rightmosti+1 digits with it.11 EachSpeNotiMsgis forwarded at
mostd times before a reply is sent toz, and each receiver of the
message replies toz or forwards the message to another node
with no waiting. Therefore,z eventually becomes an S-node.

Theorem 3 Suppose a set of nodes,W = {x1,...,xm}, m ≥
1, join a K-consistent network〈V,N (V)〉. Then, at timete,
〈V ∪ W,N (V ∪ W)〉 is aK-consistent network.

To prove Theorem 3, we first divide nodes inW into differ-
ent groups, where nodes in the same group joinconcurrently
and any two nodes that are in different groups joinsequentially.
Next, for each group of concurrent joins, we divide nodes in
that group into several sub-groups, such that joins of nodesin
the same sub-group aredependentwhile joins of any two nodes
that are in different sub-groups areindependent. (We will dis-
cuss how to do the node divisions later in this section.) We start
by presenting Lemmas 6.1 to 6.4, which state the correctnessof
the join protocol for a single join, sequential joins, concurrent
and independent joins, and concurrent and dependent joins.

Lemma 6.1 Suppose nodex joins a K-consistent network
〈V,N (V)〉. Then, at timetex, 〈V ∪ {x},N (V ∪ {x})〉 is a K-
consistent network.

Lemma 6.2 Suppose a set of nodes,W ={x1,...,xm}, m ≥ 2,
join a K-consistent network〈V,N (V)〉 sequentially. Then, at
timete, 〈V ∪ W,N (V ∪ W)〉 is aK-consistent network.

Lemma 6.3 Suppose a set of nodes,W ={x1,...,xm}, m ≥
2, join a K-consistent network〈V,N (V)〉 concurrently. If the
joins areindependent, then at timete, 〈V ∪ W,N (V ∪ W)〉 is
K-consistent.

Lemma 6.4 Suppose a set of nodes,W ={x1,...,xm}, m ≥
2, join a K-consistent network〈V,N (V)〉 concurrently. If the
joins aredependent, then at timete, 〈V ∪ W,N (V ∪ W)〉 is
K-consistent.

To prove Lemma 6.4, consider any two nodes inW , sayx and
y. If their noti-sets are the same, i.e.,V Notify

x = V Notify
y , thenx

andy belong to the same C-set tree rooted atV Notify
x , otherwise

they belong to different C-set trees. We consider nodes in the
same C-set tree first. To simplify presentation in the following
propositions, we make the following assumption:

11In simulations, we observed thatSpeNotiMsgis rarely sent.

Assumption 1 (for Propositions 6.1 to 6.7)
A set of nodes,W = {x1, ..., xm}, m ≥ 2, join a K-consistent
network 〈V,N (V)〉 concurrently and for anyx, x ∈ W ,
V Notify

x = Vω and|ω| = k.

Propositions 6.1 states that every joining node is filled into
some C-set in the C-set tree by the end of joins. Note thatω is
the suffix of the root set in the C-set tree, as stated in Assump-
tion 1. Propositions 6.2 and 6.3 state that correctness conditions
(1) and (2), stated in Section 4, are satisfied by timete, respec-
tively. (Recall thatlj ...l1 denotes the empty string ifj = 0.)
Proposition 6.4 states that for a C-set that nodex belongs to
(l = lj), or a sibling C-set of a C-setx belongs to (l 6= lj),
x eventually stores enough neighbors with the suffix of that C-
set. For instance, consider the example in Figure 5(b) and let
x = 41633. By Proposition 6.4, for any C-set ofC633, C1633,
C41633, andC0633 (the former three are the C-setsx belongs to,
andC0633 is a sibling C-set ofC1633), sayC633, eventuallyx
storesmin(K, H) neighbors in its (2, 6)-entry, whereH is the
total number of nodes with suffix 633 inV ∪ W . Proofs of the
propositions are based on induction upon the C-set tree realized
at timete.

Proposition 6.1 For each nodex, x ∈ W , there exists a C-set
Clj ...l1·ω, 1 ≤ j ≤ d − k, such that by timete, x ∈ Clj ...l1·ω,
wherelj ...l1 · ω is a suffix ofx.ID.

Proposition 6.2 If Wlj ...l1·ω 6= ∅, 1 ≤ j ≤ d − k, then by time
te, the followings are true:

(a) Clj ...l1·ω ⊆ (V ∪ W)lj ...l1·ω andClj ...l1·ω ⊇ Vlj ...l1·ω.
(b) if |(V ∪W)lj ...l1·ω| < K, thenClj ...l1·ω = (V ∪W)lj ...l1·ω;
(c) if |(V ∪ W)lj ...l1·ω| ≥ K, then|Clj ...l1·ω| ≥ K.

Proposition 6.3 Consider any nodex, x ∈ Vω. For any C-set
Cl·lj ...l1·ω, 0 ≤ j ≤ d− k − 1 andl ∈ [b], if lj ...l1 · ω is a suffix
of x.ID, thenNx(k + j, l).size = min(K, |(V ∪ W)l·lj ...l1·ω|)
holds by timete.

Proposition 6.4 For any C-set,Clj ...l1·ω, 1 ≤ j ≤ d − k,
l1,...,lj ∈ [b], the following assertion holds by timete: For
eachx, x ∈ Clj ...l1·ω and x ∈ W , Nx(k + j − 1, l).size =
min(K, |(V ∪ W)l·lj−1...l1·ω|), l ∈ [b].

For any nodex, x ∈ W , we definethe first C-set x belongs
to for x in a C-set tree realization to be (i)Cl1·ω if x ∈ Cl1·ω;
(ii) Clj ...l1·ω for j > 1, if x ∈ Clj ...l1·ω andx 6∈ Clj−1...l1·ω.

Proposition 6.5 states that for any ancestor C-set of the first
C-set nodex belongs to (or for any sibling C-set of such an
ancestor C-set),x eventually stores enough neighbors with the
suffix of that C-set (or of that sibling C-set). For instance,con-
sider again the example in Figure 5(b) and node 41633. The
first C-set 41633 belongs to isC633. There is one ancestor C-
set ofC633, C33, which also has a sibling C-set,C53. Then by
Proposition 6.5, 41633 has storedmin(K, |(V ∪ W)33|) neigh-
bors in its (1, 3)-entry by timete; moreover, 41633 has stored
min(K, |(V ∪ W)53|) neighbors in its (1, 5)-entry by timete.

Based on Propositions 6.4 and 6.5, we prove Proposition 6.6,
which states that correctness condition (3), stated in Section 4,
is satisfied by timete. Note that in Propositions 6.3 and 6.6,
l ·lj...l1 ·ω is the required suffix of the(k+j, l)-entry inx.table ,
wherek = |ω|. Next, based on Propositions 6.2, 6.3, and 6.6,

10

we prove Proposition 6.7, which states that by timete, every ta-
ble entry in the network satisfiesK-consistency conditions and
hence the network isK-consistent. (Recall that Propositions 6.1
to 6.7 are stated under the assumption, Assumption 1.)

Proposition 6.5 For any x, x ∈ W , supposeClj ...l1·ω is the
first C-setx belongs to, wherelj ...l1 · ω is a suffix ofx.ID,
1 ≤ j ≤ d − k. Then for anyi, 0 ≤ i ≤ j, and anyl, l ∈ [b],
Nx(k + i, l).size = min(K, |(V ∪ W)l·li...l1·ω|) .

Proposition 6.6 For any nodex, x ∈ W , if (V ∪W)l·lj ...l1·ω 6=
∅, wherelj...l1 · ω is a suffix ofx.ID, 0 ≤ j ≤ d − k − 1, and
l ∈ [b], thenNx(k + j, l).size = min(K, |(V ∪ W)l·lj ...l1·ω|)
holds by timete.

Proposition 6.7 For each nodex, x ∈ V ∪ W , Nx(i +
k, j).size = min(K, |(V ∪ W)j·x[i−1]...x[0]|) holds by timete,
i ∈ [d], j ∈ [b].

So far, we have proved correctness of the join protocol for the
case where a set of nodes join dependently and all joining nodes
belong to the same C-set tree. Next, Proposition 6.8 extendsthe
result to joining nodes that belong to different C-set trees. It
states that for any joining node, sayx, for any suffix that exists
in a different C-set tree other than the onex belongs to, if the
suffix is also the required suffix of a table entry inx.table, then
eventuallyx has stored enough neighbors in that table entry.
(Note that in Proposition 6.8,l · ω2 is the required suffix for the
(k2, l)-entry inx.table.) Based on the propositions, we can then
prove Lemma 6.4 and Lemma 6.5.

Proposition 6.8 Suppose a set of nodes,W = {x1,...,xm},
m ≥ 2, join a K-consistent network〈V,N (V)〉 concurrently.
Let G(Vω1) = {x, x ∈ W, V Notify

x = Vω1}, G(Vω2) = {y, y ∈
W, V Notify

y = Vω2}, whereω1 6= ω2 andω2 is a suffix ofω1. Let
k2 = |ω2|. Then, by timete, for anyx, x ∈ G(Vω1), the follow-
ing assertion holds:Nx(k2, l).size = min(K, |(V ∪ W)l·ω2 |),
l ∈ [b].

Proof of Lemma 6.4: . (Outline) First, separate nodes inW
into groups{G(Vωi), 1 ≤ i ≤ h}, whereωi 6= ωj if i 6= j, such
that for any nodex in W , x ∈ G(Vωi) if and only if V Notify

x =
Vωi , 1 ≤ i ≤ h. Then, by Propositions 6.3, 6.7, and 6.8, the
lemma holds.

Lemma 6.5 Suppose a set of nodes,W = {x1,...,xm}, m ≥ 2,
join a K-consistent network〈V,N (V)〉 concurrently. Then at
timete, 〈V ∪ W,N (V ∪ W)〉 is aK-consistent network.

Proof of Lemma 6.5: (Outline) First, separate nodes inW
into groups, such that joins of nodes in the same group are de-
pendent and joins of nodes in different groups are mutually in-
dependent, as follows (initially, leti = 1 andG1 = ∅):

1. Pick any nodex, x ∈ W−
⋃i−1

j=1 Gj , and putx in Gi.

2. For each nodey, y ∈ W−
⋃i

j=1 Gj ,

(a) if there exists a nodez, z ∈ Gi, such that(V Notify
y ∩

V Notify
z 6= ∅), then puty in Gi; or

(b) if there exists a nodez, z ∈ Gi, and a nodeu, u ∈ Gi,
such that the following is true:(V Notify

y ⊂ V Notify
u)∧

(V Notify
z ⊂ V Notify

u), then puty in Gi; or

(c) if there exists a nodez, z ∈ Gi, and a nodeu,
u ∈ W −

⋃i
j=1 Gj , such that the following is true:

(V Notify
y ⊂ V Notify

u) ∧ (V Notify
z ⊂ V Notify

u), then
put bothy andu in Gi.

3. Incrementi and repeat steps 1 to 3 until
⋃i

j=1 Gj = W .

Then, we get groups{Gi, 1 ≤ i ≤ l}. It can be checked that
V Notify

x ∩ V Notify
y = ∅ for any nodex, x ∈ Gi, and any nodey,

y ∈ Gj , where1 ≤ i ≤ l, 1 ≤ j ≤ l, andi 6= j. By Lemmas 6.3
and 6.4, the lemma holds.

Proof of Theorem 3: If m = 1, then by Lemma 6.1, the
theorem holds.

If m ≥ 2, then according to their joining periods, nodes in
W can be separated into several groups,{Gi, 1 ≤ i ≤ l}, such
that nodes in the same group join concurrently and nodes in dif-
ferent groups join sequentially. Let the joining period ofGi

be [tbGi
, teGi

], 1 ≤ i ≤ l, wheretbGi
= min(tbx, x ∈ Gi) and

teGi
= max(tex, x ∈ Gi). We number the groups in such a way

thatteGi
≤ tbGi+1

. Then, if|G1| ≥ 2, by Lemma 6.5, at timeteG1
,

〈V ∪ G1,N (V ∪ G1)〉 is aK-consistent network; if|G1| = 1,
then by Lemma 6.1,〈V ∪ G1,N (V ∪ G1)〉 is a K-consistent
network at timeteG1

. Similarly, by applying Lemma 6.5 (or
Lemma 6.1) toG2, ...,Gl, we conclude that eventually, at time
te, 〈V ∪ W,N (V ∪ W)〉 is aK-consistent network.

6.2 Protocol performance

We first analyze the communication cost of each join. Here
we only present results for the number of messages of type
CpRstMsg, JoinWaitMsg, andJoinNotiMsg,12 since these mes-
sages may include a copy of a neighbor table and thus could be
big in size. The other types of messages are all small in size.
(See Figure 7.) Ananlysis of numbers of small messages can be
found in Appendix C. In general, the number of each type of the
small messages is at mostO(log n), and some of these messages
can be piggy-backed by probing messages to reduce the cost.

Let C(X, Y) denote the number ofY -combinations ofX ob-
jects,n denote the number of nodes in the initial network, and
m denote the number of joining nodes. Moreover, we define
two functions,Qi(r) andPi(r), to be used in Theorems 4 to 6,
whereQi(r) ≥ K, 0 ≤ Pi(r) ≤ 1, and

∑d−1
i=0 Pi(r) = 1. We

note that whenbd ≫ r, Qi(r) is approximatelyK + r
bi

Definition 6.1 Let Pi(r) denote a function defined as follows,
wherer andi denote integers,r ≥ 1 and0 ≤ i ≤ d − 1.

• If 1 ≤ r < K, thenPi(r) = 1 for i = 0 andPi(r) = 0 for
1 ≤ i ≤ d − 1;

• If r ≥ K, then

– Pi(r) =
PK

j=0 C(bd−1−1,j)C(bd−bd−1,r−j)

C(bd−1,r) for i = 0;

– Pi(r) =
PK

j=0 C(bd−1−i−1,j)
Pmin(r−j,B)

k=K−j C(B,k)C(bd−bd−i,r−k−j)

C(bd−1,r)

whereB = (b − 1)bd−i−1, for 1 ≤ i < d − 1;

– Pi(r) = 1 −
∑d−2

j=0 Pj(r) for i = d − 1.

Definition 6.2 Let Qi(r) denote a function defined as follows,
wherer andi denote integers,r ≥ 1 and0 ≤ i ≤ d − 1.

12The number of replies to these messages are the same since requests and replies are
one-to-one related.

11

3

4

5

6

7

8

9

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

U
p
p
e
r

b
o
u
n
d
 o

f
E

(C
P

+
J
W

)

Number of nodes in the initial network (n)

 K=3, m=500
 K=3, m=1000

 K=2, m=500
 K=2, m=1000

 K=1, m=500
 K=1, m=1000

0

5

10

15

20

25

30

35

40

45

50

5000 10000 15000 20000 25000 30000 35000 40000

U
p
p
e
r

b
o
u
n
d
 o

f
E

(J
)

Number of nodes in the network (n)

 K=3, m=500
 K=3, m=1000

 K=2, m=500
 K=2, m=1000

 K=1, m=500
 K=1, m=1000

(a) CpRstMsg + JoinWaitMsg (b) JoinNotiMsg

Figure 14: Theoretical upper bound of expected number of mes-
sages vs.n, for different values ofK andm, b = 16, d = 40

• If 1 ≤ r < K, thenQi(r) = r;
• If r ≥ K, then

Qi(r) = K +
Pmin(r,D)

j=0 C(D,j)C(bd−bd−i,r−j)

C(bd−K−1,r)

whereD = bd−i − K − 1.

Theorem 4 Suppose a set of nodes,W = {x1,...,xm}, m ≥ 1,
join a K-consistent network〈V,N (V)〉, |V | = n. Then, for any
x, x ∈ W , an upper bound of the expected number of CpRstMsg
and JoinWaitMsg sent byx is

∑d−1
i=0 (i + 2)Pi(n + m − 1).

Theorem 5 Suppose nodex joins a K-consistent network
〈V,N (V)〉, |V | = n. Then, the expected number of JoinNo-
tiMsg sent byx is

∑d−1
i=0 Qi(n − K)Pi(n) − 1.

Theorem 6 Suppose a set of nodes,W = {x1,...,xm}, m ≥ 1,
join a K-consistent network〈V,N (V)〉, |V | = n. Then for
any nodex, x ∈ W , an upper bound of the expected number of
JoinNotiMsg sent byx is

∑d−1
i=0 Qi(n + m − 1 − K)Pi(n).

Proofs of the above theorems are presented in Appendix C.
Here we only present the intuitions for proving Theorem 5.
SupposeV Notify

x = Vω. Since only nodex joins, x needs
to sendJoinNotiMsgto all nodes inV Notify

x , except the one
it sendsJoinWaitMsgto. Let X denote the number of nodes
in Vω, i.e., X = |Vω|. Then the number ofJoinNotiMsgx

sends out isX − 1. Let Y = |ω| and P (Y = i) denote
the probability ofY = i. To computeE(X − 1), we have
E(X) = E(E(X |Y)) =

∑d−1
i=0 (E(X |Y = i)P (Y = i)).

It can then be proved thatE(X |Y = i) = Qi(n − K) and
P (Y = i) = Pi(n), wheren = |V |.

Figure 14 plots the upper bounds presented in Theorem 4 and
Theorem 6, whereE(CP + JW) is the expected number of
CpRstMsgandJoinWaitMsgsent by a joining node, andE(JN)
is the expected number ofJoinNotiMsg. Notice that for a fixed
value ofK, both upper bounds are insensitive to the value ofm

(number of joins), and increase very slightly asn becomes large.
Moreover, for the same values ofn and m, the upper bound
of E(JN) increases whenK value increases, while the upper
bound ofE(CP + JW) decreases whenK value increases.

Next, we study performance of the protocol through simula-
tion experiments. We have implemented our join protocol in
detail in an event-driven simulator. To generate network topolo-
gies, we used the GTITM package [15]. We simulated the send-
ing of a message and the reception of a message as events, but
abstracted away queueing delays. The end-to-end delay of a
message from its source to destination was modeled as a ran-
dom variable with mean value proportional to the shortest path

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

C
u

m
u

la
tiv

e
 d

is
tr

ib
u

tio
n

Number of CpRstMsg and JoinWaitMsg sent by a joining node

K=1
K=2
K=3
K=4

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

C
u

m
u

la
tiv

e
 d

is
tr

ib
u

tio
n

Number of JoinNotiMsg sent by a joining node

K=1
K=2
K=3
K=4

(a) CpRstMsg+JoinWaitMsg (b) JoinNotiMsg

Figure 15: Cumulative distribution of messages sent by a joining
node,n = 3200, m = 800, b = 16, d = 40

length in the underlying network. For the experiments reported
in this section, a topology of 2112 routers was used, with 4000
nodes (end hosts) randomly attached to the routers. The end-to-
end delays were in the range of 0 to 329 ms, with the average
being 113 ms. In each simulation, we let all joins start at the
same time, which maximizes the number of nodes that join con-
currently and dependently and thus maximizes the average join
durations.

Figure 15 summarizes results from experiments where 800
nodes joined a network that initially had 3,200 nodes. Fig-
ure 15(a) shows simulation results of cumulative distribution
of the number ofCpRstMsgandJoinWaitMsgsent by joining
nodes, and Figure 15(b) shows results of cumulative distribu-
tion of the number ofJoinNotiMsgsent by joining nodes. As
shown in the figure, the number ofCpRstMsgand JoinWait-
Msg sent by a joining node is small, which is less than seven
in Figure 15(a). Moreover, majority of joining nodes sent a
small number ofJoinNotiMsg. For example, in Figure 15(b),
for K = 3, more than 75% joining nodes sent less than ten
JoinNotiMsg.13

Both the theoretical analysis and simulation results show that
when the value ofK increases, communication cost also in-
creases. (Besides the number ofJoinNotiMsg, numbers of small
messages also increase withK [4].) Clearly, there is a tradeoff
between benefits and maintenance overhead of aK-consistent
network for differentK values. Detailed study of the tradeoff is
presented in [5].

Lastly, we study lengths of join durations through simulation
experiments. For each simulation setup, we ran five experiments
to obtain the average join durations. Figure 16(a) presentsav-
erage join durations for 1000 nodes joining networks of differ-
ent sizes (different values ofn), whereK = 1. Each error-
bar shows the minimum and maximum join durations observed
in the five experiments for that simulation setup. Figure 16(b)
presents the average join duration as a function ofn, for dif-
ferent values ofK. From the results, we observe that the aver-
age join duration is short in general, and increases very slightly
whenn increases (in some cases, e.g., forK = 4, it even de-
creases whenn increases).

13For the results shown in Figure 15(a), the average number ofCpRstMsgandJoinWait-
Msgsent by a joining node was 4.381 forK = 1, 4.071 forK = 2, 3.907 forK = 3,
and 3.892 forK = 4; the corresponding theoretical upper bounds are 4.68, 4.25, 4.07,
and 4.017, respectively. For the results shown in Figure 15(b), the average number ofJoin-
NotiMsgwas 6.714 forK = 1, 11.649 forK = 2, 13.971 forK = 3, and 14.751 for
K = 4; the corresponding theoretical upper bounds are 8.636, 14.924, 18.033, and 19.842,
respectively.

12

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500 3000 3500

J
o
in

 d
u
ra

ti
o
n
 (

s
e
c
o
n
d
s
)

Number of nodes in the intial network (n)

Average join duration

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

0 500 1000 1500 2000 2500 3000 3500

A
v
e
ra

g
e
 j
o
in

 d
u
ra

ti
o
n
 (

s
e
c
o
n
d
s
)

Number of nodes in the intial network (n)

K=1
K=2
K=3
K=4

(a)K = 1 (b) Average join durations

Figure 16: Join durations,m = 1000, b = 16, d = 40

7 Network Initialization

To initialize aK-consistent network ofn nodes, we can put any
one of the nodes, sayx, in V , and constructx.table as follows.

• Nx(i, x[i]).first = x, x.state(x) = S, i ∈ [d].
• Nx(i, j) = ∅, i ∈ [d], j ∈ [b] andj 6= x[i].

Next, let the othern− 1 nodes join the network by executing
the join protocol, each is givenx to start with. Then, when all
of the joins terminate, aK-consistent network is constructed.

8 Related Work

In PRR [11], a static set of nodes and pre-existence of consis-
tent and optimal neighbor tables are assumed. CAN [12] and
Pastry [13] each has join, leave, and failure recovery protocols,
but the issue of neighbor table consistency was not explicitly
addressed. In Chord [14], maintaining consistency of neighbor
tables (“finger tables” in Chord) was considered difficult inthe
presence of concurrent joins in a large network. A stabilization
protocol was designed to maintain consistency of just one neigh-
bor pointer per node (“successor pointer”), which is sufficient to
guarantee correctness of object location.

In Tapestry [3], a join protocol was presented with a proof
of correctness for concurrent joins. Their join protocol isbased
upon the use of multicast. The existence of a joining node is
announced by a multicast message. Each intermediate node in
the multicast tree keeps the joining node on a list (one list per ta-
ble entry being updated) until it has received acknowledgments
from all downstream nodes. In their approach, many existing
nodes have to store and process extra states as well as send and
receive messages on behalf of joining nodes. We take a very dif-
ferent approach in our join protocol design. We put the burden
of the join process on joining nodes only.

Storing several qualified nodes in each neighbor table entry
was first suggested in PRR [11] to facilitate the location of repli-
cated objects. In Tapestry [16], storing two backup neighbors
in addition to the primary neighbor in each table entry (thatis,
K = 3) was recommended for fault-tolerance and to improve
hypercube routing performance. However, these papers do not
have theK-consistency concept. Therefore they provide nei-
ther protocols to constructK-consistent neighbor tables nor any
theoretical analysis of the benefits ofK-consistency.

9 Conclusions

For the hypercube routing scheme used in several proposed
p2p systems [11, 13, 16, 7], we introduced the property ofK-
consistency, and showed thatK-consistent neighbor tables are
resilient even when a large fraction of nodes in the network fail.
We then presented the detailed specification of a new join pro-
tocol for the scheme. Furthermore, we presented a conceptual
foundation, C-set trees, for guiding our protocol design and rea-
soning aboutK-consistency. By induction on C-set trees, we
proved that the new join protocol generatesK-consistent neigh-
bor tables for an arbitrary number of concurrent joins. The ex-
pected communication cost of integrating a new node into the
network is shown to be small by both theoretical analysis and
simulations. The join protocol presented in this paper can also
be used to initialize aK-consistent network.

An observation from a companion study [5] is that networks
in which each node maintains a larger number of consistent
neighbor pointers are not only more resilient, but they alsore-
cover more quickly and completelyfrom node failures. From
our analytic and simulation results, we found that the improve-
ment in network resilience fromK = 1 to K = 2 is dramatic.
We conclude that hypercube routing networks should beK-
consistent withK ≥ 2. However, the larger theK, the higher
is the maintenance overhead. Thus, we recommend aK value
of 2 or 3 for p2p networks with a high rate of node dynamics;
for p2p networks with a low rate of node dynamics,K may be
higher than 3 if additional route redundancy is desired.

References

[1] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Ex-
ploiting network proximity in peer-to-peer overlay net-
works. InProc. of International Workshop on Future Di-
rections in Distributed Computing, June 2002.

[2] R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and
I. Stoica. The impact of DHT routing geometry on re-
silience and proximity. InProc. of ACM SIGCOMM, Au-
gust 2003.

[3] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao.
Distributed object location in a dynamic network. InProc.
of ACM Symposium on Parallel Algorithms and Architec-
tures, August 2002.

[4] S. S. Lam and H. Liu. Silk: a resilient routing fabric for
peer-to-peer networks. Technical Report TR-03-13, Dept.
of CS, Univ. of Texas at Austin, May 2003.

[5] S. S. Lam and H. Liu. Failure recovery for structured p2p
networks: Protocol design and performance evaluation. In
Proc. of ACM SIGMETRICS, June 2004.

[6] S. S. Lam and H. Liu. Failure recovery for structured p2p
networks: Protocol design and performance under churn.
Computer Networks, Vol.50(No.16), November 2006.

[7] X. Li and C. G. Plaxton. On name resolution in peer-to-
peer networks. InProc. of the 2nd Workshop on Principles
of Mobile Computing, October 2002.

[8] H. Liu and S. S. Lam. Neighbor table construction and up-
date in a dynamic peer-to-peer network. Technical Report

13

TR-02-46, Dept. of CS, Univ. of Texas at Austin, Septem-
ber 2002.

[9] H. Liu and S. S. Lam. Neighbor table construction and up-
date in a dynamic peer-to-peer network. InProc. of IEEE
International Conference on Distributed Computing Sys-
tems (ICDCS), May 2003.

[10] H. Liu and S. S. Lam. Consistency-preserving neighbor
table optimization for p2p networks. InProc. of Inter-
national Conference on Parallel and Distributed Systems,
July 2004.

[11] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
nearby copies of replicated objects in a distributed environ-
ment. InProc. of ACM Symposium on Parallel Algorithms
and Architectures, June 1997.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and Scott
Shenker. A scalable content-addressable network. InProc.
of ACM SIGCOMM, August 2001.

[13] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems. InProc. of IFIP/ACM International Conference
on Distributed Systems Platforms, November 2001.

[14] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. InProc. of ACM SIGCOMM, Au-
gust 2001.

[15] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to
model an internetwork. InProc. of IEEE Infocom, March
1996.

[16] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D.
Joseph, and J. D. Kubiatowicz. Tapestry: A resilient
global-scale overlay for service deployment.IEEE Jour-
nal on Selected Areas in Communications, Vol.22(No.1),
January 2004.

Appendix

A Proofs of Lemmas 3.2, 3.3

Proof of Lemma 3.2: We prove the lemma by constructingK

disjoint paths fromx to y. ConsiderNx(0, y[0]). y 6∈ x.table

implies y 6∈ Nx(0, y[0]). Hence, there must existK neigh-
bors inNx(0, y[0]); otherwise,Nx(0, y[0]).size < K implies
|Vy[0]| < K and all nodes inVy[0], includingy, would be stored
in Nx(0, y[0]).

We denote theK paths to be constructed asP0 to PK−1.
Also, we useuj

i to denote thejth node in pathPi. Accord-
ing to Definition 3.2, we need to establish paths as follows:
Pi = {u0

i , ..., u
k
i }, i ∈ [K], 1 ≤ k ≤ d, whereu0

i = x, uk
i = y,

andu
j
i ∈ N

u
j−1
i

(j − 1, y[j − 1]), 1 ≤ j ≤ k. First, letu0
i = x

for each pathPi, i ∈ [K]. Next, starting withP0, for each path
Pi, let u1

i = v, such thatv ∈ Nx(0, y[0]) andv 6∈ Pl for all
l, 0 ≤ l ≤ i − 1, that is,v is not included in pathsP0 to Pi−1

(this is easy to achieve since there areK nodes inNx(0, y[0])).
Let j = 1, f = min(K, |Vy[j]...y[0]|), and execute the following
steps (referred to as roundj).

1. For each pathPi, i ∈ [K], if u
j
i = y, then markPi as

“done”. Let P ′ = {Pi, Pi is not marked “done”} and
|P ′| = I. NoteI ≤ K. In the next three steps, we will
assign a node touj+1

i for each pathPi in P ′.
2. For eachPi, Pi ∈ P ′, if u

j
i [j] = y[j] then letuj+1

i = u
j
i .

Suppose there areh such paths. Then, re-number these
paths asP0 to Ph−1, and the other paths inP ′ asPh to
PI−1. Then, for any pathPi, h ≤ i ≤ I − 1, we have
u

j
i [j] 6= y[j]. In the next two steps, we will assign a node

to u
j+1
i for each pathPi in {Ph, Ph+1, ..., PI−1}.

3. If f ≥ I, then starting withPh, for each pathPi, h ≤
i ≤ I − 1, let u

j+1
i = v, such thatv ∈ N

u
j
i
(j, y[j]) and

v 6= u
j+1
l for all l, 0 ≤ l ≤ i − 1. Such a nodev must

exist, since there aref different nodes inN
u

j
i
(j, y[j]), and

at mostI − 1 of them are already assigned to other paths
in P ′ (where there areI − 1 paths other thanPi) for the
(j + 1)th position.

4. If f < I, then (i) starting withPh, for pathPi, h ≤ i ≤
f − 1, let u

j+1
i = v, such thatv ∈ N

u
j
i
(j, y[j]) andv 6=

u
j+1
l for all l, 0 ≤ l ≤ i − 1, and (ii) for each pathPi,

f ≤ i ≤ I − 1, let u
j+1
i = y, becausef < I indicates

f < K, i.e., |Vy[j]...y[0]| < K, so every node inVy[j]...y[0],
includingy, is in N

u
j
i
(j, y[j]).

Next, increasej by 1 and execute the above four steps for an-
other round if there still exist paths that are not marked “done”
yet. Eventually, each path will be marked “done”, since the net-
work is aK-consistent network, and a path exists from any node
(including nodeu1

i , i ∈ [K]) to y (see Lemma 3.1).
So far we have establishedK paths fromx to y. We then

prove that they are disjoint. First, we point out that any two
paths, sayPi and Pj , among theK paths are different from
each other, since at leastu1

i is different fromu1
j .

Second, we need to prove the following claim, which states
that for any two paths, the nodes at thejth position are different
if none of the nodes is the destination nodey.

Claim A.1 For any two pathsPi andPl, if u
j
i 6= y andu

j
l 6= y,

j ≥ 1, thenu
j
i 6= u

j
l .

Proof of Claim A.1: Prove by induction. Base step (j = 1):
According to the way we assign nodes tou1

i′ for each pathPi′ ,
i′ ∈ [K], we know thatu1

i 6= u1
l .

Inductive step: Supposeuj
i 6= u

j
l , j ≥ 1, whereu

j
i 6= y and

u
j
l 6= y. We next prove thatuj+1

i 6= u
j+1
l if neitheruj+1

i nor
u

j+1
l is y.
• If u

j
i [j] = y[j] andu

j
l [j] = y[j], then according to step 2

in each round of path construction,u
j+1
i = u

j
i andu

j+1
l =

u
j
l , thusu

j+1
i 6= u

j+1
l .

• If u
j
i [j] 6= y[j] or u

j
l [j] 6= y[j], then without loss of gener-

ality, supposeuj
l [j] 6= y[j]. Also, suppose in this round of

node assignment (roundj + 1), pathPi is re-numbered as
Pi′ (see step 2), pathPl is re-numbered asPl′ , andi′ < l′

(if u
j
i [j] = y[j], then according to step 2, we havei′ < l′;

otherwise, we supposei′ < l′). Let v = u
j+1
i . Accord-

ing to step 3 (or 4) in path construction, ifu
j+1
l 6= y, then

u
j+1
l is chosen in such a way that it is not the same as any

(j +1)th node in the 0th path to thel′th path (the paths that
are re-numbered as the 0th path to thel′th path in round

14

j + 1). Hence,uj+1
l 6= v, i.e.,uj+1

l 6= u
j+1
i .

Third, by Claim A.1, we can show (by contradiction) that
among theK paths we have constructed, no path is of the form
(x, ..., z, ..., x, ..., y), wherez 6= x. Suppose there exists a path
Pi of the above form, that is, there exists a pathPi such that
for the nodes inPi, u0

i = x, u
j
i = z, andu

j+1
i = x, where

j > 0. u
j+1
i = x indicates thatx.ID shares the rightmost

j + 1 digits with y.ID, then,x[0] = y[0] andx ∈ Nx(0, y[0]).
Hence, there must exist a pathPl such thatu1

l = x (accord-
ing to the way we assign nodes tou1

i′ for each pathPi′). Thus,
Pl is not the same path withPi. Then, by step 2, in pathPl,
u1

l = ... = u
j
l = u

j+1
l = x. Next, by Claim A.1, for any

other pathPh, h 6= l, u
j′

h 6= u
j′

l for 1 ≤ j′ ≤ j + 1. Hence,
no j′th node in any path other thanPl could be nodex for
1 ≤ j′ ≤ j + 1. We conclude withuj+1

i 6= x, which contradicts
with the assumptionuj+1

i = x.
Based on the above results, we prove that theK paths are

disjoint. Consider any two pathsPi and Pl. By Claim A.1,
u

j
i 6= u

j
l , that is, thejth node inPi is different from thejth

node inPl. We next show thatuj
i is different from anyj′th node

in Pl, j′ < j, by contradiction. Supposeuj
i = u

j′

l . Then since

u
j
i has suffixy[j]...y[0], so doesuj′

l . According to step 2 in path

construction,uj′

l = u
j′+1
l = ... = u

j
l . Thus, we getuj

i = u
j
l , a

contradiction. Similarly, we can prove thatu
j
i is different from

anyj′th node inPl, for j′ > j. Therefore, any node inPi that
is notx or y does not appear in any other pathPl. Thus, theK
paths are disjoint.

Proof of Lemma 3.3: By Lemma 3.2, ify 6∈ x.table, then there
exist at leastK disjoint paths fromx to y. Also, as shown in the
proof of Lemma 3.2, ify 6∈ x.table, thenNx(0, y[0]).size = K

and thusmin(K, |Vy[0]|) = K. Hence, the lemma holds when
y 6∈ x.table. If y ∈ x.table, however,y 6∈ Nx(0, x[0]), then,
Nx(0, y[0]).size = min(K, |Vy[0]|). Similar to the proof for
Lemma 3.2, we can constructh disjoint paths fromx toy, where
h = min(K, |Vy[0]|). If y ∈ x.table andy ∈ Nx(0, x[0]), then
y[0] = x[0]. Recall thatx ∈ Nx(0, x[0]). Similar to the proof
for Lemma 3.2, we can constructh − 1 paths fromx to y, h =
min(K, |Vy[0]|), where in assigning nodes tou1

i for each path,
we only consider the nodes in setN ′, N ′ = Nx(0, x[0]) − {x}.
(If we also considerx in assigning nodes tou1

i , two of the paths
maybe the same path that goes directly fromx to y: pathPi,
whereu1

i = x and pathPl whereu1
l = y.) Hence, at leasth− 1

disjoint paths exist fromx to y.

B Proofs of Lemmas 6.1 to 6.5

In this section, we present our proof for the lemmas presented in
Section 6.1 in detail. Recall that we made the following assump-
tions in designing the join protocol: (i) The initial network is a
K-consistent network, (ii) each joining node, by some means,
knows a node in the initial network initially, (iii) messages be-
tween nodes are delivered reliably, and (iv) there is no node
deletion (leave or failure) during the joins. We also assumethat
the actions specified in Figures 8, 9, 10, 11, and 12 are atomic.

Theorem 3 Suppose a set of nodes,W = {x1,...,xm}, m ≥

1, join a K-consistent network〈V,N (V)〉. Then, at timete,
〈V ∪ W,N (V ∪ W)〉 is aK-consistent network.

To prove Theorem 3, we first prove some auxilary lemmas
and propositions. Table 2 shows the abbreviations we will use
for protocol messages in the proofs, and Table 3 presents the
notation used in the following proofs. Moreover, we define
“strongly reachable” as follows.

Definition B.1 Consider two nodes,x and y, in network
〈V,N (V)〉. If there exists a neighbor sequence (a path),
(uh, uh+1..., uk), 0 ≤ h ≤ k ≤ d, such thatuh = x,
uk = y, and ui+1 ∈ Nui(i, y[i]), h ≤ i ≤ k − 1, where
h = |csuf (x.ID, y.ID)|, then we say thaty is strongly reach-
able fromx, or x canstrongly reachy, in k hops.

Protocol Message Abbreviation
CpRlyMsg CPRly
JoinWaitMsg JW
JoinWaitRlyMsg JWRly
JoinNotiMsg JN
JoinNotiRlyMsg JNRly
SpeNotiMsg SN
SpeNotiRlyMsg SNRly
RvNghNotiMsg RN
RvNghNotiRlyMsg RNRly

Table 2: Abbreviations for protocol messages

Notation Definition
〈x → y〉k x can strongly reachy within k hops

x
j
→ y the action thatx sends aJNor aJW to y

x
jn
→ y the action thatx sends aJN to y

x
jw
→ y the action thatx sends aJWto y

x
c
→ y the action thatx sends aCP to y

A(x) theattaching-nodeof x, which is the node that
sends a positiveJWRlyto x

te
x the timex changes status toin system, i.e., the end

of x’s join process,
te max(te

x1
, ..., te

xm
)

Table 3: Notation in proofs

The following facts, which can be easily observed from the
join protocol, are used frequently in the proofs. (In what fol-
lows, unless explicitly stated, when we say “x can reachy”, we
mean “x can strongly reachy”.)

Fact B.1 Messages of typeCP, JW, and JN are only sent by
T-nodes.

Fact B.2 If nodex sends out aJWRly at timet, thenx is al-
ready an S-node at timet.

Fact B.3 If A(x) = u, then x.att level ≤ h, whereh =
|csuf(x.ID, u.ID)|, and for eachj, x.att level ≤ j ≤ h,
x ∈ Nu(h, x[h]) afteru receives theJWfromx. Also,x changes
status from waiting to notifying immediately after it receives the
positiveJWRly fromu.

Fact B.4 If A(x) = u and x.att level = k, 0 ≤ k ≤
|csuf(x.ID, u.ID)|, then beforeu receives aJW from x,
Nu(j, x[j]).size < K for all j, k ≤ j ≤ |csuf(x.ID, u.ID)|.

Fact B.5 A joining node,x, only sends aJN to y if x is in status
notifying and|csuf(x.ID, y.ID)| ≥ x.att level.

Fact B.6 If x
jn
→ y happens,y will send a reply that includes

y.table to x immediately. Moreover, eachJN sent byx includes
x.table.

15

Fact B.7 x sends a message of typeJWor JN to y at most once
(x does not send both types of messages toy).

Fact B.8 By timetex, x has received all of the replies for mes-
sages of typeCP, JW, JN, andSN it has sent out.

Proposition B.1 Suppose a set of nodes,W = {x1, ..., xm},
m ≥ 1, join a consistent network〈V,N (V)〉. Consider nodex,
x ∈ W . Letu = A(x) and lett be the timeu sends its positive
reply, JWRly, to x. Suppose one of the following is true, where
y ∈ V ∪ W andy 6= x:

• x
jn
→ y happens;

• y = u.

Then, if at time t, 〈y → z〉d, z ∈ V ∪ W , and

|csuf(x.ID, z.ID)| ≥ x.att level, thenx
j
→ z happens be-

fore timetex.

Proof: Since at timet, y can reachz, there must ex-
ist a neighbor sequence at timet, (uh, uh+1, ..., ud), h =
|csuf(y.ID, z.ID)|, such thatuh = y, ud = z, andui+1 ∈
Nui(i, z[i]) for h ≤ i ≤ d− 1. Note that the ID of each node in
the sequence has suffixy[h − 1]...y[0] (which is the same with
z[h − 1]...z[0]).

Next, we prove the following claim:For nodes in{uh, uh+1,

...,ud}, If x
jn
→ y happens, thenx

jn
→ ui eventually happens for

eachi, h + 1 ≤ i ≤ d.
First, observe that at timet, x is still in statuswaiting, if

x
jn
→ y happens, it must happen after timet, by Facts B.4. Let

k = x.att level . If x
jn
→ y happens (i.e.,x sends aJN to y,

then it must be thatk ≤ |csuf(x.ID, ui.ID)|, by Fact B.5.
Therefore,y must share the suffixx[k− 1]...x[0] with x. On the
other hand, it is given that|csuf(x.ID, z.ID)| ≥ k, thusz also
shares suffixx[k−1]...x[0] with x. Since bothy andz have suf-
fix x[k−1]...x[0] in their IDs, it follows that each node along the
path fromy to z, {uh, uh+1, ...,ud} shares suffixx[k−1]...x[0].
Thus,k ≤ |csuf(x.ID, ui.ID)| for eachi, h ≤ i ≤ d. Then, if

x
jn
→ ui happens,h ≤ i ≤ d − 1 from theJNRlyui sends tox,

x findsui+1 from the reply and then sends aJN to ui+1. Thus,
the above claim is true.

Therefore, ifx
jn
→ y happens, then eventuallyx

jn
→ ud will

happen, whereud = z. The proposition holds in the first case.
If y = u, that is,y is the attching-node ofx, then by Fact B.3,

k ≤ |csuf(x.ID, y.ID)|. From theJWRlyy sends tox, x will
find uh+1 and sends aJN to uh+1. Then similar to the above

argument, it can be shown thatx
jn
→ ui eventually happens,

h + 1 ≤ i ≤ d. Therefore,x
jn
→ ud will happen,ud = z.

Lemma 6.1 Suppose nodex joins a K-consistent network
〈V,N (V)〉. Then, at timetex, 〈V ∪ {x},N (V ∪ {x})〉 is a K-
consistent network.

Proof: SupposeV Notify
x = Vx[k−1]...x[0], that is,|Vx[k]...x[0]| <

K and |Vx[k−1]...x[0]| ≥ K. Let V ′ = V ∪ {x}. Then
V ′

j·x[i−1]...x[0] = Vj·x[i−1]...x[0] if j 6= x[i], i ∈ [d], and
V ′

x[i]...x[0] = Vx[i]...x[0] ∪ {x}.
Let g be the last node thatx sends aCP to in statuscopy-

ing. Then it must be thatg ∈ Vx[k−1]...x[0]: Because the condi-
tion for x to change status is thatx finds there exists a level-

h in the table ofg, such thatNg(i, x[i]).size < K, for all
h ≤ i ≤ |csuf(x.ID, g.ID)|. And sinceVx[k−1]...x[0] ≥ K,
Vx[k]...x[0] < K, and〈V,N (V)〉 is K-consistent, then beforex
is stored in any other node’s table,Ng(i, x[i]).size ≥ K for 0 ≤
i ≤ k − 1, andNg(k, x[k]).size < K. Therefore, by copying
neighbor information from nodes inV , by the timex changes
status towaiting, Nx(i, j).size = min(K, |Vj·x[i−1]...x[0]|) =
min(K, |V ′

j·x[i−1]...x[0]|) if j 6= x[i]; if j = x[i] and0 ≤ i <

k, thenNx(i, j).size = K since |Vj·x[i−1]...x[0]| ≥ K; for
(i, x[i])-entry,k ≤ i ≤ d − 1, for any nodey, if y ∈ Vx[i]...x[0],
theny ∈ Nx(i, x[i]). Moreover, sincex ∈ Nx(i, x[i]), i ∈ [d], it
follows that fork ≤ i ≤ d−1, Nx(i, x[i]) = Vx[i]...x[0]∪{x} =
V ′

x[i]...x[0]. Therefore, entries inx.tabe satisfy the conditions in
Definition 3.3.

After x changes status fromcopying to waiting, it sends a
JW to nodeg, which will then storex in Nx(k, x[k]) (and
levels higher thank if x and g share a suffix that is longer
thanx[k − 1]...x[0]) and sends back a positiveJWRly. Thus,
x.att level = k. Next, x needs to notify any nodez, z ∈
Vx[k−1]...x[0] about its join. Since the initial network isK-
consistent, thus〈g → z〉d at the timeg sends the positive

JWRly to x. By Proposition B.1,x
j
→ z eventually hap-

pens. Therefore, eventually,Nz(i, x[i]) = Vx[i]...x[0] ∪ {x}, i.e.,
Nz(i, x[i]) = V ′

x[i]...x[0], k ≤ i ≤ |csuf(x.ID, z.ID)|. The
other entries remain unchanged. It is trivial to check that the un-
changed entries satisfy conditions in Definition 3.3 for thenew
network.

Corollary B.1 Suppose a set of nodes,W ={x1,...,xm}, m ≥
1, join aK-consistent network〈V,N (V)〉. Then for any nodex,
x ∈ W , by timetex, Nx(i, j).size = K if |Vj·x[i−1]...x[0]| ≥ K;
andNx(i, j) ⊇ Vj·x[i−1]...x[0] if |Vj·x[i−1]...x[0]| < K.

Corollary B.2 Suppose a set of nodes,W ={x1,...,xm}, m ≥
1, join a K-consistent network〈V,N (V)〉. Then for any node
x, x ∈ W , and any nodey, y ∈ V , 〈x → y〉d by timetex.

Lemma 6.2 Suppose a set of nodes,W ={x1,...,xm}, m ≥ 2,
join a K-consistent network〈V,N (V)〉 sequentially. Then, at
timete, 〈V ∪ W,N (V ∪ W)〉 is aK-consistent network.

Proof: Prove by induction ontexi
, 1 ≤ i ≤ m. By Lemma 6.1,

Lemma 6.2 holds wheni = 1. Assume when1 ≤ i < m,
Lemma 6.2 holds. Then at timetexi

, 〈V ∪ W ′,N (V ∪ W ′)〉 is
a K-consistent network, whereW ′ = {x1, ..., xi}. Since the
nodes join sequentially,tbxi+1

≥ texi
. Thus, whenxi+1 joins, the

network, which is composed of nodes inV ∪W ′, isK-consistent
and there is no other joins in the period of [tbxi+1

, texi+1
].

By Lemma 6.1, at timetexi+1
, 〈V ∪ {x1, ..., xi+1},N (V ∪

{x1, ..., xi+1})〉 is K-consistent. Hence, Lemma 6.2 also holds
for i + 1.

Lemma B.1 Suppose a set of nodes,W = {x1, ..., xm}, m ≥
2, join a K-consistent network〈V,N (V)〉 independently. For
any nodex, x ∈ W , if |Vj·x[i−1]...x[0]| < K, 0 ≤ i < d − 1,
j ∈ [b], then (V ∪ W ′)j·x[i−1]...x[0] = Vj·x[i−1]...x[0], where
W ′ ⊆ W − {x}.

Proof: We prove by contradiction. Assume(V ∪
W ′)j·x[i−1]...x[0] ⊃ Vj·x[i−1]...x[0]. Then there exists a least a
nodey such thaty ∈ W ′ andy.ID has suffixj · x[i − 1]...x[0].

16

Since |Vj·x[i−1]...x[0]| < K and j · x[i − 1]...x[0] is a suf-
fix of y.ID, we rewrite it as|Vy[i]y[i−1]...x[0]| < K. Let
V Notify

y = Vy[i′−1]...y[0]. Then by the definition ofV Notify
y ,

we know|Vy[i′]y[i′−1]...y[0]| < K. Therefore, we knowi′ ≤ i.
Sincey[i − 1]...y[0] = x[i − 1]...x[0] and i′ ≤ i, we know
y[i′ − 1]...y[0] = x[i′ − 1]...x[0].

Now considerV Notify
x . SupposeV Notify

x = Vx[j−1]...x[0]. If
1 ≤ j ≤ i′, thenVx[j−1]...x[0] ⊃ Vx[i′−1]...x[0]; if i′ < j ≤
d − 1, thenVx[j−1]...x[0] ⊂ Vx[i′−1]...x[0]. Thus,Vx[j−1]...x[0] ∩
Vx[i′−1]...x[0] 6= ∅, i.e.,Vx[j−1]...x[0] ∩ Vy[i′−1]...y[0] 6= ∅. Then
we getV Notify

x ∩ V Notify
y 6= ∅. However, by Definition 4.5,

V Notify
x ∩ V Notify

y = ∅. Contradiction.

Corollary B.3 Suppose a set of nodes,W = {x1, ..., xm}, join
a K-consistent network〈V,N (V)〉. Let G(Vω1) = {x, x ∈
W, V Notify

x = Vω1}, G(Vω2) = {y, y ∈ W, V Notify
y = Vω2}.

If Vω1 ∩ Vω2 = ∅, then for any nodex, x ∈ G(Vω1), (V ∪
G(Vω2))j·x[i−1]...x[0] = Vj·x[i−1]...x[0] if |Vj·x[i−1]...x[0]| < K.

Lemma 6.3 Suppose a set of nodes,W ={x1,...,xm}, m ≥
2, join a K-consistent network〈V,N (V)〉 concurrently. If the
joins areindependent, then at timete, 〈V ∪ W,N (V ∪ W)〉 is
K-consistent.
Proof: Consider any nodex, x ∈ W . If |Vj·x[i−1]...x[0]| ≥
K, then by Corollary B.1, by timete, Nx(i, j).size =
K. If |Vj·x[i−1]...x[0]| < K, then by Lemma B.1, we
have (V ∪ W)j·x[i−1]...x[0] = Vj·x[i−1]...x[0] for j 6=
x[i], and (V ∪ W)j·x[i−1]...x[0] = Vj·x[i−1]...x[0] ∪ {x} for
j = x[i], i ∈ [d] and j ∈ [b]. Then, by Corol-
lary B.1, Nx(i, j).size = |Vj·x[i−1]...x[0]| for j 6= x[i]; and
Nx(i, j).size = |Vj·x[i−1]...x[0]| + 1 for j = x[i], where
Nx(i, j) = Vj·x[i−1]...x[0] ∪ {x}. Therefore, entries in the ta-
ble ofx satisfy conditions in Definition 3.3.

Next, consider any nodey, y ∈ V , and the(i, j)-entry in
y.table, i ∈ [d] and j ∈ [b]. If |Vj·y[i−1]...y[0]| ≥ K, then
Ny(i, j).size = K since the initial network isK-consistent. If
|Vj·y[i−1]...y[0]| < K andWj·y[i−1]...y[0] = ∅, thenNy(i, j) =
Vj·y[i−1]...y[0] = (V ∪ W)j·y[i−1]...y[0]. If |Vj·y[i−1]...y[0]| < K

andWj·y[i−1]...y[0] 6= ∅, then there exists a nodex, x ∈ W ,
such thatj · y[i − 1]...y[0] is a suffix ofx. By Lemma B.1,x is
the only node inW has the suffixj · y[i − 1]...y[0]. Similar to

the argument in proving Lemma 6.1, we can prove thatx
j
→ y

happens before timetex. Hence,Ny(i, j) = Vj·y[i−1]...y[0] ∪
{x} = (V ∪ W)j·y[i−1]...y[0].

The above results are true for every node inW . Hence, by
time te, 〈V ∪ W,N (V ∪ W)〉 is aK-consistent network.

Proposition B.2 Suppose a set of nodes,W = {x1, ..., xm},
m ≥ 1, join a K-consistent network〈V,N (V)〉. For any two

nodesx andy, x ∈ W andy ∈ V ∪W , if x
j
→ y happens, then

by timetex, 〈y → x〉d.

Proof: Initially, let i = 0 andu0 = y. Let the timeui sends its
reply tox beti. Also, leth = |csuf(x.ID, y.ID)|.

(1) If at time ti, x ∈ Nui(hi, x[hi]), hi =
|csuf (x.ID, ui.ID)|, then 〈y → x〉d, since a neigh-
bor sequence fromy to x, (u0, u1, ...,ui, x), exists, where
u0 = y.

(2) If at time ti, Nui(hi, x[hi]).size < K and x 6∈

Nui(hi, x[hi]), hi = |csuf (x.ID, ui.ID)|, thenui stores
x into Nui(h, x[h]). Hence,〈y → x〉d, since a neighbor
sequence fromy to x, (u0, u1, ..., ui, x), exists, where
u0 = y.

(3) If at time ti, Nui(hi, x[hi]).size = K and x 6∈
Nui(hi, x[hi]), then fromui’s reply (either aJWRlyor a
JNRly, both includesui.table), x findsv in ui.table. Let
ui+1 = v and |csuf(x.ID, ui+1.ID)| = hi+1. Let the

time x receives the reply fromy be ti+1. If x
jn
→ ui hap-

pens, thenx is in statusnotifying at time ti+1 and since
hi+1 ≥ hi ≥ x.att level , x needs to send aJN to ui+1; if

x
jw
→ ui happens, thenx is in statuswaitingat timeti+1 and

needs to sendui+1 a JW. Therefore,x
j
→ ui+1 eventually

happens (beforetex).
(4) Incrementi and repeat steps (1) to (4).

We claim that steps (1) and (4) are repeated at mostd times,
because

• At roundi, hi > hi−1.
• At each roundi, hi ≤ d − 1. The reason is thatx.ID is

unique in the system, therefore, any other node can share
at mostd − 1 digits (rightmost) withx.

Hence, eventually there exists a node,uj, 1 ≤ i < d−h, such
that x ∈ Nuj (hi, x[hj]), wherehj = |csuf(x.ID, uj.ID)|.
Therefore, eventually, there exists a neighbor sequence from y

to x, which is (u0, u1, ..., uj , x), whereu0 = y. Moreover,
at time tex, x must have received all replies it expects, which
include the reply fromuj. Hence, at timetex, 〈y → x〉d.

Before we present Proposition B.3, we introduce a concept,

contact-chain(y, u). Supposey
j
→ u or y

c
→ u happens. Then

we can construct a chain of nodes thaty contacts after it sends

out the message tou. We begin with the casey
j
→ u happens.

If y
j
→ u happens, thencontact-chain(y, u) is a sequence of

nodes, constructed as follows: Letu0 = u, i = 0, and putu0 in
the chain initially. Let|csuf(ui.ID, y.ID)| = hi, i ≥ 0.

(1) If afteru receives the message fromy, y ∈ Nui(hi, y[hi]),
thenui is the last node in the chain.

(2) If afteru receives the message fromy, y ∈ Nui(hi, y[hi]),
then letui+1 = Nui(hi, y[hi]).first . Add ui+1 to the

chain. (It can be shown thaty
j
→ ui+1 eventually hap-

pens.) Incrementi and repeat the two steps.

Similarly, if y
c
→ u happens, then there also exists a chain of

nodes, (u0, u1, ...,uj), j ≥ 0, such thatu0 = u, andy requests
neighbor tables fromu0 to uj, whereui+1 = Nui(i, y[i]).first ,
and y finds that an attach-level for it exists in the copy of
uj.table in the CPRly from uj. y then sends aJW to uj .
Concatenate (u0, u1, ..., uj) with contact-chain(y, uj), we get
contact-chain(y, u0), i.e., contact-chain(y, u).

Proposition B.3 If y
j
→ u or y

c
→ u happens, then there exists

a contact-chain(y, u).

Proof: If y
j
→ u, and if afteru receives the message from

y, y ∈ Nu(h, y[h]), then{u} is the contact-chain, whereh =
|csuf(y.ID, u.ID)|.

17

Otherwise, leti = 0 and u0 = u, and suppose afterui

receives the message fromy, y ∈ Nui(hi, y[hi]). Let hi =
|csuf(y.ID, ui.ID)| andui+1 = Nui(hi, y[hi]).first .

First, we show thaty
j
→ ui+1 eventually will happen. The

reason is as follows. (1) If the messagey sent toui is JN, then
it must be thathi ≥ y.att level . ui+1 shares more digits withy
thanui does. Hence,hi+1 ≥ hi ≥ y.att level . Therefore, after
y knowsui+1 from ui’s reply, it will send aJN to ui+1. If the
messagey sent toui is JW, thenui must replyy with a negative
JWRlysince it didn’t storey. According to the join protocol,y
will send out anotherJW, this time toui+1.

Second, we show that there exists a last node in the chain.

That is, the step that aftery
j
→ ui, y is not stored byui, andy

sends another message toui+1 (y
j
→ ui) will not be repeated

infinitely. Because:

• At roundi, hi > hi−1.
• At each roundi, hi ≤ d − 1. The reason is thatx.ID is

unique in the system, therefore, any other node can share
at mostd − 1 digits (rightmost) withx.

Similarly, we can show that a contact-chain(y, u) exists if
y

c
→ u happens.

Proposition B.4 Suppose a set of nodes,W = {x1, ..., xm},
m ≥ 2, join aK-consistent network〈V,N (V)〉. Letx andy be
two nodes inW . Suppose there exists a nodeu, u ∈ V ∪W , such

that by timete, x
j
→ u has happened, andy

j
→ u or y

c
→ u has

happened. If|csuf(x.ID, y.ID)| = h and x.att level ≤ h,
then by timetxy, txy = max(tex, tey), at least one of the following
is true: x ∈ Ny(h, x[h]) or Ny(h, x[h]).size = K.

Proof:
Case 1: |csuf(u.ID, x.ID)| ≥ h. Let the timeu replies tox

betx, and the timeu replies toy bety.
If tx < ty, then after receiving the notification fromx (i.e.,

time tx), u will storex in Nu(h, x[h]) if Nu(h, x[h]).size < K

before tx (x.att level ≤ h, henceu can storex at level
h). Since tx < ty, at time ty, either x ∈ Nu(h, x[h]) or
Nu(h, x[h]).size = K is true. Next, fromu’s reply that
includesu.table, y copies nodes inNu(h, x[h]) (after time
ty but before timetxy). Thus, eitherx ∈ Ny(h, x[h]) or
Ny(h, x[h]).size = K by timetxy.

If tx > ty, then consider the nodesy contacts after it sends
theCP message tou, i.e.,contact-chain(y,u). Supposecontact-
chain(y,u) is (u0, u1, ...,uf , uf+1), whereu0 = u anduf+1 =

y. Then, for each node in the chain,ui, eithery
c
→ ui or y

j
→ ui

happens,0 ≤ i ≤ f . Observe that|csuf(x.ID, ui.ID)| ≥ h

(because eachui.ID has suffixx[h−1]...x[0] since bothu0.ID

andy.ID have this suffix), therefore,|csuf(x.ID, ui.ID)| ≥
x.att level for eachi, 0 ≤ i ≤ f . We then prove the following
claim:
Claim B.1 (Property of contact-chain(y, u)) If after y has re-
ceived all replies fromu0 to ui and copied nodes from neighbor
tables included in the replies,Ny(h, x[h]).size < K andx 6∈

Ny(h, x[h]), thenx
j
→ ui+1 happens eventually,0 ≤ i ≤ f .

We prove the above claim by induction oni. In what follows,
we say that link(ui, ui+1) exists at timet, if ui+1 ∈ ui.table

by timet.

Proof of Claim B.1: Base stepAt time ty, link (u0, u1) already
exists (otherwise,u1 = y). Therefore, the link also exists at
time tx (we have assumedtx > ty). x then learnsy from u0’s

reply. If the reply is aJNRly, thenx
jn
→ u1 eventually happens

becausex.att level ≤ h (by the assumption of the proposition);
if the reply is aJWRly, thenx will send anotherJW to u1, that

is x
jw
→ u1 will happen. Thus,x

j
→ u1 eventually happens.

Inductive step Assume the claim holds for allj, 0 ≤ j ≤ i,
0 ≤ i ≤ m − 1. Let t1 be the timeui+1 sends its reply to
y, andt2 be the timeui+1 sends its reply tox. Then it must
be t1 < t2, otherwise, at timet1, eitherx ∈ Nui+1(h, x[h])
or Nui+1(h, x[h]).size = K is true, which implies aftery
copies nodes fromui+1’s reply, eitherx ∈ Ny(h, x[h]) or
Ny(h, x[h]).size = K is true, which contradicts with the as-
sumption of the claim. Hence, link (ui+1, ui+2) exists at time
t1 as well ast2. Consequently,x knowsui+2 from ui+1’s reply
and will notifyui+1 if it has not done so (similar to the argument
in the base step,x sends either aJWor aJN to ui+1).

It can then be shown that if after receiving all of the replies
from u0 to uf , Ny(h, x[h]).size < K andx 6∈ Ny(h, x[h]),

then eventuallyx
j
→ y happens. Thus, the proposition holds in

Case 1.

Case 2: |csuf(u.ID, x.ID)| < h. Then, it follows
that |csuf(u.ID, x.ID)| = |csuf(u.ID, y.ID)|. Let
|csuf(u.ID, x.ID)| = h′, thenx[h′] = y[h′], sincex[h −
1]...x[0] = y[h − 1]...y[0] andh′ < h. Let the timeu receives
the message fromx (either aJWor aJN) be t1, and the timeu
receives the message fromy (aCP, JW, or aJN) bet2.

(1) If t1 < t2, andx ∈ Nu(h′, x[h′]) after t1, then fromu’s
reply toy, y findsx and copiesx into y.table (if y sends aCPor

a JW to u) or y
jn
→ x happens. Hence, aftery receives the reply

from u, x ∈ Ny(h, x[h]) or Ny(h, x[h]).size = K.
(2) If t1 < t2, and x 6∈ Nu(h′, x[h′]) after t1, then

Nu(h′, x[h′]) has storedK nodes by timet1. Let v =

Nu(h′, x[h′]).first . Thenx
j
→ v will happen (if the message

x sent tou is JN, thenx
jn
→ v happens; otherwise,x

jw
→ v hap-

pens). Similarly,y
j
→ v or y

c
→ v will happen, since at time

t2 > t1 andNu(h′, x[h′]) already storesK nodes byt1.
(3) If t1 > t2, andy ∈ Nu(h′, x[h′]) by timet1, thenx finds

y fromu’s reply. Thenx
jn
→ y will happen sincex.att level ≤ h

(either that (1)x copiesy into x.table and sends aJN to y later,
if x has sent aJW to u, or (2) x sends aJN to y right after it
receives theJNRlyfrom u).

(4) If t1 > t2, y 6∈ Nu(h′, x[h′]) by timet1, and the message
y sends tou is aJWor JN, thenNu(h′, x[h′]) must have stored
K nodes by timet2 (otherwise,u would storey at time t2).

Let v = Nu(h′, x[h′]).first . Then bothx
j
→ v andy

j
→ v

eventually happen.
(5) If t1 > t2, y 6∈ Nu(h′, x[h′]) by time t1, the messagey

sends tou is a CP, andNu(h′, x[h′]) has storedK nodes by

time t2, thenx
j
→ v andy

c
→ v eventually happen.

(6) If t1 > t2, y 6∈ Nu(h′, x[h′]) by time t1, the messagey
sends tou is aCP, andNu(h′, x[h′]) has not storedK nodes by
time t2, theny must send aJW to u after it receives theCPRly

18

fromu. Then, it is the same with the case thatx
j
→ u andy

j
→ u

both happen.

In (2), (4), and (5), we have that bothx
j
→ v andy

c
→ v

happen. Moreover,v shares more digits withx andy thanu.
If |csuf(v.ID, x.ID)| ≥ h, then by applying the arguments in
Case 1 (replacingu with v), we can show that the proposition
holds. If |csuf(v.ID, x.ID)| < h, then arguments in Case 2
can be applied, where either we conclude that the proposition

holds in (1), (3) and (6), or we get thatx
j
→ v′ andy

c
→ v′

happen, wherev′ shares more digits withx andy thanv. In the
latter case, we repeat the above steps repeatedly until at a step,

we find a nodew, such thatx
j
→ w andy

c
→ w both happen and

|csuf(w.ID, x.ID)| ≥ h. Then by applying the arguments in
Case 1 (by replacingu with w), we conclude that the proposition
holds.

Lemma 6.4 Suppose a set of nodes,W ={x1,...,xm}, m ≥
2, join a K-consistent network〈V,N (V)〉 concurrently. If the
joins aredependent, then at timete, 〈V ∪ W,N (V ∪ W)〉 is
K-consistent.

To prove Lemma 6.4, consider any two nodes inW , sayx and
y. If their noti-sets are the same, i.e.,V Notify

x = V Notify
y , thenx

andy belong to the same C-set tree rooted atV Notify
x , otherwise

they belong to different C-set trees. We consider nodes in the
same C-set tree first and prove Propositions 6.1 to 6.7. Then,we
prove Proposition 6.8, which states when joining nodes belong
to different C-set trees, their neighbor tables eventuallysatisfy
K-consistency conditions. Based on Proposition 6.7 and Propo-
sition 6.8, we present our proof of Lemma 6.4. To simplify pre-
sentation in the following propositions, we make the following
assumption:

Assumption 1 (for Propositions 6.1 to 6.7)
A set of nodes,W = {x1, ..., xm}, m ≥ 2, join a K-consistent
network 〈V,N (V)〉 concurrently and for anyx, x ∈ W ,
V Notify

x = Vω and|ω| = k.

Proposition 6.1 For each nodex, x ∈ W , there exists a C-set
Clj ...l1·ω, 1 ≤ j ≤ d − k, such that by timete, x ∈ Clj ...l1·ω,
wherelj ...l1 · ω is a suffix ofx.ID.
Proof: Considercontact-chain(x,g), whereg is the node that
x is given to start its join process. Supposecontact-chain(x,g)
is (u0, u1, ...uf , uf+1), whereu0 = g anduf+1 = x. Then
uf is the node that sends a positiveJWRly to x (see Defini-
tion of a contact-chain [8]). Let the lowest leveluf storesx
in uf .table (the attach-level ofx) be level-h, thenk ≤ h ≤
|csuf(u.ID, x.ID)| (recall k = |ω|, as defined in Assump-
tion 1). Create a new sequence (g0, ..., gh) based oncontact-
chain(x,g) as follows:

• Let g0 = g andj = 0.
• For eachi, 0 ≤ i ≤ h − 1, let gi+1 = gi if gi[i] = x[i] and

i < h − 1; if gi[i] 6= x[i] andi < h − 1, let gi = uj and
increasej.

• gh = uf .

Then,gk ∈ Vω , becausegk ∈ V andgk[k − 1]...gk[0] = x[k −
1]...x[0]. Hence,gk+1 ∈ Cl1·ω, wherel1 = x[k], sincegk+1 ∈
Ngk

(k, x[k]) (by the definition ofcontact-chain) andgk+1[k] =

x[k]. Consequently,gk+2 ∈ Cl2l1·ω, ..., gh−1 ∈ Clh−k−1...l1·ω,
andgh ∈ Clh−k...l1·ω. Hencex ∈ Cx[h]·lh−k...l1·ω.

Corollary B.4 For each nodex, x ∈ W , there exists a nodeu
such thatu = A(x), andu belongs to a C-set incset(V, W) or
u ∈ Vω.

Proposition 6.2 If Wlj ...l1·ω 6= ∅, 1 ≤ j ≤ d − k, then by time
te, the followings are true:

(a) Clj ...l1·ω ⊆ (V ∪ W)lj ...l1·ω andClj ...l1·ω ⊇ Vlj ...l1·ω.
(b) if |(V ∪W)lj ...l1·ω| < K, thenClj ...l1·ω = (V ∪W)lj ...l1·ω;
(c) if |(V ∪ W)lj ...l1·ω| ≥ K, then|Clj ...l1·ω| ≥ K.

Proof: Consider setClj ...l1·ω. For any nodeu, u ∈ Vω , if
u.ID has suffixlj ...l1 · ω, thenu ∈ Clj ...l1·ω by the definition
of cset(V, W). Hence, part (a) holds trivially.

We prove parts (b) and (c) by contradiction. Assume
|Clj ...l1·ω| < h, where h = |(V ∪ W)lj ...l1·ω| if |(V ∪
W)lj ...l1·ω| < K, andh = K if |(V ∪ W)lj ...l1·ω| ≥ K.
If |Clj ...l1·ω| < h, then there exists a nodex, such thatx ∈
Wlj ...l1·ω andx 6∈ Clj ...l1·ω. By Corollary B.4, there exists a
nodeu, such thatu = A(x) andu.ID has suffixω.

First, consider the case wherej = 1, thenx ∈ Wl1·ω and
x 6∈ Cl1·ω. Sinceu = A(x) andu.ID has suffixω, then it
must be thatu ∈ Vω . However, by Definition 4.8, this implies
x ∈ Cl1·ω. A contradiction. Second, consider the case where
j > 1. Supposeu ∈ Cli...l1·ω, whereli...l1 · ω is a suffix of
both u.ID andx.ID. By the definition ofcset(V, W), x ∈
Cli+1...l1·ω, lj+1 = x[i + k], and hence,x ∈ Cli′ ...l1·ω for all
i′, i + 1 ≤ i′ ≤ d − k, whereli′ ...l1 · ω is a suffix ofx.ID.
Therefore, it must be thati + 1 > j, i.e., i ≥ j (otherwise,
x ∈ Clj ...l1·ω). However, by Corollary B.5,|Clj′ ...l1·ω| ≥ K for
1 ≤ j′ ≤ i, thus,|Clj ...l1·ω| ≥ K. A contradiction.

Proposition B.5 Consider any nodex, x ∈ W , if x ∈
Clj+1...l1·ω and x 6∈ Clj ...l1·ω, 1 ≤ j ≤ d − k − 1, (or if
x ∈ Cl1·ω, respectively), then

(a) there exists a nodev, v ∈ Clj ...l1·ω (or v ∈ Vω), such that
x ∈ Nv(j + k, lj+1) (or x ∈ Nv(k, l1)) andA(x) = v;

(b) x.att level = j + k (or x.att level = k).

Proof: By Corollary B.4, there exists a nodeu, such that
A(x) = u. Supposeu ∈ Cli...l1·ω andx ∈ Nu(i + k, x[i + k]),
wherei+k is the attach-level ofx in u.table, 0 ≤ i ≤ d−k−1.
Hence,x ∈ Cli+1...l1·ω, whereli+1 = x[i + k] and according to
the algorithm,x setsx.att level = i + k.

Then it must be thati ≥ j. Otherwise, ifi < j, then since
x ∈ Cli+1...l1·ω, it follows thatx ∈ Cli′ ...l1·ω, i′ ≤ i ≤ d − k,
thusx ∈ Clj ...l1·ω, which contradicts with the assumption in the
proposition.

Next, we show thati ≤ j, proving by contradiction. Assume
i > j. Thusli...l1 · ω is a longer suffix thanlj...l1 · ω. Since
x only sendsJN to nodes with suffixx[i + k − 1]...x[0] (i.e.
suffix li...l1 · ω), other nodes can only knowx through these
nodes plus nodeu. (Note thatx would not be a neighbor at
any level lower than level-(i + k) in tables of these nodes, be-
cause when a node,y, copiesx, from z.table, wherez is one
of the nodesx has sentJN to or z = u, if x is stored at lev-
els no lower than level-i + k in z.table, theny will not store

19

x at a level lower thani + k. See Figures 10 and 13.) Given
that x ∈ Clj+1...l1·ω and x 6∈ Clj ...l1·ω, by the definition of
cset(V, W), there must exist one nodey, y ∈ Clj ...l1·ω and
y 6= x, such thatx ∈ Ny(j +k, lj+1) by timete. y can not store
x by receiving aJW from x, since that indicatesA(x) = y and
i = j, which contradicts with the assumption thati > j. Also as
discussed above, sincei > j, x will only sendJN to nodes with
suffix li...l1 ·ω and thus will not send aJN to y. Hence,y knows
x through another node,z. There are three possible cases: (i)y

copiesx from z during c-phase; (ii)y knowsx through a reply
(a JWRlyor a JNRly) from z or a JN from z; (iii) y receives a
SNinforming it aboutx, which is sent or forwarded byz. Both
cases (i) and (ii) are impossible, becausez can only storex at a
level no lower thani + k (see Figure 11), thus wheny copiesx
from z.table, it can not fillx into a level lower thani+k (again,
see Figure 13). Now consider case (iii). Ifz sends or forwards
a SN to y, then |csuf(x.ID, y.ID)| > |csuf(x.ID, z.ID)|,
since bothx.ID andy.ID have the same desired suffix of an en-
try in z.table. However, we know that|csuf(x.ID, y.ID)| <

|csuf(x.ID, z.ID)|, because|csuf(x.ID, y.ID)| = j + k,
|csuf(x.ID, z.ID)| = i + k andi > j. Therefore, case (iii) is
impossible, either. Thus, we conclude thati ≤ j.

Sincei ≥ j and i ≤ j, we conclude thati = j. Hence,
u ∈ Clj ...l1·ω andx.att level = j + k, whereu = A(x).

Corollary B.5 If Clj ...l1·ω is the first C-setx belongs to,2 ≤
j ≤ d − k, then|Cli...l1·ω| ≥ K for 1 ≤ i < j.

Proof: Considercontact-chain(x,g) and construct a sequence
of nodes, (g0, ..., gh), whereh = j + k, based oncontact-
chain(x,g), in the same way described in the proof of Propo-
sition 6.1. Thus,gj[i

′−1]...g0[0] = x[i′−1]...x[0], 0 ≤ i′ ≤ h.
Assume |Cli...l1·ω| < K. We know thatgk+i ∈ Cli...l1 .
Then, by the definition ofcontact-chain(x,g), gk+1 is a node
that x has sent aCP or a JW to. If |Cli...l1·ω| < K, then
it must be thatNgk+i

(k + i, x[k + i]).size < K (implied by
Definition 4.8), and henceNgk+i

(h′, x[h′]).size < K, where
k + i ≤ h′ ≤ |csuf(x.ID, gk+i.ID)|. Thenx would not send a
CP togk+1, since whenx findsNgk+i

(k+i, x[k+i]).size < K,
it will change status towaiting and send aJW to gk+1. How-
ever, ifx has sent aJW to gk+i, thengk+i would storex since
an attach-level ofx in gk+i.table exists, whichx ∈ Cli...l1·ω. A
contradiction with that theClj ...l1·ω is the first C-setx belongs
to, j > i.

Proposition B.6 Consider a nodey, y ∈ W , and letuy =
A(y). SupposeClj ...l1·ω is the first C-sety belongs to,1 ≤ j ≤
d−k. Then for a nodex, x ∈ W andx.ID has suffixlj−1...l1·ω,

if x
j
→ uy happens, orx ∈ Nuy(j+k−1, lj) beforeuy receives

theJW fromy, then by timetxy, txy = max(tex, tey), 〈y → x〉d.

Proof: Let ty be the timeuy sends its positiveJWRlyto y, and

tx be the timeuy receives the notification fromx if x
j
→ uy

happens. Sinceuy = A(y), y ∈ Clj ...l1·ω andy 6∈ Clj−1...l1·ω,
by Proposition B.5,uy ∈ Clj−1...l1·ω (or uy ∈ Vω if j = 1) and
y.att level = k + j − 1. Also, we know that before timety,
Nuy(k + j − 1, lj).size < K (by Fact B.4).

If x
j
→ uy happens andtx > ty, thenx knowsy from uy’s

reply andx
j
→ y will happen. By Proposition B.2,〈y → x〉d by

time tex.

If x
j
→ uy happens andtx < ty, then at timetx, Nuy(k + j−

1, lj).size < K, therefore,uy storesx into Nuy(k + j − 1, lj).
Then, by timety, x ∈ Nuy(k + j − 1, lj). In what follows,
we only consider the case thatx ∈ Nuy(k + j − 1, lj) before
uy receives theJW from y. In this case,y learnsx from uy ’s
JWRly. (i) If y also storesx into Ny(k+j−1, lj), then trivially,

〈y → x〉d by timetey. (ii) Otherwise,y
j
→ x eventually happens

(|csuf(x.ID, y.ID)| ≥ k + j > y.att level).

(1) If by the timex receives the notification fromy, x is still

a T-node, thenx
j
→ v must happen eventually, wherev =

Ny(h, x[h]).f irst, h = |csuf(x.ID, y.ID)|. Thus,〈v →
x〉d is by time tex, which implies〈y → x〉d by time tex,
since there exists a neighbor sequence(y, v, v1, ..., vf , x),
where(v, v1, ..., vf , x) is the neighbor sequence fromv to
x.

(2) If by the time x receives the notification fromy, x is
already an S-node, thenx will set a flag to betrue
in its reply to y (see Figure 10). Seeing the flag,
y will send a SN(y, x) to v, v = Ny(h, x[h]).f irst,
h = |csuf(x.ID, y.ID)|. v will either store x into
Nv(h

′, x[h′]), h′ = |csuf(v.ID, x.ID)|, or forward
SN(y, x) to Nv(h

′, x[h′]).f irst), until eventuallyx is or
has been stored by a receiver of the messageSN(y, x) (see
Figure 11) and aSNRlyis sent back toy. Thus, by timetey,
〈v → x〉d. Therefore,〈y → x〉d by timetey.

Corollary B.6 If y
j
→ x happens, wherex ∈ W andy ∈ W ,

and|csuf(x.ID, y.ID)| > y.att level, then〈y → x〉d by time
txy, txy = max(tex, tey).

Proof: See case (2) in the last part of the proof of Proposi-
tion B.6.

Proposition B.7 Consider any nodex, x ∈ Vω. For any C-set,
Cl·lj−1...l1·ω, l1,...,lj−1 ∈ [b] andl ∈ [b], if lj−1...l1 ·ω is a suffix
of x.ID, then,

(a) for any nodey, y ∈ Cl·lj−1...l1·ω and y ∈ W , y
j
→ x

happens before timetey;
(b) Nx(k + j − 1, l).size = min(K, |(V ∪ W)l·lj−1...l1·ω|)

holds by timete.

Proof: For any nodey, y ∈ Cl·lj−1...l1·ω, if y ∈ W , then by
Proposition B.5,y.att level ≤ j +k−1 and there exists a node
u, such thatu = A(y). Then〈u → x〉d by the timeu sends
its JWRlyto y. (If u ∈ V , then〈u → x〉d because the initial
network is consistent; ifu ∈ W , then by Corollary B.2,〈u →

x〉d.) By Proposition B.1,y
j
→ x has happened bytey, since

|csuf(x.ID, y.ID)| ≥ j − 1 + k ≥ y.att level. Moreover, by
Proposition B.2,〈x → y〉d by time tey. Also, by Corollary B.2,
〈y → x〉d by timetey. Therefore, part (a) holds.

Since the initial network isK-consistent, we know that
before any join happens,Nx(k + j − 1, l) = Vl·lj−1...l1·ω

since |Vl·lj−1...l1·ω| < K. Part (a) shows that for any

y, y ∈ Cl·lj−1...l1·ω and y ∈ W , y
j
→ x eventually

happens. It then follows thatNx(k + j − 1, l).size =
min(K, |(V ∪ W)l·lj−1...l1·ω|) by time te, since by Propo-

20

sition 6.2, Cl·lj−1...l1·ω = (V ∪ W)l·lj−1...l1·ω if |(V ∪
W)l·lj−1...l1·ω| < K, and |Cl·lj−1...l1·ω| ≥ K if |(V ∪
W)l·lj−1...l1·ω| ≥ K.

Proposition 6.3 Consider any nodex, x ∈ Vω. For any C-set
Cl·lj ...l1·ω, 0 ≤ j ≤ d− k − 1 andl ∈ [b], if lj ...l1 ·ω is a suffix
of x.ID, thenNx(k + j, l).size = min(K, |(V ∪ W)l·lj ...l1·ω|)
holds by timete.
Proof: By Proposition B.7 (b), the proposition holds.

Proposition B.8 For any C-set,Clj ...l1·ω, 1 ≤ j ≤ d − k,
l1,...,lj ∈ [b], the following assertions hold:

(a) If |Wlj ...l1·ω| ≥ 2, then for any two nodes,x andy, where
x ∈ Clj ...l1·ω, y ∈ Clj ...l1·ω, x 6= y, andx andy are both

in W , by timetxy, at least one ofx
j
→ y andy

j
→ x has

happened, wheretxy = max(tex, tey). Moreover, at time
txy, 〈x → y〉d and〈y → x〉d.

(b) For eachx, x ∈ Clj ...l1·ω and x ∈ W , Nx(k + j −
1, l).size = min(K, |(V ∪ W)l·lj−1...l1·ω|) by time te,
wherel ∈ [b].

Proof: We prove the proposition by induction onj.
Base step:j = 1. Consider nodesx andy, x ∈ W andx ∈
Cl1·ω, y ∈ W andy ∈ Cl·ω , wherel1 ∈ [b], l ∈ [b] (l may or
may not be the same withl1), andx 6= y. By Proposition B.5,
there exists a nodeux, ux ∈ Vω , such thatux = A(x) (thus,
x ∈ Nux(k, l)). Likewise there exists a nodeuy, uy ∈ Vω,
such thaty ∈ Nuy (k, l) anduy = A(y). By Proposition B.5,

x.att level = y.att level = k. Therefore, bothx
j
→ ux and

y
j
→ uy happens. Also, by part(a) of Proposition B.7,x

j
→ uy

happens. Likewise,y
j
→ ux happens. By Proposition B.6,〈y →

x〉d and〈x → y〉d by timetxy.
Let t1 be the timeux sends its reply tox, t2 be the timeux

sends its reply toy, t3 be the timeuy sends its reply toy, and
t4 be the timeuy sends its reply tox. Clearly,t4 > t1, because
at t1, x is in statuswaiting, while att4, x is in statusnotifying.
Likewise,t2 > t3. Note that at timet1, ux storesx in Nux(k, l),
and at timet3, uy storesy in Nuy(k, l).

t 3

t 2

t 4

t 1 t 1 t 2

t 3t 4

x

y

uy

xu

(b)

t 1 t 2

t 3 t 4

x

y

uy

xu

(a)

x

y

uy

xu

(c)

Figure 17: Message sequence chart for base case

If t1 > t2, then it must bet4 > t3, as shown in Figure 17(a).
By Fact B.4,Nux(k, l).size < K before timet1. Thus, at time
t2, Nux(k, l).size < K. Sincey.ID also has suffixl · ω, ux

storesy in Nux(k, l) at timet2. Consequently, fromux’s reply,
x knowsy and storesy in Nx(k, l). (In the copy ofux.table

included inux’s reply, Since|csuf(x.ID, y.ID)| ≥ k + 1 and

x.att level = k, x
j
→ y will happen.

If t1 < t2, then consider the following cases.

• If t3 > t4, as shown in Figure 17(b), then this case is sym-
metric to the case wheret1 > t2, by reversing the role ofx
andy.

• If t3 < t4, as shown in Figure 17(c), then fromuy ’s reply,
x knowsy and will notify y if it has not done so. Similarly,
y knowsx from ux’s reply and will notifyx if it has not
done so.

Then, if l = l1, that is, bothx andy belong toCl1·ω, part
(a) of the proposition holds, since we have shown above that at

least one ofx
j
→ y andy

j
→ x will happen before timetxy, and

〈x → y〉d and〈y → x〉d by timetxy.
Part (b) of the proposition also holds, since we have shown

above that for anyl, l ∈ [b], x
j
→ y or y

j
→ x will hap-

pen. Thus, eventuallyx knowsy, for eachy, y ∈ Cl·ω and
y ∈ W . By Corollary B.1,Nx(k, l) ⊇ Vl·ω. Then, eventually,
Nx(k, l).size = min(K, |(V ∪ W)l·ω)|.

Inductive step: Next, we prove that if the proposition holds at
j, then it also holds atj + 1, 1 ≤ j ≤ d − k − 1.

Observe that if statement (a) is true, then statement (b) is true
if l = x[k + j − 1] (i.e. l = lj). The reason is as follows.
Statement (a) shows that for any other node inClj ...l1·ω, say

y, eventually at least one ofx
j
→ y andy

j
→ x happens. Ei-

ther way,x gets to knowy. If x has not storedK neighbors in
Nx(k + j − 1, lj) by the time it knowsy, it will store y into
that entry. By Proposition 6.2,min(K, |(V ∪ W)lj ...l1·ω|) =
min(K, |Cl·lj ...l1·ω|). Thus, by timete, either thatx has stored
K neighbors inNx(k + j − 1, lj), or it has stored all nodes in
Cl·lj ...l1·ω if the number of nodes in this C-set is less thanK.

Based on the above observation, in what follows, when we
prove statement (b), we focus on the case wherel 6= lj .

Consider nodex, x ∈ Clj+1...l1·ω and the following cases:

• Case 1:x ∈ Clj+1...l1·ω andx 6∈ Clj ...l1·ω.

– 1.a In this case, we prove part(a) of the proposition
holds. If |Clj+1...l1·ω| > 1, then consider any nodey,
y ∈ Clj+1...l1·ω, y 6= x andy ∈ W :

∗ 1.a.1y 6∈ Clj ...l1·ω.

∗ 1.a.2y ∈ Clj ...l1·ω.

– 1.b In this case, we prove part(b) of the proposition
holds. Consider any nodey, y ∈ Cl·lj ...l1·ω, where
l 6= li andCl·lj ...l1·ω 6= ∅:

∗ 1.b.1y 6∈ Clj ...l1·ω.
∗ 1.b.2y ∈ Clj ...l1·ω.

• Case 2:x ∈ Clj+1...l1·ω andx ∈ Clj ...l1·ω.

– 2.aTo prove part(a) of the proposition holds, consider
any nodey, y ∈ Clj+1...l1·ω, y 6= x andy ∈ W :

∗ 2.a.1y 6∈ Clj ...l1·ω.

∗ 2.a.2y ∈ Clj ...l1·ω.

– 2.b To prove part(b) of the proposition holds, con-
sider any nodey, y ∈ Cl·lj ...l1·ω, wherel 6= li and
Cl·lj ...l1·ω 6= ∅:

∗ 2.b.1y 6∈ Clj ...l1·ω.

∗ 2.b.2y ∈ Clj ...l1·ω.

We will use the following Claim in our proof:

Claim B.2 Suppose Proposition B.8 holds atj, 1 ≤ j ≤ d −
k−1. If x ∈ Clj+1...l1·ω, y ∈ Cl·lj ...l1·ω, wherel ∈ [b], however,

21

x 6∈ Clj ...l1·ω andy 6∈ Clj ...l1·ω, then eitherx
j
→ y or y

j
→ x

eventually happens.

Proof of Claim B.2: Observe that the first C-setx belongs to
is Clj+1...l1·ω, and the first C-sety belongs to isCl·lj ...l1·ω. By
Proposition B.5, there exists a nodeux, ux ∈ Clj ...l1·ω, such that
ux = A(x). Likewise, there exists a nodeuy, uy ∈ Clj ...l1·ω,
such thatuy = A(y). Figure 18(a) and (b) illustrate the rela-
tionship of the four nodes, where in Figure 18(a),l = lj+1, and
in Figure 18(b),l 6= lj+1.

x y

u ux y

x y

u ux y

t x

(a) (b)

t

x

y

uy
tt y

t
xu

(c)

a

Figure 18: C-sets and message sequences, case 1.a.1 and case
1.b.1

Let the timeux sends the positiveJWRlyto x be tx, and the
time uy sends the positiveJWRlyto y be ty. Without loss of
generality, supposetx < ty, as shown in Figure 18(c). Then
at time ty, bothux anduy are already S-nodes (by Fact B.2).
Since it is assumed that the proposition holds atj, by part(a) of
the proposition, by timety, ux anduy already can reach each
other. Hence, by the timey receives the reply fromuy, ux and

uy can reach each other. By Proposition B.1,y
j
→ ux eventually

happens. Supposeux receives the notification fromy at timeta,
clearly,ta > ty, hence,ta > tx. Then, fromux’s reply,y knows

x and will notifyx if it has not done so. Thus,y
j
→ x eventually

happens. Likewise, ifty < tx, thenx
j
→ y eventually happens.

Hence, at least one ofy
j
→ x andx

j
→ y eventually happens.

Case 1.a.1. By Proposition B.5, there exists a nodeux,
ux ∈ Clj ...l1·ω, such thatux = A(x) andx.att level = j + k.
Likewise, there exists a nodeuy, uy ∈ Clj ...l1·ω, such that
uy = A(y) andy.att level = j + k. Let the timeux sends
the positiveJWRlyto x betx, and the timeuy sends the positive
JWRlyto y be ty. Without loss of generality, supposetx < ty.

By Claim B.2,y
j
→ x happens. By Proposition B.2,〈x → y〉d

by timetey.
Next, we need to show〈y → x〉d by time txy. Consider the

following cases:
(i) ux ∈ V anduy ∈ V , or ux ∈ W anduy ∈ V . In these

two cases,〈ux → uy〉d by timetx. By Proposition B.1,x
j
→ uy

happens beforetex. Then by Proposition B.6,〈y → x〉d.

(ii) ux ∈ V anduy ∈ W . By Proposition B.7,uy
j
→ ux

happens. Letta be the time thatux receives the notification
from uy.

t x t x

tt y

t x

tt y

t a

t a

t a

x

y

uy

xu

tt y

x

y

uy

xu

(b) (c)

x

y

uy

xu

(a)

Figure 19: Message sequence chart for case 1.a.1

(1) Supposetx < ta, as shown in Figure 19(a). By Fact B.3,
x ∈ Nux(l + k, lj+1) after timetx. Therefore, whenux

replies touy, x ∈ ux.table. By Facts B.1 and B.2,ta < ty.
By Fact B.4,Nuy(l +k, lj+1).size < K beforety. Hence,
Nuy(l + k, lj+1).size < K at time ta and therefore,uy

storesx in Nuy(l+k, lj+1) at timeta. By Proposition B.6,
〈y → x〉d.

(2) Supposetx > ta, as shown in Figure 19(b). then first con-
sider the case that afterux receives the notification from
uy, uy ∈ ux.table. Then fromux’s reply,x knowsuy and
will notify uy, because|csuf(uy.ID, x.ID)| ≥ l + k =

x.att level (see Fact B.5). Hence,x
j
→ uy happens. By

Proposition B.6,〈y → x〉dby txy. Second, consider the
case that afterux receives the notification fromuy, uy 6∈
ux.table, thenNux(h, uy[h]).size = K at time ta, h =
|csuf(ux.ID, uy.ID)|. Let v = Nux(h, uy[h]).f irst.
Then,uy knowsv fromux’s replyṠinceuy.att level ≤ l−

1+k and|csuf(v.ID, uy.ID)| > h ≥ l+k, uy
j
→ v even-

tually happens. Likewise,x knowsv from ux’s reply after

timetx andx
j
→ v eventually happens, sincex.att level =

l + k and|csuf(v.ID, uy.ID)| ≥ l + k. Then, by Propo-
sition B.4, by timetxuy , txuy = max(tex, teuy

), either that
x ∈ Nuy (l + k, lj+1) or Nuy(l + k, lj+1) = K. Nuy(l +
k, lj+1) = K is impossible, becauseNuy(l+k, lj+1) < K

before timety, andty > txuy (we have assumedty > tx,
andty ≥ teuy

by Fact B.2). Thus,x ∈ Nuy(l + k, lj+1) at
time txuy . By Proposition B.6,〈y → x〉d by txy.

(iii) ux ∈ W anduy ∈ W . Then, by assuming the proposi-

tion holds atj, eitheruy
j
→ ux or ux

j
→ uy happens.

(1) If uy
j
→ ux happens andtx < ta, then following the same

arguments in part (1) of the above case (ii) (ux ∈ V and
uy ∈ W), 〈y → x〉d by txy.

(2) If uy
j
→ ux happens andtx > ta, then following the same

arguments in part (2) of the above case (ii) (ux ∈ V and
uy ∈ W), 〈y → x〉d by txy.

(3) If ux
j
→ uy happens, letta be the timeux sends its notifica-

tion to uy, then by Facts B.1 and B.2, it must betx > ta,
as shown in Figure 19(c). At timeta, ux already knows
uy. Then, there are two cases to consider:uy ∈ ux.table

or uy 6∈ ux.table at timetx. Following the same argument
as in part (2) of case (ii), it can be proved that〈y → x〉d.

Case 1.a.2 First, observe that in this case,y.att level ≤ j +
k − 1 < |csuf(y.ID, x.ID)|. Let ux = A(x), thenux ∈
Clj ...l1·ω. Thus bothux andy belong toClj ...l1·ω, as shown in

Figure 20(a). Ifux ∈ V , then by Proposition B.7,y
j
→ ux

happens bytey. If ux ∈ W , by assuming the proposition holds at
j, we know that by the time bothux andy are S-nodes, they can

reach each other; moreover, at least one ofy
j
→ ux andux

j
→ y

happens.
Let t1 be the timeux sends itsJWRlyto x. Also, let t2 be

the timeux receives the notification fromy if y
j
→ ux happens;

otherwise, lett2 be the timeux sends a notification toy.

(i) If t1 < t2, then att2, x ∈ Nux(k + j, lj+1). Then t2
must be the time thatux receives the notification fromy
(by Fact B.2, at timet2 ux is already an S-node and will

22

ux y

x y

t 2

(b)(a)

x

xu

y

1t

t 3

Figure 20: Message sequence chart for case 1.a.2

not send out notifications), as shown in Figure 20(b) . Thus
y knowsx from ux’s reply that includesux.table, and will

notify x if it has not done so. Thus,y
j
→ x happens by time

tey. By Proposition B.2,〈x → y〉d. Also, sincey
j
→ x hap-

pens, and|csuf(x.ID, y.ID)| ≥ k + j +1 > y.att level,
by Corollary B.6,〈y → x〉d by txy.

(ii) If t1 > t2 and y
j
→ ux happens, then it must be that

y ∈ Nux(l + k, lj+1) after timet2. By Fact B.4,Nux(l +
k, lj+1).size < K beforet1, thusNux(l +k, lj+1).size <

K beforet2. Then, by Proposition B.6,〈x → y〉d. More-

over, x
j
→ y happens, becausex.att level = j + k

and |csuf(x.ID, y.ID)| ≤ j + k. By Proposition B.2,
〈y → x〉d.

(iii) If t1 > t2 andux
j
→ y happens, then following the same

argument above in case (ii), it must be thaty ∈ Nux(l +
k, lj+1) after timet2, and therefore,〈x → y〉d and〈y →

x〉d. Moreover,x
j
→ y happens.

Case 2.a.1 This case is symmetric to case 1.a.2.

Case 2.a.2 In this case, bothx andy also belong toClj ...l1·ω.

By assuming Proposition B.8 holds atj, part(a) holds in case
2.a.2 trivially.

So far, we have proved that part (a) of Proposition B.8 holds.
Next, we prove part (b). As we mentioned before, here we focus
on the case wherel 6= lj.

Case 1.b Consider nodey, y ∈ Cl·lj ...l1·ω. If y ∈ V , then
by Corollary B.1,y ∈ Nx(j + k, l) by timete. Hence, in what
follows, we only consider the case wherey ∈ Cl·lj ...l1·ω and
y ∈ W . (1) If y 6∈ Clj ...l1·ω (Case 1.b.1), then by Claim B.2,

either x
j
→ y or y

j
→ x eventually happens. In either case,

x eventually knowsy. Therefore, eithery ∈ Nx(j + k, l)
or Nx(j + k, l).size = K at the timex knows y. (2) If
y ∈ Clj ...l1·ω (Case 1.b.2), then by assuming the proposition

holds atj, we havey
j
→ ux or ux

j
→ y happens ifux ∈ W ;

andy
j
→ ux happens ifux ∈ V , by Proposition B.7. Lettx be

the timeux sends its positiveJWRlyto x. Let ta be the timeux

receives the notification fromy if y
j
→ ux happens; otherwise,

let ta be the timeux sends a notification toy.

• If y
j
→ ux happens andtx < ta (then ta is the timeux

receives the notification fromy), theny knowsx from ux’s

reply andy
j
→ x happens.

• If y
j
→ ux happens andtx > ta, then eithery ∈ Nux(j +

k, l) or Nux(j + k, l) = K at timetx, and therefore, either
y ∈ Nx(j +k, l) or Nx(j +k, l).size = K afterx receives
ux’s reply (JWRly) and copies nodes fromux.table.

• If ux
j
→ y happens, thentx > ta. Similar to the above

argument, eithery ∈ Nx(j + k, l) or Nx(j + k, l) = K

afterx receivesux’s reply and copies nodes fromux.table.

The above analysis shows that for each nodey, y ∈
Cl·lj ...l1·ω, either that after timetx, y ∈ Nx(j + k, l), Nx(j +
k, l) = K, or x eventually is notified byy. By Proposi-
tion 6.2, |Cl·lj ...l1·ω| = min(K, |(V ∪ W)l·lj ...l1·ω|). Hence,
Nx(j + k, l).size = min(K, |(V ∪ W)l·lj ...l1·ω|).

Case 2.b Consider nodey, y ∈ Cl·lj ...l1·ω. Again, we only
consider the case wherey ∈ W (if y ∈ V , by Corollary B.1,
y ∈ Nx(j + k, l) by time te). (i) If y ∈ Clj ...l1·ω, then bothx
andy belong toClj ...l1·ω. By assuming the proposition holds at

j, at least one ofx
j
→ y or y

j
→ x happens. Hence,x eventually

knowsy. (ii) If y 6∈ Clj ...l1·ω, thenA(y) ∈ Clj ...l1·ω. Let uy =
A(y), andty be the timeuy sends its positiveJWRlyto y. Recall
that in this case, bothx anduy belong toClj ...l1·ω. If uy ∈ W ,

then by assuming the proposition holds atj, at least one ofx
j
→

uy or uy
j
→ x happens; ifuy ∈ V , then by Proposition B.7,

x
j
→ uy happens. Letta be the timeuy sends its notification to

x if uy
j
→ x happens; otherwise, letta be the timeuy receives

the notification fromx. If ta < ty, then by timeta, uy already
knowsx. Then by timety, Nuy(j + k, l).size < K, and thus
at timeta, Nuy(j + k, l).size < K. Hence,uy will storex into
Nuy(j + k, l) at timeta. Hence, at timety, x ∈ Nuy(j + k, l).

Then, fromuy’s reply,y knowsx and will send aJN to x (y
j
→

x), which enablesx to know the existence ofy. If ta > ty,
then at timeta, y ∈ Nuy(j + k, l). Hence, fromuy’reply (or
uy’s notification),x knows the existence ofy. So far, we have
shown that whethery ∈ Clj ...l1·ω or not,x eventually knowsy.
This is true for anyy, y ∈ Cl·lj ...l1·ω. By Proposition 6.2 and
Corollary B.1,Nx(j+k, l).size = min(K, |(V ∪W)l·lj ...l1·ω|).
Therefore, part (b) of the proposition holds in Case 2.b.

Corollary B.7 If x ∈ Clj ...l1·ω andCl·lj−1...l1·ω 6= ∅, l ∈ [b],
then for any nodey, y ∈ Cl·lj−1...l1·ω andy 6= x, at least one of
the following assertions is true:

1. y
j
→ x has happened by timete;

2. By timetex, eithery ∈ Nx(j − 1 + k, l) or Nx(j − 1 +
k, l).size = K holds.

Proof: Proof of the corollary is implied by the proof of Propo-
sition B.8. If x ∈ V , then by Proposition B.7, the corol-
lary holds. If x ∈ W and y ∈ V , then by Corollary B.1,
y ∈ Nx(j − 1 + k, l), hence, the corollary also holds. In what
follows, we consider the case wherex ∈ W andy ∈ W .

First, supposej = 1. Consider a nodex, x ∈ Cl1·ω,
l1 = x[k]. In the proof of base case in Proposition B.8, we
have shown that for any nodey, andy ∈ Cl·ω 6= ∅, l ∈ [b], at

least one ofy
j
→ x or x

j
→ y happens eventually. Ify

j
→ x

happens, the the proposition holds. Otherwise, if onlyx
j
→ y

happens, thenx knowsy beforetex. Hence, eithery ∈ Nx(k, l)
or Nx(k, l).size = K.

Second, suppose1 < j ≤ d − k. Consider a nodex, x ∈
Clj ...l1·ω, there are following cases:

• x 6∈ Clj−1...l1·ω. Consider any nodey, y ∈ Cl·lj−1...l1·ω.
First, supposey 6∈ Clj−1...l1·ω. By Claim B.2, at least one

23

of y
j
→ x and x

j
→ y happens eventually. Ify

j
→ x

happens, then the proposition holds. Otherwise, if only

x
j
→ y happens, thenx knowsy beforetex. Hence, either

y ∈ Nx(j − 1 + k, l) or Nx(j − 1 + k, l).size = K by tex.
Second, supposey ∈ Clj−1...l1·ω. By the proof of Case

1.b in proving Proposition B.8, eithery
j
→ x eventually

happens, or thaty ∈ Nx(j + k, l) or Nx(j + k, l) = K

afterx receivesux’s reply (JWRly) and copies nodes from
ux.table, whereux = A(x).

• x ∈ Clj−1...l1·ω. Again, consider any nodey, y ∈
Cl·lj−1...l1·ω. First, supposey ∈ Clj−1...l1·ω, then both
x and y belong toClj−1...l1·ω. By part(a) of Proposi-

tion B.8, at least one ofx
j
→ y or y

j
→ x happens

eventually. Similar to the argument above, at least one of

the following is true:y
j
→ x, y ∈ Nx(j − 1 + k, l) or

Nx(j − 1 + k, l).size = K.
Second, supposey 6∈ Cl·lj−1...l1·ω. By the proof of Case

2.b in proving Proposition B.8, eithery
j
→ x eventually

happens, or thaty ∈ Nx(j + k, l) or Nx(j + k, l) = K af-
ter x receivesuy ’s reply (or notification) and copies nodes
from ux.table, whereuy = A(y).

Proposition 6.4 For any C-set,Clj ...l1·ω, 1 ≤ j ≤ d − k,
l1,...,lj ∈ [b], the following assertion holds by timete: For
eachx, x ∈ Clj ...l1·ω and x ∈ W , Nx(k + j − 1, l).size =
min(K, |(V ∪ W)l·lj−1...l1·ω|), l ∈ [b].

Proof: By Proposition B.8(b), the proposition holds.

Proposition 6.5 For anyx, x ∈ W , supposeClj ...l1·ω is the
first C-setx belongs to, wherelj ...l1 · ω is a suffix ofx.ID,
1 ≤ j ≤ d − k. Then for anyi, 0 ≤ i ≤ j and anyl, l ∈ [b],
Nx(k + i, l).size = min(K, |(V ∪ W)l·li...l1·ω|) .

Proof: Considercontact-chain(x,g), whereg is the node thatx
is given to start its join process. Supposecontact-chain(x,g)
is (u0, u1, ...uf , uf+1), whereu0 = g, uf is the node that
sends an positiveJWRlyto x (see Definition of acontact-chain,
in [8]) and uf+1 = x. T the lowest leveluf storesx in
uf .table (the attach-level ofx) is level-j (by Proposition B.5),
thenk ≤ j ≤ |csuf(u.ID, x.ID)| (recallk is defined in As-
sumption 1). Create a new sequence (g0, ..., gj) as described in
the proof of Proposition 6.1, such thatg0 = g, gj = uf , and
gi′ .ID shares suffixx[i′ − 1]...x[0] with x.ID, 0 ≤ i′ ≤ j.
Then, it is easy to check thatgk ∈ Vω, andgi′+k ∈ Cli′ ...l1·ω,
1 ≤ i′ ≤ j. Thus,gi+k ∈ Cli...l1·ω. Sincegi+k is a node in

contact-chain(x,g), eitherx
c
→ gi+k or x

j
→ gi+k happens. No

matter which happens, let the timegi+k sends the reply tox be
t1.

If |(V ∪ W)l·li...l1·ω| < K, then by Proposition 6.2,
Cl·li...l1·ω = (V ∪ W)l·li...l1·ω, i.e., for eachy, y ∈ Wl·li...l1·ω,
y ∈ Cl·li...l1·ω. Next, consider any nodey, y ∈ Wl·li...l1·ω.
Then, if gi+k ∈ W , by Corollary B.7, at least one of the fol-
lowing is true: y ∈ Ngi+k

(i − 1 + k, l) by time t1 (t1 >

tegi+k
), or thaty

j
→ gi+k happens by timetey; if gi+k ∈ V ,

theny
j
→ gi+k eventually happens by Proposition B.7. (i) If

y ∈ Ngi+k
(i− 1 + k, l) by timet1, thenx knowsy from gi+k’s

reply, hencey ∈ Nx(i − 1 + k, l) or Nx(i− 1 + k, l).size after

x receives the reply fromgi+k. (ii) If y
j
→ gi+k happens, then

by Proposition B.4, at least one of the following is true: by time
tex, y ∈ Nx(i − 1 + k, l), or thatNx(i − 1 + k, l).size = K.
Since this conclusion is true for eachy, y ∈ Cl·li...l1·ω, plus that
Vl·li...l1·ω ⊂ Nx(i − 1 + k, l) by time te (by Corollary B.1),
we conclude thatNx(i − 1 + k, l).size = min(K, |(V ∪
W)l·li...l1·ω|) by timete.

If |(V ∪ W)l·li...l1·ω| ≥ K, then by Proposition 6.2,
|Cl·li...l1·ω| ≥ K. Next, consider any nodey, y ∈ Cl·li...l1·ω

andy ∈ W . Let the timegi+k receives the message (either a
CP or aJW) from x bet1. Then, by Corollary B.7, at least one
of the following is true:y ∈ Ngi+k

(i − 1 + k, l) by time t1, or

Ngi+k
(i− 1+ k, l).size = K by timet1, or thaty

j
→ gi+k hap-

pens. (i) If at timet1, Ngi+k
(i−1+k, l).size = K, thenNx(i−

1+k, l).size = K. (ii) If at time t1, Ngi+k
(i−1+k, l).size <

K andy ∈ Ngi+k
(i − 1 + k, l), theny ∈ Nx(i − 1 + k, l) or

Nx(i− 1+ k, l).size = K afterx receives the reply fromgi+k.

(iii) If y
j
→ gi+k happens, then by Proposition B.4, by timetex,

eithery ∈ Nx(i−1+k, l) or Nx(i−1+k, l).size = K. There-
fore, for anyy, y ∈ Cl·li...l1·ω, either thaty ∈ Nx(i − 1 + k, l)
by time tex, or Nx(i − 1 + k, l).size = K by time tex. Hence,
Nx(i − 1 + k, l).size = K by timete.

Proposition 6.6 For any nodex, x ∈ W , if (V ∪W)l·lj ...l1·ω 6=
∅, wherelj ...l1 · ω is a suffix ofx.ID, 0 ≤ j ≤ d − k − 1, and
l ∈ [b], thenNx(k + j, l).size = min(K, |(V ∪ W)l·lj ...l1·ω|)
holds by timete.

Proof: If (V ∪ W)l·li...l1·ω = Vl·li...l1·ω, by Corollary B.1,
the proposition holds. If(V ∪ W)l·li...l1·ω ⊃ Vl·li...l1·ω, then
consider C-setClj ...l1·ω. SupposeClj ...l1·ω is the first C-setx
belongs to,0 ≤ j ≤ d − k. If j > i, by Proposition 6.5, the
proposition holds. Ifj ≤ i, then by part(b) of Proposition B.8,
the proposition holds.

Proposition 6.7 For each nodex, x ∈ V ∪ W , Nx(i +
k, j).size = min(K, |(V ∪ W)j·x[i−1]...x[0]|) holds by timete,
i ∈ [d], j ∈ [b].
Proof: First, pick any nodex, x ∈ W .

• If 0 ≤ i < k, then by Corollary B.1, the proposition holds.
• If i = k and |Vj·x[i−1]...x[0]| ≥ K, then again by Corol-

lary B.1, the proposition holds.
• If i = k, |Vj·x[i−1]...x[0]| < K, however,Wj·x[i−1]...x[0] 6=
∅, ork < i ≤ d−1, then by Proposition 6.6, the proposition
holds.

Second, consider nodes inV . Picky, y ∈ V .

• If (V ∪ W)j·y[i−1]...y[0] = Vj·y[i−1]...y[0], then given
that 〈V,N (V)〉 is a K-consistent network,Ny(i +
k, l).size = min(K, |Vj·y[i−1]...y[0]|) = min(K, |(V ∪
W)j·y[i−1]...y[0]|). The proposition holds.

• If Vj·y[i−1]...y[0] ⊂ (V ∪ W)j·y[i−1]...y[0], thenω must be
a suffix of j · y[i − 1]...y[0], which can be deduced from
Assumption 1 (V Notify

x = Vω for any x, x ∈ W), thus
y ∈ Vω . If ω = j ·y[i−1]...y[0], thenVω = Vj·y[i−1]...y[0],
and|Vω | ≥ K by Assumption 1. ThusNy(i + k, l).size =
K. If ω 6= j · y[i − 1]...y[0], thenω must be shorter than

24

j · y[i − 1]...y[0]. By part (b) of Proposition B.7,Ny(i +
k, l).size = min(K, |(V ∪ W)j·y[i−1]...y[0]|) by time te.
The proposition holds.

Propositions 6.1 to 6.7 are based on the assumption that all
joining nodes belong to the same C-set tree. Next, we consider
the case where the joining nodes belong to different C-set trees.

Proposition 6.8 Suppose a set of nodes,W = {x1,...,xm},
m ≥ 2, join a K-consistent network〈V,N (V)〉 concurrently.
Let G(Vω1) = {x, x ∈ W, V Notify

x = Vω1}, G(Vω2) = {y, y ∈
W, V Notify

y = Vω2}, whereω1 6= ω2 andω2 is a suffix ofω1. Let
k2 = |ω2|. Then, by timete, for anyx, x ∈ G(Vω1), the follow-
ing assertion holds:Nx(k2, l).size = min(K, |(V ∪ W)l·ω2 |),
l ∈ [b].
Proof:

(i) If |Vl·ω2 | ≥ K, thenNx(k2, l).size = K by Corollary B.1.
(ii) If |Vl·ω2 | < K andWl·ω2 = ∅ thenNx(k2, l).size =

Vl·ω2 by Corollary B.1.
(iii) If |Vl·ω2 | < K and Wl·ω2 6= ∅, then it must be that

Wl·ω2 = G(Vω2)l·ω2 , that is, the set of nodes inW with suf-
fix l · ω2 are the same set of nodes inG(Vω2) with suffix
l · ω2. We proveWl·ω2 = G(Vω2)l·ω2 by contradiction. Sup-
pose there exists a nodez, z ∈ Wl·ω2 , however,z ∈ G(Vω3),
i.e., V Notify

z = Vω3 , whereω3 6= ω2. Then, by the definition
of V Notify

z , |Vω3 | ≥ K and|Vz[k3]·ω3
| < K, wherek3 = |ω3|.

Since|Vl·ω2 | < K, and bothl · ω2 andω3 are suffixes ofz.ID,
thenω3 must be a suffix ofω2 (if l · ω2 is a suffix ofω3, then
Vl·ω2 ⊇ Vω3 , and thus|Vl·ω2 | ≥ |Vω3 | ≥ K, which contradicts
with |Vl·ω2 | ≤ |Vω2 | < K). And sinceω2 6= ω3, |ω2| > |ω3|.
Hence,z[k3] ·ω3 is a suffix ofω2 since both of them are suffixes
of z.ID. Thus,Vz[k3]·ω3

⊇ Vω2 , thus|Vz[k3]·ω3
| ≥ |Vω2 | ≥ K,

which contradicts with|Vz[k3]·ω3
| < K (by assumingV Notify

z =
Vω3).

For anyx, x ∈ G(Vω1), considercontain-chain(x,g), where
g is the nodex is given to start joining, and create a sequence
of nodesg0, g1, ..., gh following the same way as discussed in
the proof of Proposition 6.1, whereg0 = g, gh = A(u), and
gi shares one more digit withx thangi−1, 1 ≤ i ≤ h. Clearly,
k2 < k1 ≤ h. Then,gk2 has suffixω2 and thusgk2 ∈ Vω2 . Also,

x
c
→ gk2 or x

j
→ gk2 happens.

Next, we show that there exists a node inG(Vω2) such that
it eventually notifiesgk2 . Consider any nodev, v ∈ Cl·ω2 and
v ∈ W (by Proposition 6.2 , such a node must exist). By Propo-
sition B.5, there exists a nodeuv, such thatuv = A(x) and

uv ∈ Vω2 . Hence,v
j
→ uv happens. By Proposition B.1,v

j
→ u

eventually happens for eachu, u ∈ Vω2 (by the timeuv replies
tov, 〈uv → u〉d already holds since the initial network is consis-

tent). Sincegk2 ∈ Vω2 , we knowv
j
→ gk2 eventually happens.

Then, by Proposition B.4, by timete, eitherv ∈ Nx(k2, l)
or Nx(k2, l).size = K is true. This conclusion is true for
eachv, v ∈ Cl·ω2 and v ∈ W . That is, Nx(k2, l).size =
min(K, |Cl·ω2 |). By Proposition 6.2,min(K, |Cl·ω2) =
|min(K, |(V ∪W)l·ω2 |. Therefore, by timete, Nx(k2, l).size =
min(K, |(V ∪ W)l·ω2 |).

With the above propositions, we now can prove Lemma 6.4.

Proof of Lemma 6.4: First, separate nodes inW into groups

{G(Vωi), 1 ≤ i ≤ h}, whereωi 6= ωj if i 6= j, such that for
any nodex in W , x ∈ G(Vωi) if and only if V Notify

x = Vωi ,
1 ≤ i ≤ h. Let Ω = {ωi, 1 ≤ i ≤ h}. Then, at timete,

• Consider a nodex, x ∈ V . If |Vj·x[i−1]...x[0]| ≥ K,
thenNx(i, j).size = K since initially 〈V,N (V)〉 is K-
consistent. If|Vj·x[i−1]...x[0]| < K andWj·x[i−1]...x[0] =
∅, then Nx(i, j).size = |Vj·x[i−1]...x[0]| = |(V ∪
W)j·x[i−1]...x[0]|.
If |Vj·x[i−1]...x[0]| < K andWj·x[i−1]...x[0] 6= ∅, thenj ·
x[i−1]...x[0] 6∈ Ω, because we know that for anyω, ω ∈ Ω,
|Vω| ≥ K by Definition 4.4. Also, we know that there must
exist aωl, ωl ∈ Ω, such thatωl is a suffix ofj·x[i−1]...x[0],
sinceW = ∪h

l=1G(Vωl
) and any node inG(Vωl

) has suffix
ωl, ωl ∈ Ω.

Claim B.3 Suppose |Vj·x[i−1]...x[0]| < K and
Wj·x[i−1]...x[0] 6= ∅. Also suppose there ex-
ists a ωl, such that ωl ∈ Ω, ωl is a suffix of
j · x[i − 1]...x[0], and |ωl| ≥ |ωh| for any ωh,
ωh ∈ Ω and ωh is a suffix of j · x[i − 1]...x[0].
Then,Wj·x[i−1]...x[0] = G(Vωl

)j·x[i−1]...x[0].

Proof of Claim B.3: Clearly, G(Vωl
)j·x[i−1]...x[0] ⊆

Wj·x[i−1]...x[0]. We only need to showWj·x[i−1]...x[0] ⊆
G(Vωl

)j·x[i−1]...x[0]. In other words, we need to show that
for any nodey, y ∈ Wj·x[i−1]...x[0], V Notify

y = Vωl
(thus

y ∈ G(Vωl
)j·x[i−1]...x[0]).

For any nodey, y ∈ Wj·x[i−1]...x[0], j · x[i − 1]...x[0] is a
suffix of y.ID. Sinceωl is a suffix ofj · x[i− 1]...x[0] and
ωl 6= j · x[i − 1]...x[0], ωl is also a suffix ofy.ID. By the
definition ofG(Vωl

), we know that|Vωl
| ≥ K. In order to

proveV Notify
y = Vωl

, we need to show that|Vy[kl]·ωl
| <

K, wherekl = |ωl|. We prove it by contradiction. Assume
|Vy[kl]·ωl

| ≥ K, thenV Notify
y = Vωy , wherey[kl] · ωl is a

suffix ofωy. Hence,ωl is a suffix ofωy andωl 6= ωy. Since
y ∈ W , ωy ∈ Ω. On the other hand,ωy must be a suffix
of j · x[i − 1]...x[0], since it is given|Vj·x[i−1]...x[0]| < K.
However,ωl is picked in such a way that for anyωh, such
thatωh ∈ Ω andωh is also a suffix ofj · x[i − 1]...x[0],
|ωl| ≥ |ωh|. Therefore,ωy must be a suffix ofωl, which
contradicts with the above conclusion:ωl is a suffix ofωy

andωl 6= ωy.
By part (b) of Proposition B.7Nx(i, j).size =
min(K, |(V ∪ G(Vωl

))j·x[i−1]...x[0]). Then, by Claim B.3,
Nx(i, j).size = min(K, |(V ∪ W)j·x[i−1]...x[0]|) by time
te.

• Consider a nodex, x ∈ W . Then there exists af ,
1 ≤ f ≤ h, such thatx ∈ G(Vωf

). (i) If |Vj·x[i−1]...x[0]| ≥
K, then Nx(i, j).size = K by Corollary B.1. (ii)
If |Vj·x[i−1]...x[0]| < K and Wj·x[i−1]...x[0] = ∅, then
Nx(i, j).size = |Vj·x[i−1]...x[0]| = |(V ∪W)j·x[i−1]...x[0]|,
again, by Corollary B.1.
(iii) If |Vj·x[i−1]...x[0]| < K andWj·x[i−1]...x[0] 6= ∅, then
j · x[i − 1]...x[0] 6∈ Ω. Since bothωf andx[i − 1]...x[0]
are suffixes ofx.ID, we next consider two cases:ωf is a
suffix of x[i − 1]...x[0] or vice versa. Ifωf is a suffix of
x[i − 1]...x[0], then for any nodey, y ∈ Wj·x[i−1]...x[0],
y ∈ G(Vωf

) (that is, x and y are in the same C-set
tree). By Proposition 6.6,Nx(i, j).size = min(K, (V ∪

25

G(Vωf
))j·x[i−1]...x[0]), thusNx(i, j).size = min(K, (V ∪

W)j·x[i−1]...x[0]).
If x[i − 1]...x[0] is a suffix ofωf , then there must exist a
ωl, ωl ∈ Ω andωl 6= ωf , such thatωl is the longest suffix
of j · x[i− 1]...x[0] amongΩ. Then, by Claim B.3, for any
nodey, y ∈ Wj·x[i−1]...x[0], y ∈ G(Vωl

) (x andy are in
different C-set trees). Note that since|Vj·x[i−1]...x[0]| < K

and|Vωl
| ≥ K, it is impossible thatj ·x[i−1]...x[0] = ωl.

Hence,ωl is a suffix ofx[i−1]...x[0], which is a suffixωf .
Therefore,ωl is a suffix of ωf , then by Proposition 6.8,
Nx(i, j).size = min(K, (V ∪ G(Vωl

))j·x[i−1]...x[0]), thus
Nx(i, j).size = min(K, (V ∪ W)j·x[i−1]...x[0]).

Lemma 6.5 Suppose a set of nodes,W = {x1,...,xm}, m ≥ 2,
join a K-consistent network〈V,N (V)〉 concurrently. Then at
timete, 〈V ∪ W,N (V ∪ W)〉 is aK-consistent network.

Proof of Lemma 6.5: First, separate nodes inW into groups,
such that joins of nodes in the same group are dependent and
joins of nodes in different groups are mutually independent, as
follows (initially, let i = 1 andG1 = ∅):

1. Pick any nodex, x ∈ W−
⋃i−1

j=1 Gj , and putx in Gi.

2. For each nodey, y ∈ W−
⋃i

j=1 Gj ,

(a) if there exists a nodez, z ∈ Gi, such that(V Notify
y ∩

V Notify
z 6= ∅), then puty in Gi; or

(b) if there exists a nodez, z ∈ Gi, and a nodeu, u ∈ Gi,
such that the following holds:(V Notify

y ⊂ V Notify
u)∧

(V Notify
z ⊂ V Notify

u)), then puty in Gi; or

(c) if there exists a nodez, z ∈ Gi, and a nodeu,
u ∈ W −

⋃i
j=1 Gj , such that the following holds:

(V Notify
y ⊂ V Notify

u) ∧ (V Notify
z ⊂ V Notify

u)), then
put bothy andu in Gi.

3. Incrementi and repeat steps 1 to 3 until
⋃i

j=1 Gj = W .14

Then, we get groups{Gi, 1 ≤ i ≤ l}. Moreover, for any node
x, x ∈ Gi, and any nodey, y ∈ Gj , where1 ≤ i ≤ l, 1 ≤ j ≤ l,
andi 6= j, it holds thatV Notify

x ∩ V Notify
y = ∅. Otherwise, if

V Notify
x ∩ V Notify

y 6= ∅, supposei < j, then according the step
2 above,y would be included inGi rather than inGj . Hence,
for any two nodes that are in different groups, their joins are
independent. Similarly, it can be checked that for any two nodes
in a group, their joins are dependent.

Then, for any suffixω, if (Gi)ω 6= ∅ and|Vω | < K, 1 ≤ i ≤
l, then by Corollary B.3,(V ∪ W)ω = (V ∪ Gi)ω.

Consider any nodex. If |Vj·x[i−1]...x[0]| ≥ K, then
Nx(i, j).size = K since initially 〈V,N (V)〉 is K-consistent.
If |Vj·x[i−1]...x[0]| < K and Wj·x[i−1]...x[0] = ∅, then
Nx(i, j).size = |Vj·x[i−1]...x[0]| = |(V ∪ W)j·x[i−1]...x[0]|.

If |Vj·x[i−1]...x[0]| < K and Wj·x[i−1]...x[0] 6= ∅, then
|(V ∪ W)j·x[i−1]...x[0]| = |(V ∪ Gf)j·x[i−1]...x[0]|, where
(Gf)j·x[i−1]...x[0] 6= ∅. By Lemma 6.4,Nx(i, j).size =
min(K, |(V ∪ Gf)j·x[i−1]...x[0]|), hence, Nx(i, j).size =
min(K, |(V ∪ W)j·x[i−1]...x[0]|).

14In [8], we presented an example of how to group nodes following these steps forK =
1. See Footnote 16 in [8].

C Proofs of Theorems 4 to 6

The messages exchanged during a node’s join can be catego-
rized into the following sets:

1. CP andCPRly,
2. JWandJWRly,
3. JNandJNRly,
4. SNandSNRly,
5. InSysNotiMsg,
6. RNandRNRly

where messages in sets 1, 2 and 3 could be big in size, since they
may include a copy of a neighbor table, while messages in sets
4, 5 and 6 are small in size. In Section 6.2, we have presented
the number (or expected number) for messages in sets 1, 2 and 3
sent in a node’s join process. In this section, we present proofs
of Theorems 4, 5 and 6, and analyses of numbers of messages
in sets 4, 5 and 6.15 Recall that we have defined two functions,
Qi(r) andPi(r), in Section 6.2.

Lemma C.1 Suppose a set of nodes,W = {x1,...,xm}, m ≥ 1,
join a K-consistent network〈V,N (V)〉. For any nodex, x ∈
W , supposeV Notify

x = Vω . LetY = |ω|. Then the probability
thatY equalsi given|V | = n , i ∈ [b], is Pi(n), wherePi(n) is
as defined in Definition 6.1.

Proof: First, letPi(n) denote the the probability thatY equals
i, i ∈ [b], given|V | = n. We next prove thatPi(n) is as defined
in Definition 6.1.

If Y = i, it indicates that|Vω| ≥ K and |Vx[i]·ω| < K.
Thus,Pi(n) = P (|Vω| ≥ K ∧ |Vx[i]·ω| < K), i.e., Pi(n) =
P (|Vx[i−1]...x[0]| ≥ K ∧ |Vx[i]...x[0]| < K).

Next, we computePi(n), for 0 ≤ i ≤ d − 1. In general, IDs
of nodes inV are drawn frombd−1 possible values. That is, for
anyy, y ∈ V , y.ID could be any value from 0 tobd − 1 except
x.ID.

If i = 0, then|Vx[0]| < K, i.e., there is less thanK nodes
in V with suffix x[0]. Suppose there areh nodes inV with
suffix x[0], 0 ≤ h < K. Then, IDs of theseh nodes are drawn
from bd−1 − 1 possible values (all possible IDs with suffixx[0]
exceptx.ID); while IDs of the othern − h nodes are drawn
from bd − bd−1 values,n = |V |. Therefore,

P0(n) =

∑K−1
j=0 C(bd−1 − 1, j)C(bd − bd−1, n − j)

C(bd − 1, n)

If 1 ≤ i < d − 1, then|Vx[i−1]...x[0] ≥ K| and|Vx[i]...x[0]| <

K. That is, there are onlyh nodes inV with suffix x[i]...x[0],
where0 ≤ h < K, however, there areH nodes inV with
suffix x[i − 1]...x[0], K ≤ H ≤ n. Then, IDs of theh nodes
with suffix x[i]...x[0] are drawn frombd−i−1−1 possible values
(any ID with suffix x[i]...x[0] exceptx.ID), H − h IDs are
drawn from(b−1)bd−i−1 possible values (any ID that has suffix
x[i − 1]...x[0] but does not have suffixx[i]...x[0]), andn − H

IDs are drawn frombd − bd−i possible values (any ID that does
not have suffixx[i − 1]...x[0]). Let B = (b− 1)bd−i−1. Hence,
for 1 ≤ i < d − 1, Pi(n) is

PK−1
j=0 C(bd−1−i

− 1, j)
Pmin(n,B)

k=K−j
C(B, k)C(bd

− bd−i, n− k − j)

C(bd
− 1, n)

15The messages in sets 5 and 6 can be piggy-backed by probing messages to further save
communication costs.

26

Finally, for i = d−1, since each ID is unique,x.ID is differ-
ent than the ID of any node inV . Therefore,|Vx[d−1]...x[0]| = 0,
and thus|Vx[d−1]...x[0]| < K is always true forK ≥ 1.

Pd−1(n) = P (|Vx[d−1]...x[0]| < K ∧ |Vx[d−2]...x[0]| ≥ K)

= P (|Vx[d−2]...x[0]| ≥ K)

= 1 − P (|Vx[d−2]...x[0]| < K)

= 1 − P (|Vx[0]| < K

∨(|Vx[0]| ≥ K ∧ |Vx[1]x[0]| < K) ∨ ...

∨(|Vx[d−3]...x[0]| ≥ K ∧ |Vx[d−2]...x[0]| < K))

= 1 −
d−2∑

i=0

Pi(n)

Therefore,Pi(n) is as defined in Definition 6.1,i ∈ [b].

Theorem 4 Suppose a set of nodes,W = {x1,...,xm}, m ≥ 1,
join a K-consistent network〈V,N (V)〉, |V | = n. Then, for any
x, x ∈ W , an upper bound of the expected number of CpRstMsg
and JoinWaitMsg sent byx is

∑d−1
i=0 (i + 2)Pi(n + m − 1).

Proof: In statuscopying, x sendsCP to nodesg0, g1,..., untilx
receives aCPRlyfrom nodegi, such thatx finds that there exists
an attach-level for itself ingi.table. Note thatgi′ shares at least
one more digit withx thangi′−1, for all 1 ≤ i′ ≤ i. Then,x
sendsJW to gi, gi+1, ..., untilx receives a positiveJWRlyfrom
nodegh. Again, gi′ shares at least one more digit withx than
gi′−1 for all i + 1 ≤ i′ ≤ h. Hence, the number ofCP x has
sent isi + 1, and the number ofJWx has sent ish− i + 1. The
total number ofCP andJWx has sent ish + 2.

Let (V ∪ W ′)Notify
x = Vω, whereW ′ = W − {x}. Assume

|ω| = j. Then, in the worst case,x sendsCP to nodes{g0, g1,
...,gi}, wheregi′ shares exactlyi′ digits withx for all 1 ≤ i′ ≤ i

(that is,gi′ only shares one more digit withx thangi′−1). Then,
x sendsCP to nodes{gi, gi+1, ...,gj}, wheregi′ sharesi′ digits
with x for all i + 1 ≤ i′ ≤ h. Since(V ∪ W ′)Notify

x = Vω and
|ω| = j, whenx sends aJW to gj , which is a node that shares
j digits with it, there must exist an attch-level in the table of gj

for x. According to the above analysis, the total number ofCP
andJWx has sent isj + 2, assuming|ω| = j.

Let Y = |ω|. Similarly to the proof of Lemma C.1, it can
be shown that the probability thatY equalsj is Pj(n + m − 1)
(|V ∪ W ′| = n + m − 1). Let Z be the total number ofCP and
JWx has sent. Therefore, we have

E(Z) = E(E(Z|Y))

=

d−1∑

i=0

(E(Z|Y = i))Pi(n + m − 1)

=

d−1∑

i=0

(i + 2)Pi(n + m − 1)

Theorem 5 Suppose nodex joins a K-consistent network
〈V,N (V)〉, |V | = n. Then, the expected number of JoinNo-
tiMsg sent byx is

∑d−1
i=0 Qi(n − K)Pi(n) − 1.

Proof: SupposeV Notify
x = Vω. Thenx needs to notify all

the nodes inVω. By Proposition B.5, there exists a nodeux,

ux = A(x). Then,x sends aJW to ux, however,x sendsJN to
any other node inVω (by Proposition B.1, for any node inVω

other thanux, x will send aJN). Hence, the number ofJN x

sends is|Vω | − 1. Let Y = |ω| andZ = |Vω |. By Lemma C.1,
the probability thatY equalsi is Pi(n), given|V | = n .

E(Z) = E(E(Z|Y)) =

d−1∑

i=0

(E(Z|Y = i))Pi(n) (1)

We next deriveE(Z|Y = i)). Y = i indicates thatVω =
Vx[i−1]...x[0]. SinceV Notify

x = Vω , we know|Vω | ≥ K, that
is, |Vx[i−1]...x[0]| ≥ K. Therefore, among the nodes inV , at
leastK of them have suffixx[i − 1]...x[0] in their IDs. Let
X be the expected number of nodes with suffixx[i − 1]...x[0]
among the remainingn − K nodes inV . Thus,E(Z|Y = i) =
K + E(X). Suppose there arej nodes among then−K nodes
that have suffixx[i − 1]...x[0]. Thenj could be any value from
0 tomin(n−K, bd−i −K − 1). IDs of thesej nodes are drawn
from bd−i−K−1 possible values (there allbd−i all possible IDs
with suffix x[i−1]...x[0], andK of them are already assigned to
K nodes inV , and one is assigned tox). IDs of the remaining
n − K − j nodes are drawn frombd − bd−i possible values.
Hence,E(X) is

Pmin(n−K,bd−i
−K−1)

j=0 C(bd−i
−K − 1, j)C(bd

− bd−i, n−K − j)

C(bd
−K − 1, n−K)

That is,E(Z|Y = i) = Qi(n−K).16 PlugE(Z|Y = i) into
Equation 1, we getE(Z). The expected number ofJN x sends
during its join isE(Z) − 1.

Theorem 6 Suppose a set of nodes,W = {x1,...,xm}, m ≥ 1,
join a K-consistent network〈V,N (V)〉, |V | = n. Then for
any nodex, x ∈ W , an upper bound of the expected number of
JoinNotiMsg sent byx is

∑d−1
i=0 Qi(n + m − 1 − K)Pi(n).

Proof: Consider any nodex, x ∈ W . Let J be the number
of JN sent byx when it joins with other nodes concurrently.
SupposeV Notify

x = Vω . Let Y = |ω|. By Lemma C.1, the
probability thatY equalsi, i ∈ [d], is Pi(n), given|V | = n. No
matter how many nodes join concurrently withx, x.att level ≥
Y . Moreover,x only sendsJN to a subset of nodes whose IDs
have suffixx[k − 1]...x[0], excluding nodex itself, wherek =
x.att level . These nodes are a subset of nodes with suffixω.
Let Z = |(V ∪ W)ω − {x}|. Hence,J < Z, which is true
for every joining node. Therefore,E(J) < E(Z). To compute
E(Z), we have

E(Z) = E(E(Z|Y)) =

d−1∑

i=0

(E(Z|Y = i))Pi(n)

Since V Notify
x = Vω, we know |Vω| ≥ K, that is,

|Vx[i−1]...x[0]| ≥ K. Therefore, among the nodes inV , at least
K of them have suffixx[i − 1]...x[0] in their IDs. LetX be

16If bd ≫ n − K, thenE(X) ≃ (n−K)

bi . That is, the ID space can be consider

asbi bins, withx[i − 1]...x[0] being one of them. Each bin has a capacity limitation of
bd − bd−i. Assigningn − K IDs randomly can be considered as throwingn − K balls
into the bins randomly. Thus, the expected number of balls falling into bin x[i− 1]...x[0]

is (n−K)

bi , if none of the bins were overflowed in the process.

27

the expected number of nodes with suffixx[i − 1]...x[0] in the
remainingn − K nodes inV , plus the expected number of
nodes with suffixx[i − 1]...x[0] in W − {x}. That is,X is
the expected number of nodes with suffixx[i − 1]...x[0] among
n − K + m − 1 nodes. Similar to the proof of Theorem 5, we
haveE(Z|Y = i) = K + E(X) = Qi(n + m − 1 − K).
PlugE(Z|Y = i) to the above equation, we getE(Z), which is
an upper bound ofE(J), the expected number ofJN sent by a
joining node.

Next, we present an upper bound of the expected number of
messages in set 4,SNandSNRly. We say that anSNis initialized
by x, if it is in the form ofSN(x, y), wherey could be any node
other thanx. Such a message is initially sent out byx to inform
the receiver about the existence ofy. It may be forwarded a few
times before a reply is sent back tox. For example,x may send
a SN(x, y) to u1, u1 forwards the same message tou2, andu2

sends a reply tox without further forwarding the message. In
this example, there are 2SN(x, y) and oneSNRly(x, y) transmit-
ted in the network.17

Corollary C.1 Suppose a set of nodes,W = {x1, ..., xm},
m ≥ 2, join a consistent network〈V,N (V)〉. Then for any
nodex, x ∈ W , an upper bound of the expected number of mes-
sages in the form of SN(x, y) or SNRly(x, y) sent during [tbx, tex]
is K − 1 +

∑d−1
i=0 (m

bi+1 + K − 1)(d − i − 1)Pi(n), wheren =
|V |.

Proof: Consider any nodex, x ∈ W . SupposeV Notify
x = Vω,

|ω| = i, andj = x.att level , thenj ≥ i. Let D = {y, SN(x, y)
is sent out byx during [tbx, tex]}. (Recall thattbx is the timex

starts joining, andtex is the timex becomes an S-node, as defined
in Section 4.1.) Then, for a particulary, y ∈ D, SN(x, y) is only
sent out byx once. Anyy, y ∈ D, must share suffixx[j]...x[0]
with x. Thus,D < |(V ∪ W)x[j]...x[0]| ≤ |(V ∪ W)x[i]...x[0]|.

Let Y = |ω|. Then|ω| = i indicatesY = i. LetS be the total
number ofSN(x, y) or SNRly(x, y) sent during the join process
of x, y 6= x. Let Z = |(V ∪ W)x[i]...x[0]|. Then the number of
message in the form ofSN(x, y) initiated byx is at mostZ − 1
(x will not send outSN(x, x)). Since|Vx[i]...x[0]| < K, we know
Z ≤ (K − 1) + |Wx[i]...x[0]|. For eachSNsent out byx, it can
be forwarded at mostd − i − 2 times (which includes the first
time that it is sent out byx). This is because for eachy, y ∈ D,
that the first receiver of the message shares at leasti + 2 digits
with y (both IDs ofy and the first receiver must have suffixy[i+
1]...y[0]), the last receiver of the message shares at mostd − 1
digits withy, and each receiver along the path shares at least one
more digit withy than the previous receiver does. Lastly, for
eachSN(x, y) sent out byx, there is one corresponding reply,
SNRly(x, y), from the last receiver of theSN(x, y).

17We observe from simulations that it is rarely the case that a node sends out anSN.

Let X = |Wx[i]...x[0]|, the expect number of nodes inW
whose IDs have suffixx[i − 1]...x[0]. We haveX = m

bi+1 .
Hence,E(X |Y = i) = m

bi+1 (d − i − 2 + 1). Summarize the
results, we get

E(S) =
d−1∑

i=0

(E(D|Y = i))Pi(n)

<

d−1∑

i=0

(E(Z|Y = i))Pi(n)

≤
d−1∑

i=0

(E((K − 1 + X)|Y = i))Pi(n)

=

d−1∑

i=0

(K − 1 +
m

bi+1
)(d − i − 2)Pi(n)

To get the expected number of messages in set 5,InSysNo-
tiMsg, supposeV Notify

x = Vω. Then according to the join pro-
tocol, only a node with suffixω may fill x into its neighbor table.
(If a node’s ID does not share any digits withω, then clearly it
will not choosex as a neighbor; if a node,y, shares a suffix
ω′ with x, |ω′| < |ω|, thenNy(k

′, x[k′]).size = K beforex

joins, thusx is not stored iny’s table, either.) LetR denote the
number of reverse-neighbors ofx. At the end of its join, to each
reverse-neighbor,x needs to send aInSysNotiMsg. Hence, the
total number of messages in set 5 isR. Since the ID of a reverse-
neighbor ofx has suffixω, the number of nodes inV ∪ W with
suffix ω is an upper-bound ofR. As defined in Theorem 6, this
upper-bound is

∑d−1
i=0 Qi(n + m − 1 − K)Pi(n).

The number of messages in the last set, set 6, isO(db), be-
causex needs to inform each neighbor thatx becomes a reverse-
neighbor of it, by sending aRN. SomeRNmay be replied (when
the status of the receiver kept byx is not consistent with the
status of the receiver). Actually, someRNcan be piggy-backed
with some other messages, such asJWRlyandJNRly. Hence,
the number of messages in set 6 that is sent by a joining node is
at most2db.

28

