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Abstract

Let Aj,A,,...,A, be events in some probability space. The approximate
inclusion-exclusion problem, due to Linial and Nisan (1990), is to estimate
Pr[A,U---UA,] given Pr[(;cs A;] for all |S| < k. Kahn et al. (1996) solve this
problem optimally for each k. We study the following more general question:
given Pr[();cs A;] for all |S| < k, estimate

Pr [the number of events among Ay, ..., A, that hold is in Z],

where Z C {0,1,...,n} is a given set. (In the Linial-Nisan problem,
Z = {1,...,n}.) We solve this general problem for all Z and k, giving an
algorithm that runs in polynomial time and achieves an approximation error
that is essentially optimal. We prove this optimal error to be 2-®**/" for k
above a certain threshold, and ®(1) otherwise.

As part of our solution, we determine, for every predicate D
{0,1,...,n} — {0, 1} and every € € [1/2",1/3], the least degree deg (D) of
a polynomial that approximates D pointwise within €. Namely, we show that
deg (D) = 0] (degl/3(D) + 4/n log(l/e)) , where deg, 5(D) is well-known for
each D. Previously, the answer for vanishing € was known only for D = OR
(Kahn et al., 1996). We construct the approximating polynomial explicitly
for every D and €.

Our proof is a substantial departure from Linial and Nisan (1990) and
Kahn et al. (1996). Its key ingredient is the Approximation/Orthogonality
Principle, a certain equivalence of approximation and orthogonality in a
Euclidean space, recently proved by the author in the context of quantum
lower bounds (Sherstov 2007). Our polynomial constructions feature novel
uses of the Chebyshev polynomials.



1 Introduction

Let A1,A>,...,A, be events in a probability space. The well-known inclusion-
exclusion principle allows one to compute the probability of A} U --- U A, using
the probabilities of various intersections of Aj, As, ..., Ap:

PriA; U---UA,] = ) PriA] - > PrlAinAjl+ > Pr{A;NA; N A - -
i i<j i<j<k

+H=1D"Pr[A; N~ N Ayl

A moment’s reflection reveals that knowledge of every term in this summation is
necessary in general for an exact answer. In this light, it is natural to wonder if one
can closely approximate Pr[| J A;] using the probabilities of intersections of up to
k events, where k < n. This problem, due to Linial and Nisan [10], is known as
approximate inclusion-exclusion. Linial and Nisan studied this question and gave
near-tight bounds on the least approximation error as a function k. A follow-up
article by Kahn, Linial, and Samorodnitsky [5] improved those bounds to optimal.

While A; U --- U A, is an important event, it is certainly not the only one of
interest. For example, we might be interested in

Pr[ most of the events A;,A,,...,A, hold ],
or
Pr [ an odd number of events from among A1, A, ..., A, hold ]

More generally, we might like to know the likelihood that the number of events
that hold is in a given subset of {0, 1, ..., n}. Formally, let D : {0, 1,...,n} — {0, 1}
be an arbitrary predicate. Consider

Pr| DU[A]+- +1[A,]) = 1], (1.1)

where as usual

I[A;] =

def 1 A,‘ holds
0 otherwise.

As before, we would like to estimate (1.1) to optimal error given the values of
Pr[;es Ai] for all § with |S| < k. This new problem is a natural generalization
of approximate inclusion-exclusion. Yet the methods of Linial and Nisan [10] and
Kahn et al. [5] do not cover this broader question.



We solve this problem completely for every D and k. More precisely, we give
an algorithm that, for every D and k, runs in polynomial time and achieves an
approximation error that is essentially optimal. Before we state our results, we
introduce some helpful notation.

1.1 Notation

Let D:{0,1,...,n} — {0, 1} be an arbitrary predicate. Define
to(D) €{0,1,...,|n/2]},
6i(D) €{0,1,...,[n/21}

to be the smallest integers such that D is constant in the range [£y(D),n — £1(D)].
The figure below illustrates this definition for a typical predicate D:

lo(D) 1,(D)
D

The key point is that £4(D) + €1(D) is large if and only if D changes value near the
middle of the range. We need another definition.

Definition 1.1. Let D : {0,1,...,n} — {0, 1} and O < k < n. Define

6*(D, k)

£ sup [Pr[DAIAT 4+ MAD = 1] = Pr[DAIBI+- +1(B,]) = 1]

B

where the supremum is taken over all probability spaces &7 and %, over all

events Ay, ..., A, in &, and over all events By, ..., B, in £,, such that
Pr A;| =Pr B; for |S| < k.




In words, the quantity 6*(D, k) in the above definition is the least error achievable in
approximating Pr[D(I[A]+- - -+I[A,]) = 1] in principle, information-theoretically,
if unlimited computing power is available.

1.2 Main Result

The first question we settle is precisely how large k needs to be for a good
approximation to even exist. We prove:

Theorem 1.2 (Existence of a good approximation). Let D : {0, 1,...,n} — {0, 1}.
Put € = €o(D) + €1(D). Then

o(1) if  k<©(vVnl),
SFD,ky =1
2-0G/m) if  O(Vnl) <k<OMm).

Theorem 1.2 tells us that a good approximation exists if and only if k > © (\/77) ,
where ¢ = €y(D) + £1(D). We now give an efficient way to actually construct the
near-optimal approximation for any given D and k.

Theorem 1.3 (Efficient approximation scheme). Let D : {0,1,...,n} — {0, 1}.
Put £ = £o(D) + £1(D). Then for every k > ® (\/n_f) there are reals

aO’a1$"'9ak9

computable in time poly(n), such that

k
Pr(DAA ]+ +TAD =1 - Dla; Y Pr|( )4 |<270®m
j=0  suS|=j  Lies
for any events Ay, ..., Ay in any probability space.

Theorem 1.3 gives the desired approximation algorithm. As we see, it is not even
necessary to know the individual probabilities Pr[();cg A;]; it suffices to know the

k + 1 sums
Z Pr[ﬂA,} (j=0,1,....k).

S:S1= ieS
This solves the generalized inclusion/exclusion problem for all predicates. In

actuality, our proof works for arbitrary Boolean functions, not just predicates.
Specifically, fix f : {0, 1} — {0, 1} and suppose we wish to approximate

Pr[f(I[A]..... T[A,]) = 1]
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given Pr[;cs A;] for all S with |S| < k. Let 6*(f, k) be the best error achievable
information-theoretically. In the case of symmetric functions, i.e., f(x) = D(x| +
-+ -+ x,) for some predicate D, this is precisely the setting of Theorems 1.2 and 1.3.
For arbitrary f, we obtain the following result:

Theorem 1.4. Ler f : {0,1}" — {0, 1} be arbitrary and 0 < k < n. Then

o (fik) =2 Hgnllf — Plloos

where the minimum is over multilinear polynomials ¢(xy, ..., x,) of degree up to k.

Thus, Theorem 1.4 solves the approximate inclusion/exclusion problem for any f
whose approximability by polynomials is well understood.

1.3 Other Results

Approximate degree. As part of our proof, we have to show the following
result of independent interest. For a predicate D : {0, 1,...,n} — {0, 1}, define
its e-approximate degree deg (D) to be the smallest degree of a univariate real
polynomial p(¢) such that

max |D(t) — p(?)| < e.
t=0,1,....,n

This quantity is of inherent significance and has found various applications in
theoretical computer science [5,6,8-10, 13, 15, etc.], ranging from approximation
algorithms and computational learning to complexity theory. Moreover, the main
result of this paper depends critically on tight estimates of deg (D) for all D and e.
We prove:

Theorem 1.5 (Approximate degree of predicates). Let D : {0, 1,...,n} — {0, 1}
be a nonconstant predicate. Let € € [1/2",1/3]. Then

deg (D) = ® (Vn(to(D) + (1(D)) + /nlog(1/e)),

where the © notation suppresses logn factors. Furthermore, the approximating
polynomial for each D and € is given explicitly.

Theorem 1.5 is a broad generalization of two earlier results in the literature.
The first of these is due to Paturi [12], who showed that

deg;/3(D) = © (Va(G(D) + €1(D))) for all D.
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Unfortunately, Paturi’s result and its proof give no insight into the behavior of the
e-approximate degree for vanishing €. The other relevant result is due to Kahn et
al. [5], who conducted an in-depth study of the predicate D = OR, defined as usual
by OR(i) = 1 & i > 1. Kahn et al. showed that

deg (OR) = O (y/nlog(1/e)) (1/2" < e < 1/3),

where the @ notation hides log n factors. Thus, our work generalizes the results of
Paturi and Kahn et al. to every predicate and every error rate € € [1/2",1/3].

Theorem 1.5 has another, more revealing and esthetically pleasing interpreta-
tion. In view of Paturi’s work, it can be restated as:

deg (D) = ®(deg,/3(D) + nlog(1/e))  (1/2" <e<1/3),

where D is nonconstant. In words, past a certain threshold, the dependence of
the e-approximate degree on € is the same for all nonconstant predicates. This
threshold varies from one predicate to another and equals the degree required for a
%—approximation.

Agnostic learning. The proof technique of our main result additionally gives
new lower bounds for agnostic learning. The agnostic model, due to Kearns et
al. [7], is perhaps the most realistic abstraction of learning. Designing efficient
algorithms in this model, even for the simplest concept classes, is notoriously
difficult. Nevertheless, progress on proving lower bounds has also been scarce.
Some recent lower bounds are [9, 17].

A summary of this model is as follows. Let 4 be a concept class, i.e., some
set of Boolean functions {0, 1}* — {0, 1}. There is an unknown distribution A on
{0, 1}" x {0, 1}, and the learner receives training examples

(+D, D), (X@,5?), L, (™),
independent and identically distributed according to A. Let

def
(0] t = PI‘ =
P max {(MM [f(x) y]}
be the error of the function f* € ¥ that best agrees with the training data. The
learner needs to produce a hypothesis 2 : {0,1}* — {0, 1} that agrees with the
training data almost as well as f*:

Pr [h(x) = y] = opt — €,
or 1) =yl > op



where € is an error parameter fixed in advance. As usual, the goal is to find &
efficiently.

A natural approach to learning in this and other models is to consider only
those hypotheses that depend on few variables. One tests each such hypothesis
against the training data and outputs the one with the least error. This technique is
attractive in that the resulting hypothesis space is small and well-structured, making
it possible to efficiently identify the best approximation to the observed examples.

The central question then becomes, what advantage over random guessing can
such hypotheses guarantee? We prove that, when learning symmetric functions,
one is forced to use hypotheses that depend on many variables: all others will
generally work no better than random guessing.

Theorem 1.6 (Lower bound for agnostic learning). Let D : {0,1,...,n} — {0, 1}

be a predicate and f(x) def D(x; + -+ + xp). Let € > 0 be an arbitrary constant.
Then there is a distribution A on {0, 1}" X {0, 1} such that

(XE){A[f(X) =yl>1-¢€

and

1
= = -
Pl =yl =3

for every g : {0,1}" — {0,1} that depends on at most ¢ \n({y(D) + €1(D))
variables, where ¢ = c(€) is a constant.

We also show that the bound on the number of variables in Theorem 1.6 is
optimal to within a multiplicative constant (see Theorem 5.4). Prior to our work,
Tarui and Tsukiji [17] obtained the special case of Theorem 1.6 for f = OR. No
other lower bounds for symmetric functions were previously known.

To place Theorem 1.6 in the framework of agnostic learning, consider any
concept class ¢ that contains many symmetric functions. For example, we could
fix a symmetric function f : {0, 1} — {0, 1} and consider the concept class & of
(271") functions, each being a copy of f applied to a separate set of n variables from
among xi, X2, ..., X2, -

%z{f(x,-],x,-z,...,x,-n): 1 <i; <i2<---<in<2n}.

Theorem 1.6 now supplies scenarios when some member of 4" matches the training
data almost perfectly (to within any € > 0), and yet every hypothesis that depends
on few variables is completely useless (i.e., as good as random guessing).



1.4 Our Techniques

The proof of our main result takes inspiration from the elegant papers of Linial
and Nisan [10] and Kahn et al. [5], who have studied the special case D = OR.
Namely, we adopt the high-level strategy of these works, which is to reduce the
original problem via linear-programming duality to a question in approximation
theory. Implementing this strategy, however, requires new and stronger techniques.
As we will shortly explain, our proof is a substantial departure from [5, 10].

First of all, the linear-programming reduction in [5, 10] does not extend from
D = OR to arbitrary predicates. To overcome this difficulty, we start with a
different and more versatile tool, the Approximation/Orthogonality Principle. This
principle gives a certain equivalence between approximation and orthogonality in
a Euclidean space and has been recently proved by the author [15] in the context
of quantum lower bounds. With some work, this yields the desired reduction from
the original problem to a question in approximation theory. In addition, the proof
turns out simpler and more modular than in [5, 10].

To complete the solution, we must still answer the resulting question in ap-
proximation theory. This amounts to determining, for each predicate D and each
€ € [1/2",1/3], the least degree of a polynomial that approximates D pointwise
within €, and then constructing such a polynomial explicitly. Previously, such a
construction was known only for D = OR (Kahn et al. [5]). We solve the general
case by combining interpolation techniques with a novel use of the Chebyshev
polynomials.

It may seem that Theorem 1.5, the backbone of this paper, should have a more
intuitive and more elementary proof. However, the simpler ideas that come to mind
turn out to be useless, as we now discuss.

e An obvious approach is to start with Paturi’s %—approximating polynomial
p(t) for the given predicate D(¢) and boost its accuracy by composing it with
another polynomial, g(#). Let € € (0, 1/3) be the desired accuracy. For this
approach to work, ¢g(f) must satisfy:

o4 A)erea o fen-aira

Up to translation/scaling, this is equivalent to requiring that g(¢) approximate
the sign function within € on the interval [-1,—-1 + a] U [1, 1 — @] for some
constant @ € (0, 1). Eremenko and Yuditskii [4] show that the least degree
of such a polynomial g(7) is ®@(log(1/¢€)). Taking p(¢) to be Paturi’s approx-
imating polynomial for the given predicate D, we see that the composition
p(g(0)) has degree

© (Valo(D) + (1(D)) log(1/e)).
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This is much worse than the optimal bound that we achieve, namely,

(:)(\/n(fo(D) +01(D)) + 4/nlog(1 /e)).

e Another tempting strategy is to view a given predicate D : {0,1,...,n} —
{0,1} as a continuous (piecewise-linear) function on [0, 7] and then apply
D. Jackson’s fundamental theorems on uniform approximation. Unfortu-
nately, the continuous approximation problem is very hard even for the
following simple predicate:

Indeed, an e-approximating polynomial for this continuous function yields
(after translation and scaling) an e-approximating polynomial of the same
degree for |x| on [—1, 1]. In his classical work, S.N. Bernstein [2] proves that
the latter polynomial requires degree Q(1/€). In particular, this approach
is entirely useless once € < O(1/n). Yet the predicate in question has an
approximator of degree ®(y/n), as we show. Clearly, the key is to exploit
the discrete nature of the problem: we are merely seeking an approximation
over the finite set of points {0, 1, ..., n}, rather than the entire interval [0, n].

We conclude with a broader view of this work. What might be common to
approximate inclusion-exclusion, agnostic learning, and quantum communication?
These subjects seem quite different at first. One contribution of our paper is to
show that, as far as symmetric functions are concerned, these three problems are
fundamentally the same mathematical question! Namely, the question is how well
a given predicate can be approximated by a univariate polynomial of low degree.
We illustrate this equivalence in the following diagram, which shows the skeleton
of our proofs:



Lower bounds for
agnostic learning
(this paper)

Quantum lower bounds
for all predicates
(Sherstov 2007b)

Approximate inclusion/
exclusion for all predicates
(this paper)

/

auxiliary work

3

1/3-approximation | Degree/Discrepancy
of predicates Theorem (Sherstov 2007a)
(Paturi 1992)

auxiliary work

eps—approximation
of predicates,eps —=0
(this paper)

Approximation/Orthogonality Principle
(Sherstov 2007b)

The three ovals across the top correspond to the main results (two from this paper,
one from [15]). The arrows show dependencies in the proofs. What brings the
three subjects together is the Approximation/Orthogonality Principle, reviewed in
detail in Section 2.2.

1.5 Organization

We start with a thorough review of technical preliminaries in Section 2. We next
study the approximation of Boolean predicates by real polynomials in Section 3.
Armed with this approximation result, we prove our main theorem in Section 4.
Finally, Section 5 reinterprets our technique to give lower bounds for agnostic
learning.

2 Preliminaries

This section provides relevant technical background. After some remarks on
notation (Section 2.1), we discuss the Approximation/Orthogonality Principle and
give its proof for the reader’s convenience (Section 2.2). Section 2.3 concludes
with some fundamental results about the approximation of Boolean functions by
polynomials.

2.1 General

A Boolean function is a mapping {0,1}* — {0,1}. A predicate is a mapping
{0,1,...,n} — {0, 1}. The notation [#n] stands for the set {1,2,...,n}. The symbol
Py stands for the set of all univariate real polynomials of degree up to k. For a finite



set X and a function ¢ : X — R, we define

glles < max gl

We now recall the Fourier transform on {0, 1}". Consider the vector space of
functions {0, 1} — R, equipped with the inner product

ef 1
L) E 5 D @),

xe{0,1)
For § C [n], define ys : {0, 1} — {-1,+1} by

Xs (1) = (= 1)ies .

Then {xs}sc[n] is an orthonormal basis for the inner product space in question. As
a result, every function f : {0, 1}" — R has a unique Fourier representation

f@ =" fS)xs ),

Scln]

where £(S) e (f.xs). The reals f(S) are called the Fourier coefficients of f.

2.2 The Approximation/Orthogonality Principle

Crucial to our work is the Approximation/Orthogonality Principle, recently proved
by the author [15] in the context of quantum lower bounds. This principle
establishes a certain equivalence between approximation and orthogonality in a
Euclidean space.

We start with some notation from [15], which will be useful throughout this
paper. Let X be a finite set. Consider R¥, the linear space of all functions X — R.

Recall the notation ot
(&
Al = max|p(x)].
xeX

Then (RX, || - |leo) is a real normed linear space.

Definition 2.1 (Best error). For f : X — R and ® C R¥, let

D E min |If - dlle.

¢espan(d)
In words, €*(f, @) is the best error in an approximation of f by a linear combination
of functions in @. Since span(®) has finite dimension, a best approximation to f
out of span(®) always exists [14, Thm. I.1], justifying our use of “min” instead of
“inf” in the above definition.
We now introduce a closely related quantity, y*(f, @), that measures how well
f correlates with a real function that is orthogonal to all of ©.
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Definition 2.2 (Modulus of orthogonality, Sherstov [15]). Let X be a finite set,
f:X — R, and ® C RX. The modulus of orthogonality of f with respect to ® is:

V() E max {Z f(xw(x)}, 2.1)

xeX

where the maximum is taken over all ¥ : X — R such that },.x |¢(x)] < 1 and
2xex $(Y(x) = 0 for all ¢ € D.

The maximization in (2.1) is over a nonempty set that contains ¢ = 0. Also, the
use of “max” instead of “sup” is legitimate because (2.1) maximizes a continuous
function over a compact set. To summarize, the modulus of orthogonality is a
well-defined nonnegative real number for every function f : X — R.

Theorem 2.3 (Approximation/Orthogonality Principle, Sherstov [15]). Ler X
be a finite set, ® C RX, and f : X — R. Then

€(f, D) =7 (. D).

Proof. Let ¢1,....,¢r : X — R be a basis for span(®). Our first observation
is that €*(f, @) is the optimum of the following linear program in the variables
€, d1,...,q:

minimize: €
subject to:
k
Jx) - Z aidi(x)| < € for each x € X,
i=1
a; €R for each i,
€>0.
Standard manipulations reveal the dual:
maximize: Z Bf(x)
xeX
subject to:
Z Iﬁx| < la
xeX
Zﬁx¢i(X) =0 for each i,
xeX
BxeR for each x € X.
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Both programs are clearly feasible and thus have the same finite optimum. We have
already observed that the optimum of first program is €*(f, ®). Since ¢1, ¢, ..., Pk
form a basis for span(®), the optimum of the second program is by definition

Y (f, @). o

2.3 Approximation by Polynomials

Let f : {0,1} — R. As we saw in Section 2.1, any such function f has an
exact representation as a linear combination of ys, where S C [n]. A fundamental
question to ask is how closely f can be approximated by a linear combination of
functions ys with || small.

Definition 2.4 (Approximate degree of functions). Let f : {0,1}" — Rand e > 0.
The e-approximate degree deg (f) of f is the minimum integer k, 0 < k < n, for
which there exists ¢ € span ({xs };s|<k) With

max If(x) —p(x0)| < e.

We will be primarily interested in the approximate degree of Boolean func-
tions. As a first observation, deg.(f) = deg.(—f) for all such functions and all
€ > 0. Second, deg (f) is not substantially affected by the choice of a constant
€ € (0,1/2). More precisely, we have:

Proposition 2.5 (Folklore). Let f : {0, 1}" — {0, 1} be arbitrary, € a constant with
0<e<1/2.Then

deg (f) = ©(deg, ;5(/))-

Proof (folklore). Assume that € < 1/3; the case € € (1/3,1/2) has a closely

analogous proof, and we omit it. Let k & deg; 3(f). We have to show that

deg (f) = O(k). For this, fix ¢ € span ({xs }|s<k) With maxejo.1}» | f(x)—¢(x)| < 1/3.
By basic approximation theory (see Rivlin [14, Cor. 1.4.1]), there exists a univariate
polynomial p of degree O(1/¢€) with

P-4 )ered p(ii)cn-cia
Then clearly p(¢(x)) is the sought approximator of f. O

In view of Proposition 2.5, the convention is to work with deg,; 3(f) by default.
Determining this quantity for a given Boolean function f can be difficult. There is,
however, a family of Boolean functions whose approximate degree is analytically

12



manageable. This is the family of symmetric Boolean functions, i.e., functions f :
{0, 1}" — {0, 1} whose value is uniquely determined by x| + - - - + x,,. Equivalently,
a Boolean function f is symmetric if and only if

Sx1,x0, 000, %0) = f(Xo(1)s Xo2)s - -+ s Xor(m))

for all inputs x € {0, 1}" and all permutations o : [#] — [n]. Note that there is a
one-to-one correspondence between predicates and symmetric Boolean functions.
Namely, one associates a predicate D with the symmetric function

£ E Dy + -+ x),

To carry our discussion further, we extend the notion of approximation to predi-
cates.

Definition 2.6 (Approximate degree of predicates). For a predicate D
{0,1,...,n} — {0, 1}, define its e-approximate degree deg (D) to be the minimum
degree of a univariate real polynomial p with

.....

Analyzing the approximate degree of predicates is a much simpler task and,
indeed, a basic question in approximation theory. It is therefore fortunate that the
e-approximate degree of a symmetric function is the same as the e-approximate
degree of its associated predicate. This equivalence is known as the symmetrization
argument of Minsky and Papert [11]. Before we can state this theorem, we
introduce some important notation.

Definition 2.7. For f: {0,1}* — {0,1}and D : {0, 1,...,n} — {0, 1}, define

def

e(filxshsi) = min max  |f(x) — ¢(x)l,
pespan({xs)isj<k)  X€{0.1)"
« def . . .
eWD,P) = min max  |D(@) — p@i)|.
PEP; i=0,1,....n

Definition 2.7 merely instantiates the symbol €*(¢, ®) from Section 2.2 to the
special cases ¢ = f and ¢ = D. We have:

Proposition 2.8 (Symmetrization argument, Minsky and Papert [11]). Let f :
{0,1}" — {0, 1} be a symmetric Boolean function. Let D be the predicate with
f(x) = D(x; + -+ xp). Then

€ (f, Ixshsi<k) = €(D, Py) forallk=0,1,...,n. (2.2)

13



In particular,

deg (f) = deg.(D) forall e > 0. (2.3)

Proof sketch (Minsky and Papert [11]). 1t is clear that (2.2) implies (2.3), so we
focus on the former. Since f(x) = D(x] + - - - + x;;), we immediately have

€ (f. Ixslisie) < €°(D, Py,

and it remains to prove the reverse inequality. Fix ¢ € span({xs };s|<x) for which
llp — fllo = €"(f, {xs }isi<k)- Define ¢” : {0, 1}" — R by

, def 1
P(x) = ] Z DX (1)> X5(2)s - - - » Xor(m))-
oes,
On the one hand,
If = &'l < I = @llo = €°(f5 Ixs s i<)- (2.4)

On the other hand, one can use the uniqueness of the Fourier representation to show
that

¢'(x) = p(x1 + -+ + xn)
for some p € Py. But then
If = ¢'llo = ID = plleo > €°(D, Pp). (2.5)
The sought conclusion follows from (2.4) and (2.5). |

Using Proposition 2.8 and tools from approximation theory, Paturi [12] gave an
asymptotically tight estimate of deg, ;;(f) for every symmetric Boolean function f.
The estimates are in terms of the quantities £o(f) and € (f), defined next.

Definition 2.9 (Razborov [13]). Let D : {0, 1,...,n} — {0, 1}. Define

to(D) €1{0,1,...,[n/2]},
6(D) €1{0,1,...,Tn/27}
to be the smallest integers such that D is constant in the range [£o(D), n—¢1(D)]. For

a symmetric function f : {0, 1}" — {0, 1}, define £y(f) = {o(D) and €,(f) = £1(D),
where D is the predicate for which f(x) = D(x; + -+ + x,).

14



See Section 1 for a pictorial illustration of this definition. We are ready to state
Paturi’s fundamental theorem.

Theorem 2.10 (Paturi [12]). Let f : {0,1}" — {0, 1} be a symmetric function.

Then
deg;5(f) = © (Vn(o(f) + 1(f)).

In words, Theorem 2.10 states that the %—approximate degree is Q(+/n) for every
nonconstant predicate, and is higher for those predicates that change value near the
middle of the range {0, 1,...,n}.

3 Best Approximation by Polynomials

This section marks the beginning of our proof. The goal here is to determine, within
a logarithmic factor, the approximate degree of every predicate. Specifically, we
prove the following theorem:

Theorem 1.5 (Restated from p. 4). Let D : {0, 1,...,n} — {0, 1} be a nonconstant
predicate. Let € € [1/2",1/3]. Then

deg (D) = ® (\n(to(D) + £1(D)) + nlog(1/e)),

where the © notation suppresses logn factors. Furthermore, the approximating
polynomial for each D and € is given explicitly.

We prove the upper and lower bounds in this result separately, as Lemma 3.4 and
Lemma 3.6, in the two subsections that follow.

3.1 Upper Bound on the Approximate Degree

Our construction makes heavy use of the Chebyshev polynomials, which is not
surprising given their fundamental role in approximation. The other key ingredient
in our proof is interpolation, which here amounts to multiplying an imperfect
approximator p(f) by another polynomial ¢(¢) that zeroes out p’s mistakes. This
interpolation technique is well-known [1, 5] and is vital to exploiting the discrete
character of the problem: we are interested in approximation over the discrete set
of points {0, 1, ..., n} rather than the more difficult continuous setting, [0, ]. Kahn
et al. [5], who obtained the special case of Theorem 1.5 for D = OR, also used the
Chebyshev polynomials and interpolation, although in a simpler and much different
way.

15



We start by recalling a few properties of the Chebyshev polynomials, whose
proofs can be found in any standard textbook on approximation theory, e.g., [3,14].

Fact 3.1 (Chebyshev polynomials). The d" Chebyshev polynomial, T,(t), has

degree d and satisfies the following properties:

Ty(1) =1
[Ta()] < 1 (-1<t<1)
T/ > d* (t>1)
Ty(1+6) > 1. 24V 0<6<1/2)
2< Tig(1+ %) <7 (@>1)

At the heart of our construction is the following technical lemma.

3.1)
(3.2)
(3.3)
(3.4)
(3.5)

Lemma 3.2. Let £ > 0,A > 1,and d > 1 be integers with € + A < n/2. Then there
is an (explicitly given) polynomial p(t) of degree at most 22(d+1)Vn(f + A)/ A with

pn—10)=1

and
|p(t)|<2_d forte[0,n]\(n—€—-A,n—LC+A).

Proof. Let

def t
= T .
n [J%f}(n—f—A)
One readily verifies the following properties of py:
P[0, n—C-AD c[-1,1] by (3.2);
pi(ln—€—-A,n]) C[1,7] by (3.1), (3.3), (3.5);

1
p’l(t)>€+—Afort>n—f—A by (3.3);

pin—=0)—pin—-€C-A)>

by previous line;

{+ A

+
A
t+ A

pin—€+AN)—pi(n—=0) > likewise.

Now consider the polynomial

2
o) & (pl(f)—lgl(n—f)) ‘

16
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In view of (3.6), this new polynomial satisfies

pa(n—=4)=0
and
2
Ne|l———m—-,1 for 1 € [0, —-{—-A,n—-C+A).
p2(1) [64(£+A)2 ] or t€[0,n]\ (n n )
Finally, let
def A?
n =T 1+ ——= —p20)].
p3(®) [sut%(im)w ( 64(C + A)2 Do ))
Using (3.4) and the properties of p,, one sees that p(f) = p3(t)/ps(n — £) is the
desired polynomial. |
There are a large number of distinct predicates on {0, 1,. .., n}. To simplify the

analysis, we would like to work with a small family of predicates that have simple
structure yet allow us to efficiently express any other predicate. A natural choice is
the family of predicates EXACT, for £ =0, 1,...,n, where

| ifr=¢,
EXACT, (1) & { !

0 otherwise.

For a moment, we shall focus on an explicit construction for EXACT,.

Lemma 3.3. Let O < € < n/2. Then for any € < 1/3,

deg (EXACT;) = deg (EXACT, ) = O ( V(€ + 1)logn + /nlog(1/e€)log n).

Proof. The first equality in the statement of the lemma is obvious, and we concen-
trate on the second. We may assume that £ < n/log?n and log(1/€) < n/logn,
since otherwise the claim is trivial. Set

log(1
def {ML a 3ATlogn].
logn

Our assumptions about ¢ and € imply that £ + A < n/2, and thus Lemma 3.2 is
applicable. Denote by p(¢) the polynomial constructed in Lemma 3.2. Let

def ;
qn = [ ¢-@m-e+ip.
i=—(A=1),..(A=1)
i#0

17



We claim that the polynomial

def 1
rm = - p(Dg(1)
gn—0) P
is the sought approximation to EXACT,_,. Indeed, it is easy to verify that r(¢) has
the desired degree. Fort € {0, 1,...,n}\{n—€¢—-(A-1),....n—C+(A-1)},

1
[F(t) = EXACT,_¢(1)| = |r(1)| < n?@D. 3 <€

Since r(t) = EXACT,_¢(¢) for all remaining ¢, the proof is complete. O

We now prove the sought upper bound for an arbitrary predicate by repeatedly
applying Lemma 3.3.

Lemma 3.4 (Upper bound on the approximate degree). Let D : {0,1,...,n} —
{0, 1}. Then for any € < 1/3,

deg (D)< O ( \/n(fo(D) + £1(D)) logn + +/nlog(1/€)log n) .

Moreover, the approximating polynomial is given explicitly.

Proof. Without loss of generality, we can assume that D([n/2]) = 0 (otherwise,
work with the negation of D). For { = 0,1,...,n, let pg(f) denote the poly-
nomial that approximates EXACT,(¢) pointwise to within €/n, as constructed in

Lemma 3.3. Put wot
€
po =D .
£: D(6)=1
Then clearly p(f) approximates D pointwise to within €. It remains to place an
upper bound on the degree of p:

deg (D) < deg p
<, :rgg,il’{deg pet  + , :%13?§<:1’{deg Pn—t}
t<[n/2] >[n/2]
< O((V/nto(D) + \nt1(D))logn + nlog(n/€)logn)
< O(Vn(G(D) + C1(D) logn + nlog(1/€)logn),
where the third inequality follows by Lemma 3.3. O
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3.2 Lower Bound on the Approximate Degree

Our lower bounds follow by a reduction to EXACT), the simplest nonconstant
predicate, for which Kahn et al. [5] have already proven a tight lower bound.

Theorem 3.5 (Kahn, Linial, and Samorodnitsky [S, Thm. 2.1 and its proof]).
Let O < k < n— 1. Then for every polynomial p of degree k,

_max _[EXACTo(0) - p(i)| > n O /m),
1=0,1,....,n

Theorem 3.5 has the following immediate corollary:
Corollary 3.5.1. Ler 270102n) < ¢ < 1/3. Then

nlog(1l/e)
logn |

We are now in a position to prove the desired lower bound on the approximate
degree of any given predicate.

deg (EXACT,) > Q

Lemma 3.6 (Lower bound on the approximate degree). Let D : {0,1,...,n} —
{0, 1} be a nonconstant predicate. Then for 2-01°¢" < ¢ < 1/3,

nlog(1l /e)]

logn

deg (D) > Q| \n(to(D) + £1(D)) +

Proof. In view of Paturi’s result (Theorem 2.10), it suffices to show that

nlog(1/e)
1 /WJ . (3.7

Abbreviate £ = £{y(D). We can assume that £ < n/5 since otherwise the claim
follows trivially from Theorem 2.10. Consider the predicate EXACT, on |n/5]
bits. By Corollary 3.5.1,

log(1
deg (EXACT)) > Q [, /M] (3.8)
logn
On the other hand,

EXACTy(r) = (1 =2D(£)) - Dt + € — 1) + D(?),

deg (D) = Q

so that
deg (EXACT)) < deg (D). (3.9)

Equations (3.8) and (3.9) imply (3.7), thereby completing the proof. O
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4 Approximating a Function of Events

‘We now turn to the proof of our main results, Theorems 1.2 and 1.3. Fix an arbitrary
function f : {0, 1} — {0, 1}. For events Ay, ..., A, in a probability space &, let

g [mx,- mA,.].

x:f(x)=1 i:x;=0 iixi=1

Prif(A;,....A)] & Pr

Suppose that Pr[();cs A;] is given for each S with |S| < k. Our goal here is show
how to use this information to efficiently construct a near-optimal approximation to
Pr[f(Ay,...,A.)]. Our discussion will revolve around the quantity 6*(f, k), defined
next.

Definition 4.1. Let f : {0,1}" — {0, 1} and O < k < n. Define

5 (k) € sup {l;f[f(Al,...,Ann—};n;[f(Bl,...,Bn)]},

where the supremum is taken over all probability spaces &7 and &, over all

events Ay, ..., A, in &, and over all events By, ..., B, in &%, such that
I;r[ﬂ Ail = Pr ﬂ B; for S| < k. (4.1)
7 ieS P ieS

In words, 6*(f, k) is the best error achievable in approximating Pr[f(A,...,A,)]

in principle, information-theoretically, if unlimited computing power is available.
For a symmetric function f(x) = D(x; + --- + x,), the notation we have

established in this section relates as follows to the notation of the Introduction:

Prif(Ay,....A)] = Pr|[DAA] + -+ + I[A,]) = 1],
5" (f.k) = 5" (D, k).

We need the more general notation because much of the development in this section
takes place in the setting of arbitrary functions f : {0, 1}* — {0, 1}, even though
our ultimate results are for symmetric functions. This approach makes the proof
cleaner and more modular, in addition to yielding partial results for nonsymmetric
functions.

Our immediate goal is to understand the quantitative behavior of 6*(f, k). To
this end, we will show that the arbitrary probability spaces in the definition of
0" (f, k) can in fact be restricted to probability distributions on {0, 1}".
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Definition 4.2 (Induced distribution). Let £, ..., E, be events in a probability
space &2. The distribution on {0, 1}* induced by &, Ey, ..., E, is defined as

ﬂE () &l

i:x;=0 ix;=1

ux) € pr

Proposition 4.3. Let E1, ..., E, be events in a probability space &?. Let u be the
distribution on {0, 1}" induced by Z,E,,...,E,. Then for every g : {0, 1}"
{0, 1},

Prig(Ey, ... )] = E [g(x)].

Proof:
Prig(E),....E)l= ) g(x)-Pr ﬂ E () E|= ), 9uw
x€{0,1}" ix;= iix;i=1 x€{0,1}"
= E[g(0)]. .

At this point, we are ready to simplify ¢*(f, k) as promised. For a set S C [n],
define ANDy : {0, 1}* — {0, 1} by

ANDg(x) & Axi=]]x

ieS ieS
In particular, ANDgy = 1.

Lemma 4.4. Let f:{0,1}" — {0,1} and 0 < k < n. Then

6" (f. k) = maX{ [f(0] - f (X)]} (4.2)

where the maximum is taken over all probability distributions «, 8 on {0, 1}" such
that Ey.,[ANDg (x)] = Ex.g[ANDg (x)] for S| < k.

Proof. Fix probability spaces |, %, events Aj,...,A, in &, and events
Bi,...,B, in &, such that (4.1) holds. Let a and 8 be the distributions on
{0, 1}" induced by £1,A1,...,A, and 9, By,...,B,, respectively. Then by
Proposition 4.3,

an[f(X)]—xlilﬁ[f(X)] = E}f[f(A1,---,An)]—lgzg[f(Bl,--.,Bn)]
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and

E [ANDg(x)] = E[ANDg(x)] for |S| < k.
x~a x~f
Letting ¢ stand for the right-hand side of (4.2), we conclude that §*(f, k) < 6.

It remains to show that 6*(f, k) > 6. Given a probability distribution y on {0, 1}",
there is an obvious discrete probability space & and events Ej, ..., E, in it that
induce u: simply let &2 = {0, 1}" with E; defined to be the event that x; = 1, where
x € {0, 1}" is distributed according to u. This allows us to reverse the argument of
the previous paragraph (again using Proposition 4.3) and show that 6*(f,k) > 6. O

With 6*(f, k) thus simplified, we relate it to a quantity that is easy to estimate.

Theorem 1.4 (Restated from p. 4). Let f : {0,1}" — {0, 1} be arbitrary and 0 <
k < n.Then
5" (f, k) =2¢€(f, D),

where ® = {ANDg : |S| < k}.

Proof. In view of the Approximation/Orthogonality Principle (Theorem 2.3), it
suffices to prove that

o (f, k) = 27"(f, ®).

The remainder of the proof is establishes this equality.
To rephrase Lemma 4.4,

6*<f,k>=g%x{ > [a(x)—ﬁ(x)]f(x)}, (4.3)

x€{0,1}"

where the maximum is over distributions a and 8 on {0, 1}" such that

Z [a(x) - B(X)]ANDs(x) =0 for|S| < k.
x€{0,1}"

Let a, 8 be distributions for which the maximum is attained in (4.3). Setting ¢ =
(a = PB)/2, we see that 3, (0 1y [¥(x)| < 1 and thus 6*(f, k) < 2y*(f, D).

It remains to show that y*(f, ®) < 6"(f, k)/2. Suppose first that y*(f, ®) = 0.
Since 6*(f, k) = 0 always and 6" (f, k) < 2y*(f, ®) = 0 by the first part of the proof,
the theorem is true in this case.

Finally, suppose that y*(f, ®) > 0 and let ¢ be a real function for which the
maximum is achieved in (2.1). Then necessarily 3’ c0.1 [¥(x)] = 1. Since ¢ is

<
<
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orthogonal to the constant function 1 € ®, we also have 3’ ¢ 1) ¥(x) = 0. The last
two sentences allow us to write

1
y=3-p),
where @ and § are suitable probability distributions over {0, 1}". Then (4.3) shows
that y*(f, ®) < 6*(f, k)/2, as desired. m]

Theorem 1.4, which we have just proved, is the crux of our argument. It
shows that 6*(f, k) measures how well f can be approximated by a multivariate
polynomial in xi,...,x, of degree k. Observe that Theorem 1.4 holds for every
function f : {0,1}" — {0, 1}. For the special case of symmetric functions, we
have already obtained (Section 3) tight estimates of the best error achievable by a
polynomial of a given degree k. By combining these estimates with Theorem 1.4,
we now prove the main result of the paper.

Theorem 4.5 (Restatement of Theorems 1.2 and 1.3). Ler f : {0, 1}" — {0, 1} be
a nonconstant symmetric function. Put € = €o(f) + €1(f). Then
6*(f, k) =0() if k<®(W),

12

5 (f,k) € [2‘®(szg"), 2‘("("‘%")} if  ©(Vallogn)< k< 0O®).

Furthermore, for every k > @(Wlog n), there are reals ap,ay,...,a;, com-
putable in time poly(n), such that

k

Prif(Ar,...A)] - Da Pr

=0 SiSI=j

12
< 2_®( nlogn )

N

ieS

for any events Ay, ..., A, in any probability space .

Proof. By hypothesis, f(x) = D(x; +- - - + x,,) for a suitable nonconstant predicate
D:{0,1,...,n} — {0,1}. Put ® = {ANDyg : |S| < k}. We have:

5 (f, k) =2€(f, D) by Theorem 1.4
=2€(f, {xshsi<e) since span(®) = span({xs }s|<k)
=2€(D, Py) by Proposition 2.8. (4.4)
By Theorem 2.10 and Lemmas 3.4 and 3.6,
e(1) it k<0 (Vul),
e [2‘®(szg"), 2‘@’("@")] it ©(Vllogn) <k < ().
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In view of (4.4), this proves the claim regarding 6*(f, k).

We now turn to the claim regarding ag,ay,...,a;. For k > @(Wlogn),
Lemma 3.4 gives an explicit univariate polynomial p(¢) of degree at most k such
that

_of 2
If(x)—p(x;+---+x,)| <2 9(”1"“%") for all x € {0, 1}". 4.5)

Fix a probability space & and events Ay, ..., A, in it. Let u be the distribution on
{0, 1}" induced by &, Ay,...,A,. We claim that the quantity

xlijﬂ[p(xl + et xp)]

is the desired approximator of Pr[f(Ay,...,A,;)]. Indeed,

k k
s = E[Sa S]] - S Se[]
Jj=0  IS|=j ieS =0 IS|=j ieS
k
Prop£4.3 a; Z Pr ﬂAi ’
=0 |S|=j i€s
where the reals ag, ay, .. .,a; are uniquely determined by the polynomial p, itself

explicitly given. It is also clear that ag,ai,...,a; can be computed from the
coefficients of p in time poly(n). Thus, the quantity E,.,[p(x1 + --- + x,)] has the
desired representation. It remains to verify that it approximates Pr[f(Ay,...,A,)]
as claimed:

Pr(f(Ay,...,Ap)] - XE#[P(XI + et xp)]

PrO[;4.3 ‘x]?#[f(x) _ p(xl 4+ e+ xn)]

<4<5> 2_@(%)

. O

S Lower Bounds for Agnostic Learning

We now use the proof technique of the previous section to obtain new lower bounds
for agnostic learning (Theorem 1.6). The following definition formalizes the object
of our study.

Definition 5.1. Let f : {0, 1}" — {0, 1} and O < k < n. Define

def

C(fk) = me{(X’Iy’){ﬂ[f(X)=y]},
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where the maximum is taken over all distributions A over {0, 1} x {0, 1} such that

1
Prolgw=yl=3 5.1)

for every g : {0, 1}" — {0, 1} that depends on k or fewer variables.

Observe that the maximization in Definition 5.1 is over a nonempty compact
set that contains the uniform distribution. Our goal will be to show that

r (f, © (Vo) + 6i()) = 1 - €

for every symmetric function f and every constant € > 0. In other words, even
though the training examples agree with f to within €, no hypothesis that depends
on few variables can match the data better than random. Our strategy will be to
relate I™*(f, k) to the best error and modulus of orthogonality, quantities for which
have developed considerable intuition.

Lemma 5.2. Let A be a distribution on {0, 1}" x{0, 1}. Then for every f : {0, 1} —
{0, 1},

P f@=yl= Proy=01+ ) (A1) - A0 0f ).

(xg)~4 xe{01}"

Proof:
(x’l;)l‘%[f(X) =yl= (X’Iy’)l‘%[f(X) =y =01+ (X’Iy’)r%[f(X) =y=1]
= > A 01 = f(0) + Y Ak, DF)
= > (A0 1) = A, 0)f(x) + " A(x,0)

= Z(/l(x, 1) - Ax,0)f(x)+ Pr [y=0] O
~ (xy)~a

We are now in a position to express I'*(f, k) in terms of a quantity that is easy
to estimate.

Theorem 5.3. Let f: {0,1}" — {0,1} and 0 < k < n. Then

1
F*(f’ k) = E + 6*(f, CI)),

where ® = {ys : |S| < k}.
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Proof. By the Approximation/Orthogonality Principle (Theorem 2.3), it suffices to
show that

3k 1 E3
r (f,k) = E +7 (f9®)
Let A be a distribution on {0, 1}" x {0, 1} for which (5.1) holds. Setting g = 0 gives:
1
P =0]=—=.
War ﬂ[y 1 7

Lemma 5.2 now yields the following convenient characterization of I'*(f, k):

1
I"(f.k) = 5 + max {Z(ﬂ(x, D) = a(x, 0)f (X)} ;

where the maximum is over all distributions A on {0, 1}" X {0, 1} such that

D A1) = Ax, 0)g(x) = 0

X

for every function g : {0, 1}* — {0, 1} that depends on k or fewer variables. With
this new characterization, it is not difficult to show that I'*(f, k) = 1/2 + v*(f, ®).
The argument is closely analogous to the one we gave in Theorem 1.4, and we do
not repeat it here. O

Theorem 5.3 is the backbone of this section and holds for arbitrary functions.
In view of Paturi’s work, it yields our sought result for symmetric functions.

Theorem 1.6 (Restated from p. 6). Let D : {0,1,...,n} — {0,1} be a predicate

and f(x) aef D(x1 + -+ + x,). Let € > 0 be an arbitrary constant. Then there is a
distribution A on {0, 1}* x {0, 1} such that

(X’I;;‘Nﬂ[f(X) =yl>1-¢€

and

1
P = = —
(x,y)‘l N [g(x) = y] 5

for every g : {0,1}" — {0,1} that depends on at most ¢ \n({y(D) + €1(D))
variables, where ¢ = c(€) is a constant.

Proof. In view of Theorem 5.3, we need only show that
1
€(f,D) > 56

where @ = {ys : |S| < c/n(lo(f) + £1(f))} for a suitably small constant c. But this

is immediate from Proposition 2.5 and Paturi’s result (Theorem 2.10). |
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Theorem 1.6 is best possible, as we now show.

Theorem 5.4 (On the tightness of Thm. 1.6). Ler f : {0,1}* — {0,1} be a
symmetric function and € € (0, 1/2) be a given constant. Let A be a distribution on

{0, 1}* x {0, 1} with

1
P = = —
(W)I; A[g(X) y] 5

for every g : {0,1}" — (0,1} that depends on at most C/n(€o(f) + €1(f))

variables, where C = C(€) is a large enough constant. Then

(XE}LAWX) =yl<l-e

Proof. To rephrase the theorem, we need to show that
I“(f,k) <1 -k,

where k = C /n(Co(f) + €1(f)). In view of Theorem 5.3, this is equivalent to

. 1
e(f. s .|S|<k})<§—e.
The latter is certainly true for a large enough constant C, by Proposition 2.5 and
Paturi’s result (Theorem 2.10). ]

Remark 5.5. Let f be an arbitrary symmetric function. Theorem 5.4 tells us that
if all hypotheses that depend on at most k = ® ( Vo (f) + €1( f))) variables have
zero advantage over random guessing, then the function f itself cannot be a high-
accuracy classifier. What if we additionally know that all hypotheses that depend
on at most K variables, where

K > 0 (Vnlo(H + 6 (),

have zero advantage over random guessing? It turns out that in this case, the
function f itself cannot have considerable advantage over random guessing (let
alone be a high-accuracy classifier). The proof is entirely analogous to that of
Theorem 5.4, except in place of Paturi’s result we would use our our near-tight
bounds on the approximate degree (Theorem 1.5) that work in the broader range
[1/2",1/3]. Such statements seem to be of lesser interest, and we do not formulate
them into theorems.
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