
popl37.fm — July 23, 2007

Page 1

DRAFT

From Implementation To Theory in Product Synthesis

Don Batory
Department of Computer Sciences

University of Texas at Austin
Austin, Texas, 78712 U.S.A.
batory@cs.utexas.edu

Abstract
Future software development will rely on product synthesis,
i.e., the synthesis of code and non-code artifacts for a target
component or application. Prior work on feature-based prod-
uct synthesis can be unified by applying elementary ideas
from category theory. Doing so reveals (a) important and
previously unrecognized properties that product synthesis
tools must satisfy, and (b) non-obvious generalizations of
current techniques that will guide future research efforts in
automated product development.

1 Introduction
Program synthesis is not currently, but will be, a foundation
of software development. Today’s software design method-
ologies aim at repeatable craftsmanship. Transitioning from
craftsmanship to automation will reveal new ways to think
about program design and implementation; new paradigms
and languages will emerge. But what might they be like?

My research has focussed on this question. My earliest years
were spent on exploring what was necessary, what would
work, and what would scale. The most recent were marked
by an increasing realization that structure and the manipula-
tion of structure are the core problems. Program synthesis is
a subproblem of product synthesis, where code is but one of
many artifacts to be produced. All program representations
(code and non-code) can be and should be treated uniformly.

My work starts with practice, and then I try to fit practice (or
practical experience) to abstract structures. My work is dis-
tinguished from others in informal software design by my
use of algebra, as algebra is by far the simplest way to
explain the structure manipulations that I need. The unifor-
mity and scale that algebra imposes on structures is astonish-
ing, and is in stark contrast to ad hoc programming
techniques. I believe that typical software designers will find
simple algebraic approaches appealing in software design
and development.

A long-standing challenge in Computer Science is how to
implement large and efficient programs from declarative
specifications automatically [12][25]. Unlike classical work
on this problem which starts with a formal logic specifica-

tion (e.g., [27]), I use techniques pioneered in software prod-
uct lines and other engineering disciplines that use
declarative descriptions of products based on features (i.e.,
increments in product functionality) [26].

The first two generations of my work, GenVoca and
AHEAD, have a simple and informal algebraic description.
The newest generation is based on category theory. Although
category theory was related to formal software development
years ago [20][24][41], I am approaching it from practice.

Very few ideas from category theory are used in this paper.
This may be explained, in part, by the fact that this work is
still in its infancy. However, there is another possible expla-
nation: a fundamental advance was made in databases almost
40 years ago when Codd noticed the connection between set
theory and databases [16]. Little of set theory was used, but
even this small amount was extremely useful. I believe there
is a parallel with category theory and product synthesis.

My research was strongly influenced by relational query
optimization [44] and parameterized programming [23], and
shares common goals with algebraic specifications and
refinements [20][41], and work in programming languages
on virtual classes [35], mixins [11][43], and higher-order
hierarchies [21].

2 GenVoca

A common way to depict the struc-
ture of software is by a UML class
diagram, which defines a space of
configurations and relationships
among program classes. Figure 1 is
an example.

Designs are not created spontaneously, but rather are the
result of hard work, starting from a simple design and pro-
gressively adding details. The structure of software has an
additional dimension of time that we routinely hide. If this
dimension were exposed (by rotating Figure 1 in 3-space),
we could see how this design incrementally evolved from
simpler designs to its current state. Figure 2 shows the
design had only two classes at time t0, another class was
added at time t1, and yet another at t2.

EntryAccount

DetailSummary

EntryAccountAccount

DetailDetailDetailSummarySummarySummary

Figure 1. A Design

Page 2

Design evolution can be modeled by functions that map an
input design to an output design. In Figure 2, a function
maps the design at t0 to the design at t1, and a second
function maps the design at t1 to that at t2. These functions
implement program deltas or structural transformations;
applying them allows us to move forward in time w.r.t. the
evolution of that program’s design. Note: deltas are some-
times program refinements (semantics-preserving transfor-
mations) or extensions (semantics-altering transfor-
mations). As these terms have different meanings, I use the
more neutral term ‘delta’.

This description of design evolution is very close to what is
needed for product synthesis: Start with a simple product
and apply deltas (functions) to progressively elaborate its
structure. Product synthesis rests in the ability to implement
and compose deltas.

On closer inspection, there is something odd about the del-
tas (functions) that arise in traditional software develop-
ment. Namely, they can only be used in a very restricted
context: for that program and only at a given point in time.
Such deltas are not reusable and are a consequence of 1-of-
a-kind design methodologies which produce 1-of-a-kind
deltas. There is little or no benefit for automating the
changes that these deltas make; it is cheaper to have pro-
grammers manually achieve their effects by ad hoc modifi-
cations to code. This is largely what we see today.

Program design, implementation, and maintenance is enor-
mously expensive. Parnas argued that if a program is at all
useful, variants of it will arise. Instead of creating each
from scratch, a more economical way is to create a design
for a family of programs, so that the costs of program
development are amortized [40]. This is the idea underlying
software product lines (SPLs). Figure 3 shows an elemen-
tary SPL that has six programs or products P0…P5. Arrows
denote functions (deltas). Function A maps P0 to P2, B maps
P0 to P1, etc. Note that designs are written as expressions,
such as P5=G•A•P0, where P0 is modeled by a constant func-
tion and • denotes function composition.

Unlike traditional software development, it is common in
SPL to reuse deltas. For example, delta B is used in the syn-
thesis of two products P3=D•B•P0 and P4=A•B•P0, and A is
reused in three products P4, P2=A•P0, and P5=G•A•P0. In
these circumstances, mechanizing deltas (i.e., automating
the changes that a delta makes) becomes economical.

An elementary consequence of engineering SPLs is discov-
ering the meaning of a delta: it is a stereotypical increment
in product functionality called a feature. A fundamental
concept of SPLs is that products of a product line are differ-
entiated by the features that they have; different products
have different features [26].

Features are a very general concept. They are used in many
engineering disciplines to specify products using declara-
tive domain-specific languages (DDSLs). PCs can be con-
figured via Dell web pages, which are DDSLs for Dell
product lines [18]. A client specifies a customized PC by
selecting desired features (CPU, disks, etc.). Another exam-
ple is the web site to design your own BMW where automo-
tive features can be selected [13].

The same holds for software. An elementary example is the
Graph Product Line (GPL), which is an SPL of programs
that implement different graph algorithms [32]. Figure 4
shows a DDSL for GPL. GPL programs are specified
declaratively by selecting graph features, e.g., directed vs.
undirected graphs, weighted vs. unweighted graphs, search
algorithms (breath-first or depth-first), and graph algo-
rithms (vertex numbering, cycle checking, etc.). As users
select features (denoted by darkened options in Figure 4),
an expression is created that composes the deltas of these
features. By evaluating this expression, the specified pro-
gram is synthesized. The program declared in Figure 4
implements vertex numbering and cycle checking using a
breadth-first search on a weighted, directed graph.1

These are the ideas of GenVoca [4]. A model of a SPL is an
algebra — a set of constants (base programs) and functions
that modify programs by adding a particular feature. By
composing features, expressions are produced that repre-
sent the designs of different programs in a product line.

Although GenVoca hardly qualifies as a rigorous mathe-
matical description of software, it is none-the-less useful.

EntryAccount EntryAccountAccount

EntryAccount

S um m ary

EntryAccountAccount

S um m aryS um m aryS um m ary

EntryAccount

DetailSummary

EntryAccountAccount

DetailDetailDetailSummarySummarySummary

time t0 t1 t2

Figure 2. Design Evolution

1. More generally, features can have what Goguen calls horizontal
parameters [23], much like GUI components have property sheets. This
would elaborate, but not invalidate, the simplicity of the ideas described
here.

Figure 3. A Product Line

A

A
B

D

G

P 0

P 1

P 2

P 3

P 4

P 5

A

A
B

D

G

P 0P 0

P 1P 1

P 2

P 3

P 4P 4

P 5

Page 3

Recall the challenge problem of Section 1 (which is more
commonly known as the automatic programming problem
[12][25]): how can an efficient program be implemented
automatically from a high level specification (not necessar-
ily a logic specification)? GenVoca represents a program’s
design as an expression. Expressions can be optimized
automatically by using algebraic identities as rewrite rules.
This means that program designs can be optimized auto-
matically.

An example is relational query optimization [44]
(Figure 5). A database retrieval program is specified declar-
atively as an SQL SELECT statement. A parser maps the
statement to an unoptimized relational algebra expression.
An optimizer optimizes the expression by rewriting it using
algebraic identities. And a code generator translates the
optimized expression into an efficient program. The keys to
solving the automatic programming problem are: modeling
program designs as expressions and optimizing expres-
sions. Relational algebra is an example of GenVoca. Others
are [5][10][52].

To recap:

• a program design is an expression,
• a product line is modeled by different expressions,
• expression evaluation is program synthesis, and
• expression optimization is design optimization.
Now, let’s look more closely at how constants and functions
are implemented.

3 AHEAD

Generating code for an individual program is useful, but not
sufficient. Large programs today are rarely defined solely
by source code. Architects routinely use many different rep-
resentations of a program to express its design, such as pro-

cess models, UML models, makefiles, documents,
performance models, etc. For synthetic programs to work in
a broader software engineering context, all relevant repre-
sentations of a program must be generated. This lead me to
consider more general notions of modularity — modules
are not limited to code.

A module is a containment hierarchy of related artifacts.
Figure 6a shows several modules. Referring to levels of a
tree and counting from bottom up, a class is a 2-level mod-
ule that contains a set of methods and a set of fields. An
interface is also a 2-level module that contains a set of
method signatures and a set of constants. A package is a 3-
level module that contains a set of classes and interfaces. A
J2EE EAR file is a 4-level module containing a set of pack-
ages, deployment descriptors, and HTML files.

A program is a module (Figure 6b). It could contain code,
documentation, a makefile, and a performance model. Pro-
gram code could be source and binaries, and program docu-
mentation could be a set of HTML files. In general, a
module can have arbitrary depth and arbitrary contents.

The connection with GenVoca is straightforward: a pro-
gram (module) is a GenVoca constant. A feature is a func-
tion that maps modules to modules.

When a feature is added to a program, any or all of the pro-
gram’s representations may be extended. Adding a feature
to the program in Figure 6b extends its code (to implement
the feature), extends its documentation (to document the
feature), extends its makefile (to build the feature), extends
its performance model (to profile the feature), etc. This idea
recurses: the code of a program is a set of Java files. Each
of these files may be extended, and new files added. The
same holds for program bytecodes and documentation.

The key to understanding GenVoca functions is knowing
how terminal artifacts are transformed, as the delta of a

Figure 4. Declarative Program Specifications

program = Cycle•Number•BFS•Weighted•Directed

SQL
select

statement
parser

inefficient
relational
algebra

expression
optimizer

efficient
relational
algebra

expression

code
generator

efficient
program

declarative
DSL

automatic, compositional
programming

generative
programming

SQL
select

statement
parser

inefficient
relational
algebra

expression
optimizer

efficient
relational
algebra

expression

code
generator

efficient
program

declarative
DSL

automatic, compositional
programming

generative
programming

Figure 5. The Relational Query Optimization Paradigm

Figure 6. Module Hierarchies

methods fields

class

constants
method

signatures

interface

package

deployment
descriptors

HTML
files

J2EE EAR File

methods fields

class

methods fields

class

constants
method

signatures constants
method

signatures

interface

packagepackage

deployment
descriptors

HTML
files

J2EE EAR File

program

code documentation makefile performance
model

c1.java c2.java *.html

program

code documentation makefile performance
modelcode documentation makefile performance
model

c1.java c2.java *.htmlc1.java c2.java *.html

(a)

(b)

Page 4

non-terminal reduces to adding new artifacts (which is
easy) and extending existing artifacts. I’ll explain the evo-
lution of my thoughts on extending Java classes, and then
generalize to the extension of noncode artifacts.

3.1 Deltas of Artifacts
Many technologies can encode deltas. The simplest are pre-
processor #IFDEF statements that surround code to be
included only if particular features are selected. I found
such code to be unmaintainable and too restrictive to com-
pose deltas flexibly. Transformation systems offer another
extreme: they match well with GenVoca, but I found them
too hard to use. As I was using Java, I wanted a language
construct that would give me most of what I wanted, but
would also be easy for Java programmers to learn and use.

A critical property of this language construct is monotonic-
ity: program extension is accomplished by addition. That is,
a feature could add new code to existing methods, it could
add new methods and fields to existing classes, and could
add new classes. Removing, deleting, or merging classes,
methods, etc. requires non-monotonic reasoning, which can
be very complicated [15]. My experience is that architects
reason monotonically with features — program P has fea-
tures a and b, and now it has feature c, where the key prop-
erties of a, b, c are preserved or appropriately transformed
[30]. This form of program development was embodied in
the ideas of stepwise refinement by Wirth [51] and Dijkstra
[19], and widely used in practice as object-oriented (OO)
frameworks [22]. In fact, a vast majority of features are OO
collaborations (i.e., role-based designs) [49][45]. Class
inheritance, which is used in implementing OO frameworks
and OO collaborations, was an obvious place to start [6].

Class inheritance serves two distinct purposes in OO pro-
gramming languages: (1) to express subtyping (e.g., a Sec-
retary “is a” Person), and (2) to express code reuse. It is this
latter use that I exploited.

A class is extended by adding new
fields, new methods, and extending
existing methods (by overriding and
invoking superclass methods). The evo-
lution of a class can be modeled by a
linear inheritance hierarchy called a
delta chain. Figure 7 illustrates a chain
of three classes. The top represents the
definition of a class at time t0, the mid-
dle represents the definition at time t1 (as new fields were
added and existing methods are modified), and the bottom
defines the class at time t2. Mixins (i.e., a class whose
superclass is specified by a parameter) were used to create
customized chains [45]. Eventually I realized that only the
terminal class of a delta chain was instantiated; non-termi-

nal classes were abstract and represented intermediate deri-
vations of the terminal class.

As my experience increased with this technique, I noticed
that I needed more than Java inheritance could offer: the
name of a class should remain unchanged after applying a
delta, and I wanted to add new constructors to an existing
class and extend static methods. Java did not support these
basic needs. It is at this time that I abandoned inheritance
— subclassing is the wrong paradigm for deltas — and
began to think in terms of functions that mapped class defi-
nitions to extended class definitions.

Using preprocessors, I added a “refines class” declara-
tion to Java [1]. Other than not having an “extends” clause,
it was syntactically identical to a Java subclass declaration.
Every new field, method, and constructor that was listed
would be added to a designated class. Further, deltas of
methods, constructors, and class initializations have the
same syntax in Java and are applied to existing definitions
of a designated class.2 Figure 8b defines a delta that can be
applied only to class foo. That is, it is a function whose
domain contains different definitions of class foo and
whose codomain consists of extended foo definitions. The
delta of Figure 8b adds field y, a single-parameter construc-
tor, and extends the inc() method.

Figure 7.
Delta Chain

t0

t1

t2

tim e

t0

t1

t2

tim e

2. super invocations were used in static methods to express changes.

class foo {
int x = 0;
void inc() {
 x++;
}

}

refines class foo {
int y;
foo(int yy) { y=yy; }
void inc() {
 y++; super.inc();
}

}

class foo {
int x = 0;
int y;
foo(int yy) { y=yy; }
void inc() {
 y++; x++;
}

}

(a) P

(b) R

(c) R•P

Figure 8. Deltas and Composition

“+” PLUS

Expr : Val
| Val Opr Expr
;

Val : INTEGER ;
Opr : PLUS ;

“+” PLUS
“-” MINUS

Expr : Val
| Val Opr Expr
;

Val : INTEGER ;
Opr : PLUS

| MINUS
;

“-” MINUS

Opr : super
| MINUS ;

(d) G

(e) T

(f) T•G

Page 5

The refines class construct enabled me to consider Java
class definitions as constants, and refines class defini-
tions as functions. Figure 8a is a constant (labeled P),
Figure 8b is a function (labeled R), and their composition
R•P is Figure 8c. In effect, these ideas elevated my thinking
to an algebra by which I could specify the synthesis of indi-
vidual class definitions by composing constants and func-
tions a la GenVoca, but now on a miniature scale.

As an aside, AspectJ was being developed concurrently and
independently of this work. Aspects can offer much greater
power than refines class, but aspects do not behave like
functions, they compose in complicated ways, and can pro-
duce unpredictable results. With basic changes, they could
be functions (deltas) with elegant properties [34].

The “refines class” construct modified a target module
by adding new elements and extending existing elements.
Exactly the same ideas could be applied to other program
representations. For example, a grammar G is a set of token
and production definitions (Figure 8d). A grammar delta T
adds new tokens, new productions, and extends existing
productions by adding new right-hand sides. Figure 8e
shows a delta of a production Opr, where “super” means
the prior right-hand side of Opr. The composition T•G is
shown in Figure 8f.

In general, any artifact can be given a hierarchical structure,
and a standard way to extend such artifact can be defined.
In effect, a delta is purely a structural operation: the same
abstract algorithms were used to extend and compose
source code, bytecode, grammars, XML files, etc.

3.2 Theory and Implementation3

A constant module is a vector, whose elements are primi-
tive artifacts (e.g., files) or are themselves constant mod-
ules. The constant module of Figure 9a, for example, is the
nested vector of Figure 9b.

Each vector element is indexed by its name. The value of a
primitive element is an artifact (e.g., a code file, HTML
file, etc.), and the value of a module is its vector. Elements
can be null (∅), meaning that this particular artifact is not
present in the module.

A function module is also a vector, whose elements are del-
tas that extend primitive artifacts or are module deltas (i.e.,
function modules). Functions that map a null artifact to a
non-null artifact model artifact addition. The identity func-
tion (ι) models deltas that make no modification.

Module composition is vector composition, where elements
are composed pairwise. Let A and B be vectors (modules) of
length n; the composition of A•B is:

A • B
= [a1 ... an] • [b1 ... bn]
= [a1 • b1, ... an • bn] (1)

When modules are nested, (1) is applied recursively. Note
that for (1) to be type correct, composed elements must be
of the same type (i.e., code deltas compose with code,
HTML deltas compose with HTML, etc.).

(1) is the Law of Composition. A GenVoca expression is
evaluated by recursively expanding modules and applying
(1). As an example, let A be a constant module and B be a
function module (see Figure 10):

A = [Codea, R.txta, Doca]
Codea = [X.javaa, Y.javaa]
Doca = [W.htmla, ∅] (2)

B = [Codeb, R.txtb, Docb]
Codeb = [X.javab, Y.javab]
Docb = [ι, Z.htmlb] (3)

The composition C = B•A is:

C = B•A
= [Codeb,R.txtb,Docb] • [Codea,R.txta,Doca]
= [Codeb•Codea, R.txtb•R.txta, Docb•Doca]
= [[X.javab,Y.javab] • [X.javaa,Y.javaa],

R.txtb•R.txta, [ι,Z.htmlb]•[W.htmla,∅]]
= [[X.javab•X.javaa, Y.javab•Y.javaa],

 R.txtb•R.txta, [W.htmlb, Z.htmla]] (4)

The result is a nested vector of expressions. Each expres-
sion defines a terminal artifact that is to be synthesized; by
evaluating each expression, a hierarchical module that
defines the target program is generated.

A module is implemented by a file system directory. Primi-
tive artifacts are files and nonprimitives are directories.
Figure 10 depicts (2)-(4). The composition operator • is

3. This description of AHEAD is due to C. Lengauer. The original
description used nested sets, not nested vectors [9].

Figure 9. Encoding Modules as Vectors

class1 class2

package K
K = [class1, class2]

m1 f1

class1 = [m1, f1]

m3m2
class2 = [m2, m3]

class1 class2

package K
K = [class1, class2]

m1 f1

class1 = [m1, f1]

m3m2
class2 = [m2, m3]

(a) (b)

Figure 10. Composition

Code

X.javaY.java Z.html

R.txt
Doc

A

.

X.java W.htmlY.java

Code

R.txt
Doc

B

=

X.java W.htmlY.java Z.html

Code

R.txt
Doc

C

C = [[X.javaB . X.javaA , Y.javaB . Y.javaA], R.txtB . R.txtA , [W.htmlB , Z.htmlA]]

Code

X.javaY.java Z.html

R.txt
Doc

A

X.javaY.java Z.html

R.txt
Doc

A

.

X.java W.htmlY.java

Code

R.txt
Doc

B

.

X.java W.htmlY.java

Code

R.txt
Doc

B

=

X.java W.htmlY.java Z.html

Code

R.txt
Doc

C

=

X.java W.htmlY.java Z.html

Code

R.txt
Doc

C

X.java W.htmlY.java Z.html

Code

R.txt
Doc

C

C = [[X.javaB . X.javaA , Y.javaB . Y.javaA], R.txtB . R.txtA , [W.htmlB , Z.htmlA]]•

•

••

Page 6

polymorphic and its implementation relies on ad hoc poly-
morphism, i.e., a distinct tool implements • for each type of
artifact. That is, one tool composes Java files, a different
tool composes grammar files, a third tool composes XML
files, etc.

These are the ideas of AHEAD [9]. AHEAD has been used
to synthesize its tool suite (i.e., AHEAD tools are boot-
strapped, where the size of the tool suite exceeds 200K Java
LOC), simulators for the U.S. Army [9], and product lines
of portlets [48] and overlay networks [3], among other
applications. Experience with AHEAD suggests that it is
simple to use and understand. To recap:

• a constant module is a containment hierarchy of related
code and non-code artifacts and is modeled by a vector,

• a delta is also a containment hierarchy of related code
and non-code deltas, and it too is modeled by a vector,

• feature/module composition is vector composition, and
• a delta is a structural operation that adds new elements

and extends existing elements.

AHEAD focussed exclusively on synthesizing artifacts by
composing deltas. How artifact derivation (e.g., mapping
source code to bytecode) is expressed and is related to del-
tas was not explored. This is the next topic.

4 Category Theory

4.1 Preliminaries
A category is a directed graph
with special properties. Nodes are
called objects and edges are
arrows. An arrow drawn from
object X to object Y behaves like a
function with X as its domain and
Y as its codomain. Arrows com-
pose like functions, and arrow
composition is associative. Also, there are identity arrows
(identity functions) for each object, indicated by loops.

A product line is a category: Figure 3 is identical to
Figure 11, minus identity arrows (which I henceforth omit
for readability). Each object Pi in Figure 11 is a domain
with one element — the ith program in Figure 34. Arrows
(deltas) are total functions.

Not part of category theory is the concept of a synthesis
line. It is a traversal of a category from an initial object to a
target object and corresponds to a GenVoca expression that

synthesizes a program. The synthesis line of program P4 is
P0→P1→P4.

A central concept in AHEAD is that it hierarchically modu-
larizes multiple program representations. Consider the fol-
lowing structurally isomorphic categories P, J, and B of
Figure 12. P is a product line of programs, J denotes the
Java source code of these programs, B denotes their byte-
codes. Category P abstracts the other two: a projection of P
yields J, and another projection yields B. Further, program
Pi has Ji as its source and Bi as its bytecode. When a syn-
thesis line is drawn in P, corresponding synthesis lines are
drawn simultaneously in J and B to model the synthesis of
that program’s source and bytecode. That is, line
P0→P1→P4 is mapped to lines J0→J1→J4 and B0→B1→B4.

A mapping from P to J and B can be expressed by two
ideas from category theory. The product of categories J and
B, denoted J×B, is formed by pairing each object in J with
each object in B. Figure 13 displays three such pairs
[J0,B0], [J1,B1], and [J4,B4]. An arrow between [Ji,Bj]
to [Jk,Bl] corresponds to two arrows, one Ji→Jk in cate-
gory J and another Bj→Bl in B [42].

We are not interested in all pairs of objects from J and B,
but only those that have the same subscript, namely
[Ji,Bi]. A subcategory D of a category C is formed by dis-
carding unneeded objects and arrows of C, such that D
remains a category [42]. Category P of Figure 12 is a sub-
category of J×B. As this operation is so common, we call it
an AHEAD product of isomorphic categories, and denote it
by J⊗B. Each object Pi in category P=J⊗B maps to a
pair of objects [Ji,Bi], and each arrow Pi→Pj in P maps to
a pair of arrows Ji→Jj and Bi→Bj.

4. Again, programs can have horizontal parameters [23], thus enabling
domains to have multiple programs (footnote 1).

P0

P1

P2

P3

P4

P5

A

B

D

A

G

Figure 11. A Category

J0

J1

J2

J3

J4

J5

Figure 12. Categories of Program Representations

P0

P1

P2

P3

P4

P5

B0

B1

B2

B3

B4

B5

P

J B

J0

J1

J2

J3

J4

J5 B0

B1

B2

B3

B4

B5

J B

J0
B0

J1
B1

J4
B4

Figure 13. Product of Categories

Page 7

4.2 A Categorical Interpretation of AHEAD
A product line of programs is formed by the AHEAD prod-
uct of categories of different program representations
(Figure 14a). Each program representation category is itself
an AHEAD product of lower-level isomorphic categories,
recursively.

For example, the source code category J is an AHEAD
product of isomorphic categories, C0…Cn, one category for
each class that can appear in a program. In category C0 of
Figure 14b, c00 denotes class C0 in program P0, c03 denotes
class C0 in program P3, etc. The same applies to the remain-
ing Ci categories. Arrows in Ci are class deltas. For exam-
ple, the arrow in C0 from c00 to c03 is the delta of class C0
that occurs in the mapping of program P0 to P3.

Each Ci category is itself an AHEAD product of isomor-
phic categories Mi0…Mim, one category for each member
that can appear in class Ci.5 In category M01 of Figure 14c,
m010 denotes class C0’s member m1 in program P0, m013
denotes class C0’s member m1 in program P3, etc. The same
applies for the remaining M0i categories.

Note the scale on which AHEAD works. A typical AHEAD
tool has 500 classes and well over 2000 total members. A
categorical interpretation of it is a recursive nesting of
AHEAD products of over 2500 different categories.
Although this seems complex, it remains understandable as
each category has a clear physical meaning (as a class or
class member) and all categories have identical shapes.

An interesting detail is how class or member additions are
modeled. Suppose class C0 appears only in program P3. This
means that C0 is represented by a null or nonexistent class
(∅) in all other programs. Only when the P1→P3 arrow is
traversed will a non-null class be synthesized, i.e., a class
addition is modeled by a function that maps a null class to a
non-null class. Interestingly, the AHEAD tool for browsing
a feature code base shows nulls and identity maps between

nulls of different objects; so the categorical description of
AHEAD in previous paragraphs is faithful [1].6

4.3 Functors
Consider categories J and B. A functor F:J→B is a map
that takes each J object j to a B object F(j) and each J
arrow f:j→r to a B arrow F(f):F(j)→F(r), such that for
all J objects j and composable J arrows f and g [42]:7

• F(idj) = idF(j)
• F(g•f) = F(g)•F(f)

As the categories that arise in AHEAD are structurally iso-
morphic, the functors between categories are particularly
simple: they map corresponding objects and arrows. An
interesting question is how are such functors implemented?
Let J denote the category of Java source representations of
a software product line, and let B denote its corresponding
category of Java bytecode representations. Objects in J are
mapped to objects in B by the Java compiler. That is, javac
is a function that maps Java source to Java bytecodes. As
another example, let D denote the category of Javadoc rep-
resentations for the product line of J. The mapping of J
objects to D objects is accomplished by the javadoc tool.

As a general rule, common tools used by software engineers
implement object-to-object mappings of functors.8 This is
important, as it supports the belief that common tools corre-
spond to operations that transform program representations
and thus fit naturally into algebraic models of large scale
program construction at an appropriate level of abstraction.

It is interesting to note that AHEAD provides a tool for
implementing source-code-arrow-to-bytecode-arrow map-
pings (which we’ll discuss in Section 4.4). But this raises
an even more basic question of how objects and arrows of a
category are defined. Today’s languages provide great sup-
port for implementing objects (e.g., source code), but virtu-
ally no help in defining and composing arrows. That is,
there are no language constructs like AHEAD refines that
define functions to map class declarations and that allow
such functions to be composed [29]. It is as if one-half of a
fundamental picture is missing: language support is needed
to manipulate and extend class definitions in an algebraic
way. Work on virtual classes and mixins is a good start
[11][35], so too is work on Scala [39], higher-order hierar-
chies [21], and giving aspects “functional semantics” [34];
all go a long way to help product line development. More in
Section 5.

5. Categories could also be defined to represent class initializers, imple-
ments clauses, etc.

P0

P3P

J0

J3J

B0

B3B
⊗

c00

c03C0 C1 Cn

…

M00 M01
M0m

…
m010

m013

Figure 14. AHEAD Product Nesting of Categories

=

J0

J3J

= ⊗ ⊗ ⊗

c00

c03C0

= ⊗ ⊗ ⊗

(a)

(b)

(c)

6. The elimination of multiple null classes can be expressed categorically
using functors. The explanation given above is the simplest to see a cate-
gorical connection to AHEAD.
7. The identity arrow for object s is ids.
8. Tools like javac often correspond to natural transformations [42].

Page 8

4.4 Commutativity Diagrams
A fundamental rela-
tionship exists between
artifact derivation and
artifact deltas. It can be
expressed by the com-
mutativity diagram
[42] of Figure 15. Hor-
izontal arrows are artifact deltas (a.k.a. endogenous trans-
formations [37]) and vertical arrows are artifact derivations
(a.k.a. exogenous transformations [37]).

A fundamental property of commutativity diagrams is that
any path from the upper left object to the lower right object
produces the same result. In the case of Figure 15, a higher-
order function or operator f’ maps function ΔM to function
ΔD. The general relationship is:

f • ΔM = f’(ΔM) • f (5)

Functors give rise to commutativity diagrams. Figure 16
shows how the Java source of programs P0 and P1 relate to
their corresponding bytecodes B0 and B1.

The horizontal
arrow J0→J1 is a
source code delta ΔJ
(i.e., a set of
AHEAD class addi-
tions and class del-
tas), and the B0→B1
arrow is the corre-
sponding bytecode delta ΔB. The vertical arrows are the
mappings of a functor from J to B. javac implements the
object-to-object mappings. AHEAD has a special tool to
implement the arrow-to-arrow mappings (i.e., ΔB = map-
delta(ΔJ) indicated in Figure 16 by the dashed arrow).
This commutativity relationship:

javac•ΔJ = mapdelta(ΔJ)•javac (6)

is an instance of (5). That is, extending source of J0 by ΔJ
and compiling equals compiling the source of J0 and
extending its bytecode by ΔB.

Proofs should be offered to justify commutativity diagrams.
But the scale of programs in AHEAD makes this difficult. I
believe that javac preserves the class structure of a Java
source program in its translation to bytecodes, but I know
of no formal proof of this. Similarly, I believe that the
source or bytecode deltas that I use preserve or elaborate
the original source or bytecode structure, but again I have
no formal proof. More important, however, is proving that
properties of features are preserved (or correctly trans-
formed) by artifact derivation and composing artifact del-

tas. Proving properties of arrows on the scale of Figure 16
seems appropriate for the recently proposed Verified Soft-
ware Grand Challenge of Hoare, Misra, and Shankar [29],
which seeks scalable technologies for program verification.

In the absence of proofs, forms of equivalence can be
empirically demonstrated by building both ways. That is,
start with program j0∈J0, and produce programs
b1=javac(ΔJ•j0) and b1’=mapdelta(ΔJ)•javac(j0) and
test their equivalence. In the case of bytecodes, b1 and b1’
are subjected to the same set of system or integration tests;
if both have the same responses, these systems can be con-
sidered behaviorally identical (for those tests). In the case
that a commutativity diagram yields a source document,
“diffs” can be used to test for source equivalence. (Source
equivalence is syntactic equivalence with two relaxations: it
allows permutations of members when member ordering is
not significant and it allows white space to differ when
white space is unimportant).

Experience to date is that commutativity diagrams expose a
large number of relationships in SPL models, and impose a
correspondingly large number of constraints on tools.
(Without commutativity diagrams, we were unaware of
these constraints). Not surprisingly, our tools initially did
not satisfy these constraints, and consequently had to be
repaired. By fixing our tools, we have greater confidence in
them because they implement explicit relationships in cate-
gorical models of product lines, and that tools can be
treated as operations of an algebra. Both are big wins from
an engineering perspective because we can reason algebra-
ically about our designs, rather than hacking code to imple-
ment imprecise designs. This is a good example where
category theory exposes important and previously unrecog-
nized properties that program synthesis tools must satisfy.

4.5 Synthesis Geometries
Suppose programs in R0 have specifications from which
multiple representations can be derived. Figure 17a shows a
configuration space for R0 consisting of three representa-
tions that can be derived from the topmost object. Moving
forward in time by drawing horizontally the synthesis line
R0→R1→R2→R3→R4, we sweep out a mesh of commutativity
diagrams here called a synthesis geometry. The geometry of
Figure 17b is regular, although it could just as easily be
ragged (Figure 17c). Meshes are created by translating delta
arrows that connect the topmost objects into delta arrows of
lower-rung objects. Ragged geometries arise when delta
arrows cannot be translated.9

M1M0

D1D0
ΔD

ΔM

f f

Figure 15. Commutativity Diagram

f’

J0 J1

B0 B1

ΔJ

ΔB

javacjavac mapdelta

Figure 16. Source-Bytecode Diagram

9. In principle, such arrows exist, but there may not be a tool to compute
them. For example, until we built the mapdelta tool, we could not imple-
ment the B0→B1 arrow of Figure 16, even though we knew such an arrow
should exist. In general, mapping arrows is non-trivial.

Page 9

Given an object in the upper left corner, we generally want
to compute the object in the lower right. Any path from the
upper left to the lower right will produce the desired result.
For a rectangular m×n mesh, there are such paths.

Given a metric that defines the cost of traversing (synthe-
sizing and composing) an arrow, synthesis geometries warp
(Figure 18). No longer are all paths equidistant. It becomes
an interesting problem to determine the shortest path, called
a geodesic, to synthesize a target result.

The following describes the PinkCreek project on which I
worked with S. Trujillo and O. Diaz [48]. PinkCreek is a
product-line of web portlets (i.e., web components). Our
work combined notions of model driven architectures with
feature oriented designs. An initial configuration space of
objects (a.k.a. models) is displayed in Figure 19a, where a
series of different artifacts were derived from the topmost
object. As we moved forward in time, a multi-pleated syn-
thesis geometry was created (Figure 19b).

PinkCreek geodesics are not lines. Starting at the upper left
object (which corresponds to a base statechart), there is a
set of terminal objects on the final plane that are to be com-
puted (indicated as white circles in Figure 19b). Initially,
my thought was to traverse the spine of the geometry and

follow the arrows downward on the final plane. “Traversing
the spine” means refining the statechart into its final form,
and then deriving its representations. This, as it turns out,
was not a geodesic. A more efficient path was discovered
experimentally: start from the initial statechart, derive its
representations, and then proceed forward in time for each
desired representation. This second approach was 2-3 times
faster than my path and was a consequence of special opti-
mizations that were possible in the PinkCreek design. With-
out these optimizations, there would have been a factor of
10 difference in favor of my path.

When there is only one terminal object, a geodesic can be
computed by Dijkstra’s shortest path algorithm [2]. In
PinkCreek, there is one initial object and n terminal objects
and computing a geodesic requires solving the Directed
Steiner Tree Problem, which is NP-hard [14]. More gener-
ally, a geodesic can have m initial objects and n terminal
objects. While I suspect that some simple heuristics for
computing geodesics may suffice, there may be some inter-
esting optimization problems to be addressed.

4.6 Additional Dimensions of Time
There are many other connections of AHEAD to category
theory. Perhaps the most intriguing is multiple dimensions
of time in software design. Here is the idea: suppose
Figure 20a displays a configuration space of objects.
Figure 20b shows a geometry that is swept as we move for-
ward in one dimension of time. Figure 20c shows the geom-
etry going forward along a second dimension of time.
Figure 20d shows a third dimension. Each dimension is
described by a distinct product line (i.e., a distinct set of
composable features). A particular product is described by
an expression (feature composition) along each dimension.
That is, a program is represented by n expressions, one per
dimension, in an n-dimensional model. Categorically this
space is represented by product of non-isomorphic catego-
ries. Pushouts are used to compute arrows.

A classic example is Cook’s Extensibility Problem [17],
now known as the Expression Problem [50], which is a fun-
damental problem of software design: the focus is achiev-
ing data type and operation extensibility in a type-safe
manner. Incrementally extending a data type is one dimen-
sion; adding operations is a second [33]. We rediscovered
these ideas in the context of synthesizing large programs,
and in fact, use three dimensions of time when synthesizing
AHEAD tools [7][8].

4.7 Perspective
Category theory has an unfortunate reputation in Software
Engineering. The most common refrain I hear is “category

(a) (b) (c)

Figure 17. Synthesis Geometries

R0 R1 R2R0 R3 R4 R0 R1 R2 R3 R4

m n+
m⎝ ⎠

⎛ ⎞

Figure 18. Geodesic

geodesicgeodesicgeodesic

(a) (b)

Figure 19. PinkCreek Geometries

Page 10

theory is so general, it can only be descriptive, not prescrip-
tive”, meaning it doesn’t tell you what to do.

My experience is different. Commutativity diagrams
expose many relationships in SPL models that must be sat-
isfied by synthesis tools. This, as noted earlier, is a big win.
Misra once noted “A theory is a tool that reduces experi-
mentation, often by an infinite amount [38].” That state-
ment applies here: category theory has saved me years of
experimentation. I would have figured out some (not all) of
these ideas eventually, but the real problem would have
been trying to convince others of a general paradigm with-
out firm theoretical backing. I’m not sure it would be possi-
ble.

Here is another example where I found category theory to
be prescriptive. The synthesis geometries of AHEAD are
straight lines (start with a base artifact and progressively
extend it). By definition, such lines are geodesics, so it was
OK to compose arrows immediately. Category theory
exposes a much more general approach: collect the arrows,
determine the synthesis geometry, and then compute a geo-
desic. This generalization is not obvious, but now forms a
basis for my future work in program synthesis.

5 Related and Future Work
AHEAD is a model of metaprogramming, i.e., that program
design and implementation is a computation. What we
described in Section 4.5 is a form of staged programming,
where computing a geodesic synthesizes a metaprogram,
which when evaluated, synthesizes a target result. Staged
programming was introduced in [47], but it is different
from our usage.

Object-oriented collaborations (or role-based designs) were
perhaps the first recognizable way to express features [43].
The ideas of collaborations could be implemented by vir-
tual classes [35] and mixins [11], and have been the basis of
several feature-based design methodologies [49][45].
Unfortunately, support for collaborations has not found its
way into main-stream programming languages.

AHEAD has similar goals to Goguen’s parameterized pro-
gramming. His work offers two distinct forms of parameter-
ization, horizontal and vertical, and uses views to define
morphisms (mappings) between module interfaces that
would otherwise not be composable. AHEAD uses vertical
parameters to express deltas, although features (as men-
tioned in footnote 1) can indeed have horizontal (e.g., per-
formance) parameters. AHEAD does not use views. As
programs get larger, the likelihood that features will have
compatible semantics but not have syntactically identical
interfaces is unlikely. Views can be used in circumstances
as indicated in Goguen’s work.

Ernst’s Higher-Order Hierarchies (HOH) has much of the
flavor of AHEAD, where any number of (virtual) classes in
an inheritance hierarchy can be extended lock-step. Differ-
ent extensions can be composed, i.e., there is an “algebra”
to specify extension compositions. Implementations of
HOH exist in gbeta and CaesarJ [21]. There are two basic
distinctions between AHEAD and HOH. First, AHEAD
deals with hierarchies of noncode artifacts, as well as code
artifacts. Second, HOH uses virtual classes (i.e., classes that
are nested inside other classes and that can be extended),
and can instantiate the enclosing classes. AHEAD simpli-
fies HOH by eliminating enclosing classes and the ability to
instantiate them. Further, analysis of product lines is simpli-
fied in AHEAD as there are models that define all programs
and all legal feature combinations. HOH has no product
line models.

Scala is another language that can express program code
deltas [39]. Scala is general, and requires programmers to
express “type plumbing”, i.e., type bindings in deltas.
AHEAD’s refines class construct is much more limited,
and hides (or assumes) type bindings. Consequently,
refines class declarations are more compact and may be
easier for typical programmers to use [33]. A major differ-
ence is Scala has a type system; AHEAD does not.

In the algebraic specifications community, the terms refine-
ment and extension have different meanings. Consider a 2-
space, where points along the X-axis are specifications, and
points along the Y-axis are implementations. A standard
paradigm (e.g., Z [46]) builds a specification incrementally
by extensions. Once completed, the specification is refined
progressively into an implementation. The horizontal

(a) (b)

(c)

(d)

Figure 20. Geometries with Multiple Dimensions of Time

Page 11

arrows below denote specification extensions, and the verti-
cal arrows are refinements. Program P has specification S
and implementation I in Figure 21a.

AHEAD is different. Following the ideas in Section 3, a
feature both extends a specification and refines an imple-
mentation, i.e., features move diagonally through this 2-
space. In Figure 21b, program P1=(S1,I1) is mapped to
program P2=(S2,I2) by feature F. It is possible for features
to share the same specification extension (e.g., F’ in
Figure 21b), which leads to optimizations (e.g., which fea-
ture produces the most efficient program?) [44]. As best as
I can tell, features implement a form of constrained sub-
types [31], where type specifications are very weak.

Specware uses category theory as a formal foundation for
program synthesis [41]. Specifications are composed by
pushouts, which is inherently a commutative operation.
Pushouts are appropriate as the specifications that are com-
posed in Specware are orthogonal (i.e., pushouts effectively
compute specification union). AHEAD uses a different
model: feature composition is function composition, which
is not commutative. To illustrate, suppose feature F1 incre-
ments field V, and feature F2 doubles V. The order in which
F1 and F2 are composed matters. This example would lead
to inconsistencies in Specware. Of course, a major advan-
tage of Specware are guarantees of correctness in the code
that it synthesizes; AHEAD offers no such assurances.
Despite these differences, much could be gained by a closer
comparison of both approaches.

Research in algebraic specification uses category theory
and commutativity diagrams to express ideas similar to
those in this paper [20][41]. In fact, the basic notion that
refinements affect different representations of a module
(e.g., its interface, implementation, parameters) is clearly
present. In a similar vein, there is an enormous literature on
category theory (e.g., [28][42]). It is an interesting and open
problem to see how these different areas of research can
cross-fertilize each other: results in theory finding practical
outlets, and practical examples to illuminate theory.

Finally, the ideas presented in this paper are not restricted to
the topics covered. Model driven architectures (MDA) is an
emerging paradigm where models (i.e., different represen-

tations of programs) are extended and derived from other
models by transformations. The work on PinkCreek in
Section 4.5 is an example that combines ideas of MDA and
features. Autonomic computing deals with the dynamic
restructuring of applications (conceptually similar to auto-
matic programming discussed in Section 2). Service ori-
ented architectures deals with the modularization of
services, increments of program functionality that have dis-
tributed implementations. And finally, program refactorings
can be understood as program transformations. The essence
of all these topics can be understood in terms of functions
that derive or modify programs.

6 Conclusions
Product synthesis will become increasingly important to
future software development. The challenge in scaling syn-
thesizers is not one of possibility: there are lots of ad hoc
ways of doing this now. Rather, the challenge is to show
how scaling can be accomplished in a principled manner so
that synthesizers are not just ad hoc collections of tools
using an incomprehensible patchwork of techniques. Prod-
uct synthesis is a technological statement that the develop-
ment of products (programs) in a domain is understood well
enough to be automated. However, we must make the same
claim for synthesizers themselves: their complexity must
also be controlled and must remain low as product com-
plexity scales; otherwise, synthesis technologies will be
gruesome to use. Product synthesis must be placed on a
more formal basis.

Programming languages will be vital to this effort. We need
languages that will enable programmers to define both
objects and arrows. Work on mixins and virtual classes, for
example, is a good start. The key step in advancing pro-
gramming languages is to think in terms of functions that
map (class) structures, and to abandon the use of inherit-
ance for this purpose. Doing so, it will be much easier to
recognize the mathematical elegance of product synthesis.

It will take many years to sort out all of these issues, and
will take the effort of many communities to do so. As pro-
grammers, we are geniuses at making the simplest things
look complicated; the hard part is recognizing the underly-
ing simplicity. Scalability of product synthesis demands
simplicity, uniformity, and regularity: algebra offers this,
and this is the reason why I use it.

Acknowledgements. I greatly appreciate the comments
from M. Mehlich, G. Lavender, M. Poppleton, S. Nedunuri,
W. Cook, S. Apel, S. Trujillo, O. Diaz, A. Rauschmayer, M.
Wirsing, E. Boerger, and J. Misra on earlier drafts of this
paper. Also, I thank C. Lengauer for recognizing the vector
description of AHEAD, and V. Ramachandran and R.
Chowdhury for their help in connecting my work with the

specs

implementations

P

S

I

Figure 21. Extension and Refinement

specs

implementations

S1

I2

S2

I1
P1

P2
F

F’
P2’

(a) (b)

Page 12

Directed Steiner Tree Problem, and discussions with J.
McGregor on product line testing. This work was supported
by NSF’s Science of Design Project #CCF-0438786.

7 References
[1] AHEAD Tool Suite, www.cs.utexas.edu/users/

schwartz/index.html

[2] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and
Analysis of Computer Algorithms, Addison-Wesley, 1975.

[3] S. Apel and D. Batory. “When to Use Features and Aspects?
A Case Study”, GPCE 2006.

[4] D. Batory and S. O'Malley. “The Design and Implementation
of Hierarchical Software Systems with Reusable Compo-
nents”. ACM TOSEM, October 1992.

[5] D. Batory, G. Chen, E. Robertson, and T. Wang. “Design
Wizards and Visual Programming Environments for Gen-
Voca Generators”, IEEE TSE, May 2000.

[6] D. Batory, R. Cardone, and Y. Smaragdakis. “Object-Ori-
ented Frameworks and Product-Lines”, SPLC 2000.

[7] D. Batory, R. Lopez-Herrejon, and J.P. Martin. “Generating
Product-Lines of Product-Families”, ASE 2002.

[8] D. Batory, J. Liu, J.N. Sarvela. “Refinements and Multidi-
mensional Separation of Concerns”, ACM SIGSOFT 2003.

[9] D. Batory, J.N. Sarvela, and A. Rauschmayer. “Scaling Step-
Wise Refinement”, IEEE TSE, June 2004.

[10] D. Benavides, P. Trinidad, and A. Ruiz-Cortes, “Automated
Reasoning on Feature Models”, CAISE 2005.

[11] G. Bracha and W. Cook. “Mixin-Based Inheritance”. OOP-
SLA and ECOOP 1990.

[12] T. Biggerstaff and A. Perlis, Software Reusability Volume II:
Applications and Experiences, Addison-Wesley, 1990.

[13] BMW. www.bmwusa.com
[14] M. Charikar, et al., “Approximation Algorithms for Directed

Steiner Tree Problems, ACM-SIAM Symposium on Discrete
Algorithms (SODA) 1998.

[15] P. Clark and B. Porter. “Building Concept Representations
from Components”, National Conference on Artificial Intelli-
gence, 1997.

[16] E.F. Codd. “A Relational Model of Data for Large Shared
Data Banks”, CACM 13 (6), 1970.

[17] W.R. Cook. “Object-Oriented Programming versus Abstract
Data Types”. Workshop on FOOL, Lecture Notes in Com-
puter Science, Vol. 173. Spring-Verlag (1990).

[18] Dell Computers. www.dell.com
[19] E.W. Dijkstra. A Discipline of Programming. Prentice Hall,

1976.
[20] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specifica-

tion 2: Module Specifications and Constraints, Springer-Ver-
lag, 1990.

[21] E. Ernst, “Higher Order Hierarchies”, ECOOP 2003.
[22] M. Fayad and D.C. Schmidt, “Object-Oriented Application

Frameworks”, CACM, Oct. 1997.

[23] J. Goguen. “Principles of Parameterized Programming” in
[12].

[24] J. Goguen. “A Categorical Manifesto”. Mathematical Struc-
tures in Computer Science, 1991.

[25] J. Gray, “What Next? A Dozen Information-Technology
Research Goals”, Microsoft Research MSR-TR-99-50, 1999.

[26] K. Kang, et al., “Feature-Oriented Domain Analysis (FODA)
Feasibility Study”, Tech Report CMU/SEI-90-TR-21.

[27] K.K. Lau. “Top-down Synthesis of Sorting Algorithms”, The
Computer Journal, 1992.

[28] F.W. Lawvere and S.H. Schanuel, Conceptual Mathematics:
A First Introduction To Categories, Cambridge University
Press, 1997.

[29] G. Leavens, et al. “Roadmap for Enhanced Languages and
Methods to Aid Verification”. Dept. Comp. Sci., Iowa State
Univ., TR #06-21, July 2006. ftp://ftp.cs.iastate.edu/
pub/techreports/TR06-21/TR.pdf

[30] H.C. Li, S. Krishnamurthi, and K. Fisler. “Modular Verifica-
tion of Open Features Through Three-Valued Model Check-
ing”, Automated Software Engineering Journal, 2005.

[31] B. Liskov and J.M. Wing, “A Behavioral Notion of Subtyp-
ing”, ACM TOPLAS 1994.

[32] R.E. Lopez-Herrejon and D. Batory. “A Standard Problem
for Evaluating Product-Line Methodologies”, GCSE 2001.

[33] R. Lopez-Herrejon, D. Batory, and W. Cook. “Evaluating
Support for Features in Advanced Modularization Technolo-
gies”, ECOOP 2005.

[34] R. Lopez-Herrejon, D. Batory, and C. Lengauer. “A Disci-
plined Approach to Aspect Composition”, PEPM 2006.

[35] O.L. Madsen and B. Møller-Pedersen, “Virtual Classes: A
Powerful Mechanism in Object-Oriented Programming”,
OOPSLA 1989.

[36] D. MacQueen. “An Implementation of Standard ML Mod-
ules”, ACM Conference on LISP and Functional Program-
ming, 1988.

[37] T. Mens, K. Czarnecki, and P. van Gorp. “A Taxonomy of
Model Transformations”, Dagstuhl Seminar Proceedings 04101
http://drops.dagstuhl.de/opus/volltexte/2005/11.

[38] J. Misra, “Inaugural Lecture for the Schlumberger Centennial
Chair”, 2002. http://www.cs.utexas.edu/users/

misra/Speeches.dir/Schlumberger.Jan02.pdf

[39] M. Odersky, et al. “An Overview of the Scala Programming
Language”. September 2004, scala.epfl.ch

[40] D. L. Parnas, “On the Design and Development of Program
Families”, IEEE TSE, vol. SE-2#1 1976.

[41] D. Pavlovic and D.R. Smith. “Software Development by
Refinement”, UNU/IIST 10th Anniversary Colloquium, For-
mal Methods at the Crossroads: From Panaea to Foundational
Support, Springer-Verlag LNCS 2757, 2003.

[42] B. Pierce. Basic Category Theory for Computer Scientists,
MIT Press, 1991.

Page 13

[43] T. Reenskaug, et al. “OORASS: Seamless support for the cre-
ation and maintenance of object-oriented systems”. Journal
of Object-Oriented Programming, October 1992.

[44] P. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie,
and T.G. Price. “Access Path Selection in a Relational Data-
base System”, ACM SIGMOD 1979.

[45] Y. Smaragdakis and D. Batory, “Mixin Layers: An Object-
Oriented Implementation Technique for Refinements and
Collaboration-Based Designs”, ACM TOSEM, April 2002.

[46] J.M. Spivey, The Z Notation: A Reference Manual, Oxford
University Press, 1998.

[47] W. Taha and T. Sheard. “Multi-Stage Programming with
Explicit Annotations”, PEPM 1997.

[48] S. Trujillo, D. Batory, and O. Diaz. “Feature Oriented Model
Driven Development: A Case Study for Portlets”, submitted
2006.

[49] M. VanHilst and D. Notkin. “Using role components to
implement collaboration-based designs”. OOPSLA 1996.

[50] P. Wadler. “The Expression Problem”. Posted on the Java
Genericity mailing list (1998).

[51] N. Wirth. “Program Development by Stepwise Refinement”,
CACM, April 1971.

[52] C. Zhang, G. Gao, and H.-A. Jacobsen. “Towards Just-in-time
Middleware Architectures”, AOSD 2005.

