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Abstract. In a breakthrough result, Razborov (2003) gave optimal lower bounds on the
quantum communication complexity Q∗1/3( f ) of every function f (x, y) = D(|x ∧ y|), where
D : {0, 1, . . . , n} → {0, 1}. Namely, he showed that

Q∗1/3( f ) = Ω
(
`1(D) +

√
n `0(D)

)
,

where `0(D), `1(D) ∈ {0, 1, . . . , dn/2e} are the smallest integers such that D is constant
in the range [`0(D), n − `1(D)]. This was proved by the so-called multidimensional
discrepancy method. We study this problem afresh, using the original, one-dimensional
discrepancy method. We show:

Q∗1/3( f ) = Ω
(
`1(D) + n1/3 `0(D)2/3

)
.

Thus, our lower bound for each f ranges between opt2/3 and opt, where opt is the true
answer found by Razborov. Prior to this work, Razborov (2003) conjectured that the
original discrepancy method could not yield nontrivial lower bounds for the problem. In
addition, our technique gives strong lower bounds for a rather broad class of functions
which we call pattern functions and for which no methods were previously known.

Our proof technique has two ingredients. The first is a certain equivalence of
approximation and orthogonality in a Euclidean space (the Approximation/Orthogonality
Principle), which we establish using duality theory. The second is the author’s recent
construction (Sherstov 2007) of matrices with low spectral norm, which we originally used
to separate AC0 from depth-2 majority circuits.



1 Introduction

Let D : {0, 1, . . . , n} → {0, 1} be an arbitrary predicate. We study the quantum
communication complexity of the associated function f : {0, 1}n × {0, 1}n → {0, 1}
given by

f (x, y) def
= D(|x ∧ y|),

where |x ∧ y| stands for the number of positions where x and y both have a 1. As
usual, the communication problem is for Alice and Bob to evaluate f (x, y), where
Alice holds x and Bob holds y.

As we will see shortly, the hardness of this communication problem depends on
whether D changes value close to the middle of the range {0, 1, . . . , n}. Specifically,
define

`0(D) ∈ {0, 1, . . . , bn/2c},

`1(D) ∈ {0, 1, . . . , dn/2e}

to be the smallest integers such that D is constant in the range [`0(D), n − `1(D)].
The figure below illustrates this definition for a typical predicate D:

1

n/2 n0     1     2 

l0(   )D l (   )D1

D

Let Q∗1/3( f ) denote the quantum communication complexity of f with error 1/3
in the model with prior entanglement. In a breakthrough result, Razborov [16]
established optimal lower bounds on the quantum communication complexity of
every function of the form f (x, y) = D(|x ∧ y|):

Theorem 1.1 (Razborov [16]). Let D : {0, 1, . . . , n} → {0, 1} be an arbitrary
predicate. Put f (x, y) def

= D(|x ∧ y|). Then

Q∗1/3( f ) > Ω
(
`1(D) +

√
n`0(D)

)
.
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We look at this problem afresh, with new techniques. We prove:

Theorem 1.2. Let D : {0, 1, . . . , n} → {0, 1} be an arbitrary predicate. Put
f (x, y) def

= D(|x ∧ y|). Then

Q∗1/3( f ) > Ω
(
`1(D) + n1/3 `0(D)2/3

)
.

Clearly, both theorems remain valid in the model without prior entanglement. A
quick glance shows that there are predicates for which we do not match Razborov’s
optimal bounds. However, the gap is not large: our lower bound for each f is
at least opt2/3, where opt is the true answer found by Razborov. Theorem 1.2
subsumes all previous work except for Razborov’s. For some functions, we give
an exponential improvement over that previous work, such as Ω(n1/3) vs. Ω(log n)
for the disjointness predicate D defined by D(i) = 1⇔ i = 0.

Motivation. Our work is of interest for three reasons. First, Razborov’s result is
one of the strongest lower bounds for bounded-error communication and deserves
several proofs. Despite considerable work by various authors [1, 2, 6–8, 13], no
such alternate proof exists.

Second, our proof contributes a new technique for communication lower
bounds, much different from Razborov’s methods. We outline it below under
“Techniques.” The high-level strategy of our proof is known as the discrepancy
method. This in itself is surprising because prior to this paper, it was believed that
the discrepancy method could not be advantageously applied to this problem. In
particular, Razborov writes [16, p. 155] that the discrepancy method cannot yield
strong lower bounds for functions such as disjointness. In view of our results, that
statement was in error [17]. We emphasize that it does not affect the remainder of
Razborov’s article, which is correct.

Third, our technique yields strong lower bounds for a rather broad family of
functions which we call pattern functions and for which no other methods are cur-
rently known. To keep this section brief and nontechnical, we defer the definition
of these functions and our lower bounds against them to Section 7, “Extensions.”
An intuitive explanation is as follows. Critical to Razborov’s technique is the high
symmetry of the functions f (x, y) = D(|x ∧ y|). The method in this work, on the
other hand, makes limited use of the symmetry and thus applies unchanged to a
broader range of problems.

Razborov’s proof technique has seen several applications, including direct-
product theorems [9], separations for small-bias communication [3], and learning
theory [10]. We hope that the ideas in this paper will also find uses beyond quantum
communication.
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Our Techniques. Given a function f (x, y) = D(|x∧y|), Razborov places a lower
bound on Q∗1/3( f ) using his multidimensional discrepancy method, a powerful
extension of the original discrepancy method. Razborov’s technique exploits the
so-called combinatorial matrices, which have rare and useful spectral properties.

By contrast, we work with the simple, original discrepancy method. Roughly
speaking, this method says: find a “hard” function h in the vicinity of f , thereby
proving that f itself must be “somewhat hard.” More precisely, the discrepancy
method asks for a function h and a distribution µ such that:

• f and h are highly correlated under µ; and

• all low-cost quantum protocols have negligible advantage in computing h
under µ.

If such h actually exists, it easily follows that no low-cost protocol can compute f
to high accuracy (or else it would be a good predictor for the hard function h as
well!).

The discrepancy method thus reduces our task to finding the hard function
h. It is here that we contribute a new technique. Its critical part is a certain
equivalence of approximation and orthogonality in the Euclidean space (the Ap-
proximation/Orthogonality Principle), which we prove using duality theory. The
other key ingredient is the author’s recent construction of matrices with low
spectral norm [19], originally employed in separating AC0 from depth-2 majority
circuits.

Organization. We start with a thorough review of technical preliminaries in
Section 2. The two sections that follow are concerned with the development of
our technique. Section 5 integrates it into the discrepancy method. Section 6
consolidates the proof and gives the final bound on communication. Section 7
concludes with generalizations of our technique.

2 Preliminaries

This section provides relevant technical background. We describe our notation
(Section 2.1) and then briefly review matrix analysis (Section 2.2), the quantum
communication model (Section 2.3), and the discrepancy method for communi-
cation lower bounds (Section 2.4). Finally, we recall fundamental results on the
approximation of Boolean functions by polynomials (Section 2.5).
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2.1 General

A Boolean function is a mapping X → {0, 1}, where X is a finite set. Typically, X =
{0, 1}n or X = {0, 1}n × {0, 1}n. A predicate is a mapping D : {0, 1, . . . , n} → {0, 1}.
The notation [n] stands for the set {1, 2, . . . , n}. For a set S ⊆ [n], its characteristic
vector 1S ∈ {0, 1}n is defined by

(1S )i =

1 i ∈ S ,
0 otherwise.

For x ∈ {0, 1}n, put |x| def
= |{i : xi = 1}|. For x, y ∈ {0, 1}n, the notation x ∧ y refers

as usual to the component-wise AND of x and y. In particular, |x∧ y| stands for the
number of positions where x and y both have a 1.

Finally, we recall the Fourier transform on {0, 1}n. Consider the vector space of
functions {0, 1}n → R, equipped with the inner product

〈 f , g〉 def
=

1
2n

∑
x∈{0,1}n

f (x)g(x).

For S ⊆ [n], define χS : {0, 1}n → {−1,+1} by

χS (x) = (−1)
∑

i∈S xi .

Then {χS }S⊆[n] is an orthonormal basis for the inner product space in question. As
a result, every function f : {0, 1}n → R has a unique Fourier representation

f (x) =
∑

S⊆[n]

f̂ (S ) χS (x),

where f̂ (S ) def
= 〈 f , χS 〉. The reals f̂ (S ) are called the Fourier coefficients of f . The

orthonormality of {χS } immediately yields Parseval’s identity:∑
S⊆[n]

f̂ (S )2 = 〈 f , f 〉 = E
x
[ f (x)2].

2.2 Matrix Analysis

We draw freely on basic notions from matrix analysis. A standard reference on
the subject is [5]. The review below is limited to notation and the more substantial
results.

The symbol Rm×n refers to the family of all m × n matrices with real entries.
The (i, j)th entry of a matrix A is denoted by Ai j.We frequently use “generic-entry”
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notation to specify a matrix succinctly: we write A = [F(i, j)]i, j to mean that that
the (i, j)th entry of A is given by the expression F(i, j). In most matrices that arise
in this work, the exact ordering of the columns (and rows) is irrelevant. In such
cases we describe a matrix by the notation [F(i, j)]i∈I, j∈J , where I and J are some
index sets.

Let A ∈ Rm×n. We adopt the following standard notation:

‖A‖∞
def
= max

i, j
{|Ai j|}, ‖A‖1

def
=

∑
i, j

|Ai j|.

We denote the singular values of A by σ1(A) > σ2(A) > . . . > σmin{m,n}(A) > 0.
Recall that the spectral norm, trace norm, and Frobenius norm of A are given by

‖A‖ = max
x∈Rn, ‖x‖=1

‖Ax‖ = σ1(A),

‖A‖Σ =
∑

σi(A),

‖A‖F =
√∑

A2
i j =

√∑
σi(A)2.

Recall that every matrix A ∈ Rm×n has a singular value decomposition A =
UΣVT, where U and V are both orthogonal matrices and Σ is diagonal with entries
σ1(A), σ2(A), . . . , σmin{m,n}(A). For A, B ∈ Rm×n, we write 〈A, B〉 def

=
∑

i, j Ai jBi j. A
useful consequence of the singular value decomposition is:

〈A, B〉 6 ‖A‖ ‖B‖Σ (A, B ∈ Rm×n). (2.1)

We will need the following well-known bound on the trace norm of a matrix
product, which we state with a proof for the reader’s convenience.

Proposition 2.1 (Trace norm of the product). ‖AB‖Σ 6 ‖A‖F ‖B‖F.

Proof. Write the singular value decomposition AB = UΣVT. Let u1, u2, . . . and
v1, v2, . . . stand for the columns of U and V, respectively. By definition, ‖AB‖Σ is
the sum of the diagonal entries of Σ. We have:

‖AB‖Σ =
∑

(UTABV)ii =
∑

(uT
i A)(Bvi) 6

∑
‖ATui‖ ‖Bvi‖

6
√∑

‖ATui‖
2
√∑

‖Bvi‖
2 = ‖UTA‖F ‖BV‖F = ‖A‖F ‖B‖F. �

2.3 Quantum Communication

This section reviews the bounded-error model of quantum communication. We
include this review mainly for completeness, since our proofs rely solely on a
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lower-bound technique for such protocols and on no other aspect of quantum
communication.

There are several equivalent ways to describe a quantum communication pro-
tocol. Our description closely follows Razborov [16]. Let A and B be complex
finite-dimensional Hilbert spaces. Let C be a Hilbert space of dimension 2, whose
orthonormal basis we denote by |0〉, |1〉. Consider the tensor product A ⊗ C ⊗B,

which is itself a Hilbert space with an inner product inherited from A , B, and C .
The state of a quantum system is a unit vector in A ⊗ C ⊗B, and conversely any
such unit vector corresponds to a distinct quantum state. The quantum system starts
in a given state and traverses a sequence of states, each obtained from the previous
one via a unitary transformation chosen according to the protocol. Formally, a
quantum communication protocol is a finite sequence of unitary transformations

U1 ⊗ IB , IA ⊗ U2, U3 ⊗ IB , IA ⊗ U4, . . . , U2k−1 ⊗ IB , IA ⊗ U2k,

where: IA and IB are the identity transformations in A and B, respectively;
U1,U3, . . . ,U2k−1 are unitary transformations in A ⊗ C ; and U2,U4, . . . ,U2k are
unitary transformations in C ⊗ B. The cost of the protocol is the length of this
sequence, namely, 2k. On Alice’s input x ∈ X and Bob’s input y ∈ Y (where X,Y
are some finite sets), the computation proceeds as follows.

1. The quantum system starts out in an initial state Initial(x, y).

2. Through successive applications of the above unitary transformations, the
system reaches the state

Final(x, y) def
= (IA ⊗U2k)(U2k−1 ⊗ IB) · · · (IA ⊗U2)(U1 ⊗ IB) Initial(x, y).

3. Let v denote the projection of Final(x, y) onto A ⊗ span(|1〉)⊗B. The output
of the protocol is 1 with probability 〈v, v〉, and 0 with probability 1 − 〈v, v〉.

All that remains is to specify how the initial state Initial(x, y) ∈ A ⊗ C ⊗B is
constructed from x, y. It is here that the model with prior entanglement differs from
the model without prior entanglement.

In the model without prior entanglement, A and B have orthonormal bases
{|x, w〉 : x ∈ X, w ∈ W} and {|y, w〉 : y ∈ Y, w ∈ W}, respectively, where W is a
finite set corresponding to the private workspace of each of the parties. The initial
space is the pure state

Initial(x, y) = |x, 0〉 |0〉 |y, 0〉,

where 0 ∈ W is a certain fixed element. In the model with prior entanglement, the
spaces A and B have orthonormal bases {|x, w, e〉 : x ∈ X, w ∈ W, e ∈ E} and
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{|y, w, e〉 : y ∈ Y, w ∈ W, e ∈ E}, respectively, where W is as before and E is a finite
set corresponding to the prior entanglement. The initial state is now the entangled
state

Initial(x, y) =
1
√

E

∑
e∈E

|x, 0, e〉 |0〉 |y, 0, e〉.

Apart from finite size, no assumptions are made about W or E. In particular, the
model with prior entanglement allows for an unlimited supply of entangled qubits.
This mirrors the unlimited supply of shared random bits in the classical public-coin
randomized model.

Let f : X × Y → {0, 1} be a given function. A quantum protocol P is said to
compute f with error ε if

Pr[P(x, y) , f (x, y)] 6 ε for all x, y,

where the random variable P(x, y) ∈ {0, 1} is the output of the protocol on input
(x, y). Let Qε( f ) denote the cost of the optimal quantum protocol without prior
entanglement that computes f with error ε. Define Q∗ε ( f ) analogously for protocols
with prior entanglement. The precise choice of a constant ε ∈ (0, 1) affects Qε( f )
and Q∗ε ( f ) by at most a constant factor, and thus the setting ε = 1/3 entails no loss
of generality.

Let D : {0, 1, . . . , n} → {0, 1} be a predicate. We associate with D the function
f : {0, 1}n × {0, 1}n → {0, 1} defined by

f (x, y) def
= D(|x ∧ y|).

We let Qε(D) def
= Qε( f ) and Q∗ε (D) def

= Q∗ε ( f ). More generally, by computing D
in the quantum model we mean computing the associated function f . As one last
convention, by the communication complexity of a Boolean matrix F = [Fi j]i∈I, j∈J

is meant the communication complexity of the associated function f : I × J →
{0, 1}, given by

f (i, j) = Fi j.

2.4 The Discrepancy Method

The discrepancy method is an intuitive and elegant technique for proving lower
bounds on quantum communication. A starting point in our discussion is the
following fact.

Theorem 2.2 (Razborov [16, Thm. 5.5], Linial & Shraibman [13, Lem. 10]).
Let X,Y be finite sets. Let P be a quantum protocol (with or without prior
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entanglement) with cost C qubits and input sets X and Y. Then there are real
matrices A, B such that ‖A‖F 6 2C √|X|, ‖B‖F 6 2C √|Y |, and[

E[P(x, y)]
]

x,y
= AB.

Theorem 2.2 states that the matrix of acceptance probabilities, [E[P(x, y)]]x,y,

of every low-cost protocol P has some nontrivial factorization. This transition
from quantum protocols to matrix factorization is a standard technique and has
been applied by various authors in various contexts [4, 7, 11, 13]. We now state
the discrepancy method as adapted to the quantum model by Razborov [16]. This
is not to be confused with the multidimensional discrepancy method, also due to
Razborov [16], which we will have no occasion to use or describe.

Theorem 2.3 (Discrepancy method, Razborov [16, Sec. 5.2], implicit). Let X,Y
be finite sets and f : X × Y → {0, 1} a given function. Let K = [Kxy]x∈X, y∈Y be any
real matrix with ‖K‖1 = 1. Then for each ε > 0,

4Qε ( f ) > 4Q∗ε ( f ) >
〈K,M〉 − 2ε

3 ‖K‖
√
|X| |Y |

,

where M def
=

[
(−1) f (x,y)

]
x∈X, y∈Y

.

Proof. Let P be a quantum protocol with prior entanglement that computes f with
error ε and cost C. Put

Π
def
=

[
E[P(x, y)]

]
x∈X, y∈Y

.

Then we can write M = (J − 2Π) + 2E, where J is the all-ones matrix and E is
some matrix with ‖E‖∞ 6 ε. As a result,

〈K, J − 2Π〉 = 〈K,M〉 − 2 〈K, E〉

> 〈K,M〉 − 2ε ‖K‖1
= 〈K,M〉 − 2ε. (2.2)

On the other hand, Theorem 2.2 guarantees the existence of matrices A and B with
AB = Π and ‖A‖F ‖B‖F 6 4C √|X| |Y |. Therefore,

〈K, J − 2Π〉 6 ‖K‖ ‖J − 2Π‖Σ by (2.1)

6 ‖K‖
(√
|X| |Y | + 2 ‖Π‖Σ

)
since ‖J‖Σ =

√
|X| |Y |

6 ‖K‖
(√
|X| |Y | + 2 ‖A‖F ‖B‖F

)
by Prop. 2.1

6 ‖K‖
(
2 · 4C + 1

) √
|X| |Y |. (2.3)

The theorem follows by comparing (2.2) and (2.3). �
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We now reinterpret Theorem 2.3 and its proof in a different terminology, which
will clarify it and show that it is simply an extension of the classical discrepancy
method to the quantum model. Let f : X × Y → {0, 1} be a given function whose
communication complexity we wish to estimate. The underlying communication
model is irrelevant at this point. Suppose we can find a function h : X × Y → {0, 1}
and a distribution µ on X × Y that satisfy the following two properties:

1. Correlation of f and h. The functions f and h are well correlated under µ:

E
(x,y)∼µ

[
(−1) f (x,y)+h(x,y)

]
> ε, (2.4)

where ε > 0 is a given constant.

2. Hardness of h.No low-cost protocol P in the given model of communication
can compute h to a substantial advantage under µ. Formally, if P is a protocol
in the given model with cost C bits, then

E
(x,y)∼µ

[
(−1)h(x,y) E

[
(−1)P(x,y)

]]
6 2O(C)γ, (2.5)

where γ = o(1). The inner expectation in (2.5) is over the internal operation
of the protocol on the fixed input (x, y).

If the above two conditions hold, we claim that any protocol in the given model that
computes f with error at most ε/3 on each input must have cost Ω

(
log ε

γ

)
. Indeed,

let P be a protocol with Pr[P(x, y) , f (x, y)] 6 ε/3 for all x, y. Then standard
manipulations reveal:

E
(x,y)∼µ

[
(−1)h(x,y) E

[
(−1)P(x,y)

]]
> E

(x,y)∼µ

[
(−1) f (x,y)+h(x,y)

]
− 2 ·

ε

3

(2.4)
>

ε

3
.

In view of (2.5), this shows that P must have cost Ω
(
log ε

γ

)
.

We call the described lower-bound technique the discrepancy method, follow-
ing the terminology of Razborov [16]. Some authors, including Kushilevitz and
Nisan [12], restrict the term “discrepancy method” to the case when f = h and
the communication takes place in the classical randomized model. This restriction
reflects the fact that the method originated in the classical setting, before the need
to study quantum models arose. Our broad usage of the term is meant to highlight
the fundamental mathematical technique in question, which is clearly independent
of the commutation model.

Indeed, the communication model enters the picture only in the proof of (2.5).
It is here that the analysis must exploit the particularities of the model. To place an
upper bound on the advantage under µ in the quantum model with entanglement, as
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we saw in the proof of Theorem 2.3, one considers the quantity ‖K‖
√
|X| |Y |, where

K = [h(x, y)µ(x, y)]x,y. In the classical randomized model, the quantity to estimate
happens to be

max
X′⊆X, Y′⊆Y


∣∣∣∣∣∣∣∣
∑
x∈X′

∑
y∈Y′

µ(x, y)h(x, y)

∣∣∣∣∣∣∣∣
 ,

which is actually known as the discrepancy of h under µ.

2.5 Approximation by Polynomials

Let f : {0, 1}n → R. As we saw in Section 2.1, any such function f has an
exact representation as a linear combination of χS , where S ⊆ [n]. A fundamental
question to ask is how closely f can be approximated by a linear combination of
functions χS with |S | small.

Definition 2.4 (Approximate degree of functions). Let f : {0, 1}n → R and ε > 0.
The ε-approximate degree degε( f ) of f is the minimum integer d, 0 6 d 6 n, for
which there exists φ ∈ span

(
{χS }|S |6d

)
with

max
x∈{0,1}n

| f (x) − φ(x)| 6 ε.

We will be primarily interested in the approximate degree of Boolean func-
tions. As a first observation, degε( f ) = degε(¬ f ) for all such functions and all
ε > 0. Second, degε( f ) is not substantially affected by the choice of a constant
ε ∈ (0, 1/2). More precisely, we have:

Proposition 2.5 (Folklore). Let f : {0, 1}n → {0, 1} be arbitrary, ε a constant with
0 < ε < 1/2. Then

degε( f ) = Θ(deg1/3( f )).

Proof (folklore). Assume that ε 6 1/3; the case ε ∈ (1/3, 1/2) has a closely
analogous proof, and we omit it. Let d def

= deg1/3( f ). We have to show that
degε( f ) = O(d). For this, fix φ ∈ span

(
{χS }|S |6d

)
with maxx∈{0,1}n | f (x) − φ(x)| 6

1/3. By basic approximation theory (see Rivlin [18, Cor. 1.4.1]), there exists a
univariate polynomial p of degree O(1/ε) with

p([−1/3, 1/3]) ⊆ [−ε, ε], p([1 − 1/3, 1 + 1/3]) ⊆ [1 − ε, 1 + ε].

Then clearly p(φ(x)) is the sought approximator of f . �
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In view of Proposition 2.5, it is standard practice to work with deg1/3( f ) by
default. Another easy observation is that the approximate degree does not change
much as one switches from the {0, 1} representation of Boolean functions to the
{−1,+1} representation. More precisely, fix f : {0, 1}n → {0, 1} and define f ∗(x) =
(−1) f (x). Then

degε( f ∗) = degε/2( f ) for all ε > 0,

as one can verify from the equation f ∗ = 1 − 2 f .
Determining deg1/3( f ) for a given Boolean function f can be difficult. There is,

however, a family of Boolean functions whose approximate degree is analytically
manageable. This is the family of symmetric Boolean functions, i.e., functions f :
{0, 1}n → {0, 1} whose value is uniquely determined by x1 + · · · + xn. Equivalently,
a Boolean function f is symmetric if and only if

f (x1, x2, . . . , xn) = f (xσ(1), xσ(2), . . . , xσ(n))

for all inputs x ∈ {0, 1}n and all permutations σ : [n] → [n]. Note that there is a
one-to-one correspondence between predicates and symmetric Boolean functions.
Namely, one associates a predicate D with the symmetric function

f (x) def
= D(x1 + · · · + xn).

To carry our discussion further, we extend the notion of approximation to predi-
cates.

Definition 2.6 (Approximate degree of predicates). For a predicate D :
{0, 1, . . . , n} → {0, 1}, define its ε-approximate degree degε(D) to be the minimum
degree of a univariate real polynomial p with

max
i=0,1,...,n

|D(i) − p(i)| 6 ε.

Analyzing the approximate degree of predicates is a much simpler task and,
indeed, a basic question in approximation theory. It is therefore fortunate that the
ε-approximate degree of a symmetric function is the same as the ε-approximate
degree of its associated predicate. This equivalence is known as the symmetrization
argument of Minsky and Papert [14].

Proposition 2.7 (Symmetrization argument; Minsky and Papert [14]). Let f :
{0, 1}n → {0, 1} be a symmetric Boolean function. Let D be the predicate with
f (x) ≡ D(x1 + · · · + xn). Then

degε( f ) = degε(D) for all ε > 0.

11



Proof sketch (Minsky and Papert [14]). Since f (x) = D(x1 + · · · + xn), it is clear
that degε( f ) 6 degε(D). For the reverse direction, let d def

= degε( f ) and fix φ =∑
|S |6d aSχS with maxx∈{0,1}n | f (x) − φ(x)| 6 ε. Consider the function

φ′(x) def
=

1
n!

∑
σ∈S n

φ(xσ(1), xσ(2), . . . , xσ(n)).

On the one hand, maxx∈{0,1}n | f (x) − φ′(x)| 6 ε. On the other hand, one can show
that

φ′(x) = p(x1 + · · · + xn)

for some polynomial p of degree d. Thus, p approximates D pointwise within ε,
and degε(D) 6 d = degε( f ). �

Using Proposition 2.7 and tools from approximation theory, Paturi [15] gave an
asymptotically tight estimate of deg1/3( f ) for every symmetric Boolean function f .
The estimates are in terms of the quantities `0( f ) and `1( f ), defined next.

Definition 2.8 (Razborov [16]). Let D : {0, 1, . . . , n} → {0, 1}. Define

`0(D) ∈ {0, 1, . . . , bn/2c},

`1(D) ∈ {0, 1, . . . , dn/2e}

to be the smallest integers such that D is constant in the range [`0(D), n−`1(D)]. For
a symmetric function f : {0, 1}n → {0, 1}, define `0( f ) = `0(D) and `1( f ) = `1(D),
where D is the predicate for which f (x) ≡ D(x1 + · · · + xn).

See Section 1 for a pictorial illustration of this definition. We are now ready to
state Paturi’s fundamental theorem.

Theorem 2.9 (Paturi [15]). Let f : {0, 1}n → {0, 1} be a symmetric function. Then

deg1/3( f ) = Θ
(√

n(`0( f ) + `1( f ))
)
.

In words, Theorem 2.9 states that the 1
3 -approximate degree is Ω(

√
n) for every

nonconstant predicate, and is higher for those predicates that change value near the
middle of the range {0, 1, . . . , n}.
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3 The Approximation/Orthogonality Principle

This section marks the beginning of our proof. Here we consider the notions
of approximation and orthogonality in a Euclidean space and establish a certain
equivalence between them. We will later reinterpret this result in terms of protocols
rather than points in a Euclidean space.

Let X be a finite set. Consider RX , the linear space of all functions X → R. For
φ ∈ RX , let

‖φ‖∞
def
= max

x∈X
|φ(x)|.

Then (RX , ‖ · ‖∞) is a real normed linear space.

Definition 3.1 (Best error). For f : X → R and Φ ⊆ RX , let

ε∗( f ,Φ) def
= min

φ∈span(Φ)
‖ f − φ‖∞.

In words, ε∗( f ,Φ) is the best error in an approximation of f by a linear combination
of functions in Φ. Since span(Φ) has finite dimension, a best approximation to f
out of span(Φ) always exists [18, Thm. I.1], justifying our use of “min” instead of
“inf” in the above definition.

We now introduce a closely related quantity, γ∗( f ,Φ), that measures how well
f correlates with a real function that is orthogonal to all of Φ.

Definition 3.2 (Modulus of orthogonality). Let X be a finite set, f : X → R, and
Φ ⊆ RX . The modulus of orthogonality of f with respect to Φ is:

γ∗( f ,Φ) def
= max

ψ

∑
x∈X

f (x)ψ(x)

 , (3.1)

where the maximum is taken over all ψ : X → R such that
∑

x∈X |ψ(x)| 6 1 and∑
x∈X φ(x)ψ(x) = 0 for all φ ∈ Φ.

The maximization in (3.1) is over a nonempty set that contains ψ = 0. Also, the
use of “max” instead of “sup” is legitimate because (3.1) maximizes a continuous
function over a compact set. To summarize, the modulus of orthogonality is a
well-defined nonnegative real number for every function f : X → R.

A key result, which we now prove, is that the best error and the modulus
of orthogonality are always equal. We call this the Approximation/Orthogonality
Principle.
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Theorem 3.3 (Approximation/Orthogonality Principle). Let X be a finite set,
Φ ⊆ RX , and f : X → R. Then

ε∗( f ,Φ) = γ∗( f ,Φ).

Proof. Let φ1, . . . , φk : X → R be a basis for span(Φ). Our first observation
is that ε∗( f ,Φ) is the optimum of the following linear program in the variables
ε, α1, . . . , αk:

minimize: ε

subject to: ∣∣∣∣∣∣∣ f (x) −
k∑

i=1

αiφi(x)

∣∣∣∣∣∣∣ 6 ε for each x ∈ X,

αi ∈ R for each i,

ε > 0.

Standard manipulations reveal the dual:

maximize:
∑
x∈X

βx f (x)

subject to: ∑
x∈X

|βx| 6 1,∑
x∈X

βxφi(x) = 0 for each i,

βx ∈ R for each x ∈ X.

Both programs are clearly feasible and thus have the same finite optimum. We have
already observed that the optimum of first program is ε∗( f ,Φ). Since φ1, φ2, . . . , φk

form a basis for span(Φ), the optimum of the second program is by definition
γ∗( f ,Φ). �

A useful consequence of the Approximation/Orthogonality Principle for our
purposes is the following result:
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Corollary 3.3.1. Let f : {0, 1}t → R have deg1/3( f ) > d. Then there is a function
ψ : {0, 1}t → R such that:∑

z∈{0,1}t
|ψ(z)| = 1,∑

z∈{0,1}t
ψ(z)χS (z) = 0 for all S with |S | < d,

∑
z∈{0,1}t

ψ(z) f (z) >
1
3
.

Proof. Set X = {0, 1}t and Φ = {χS : |S | < d} ⊂ RX . Since deg1/3( f ) > d,
we immediately have that ε∗( f ,Φ) > 1/3. But then γ∗( f ,Φ) > 1/3 by the
Approximation/Orthogonality Principle (Theorem 3.3). Clearly, we can take ψ

to be any function for which the maximum is achieved in (3.1). �

4 Pattern Matrices

We now turn to the second ingredient of our proof, a certain family of real matrices
that we call pattern matrices. Our goal here is to place an upper bound on their
spectral norm. As we shall see later, this provides a convenient means to generate
hard communication problems.

Let t and m be positive integers with t | m. Split [m] into t contiguous blocks,
each with m/t elements:

[m] =
{
1, 2, . . . ,

m
t

}
∪

{
m
t
+ 1, . . . ,

2m
t

}
∪ · · · ∪

{
(t − 1)m

t
+ 1, . . . ,m

}
.

Let denote V (m, t) denote the family of subsets V ⊆ [m] that have exactly one
element in each of these blocks (in particular, |V | = t). Clearly, |V (m, t)| = (m/t)t.

For a bit string x ∈ {0, 1}n (where n > m) and a set V ∈ V (m, t), define the
projection of x onto V to be

x|V
def
= (xi1 , xi2 , . . . , xi|V |) ∈ {0, 1}

|V |,

where i1 < i2 < · · · < i|V | are the elements of V.

Definition 4.1 (Pattern matrix). Let φ : {0, 1}t → R. The (m, t, φ)-pattern matrix
is the real matrix A given by

A =
[
φ(x|V )

]
x∈{0,1}m,V∈V (m,t)

.
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The logic behind the term “pattern matrix” is as follows: a mosaic arises from
repetitions of a pattern in the same way that A arises from applications of φ to
various subsets of the variables.

We are now ready to analyze the spectral norm of a pattern matrix. The theorem
we are about to prove refines an earlier result due to the author [19, Thm. 1.2].

Theorem 4.2 (Spectrum of pattern matrices). Let φ : {0, 1}t → R be any function
with φ̂(S ) = 0 for all S with |S | < d, where d is a given integer. Let A be the
(m, t, φ)-pattern matrix. If m > 5et2/d, then

‖A‖ 6
1
2d

√
2m

(m
t

)t
 1

2t

∑
z∈{0,1}t

|φ(z)|

 . (4.1)

Proof. The assumption about the Fourier spectrum of φ can be restated as follows:

φ(z) =
∑

S⊆[t], |S |>d

φ̂(S )χS (z) (z ∈ {0, 1}t). (4.2)

Define the pattern matrix

AS
def
=

[
χS (x|V )

]
x,V (S ⊆ [t]). (4.3)

Using (4.2) and (4.3),
A =

∑
S⊆[t], |S |>d

φ̂(S )AS .

The orthogonality of the χS implies that AT
S AT = 0 for all S , T. As a result,

ATA =
∑

S⊆[t], |S |>d

φ̂(S )2AT
S AS . (4.4)

It is not hard to see that AT
S AS is permutation-similar to the matrix

2m


J

J
. . .

J

 ,
where J is the all-ones square matrix of order (m/t)t−|S |. Therefore,

‖AT
S AS ‖ = 2m

(m
t

)t−|S |
. (4.5)
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We need one final observation: for each S ⊆ [t],

|φ̂(S )| =
∣∣∣∣∣Ez [φ(z) χS (z)]

∣∣∣∣∣ 6 E
z
[|φ(z)|] =

1
2t

∑
z∈{0,1}t

|φ(z)|. (4.6)

It remains to combine the above ingredients:

‖A‖2 = ‖ATA‖

6
∑

S⊆[t], |S |>d

φ̂(S )2 ‖AT
S AS ‖ by (4.4)

6 2m
(m

t

)t
 1

2t

∑
z∈{0,1}t

|φ(z)|


2 ∑

S⊆[t], |S |>d

( t
m

)|S |
by (4.5), (4.6)

= 2m
(m

t

)t
 1

2t

∑
z∈{0,1}t

|φ(z)|


2 t∑

i=d

(
t
i

) ( t
m

)i
.

In particular, (4.1) holds as soon as m > 5et2/d. �

5 Application of the Discrepancy Method

The previous two sections studied the spectrum of pattern matrices and the
relationship between approximation and orthogonality. Having examined these
notions in their pure and basic form, we now apply our findings to communication
complexity.

For a predicate D : {0, 1, . . . , n} → {0, 1} and an integer t, 1 6 t 6 n, define a
new predicate D|t : {0, 1, . . . , t} → {0, 1} by

D|t(i) = D(i) (i = 0, 1, . . . , t).

In words, D|t is the restriction of D to {0, 1, . . . , t}. We start with a technical lemma.

Lemma 5.1. Let D : {0, 1, . . . , n} → {0, 1}. Suppose that D(`) , D(` − 1) for some
` 6 αn, where α ∈ (0, 1) is a suitably small absolute constant. Then there is an
integer t, 1 6 t 6 n, such that

deg1/3(D|t) = Ω(n1/3`2/3) and
n
2
>

5et2

deg1/3(D|t)
. (5.1)
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Proof. Let t be any integer with 2` 6 t 6 n. Then `0(D|t) > ` by definition, and

deg1/3(D|t) > β
√

t`

by Theorem 2.9, where β ∈ (0, 1) is a certain absolute constant. Therefore, the
proof will be complete if we can find an integer t = Ω(n2/3`1/3) with

2` 6 t 6 n and
n
2
>

5et2

β
√

t`
.

Calculations reveal that such t exists whenever ` 6 βn/(10 · 23/2 e). �

The crux of our proof is the following lemma.

Lemma 5.2. Let D : {0, 1, . . . , n} → {0, 1}. Suppose that D(`) , D(` − 1) for some
` 6 αn, where α ∈ (0, 1) is the absolute constant from Lemma 5.1. Then there exist
sets X,Y ⊆ {0, 1}n and a real matrix K = [Kxy]x∈X, y∈Y such that:

‖K‖1 = 1, (5.2)

‖K‖ 6
1

√
|X| |Y |

·
1

2Ω(n1/3`2/3)
, (5.3)

〈K,M〉 >
1
3
, (5.4)

where M def
=

[
(−1)D(|x∧y|)

]
x∈X, y∈Y

.

Proof. Lemma 5.1 supplies an integer t, 1 6 t 6 n, that satisfies (5.1). In particular,

deg1/3(D|t) = Ω(n1/3`2/3). (5.5)

Moreover, (5.1) implies that t 6 n/(10e). As a result, we can pick an integer m ∈
{n/2, . . . , n} such that

t | m and m >
5et2

deg1/3(D|t)
. (5.6)

Define f : {0, 1}t → {−1,+1} by

f (z) def
= (−1)D(|z|) (z ∈ {0, 1}t).
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Clearly, deg1/3( f ) > deg1/3(D|t). Then by Corollary 3.3.1, there exists ψ : {0, 1}t →
R such that ∑

z∈{0,1}t
|ψ(z)| = 1, (5.7)∑

z∈{0,1}t
ψ(z) χS (z) = 0 for all |S | < deg1/3(D|t), (5.8)

∑
z∈{0,1}t

ψ(z) f (z) >
1
3
. (5.9)

Define X,Y ⊆ {0, 1}n by

X def
= {x ∈ {0, 1}n : xm+1 = · · · = xn = 0},

Y def
= {1V : V ∈ V (m, t)}.

These definitions set up obvious bijections X ↔ {0, 1}m and Y ↔ V (m, t). For
y ∈ Y, let V(y) ∈ V (m, t) denote the set whose characteristic vector is y. With this
notation, |x ∧ y| =

∣∣∣x|V(y)
∣∣∣ for all x ∈ X, y ∈ Y. This, along with the definition of f ,

shows that
(−1)D(|x∧y|) = f

(
x|V(y)

)
(x ∈ X, y ∈ Y). (5.10)

We are now ready to exhibit a real matrix K with the desired criteria. Namely,
let

K def
=

[
1

2m−t(m/t)t · ψ(x|V )
]

x∈{0,1}m,V∈V (m,t)
=

[
1

2m−t(m/t)t · ψ
(
x|V(y)

)]
x∈X, y∈Y

.

The first equality defines K as a pattern matrix. The second provides the desired
representation K = [Kxy]x∈X, y∈Y .

It remains to verify that K has properties (5.2)–(5.4). Property (5.2) is imme-
diate from (5.7). Property (5.3) follows by Theorem 4.2 in view of (5.5)–(5.8).
Finally, property (5.4) can be seen as follows:

〈K,M〉 =
1

2m−t(m/t)t

∑
y∈Y

∑
x∈X

ψ
(
x|V(y)

)
(−1)D(|x∧y|)

=
1

2m−t(m/t)t

∑
y∈Y

∑
x∈X

ψ
(
x|V(y)

)
f
(
x|V(y)

)
by (5.10)

=
1

2m−t(m/t)t

∑
y∈Y

2m−t
∑

z∈{0,1}t
ψ(z) f (z)

>
1
3

by (5.9). �
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We are now in a position to prove the desired lower bounds for predicates
D : {0, 1, . . . , n} → {0, 1} that change value reasonably close to 0. Extension to the
general case is the subject of the next section.

Theorem 5.3. Let D : {0, 1, . . . , n} → {0, 1}. Suppose that D(`) , D(` − 1) for
some ` 6 αn, where α ∈ (0, 1) is the absolute constant from Lemma 5.1. Then

Q∗1/3(D) = Ω(n1/3`2/3).

Proof. It suffices to show that Q∗1/9(D) = Ω(n1/3`2/3), since the accuracy of a
quantum protocol can be amplified from 1/3 to any other constant ε > 0 at the
expense of a constant multiplicative increase in communication. Consider the
sets X,Y ⊆ {0, 1}n and the matrix K = [Kxy]x∈X, y∈Y from Lemma 5.2. Define
f : X × Y → {0, 1} by

f (x, y) = D(|x ∧ y|).

By the discrepancy method (Theorem 2.3),

Q∗1/9( f ) = Ω(n1/3`2/3).

Since Q∗1/9(D) > Q∗1/9( f ), the theorem follows. �

6 Final Lower Bound on Communication

In the previous section, we proved strong lower bounds for all predicates D that
change value reasonably close to 0. This hard work is now behind us. What remains
is to extend the result to arbitrary predicates, which is a straightforward if tedious
exercise in shifting and padding. We note that Razborov’s proof concludes in a
similar way (see [16], beginning of Section 5).

Theorem 6.1. Let D : {0, 1, . . . , n} → {0, 1}. Suppose that D(`) , D(` − 1) for
some ` > αn, where α ∈ (0, 1) is the absolute constant from Lemma 5.1. Then

Q∗1/3(D) > c(n − `) (6.1)

for some absolute constant c > 0.

Proof. Consider the communication problem of computing D(|x ∧ y|) when the
last k bits in x and y are fixed to 1. In other words, the new problem is to compute
Dk(|x′∧y′|), where x′, y′ ∈ {0, 1}n−k and the predicate Dk : {0, 1, . . . , n−k} → {0, 1}
is given by

Dk(i) = D(k + i) (i = 0, 1, . . . , n − k).
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Since the new problem is a restricted version of the original, we have

Q∗1/3(D) > Q∗1/3(Dk) for all k. (6.2)

We complete the proof by placing a lower bound on Q∗1/3(Dk) for some k.
The quantity

k0
def
= ` −

⌊
α

1 − α
· (n − `)

⌋
is an integer between 1 and ` (because ` > αn). The equality k0 = ` occurs if
and only if

⌊
α

1−α (n − `)
⌋
= 0, in which case the claimed conclusion (6.1) holds

trivially for c suitably small, such as c = α/(1 − α). Thus, we can assume that
1 6 k0 6 ` − 1, in which case Dk0(` − k0) , Dk0(` − k0 − 1) and ` − k0 6 α(n − k0).
Therefore, Theorem 5.3 is applicable to Dk0 and yields:

Q∗1/3(Dk0) > C · (n − k0)1/3(` − k0)2/3, (6.3)

where C > 0 is an absolute constant. Calculations reveal:

n − k0 =

⌊
1

1 − α
· (n − `)

⌋
and ` − k0 =

⌊
α

1 − α
· (n − `)

⌋
. (6.4)

The theorem is now immediate from (6.2)–(6.4). �

Together, Theorems 5.3 and 6.1 yield the main result of this paper.

Theorem 6.2 (Restatement of Theorem 1.2). Let D : {0, 1, . . . , n} → {0, 1}. Then

Q∗1/3(D) = Ω
(
n1/3`0(D)2/3 + `1(D)

)
.

Proof. If `0(D) , 0, set ` def
= `0(D) and note that D(`) , D(` − 1) by definition.

One of Theorems 5.3 and 6.1 must be applicable, and therefore Q∗1/3(D) >

min
{
Ω(n1/3`2/3), Ω(n − `)

}
. Since ` 6 n/2, this simplifies to

Q∗1/3(D) > Ω
(
n1/3`0(D)2/3

)
. (6.5)

If `1(D) , 0, set ` def
= n − `1(D) + 1 > n/2 and note that D(`) , D(` − 1) as

before. One of Theorems 5.3 and 6.1 must be applicable, and therefore Q∗1/3(D) >
min {Ω(n), Ω(`1(D) − 1)} . This simplifies to

Q∗1/3(D) > Ω (`1(D)) . (6.6)

The theorem follows from (6.5) and (6.6). �
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7 Extensions

Critical to Razborov’s proof [16] is the high symmetry of the functions f (x, y) =
D(|x ∧ y|). By contrast, the method of this paper applies unchanged to a broader
class of functions, for which no lower bounds were previously known. Specifically,
we have:

Theorem 7.1. Let f : {0, 1}t → {0, 1} be arbitrary, where t | n. Put

d def
= deg1/3( f ),

F def
=

[
f (x|V )

]
x∈{0,1}n,V∈V (n,t)

.

If n > 5et2/d, then
Q1/3(F) > Q∗1/3(F) > Ω(d).

Proof. Argue as in the proof of Lemma 5.2, with obvious changes, to obtain (5.2)–
(5.4). Then apply the discrepancy method (Theorem 2.3). �

In words, Theorem 7.1 delivers the same lower bound on communication
while relaxing assumptions about the symmetry of the communication matrix. In
particular, the function f in Theorem 7.1 need not be symmetric. The theorem
does assume, however, a pattern structure to the communication matrix. There are
several ways to work around this assumption:

• It is not necessary to use a single function f : {0, 1}t → {0, 1} for the entire
matrix F. In other words, one can work with distinct functions f1, f2, . . . ,
one for each column, as long as they all have high approximate degree. The
proof of Theorem 4.2 generalizes easily to accommodate this new setup; the
remaining machinery needs only cosmetic changes.

• The columns of F need not be indexed by sets in V (n, t). One could use
a different system of sets, e.g., one that arises from a partition of [n] into
blocks of varying size. Also, not all sets from the resulting family need to
figure as column indices. More generally, one can attempt to work with any
set system in which two random sets have small expected intersection.

We designate the functions in Theorem 7.1, as well as their generalizations, by the
term pattern functions. We defer precise theorems for these generalizations to the
full version of the paper, the fundamental mathematical technique being already
evident in Theorem 7.1.
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