
 1

On The Modularization of Theorems for Software Product Lines

Don Batory
Department of Computer Sciences

University of Texas at Austin
Austin, Texas, 78712 U.S.A.

batory@cs.utexas.edu

Egon Börger
Dipartimento di Informatica

Università di Pisa
I-56127 Pisa, Italy
boerger@di.unipi.it

Abstract
A goal of software product lines is the economical synthesis
of programs in a family of programs. In this paper, we
explain how theorems about program properties can be inte-
grated into feature-based development of software product
lines. As a case study, we analyze an existing Java/JVM
compilation correctness proof for defining, interpreting,
compiling, and executing bytecode for the Java language.
We explain how features modularize both programs and the-
orems. By composing features, the source code and theorems
for a program are synthesized. Generated theorems may then
be certified manually or automatically using a proof checker,
opening a new line of research in verification.

1 Introduction
Product-lines are used in many industries to reduce product
development costs, improve product quality, and increase
product variability. The automotive, computer hardware, and
software industries offer examples [7][17][32]. Sadly, what
distinguishes software products is the absence of meaningful
warranties [25]. While great strides have been made in veri-
fication over the last ten years, there are few results on veri-
fying software product-lines (SPLs) [16][28][29][39].

Scaling verification to large programs is a long-standing
problem. There is a growing community of researchers that
believe verification must be intimately integrated with soft-
ware design and modularity for scaling to occur; verification
of programs should not be an after-thought [24][40]. In this
paper, we explore an approach that suggests how feature
modularization can scale verification to product-lines of pro-
grams. We bring together results from previously unrelated
communities: Abstract State Machines (ASM) and Feature-
Oriented Programming (FOP). ASM is a rigorous method
for program specification and verification. FOP is a design
methodology and compositional technology for program
synthesis. ASM and FOP both use step-wise refinement to
construct programs and specifications. Our case study is the
2001 JBook [37] that among other results presented a Java/
JVM compilation correctness proof for defining, interpret-
ing, compiling, and executing bytecode for the Java 1.0 lan-
guage. Among the pragmatic discoveries of JBook were
problems with bytecode verification, inconsistent treatment

of recursive subroutines, method resolution and reachability
definition, under-specification of static initializers (leading
to portability problems of Java programs), concurrent initial-
izations could deadlock, and existent Java compilers violated
initialization semantics through standard optimization tech-
niques [9]. More recent work examined C# with similar
results [13][18][19] [20].

Although ASM and FOP were conceived independently
(their roots trace back to the early 1990s), both use features
— increments in functionality — as a modularization center-
piece. JBook and FOP use features to modularize grammars
and programs in an identical way. The contributions of our
paper are justifying this claim and more importantly showing
how features modularize JBook theorems (both their state-
ments and proofs) on the correctness of program properties.
By composing features, complete grammars, programs, and
theorems are synthesized.

Our results are not limited to JBook or compilers; they are
meaningful in the context of SPLs where each program of an
SPL may have its own unique set of properties and requiring
customized proofs. Instead of manually verifying individual
programs, which is a laborious task, theorem statements and
proofs can be synthesized, exactly like other program repre-
sentations. Generated theorems may then be certified manu-
ally or automatically using a proof checker. Consequences of
these ideas are opening new lines of research in verification.

2 An Overview of the JBook Product Line
JBook [37] presents a structured way to incrementally
develop the Java 1.0 grammar, its language interpreter, com-
piler, and bytecode (JVM) interpreter (including a bytecode
verifier). The sublanguage of Java expressions is considered
first, then it is progressively refined with the addition of Java
statements, static class constructs, object constructs, and
lastly support for exceptions. Each increment in functional-
ity, here called a feature, builds upon previously defined
functionalities by showing how the grammar, language inter-
preter, compiler, and bytecode interpreter are simultaneously
and consistently refined.1 At the end, a complete grammar,
language interpreter, compiler, and bytecode interpreter for
Java 1.0 are produced.

Page 2

At this point, various properties are considered, such as the
correctness of the compiler. Correctness is established by a
manual proof of the equivalence of the interpreter execution
of a Java 1.0 program and the JVM run (execution) of the
compiled program. Figure 1 shows the JBook organization.
Each oval represents a domain and each solid arrow denotes
a tool that is a function that maps an object in its domain to
an object in its codomain. The parser maps a Java program
to an abstract syntax tree (AST). The interpreter maps an
AST to an interpreter run or execution trace (InterpRun).
The compiler maps an AST to bytecode. And the JVM
interpreter executes bytecode to produce a JVM run. The
dashed arrow denotes the proof that interpreter runs are
equivalent to JVM runs for the same Java program.

JBook was not developed with product lines in mind. It
focussed on the definition and verification of a single inter-
preter and compiler for the Java 1.0 language. To give
JBook an SPL architecture, we present a series of more
elaborate FOP models.

GenVoca is a model of product-lines: base programs are
values (constant functions) and features are functions that
map programs to refined programs [3]. A GenVoca model
of JBook is an algebra JB, where each element of JB is a
JBook refinement of the Java language:

JB = { ExpI, // imperative expressions
StmI, // imperative statements
ExpC, // static fields & expressions
StmC, // method calls and returns
ExpO, // object expressions
ExpE, // expression exceptions
StmE, // exception statements

 }

JB has a single constant ExpI which defines the Java sub-
language of imperative expressions. The remaining features
are functions (refinements). StmI adds imperative state-
ments; ExpC and StmC add static fields, static methods, and
static initializers; ExpO adds object expressions; and ExpE
and StmE add exceptions to expressions and exception han-
dling statements. The version of Java that was verified is
Java1.0:

Java1.0 = StmE•ExpE•ExpO•StmC•ExpC•StmI•ExpI (1)

where • denotes function composition. That is, Java1.0 was
incrementally developed starting from base ExpI (which
defines the Java sublanguage of imperative expressions, an
interpreter of this sublanguage, a compiler, etc.), then StmI
refines it, then ExpC refines StmI•ExpI, etc. Only when the
composition of Java1.0 was complete were manual proofs
of correctness developed. We want to show how correctness
proofs can be synthesized at each composition step.

Note: Figure 2 lists
compositions of JB

features that were
given special names
in the JBook.

Note JBook treats Java
expressions separately
from statements. This
separation allows one to use properties proved for expres-
sion evaluation as an inductive hypothesis when proving
properties for statement execution.

To create a product-line, features can be omitted from
Java1.0 to produce sublanguages of Java, but these sublan-
guages are not very interesting. A logical generalization of
JB is to add new language constructs: updating to Java 1.5,
support for state machines [5] and Lisp quote/unquote
metaprogramming constructs [38]. Features can then be
mixed-and-matched, yielding a family or product-line of
Java dialects and their tools (i.e., parser, interpreter, com-
piler). This is exactly how the language-extensible AHEAD
tools were built [4][5].

3 AHEAD Representation of JBook SPL
AHEAD is a generalization of GenVoca that exposes differ-
ent representations of programs and reveals how features
refine each of these representations by composition [5]. We
start with program representations of JB features and con-
sider theorems soon thereafter.

In this paper, we use shorter names for features and pro-
gram representations than in the JBook. Figure 3 lists corre-
spondences of terms and their indices: term I with index
ExpI (i.e., IExpI) denotes the JBook term execJavaExpI.2

3.1 Program Representations
Every program has multiple representations: source, docu-
mentation, bytecode, makefiles, etc. A GenVoca constant is
a vector of representations for a base program. The repre-

1. The set of instructions of the bytecode interpreter progressively grows
with each additional feature. New instructions help execute a feature’s
increment in functionality.

Figure 1. JBook Organization

Java
Program

Java
AST

parser byte
code

compiler

InterpRun

interpreter

JVMRun

JVM
interpreter

proof

Java
Program

Java
AST

parser byte
code

compiler

InterpRun

interpreter

JVMRun

JVM
interpreter

proof

2. compileri has different names in the JBook. E denotes the compiler
for expressions, S for statements, and B for flow-control expressions.

JBook Term Composition
JavaI StmI•ExpI

JavaC StmC•ExpC•JavaI
JavaO ExpO•JavaC
JavaE StmE•ExpE•JavaO
Java Java1.0 (see (1))

Figure 2. JBook Compositions

Page 3

sentations of the JB constant ExpI are: the grammar for Java
imperative expressions GExpI, the ASM definition of the
expression interpreter IExpI, the ASM definition of the
expression compiler CExpI, the ASM definition of the byte-
code (JVM) interpreter JExpI, and the verification (theorem)
representation TExpI which we will explain shortly. Program
ExpI’s vector is [GExpI,IExpI,CExpI,JExpI,TExpI].

A GenVoca function maps a vector of program representa-
tions to a vector of refined representations. Feature StmI
refines the base grammar by ΔGStmI (new rules for Java
statements and tokens are added), the language interpreter
by ΔIStmI (to implement the new statements), the compiler
by ΔCStmI (to compile the new statements), etc. StmI’s vec-
tor is [ΔGStmI,ΔIStmI,ΔCStmI,ΔJStmI,ΔTStmI].

The representations of a program are computed by vector
composition, where corresponding components are com-
posed. The grammar, interpreter, compiler, etc. representa-
tions of the Java sublanguage JavaI that has imperative
expressions and statements is:

JavaI = StmI•ExpI // GenVoca expression

= [ΔGStmI, ΔIStmI, ΔCStmI, ΔJStmI, ΔTStmI] •
[GExpI, IExpI, CExpI, JExpI, TExpI]

= [ΔGStmI•GExpI, ΔIStmI•IExpI, ΔCStmI•CExpI,
ΔJStmI•JExpI, ΔTStmI•TExpI]

That is, the grammar of the JavaI language is the base
grammar composed with its refinement (ΔGStmI•GExpI), the
ASM definition of the JavaI interpreter is the base defini-
tion composed with its refinement (ΔIStmI•IExpI), and so on.
In general, the representations of a program are synthesized
by taking a GenVoca expression, replacing each term with
its corresponding vector, and composing vectors.

3.2 Theorems
Theorems of program properties are another representation
that is subject to refinement. The JBook presents several
theorems including the correctness of the Java compiler. We
use this theorem, denoted by T, as a representative example.

TExpI denotes the theorem for the correctness of the ExpI
compiler, i.e., the proof that interpreter runs of an ExpI pro-
gram are equivalent to the JVM run of the compiled pro-
gram. The refinement of this theorem by the StmI feature is
denoted by ΔTStmI in vector StmI. The expression

ΔTStmI•TExpI synthesizes the correctness theorem for the
JavaI language. More on theorem refinement in
Section 5.3.

3.3 Nested Vectors
Program representations have subrepresentations, and
recursively, subrepresentations may have subrepresenta-
tions. Hierarchical containment relationships are expressed
by allowing each term of a vector to be a vector that can be
refined. In general, the composition operator (•) that we use
recursively composes nested vectors. This is the essence of
AHEAD [5].

As an example, theorems have a vector structure. Theorem
T has a statement S and a proof P; T’s vector is [S,P]. A the-
orem refinement ΔT may refine its statement (ΔS) and/or its
proof (ΔP). A composite theorem is produced by composing
its subrepresentations, i.e., ΔT•T=[ΔS•S,ΔP•P]. Examples of
nested representations of code are given in [5].

4 What is a Refinement?
A feature is a transformation that maps an input artifact to a
modified (usually extended) artifact. The transformation is
structure-preserving and monotonic in the following sense:
new elements can be added to the input artifact and existing
elements can be modified but not deleted.

Abstract state machines (ASMs) can be refined in several
ways [11] where AHEAD uses three. One is conservative
extension: (a) define the condition for the new case, (b)
define a new ASM machine to add the extra behavior, and
(3) restrict the original machine by guarding it with the
negation of the new case condition. Suppose the original
machine is written in Java as method m():

void m() {...} // original machine

The structure of a method refinement in AHEAD that corre-
sponds to a conservative extension is:

void m() {
if (!condNew) SUPER.m(); // original actions

else {...} // new actions

}

That is, if condNew (the condition of the new case) is not
satisfied, invoke the original method, which is denoted by
SUPER.m(). Otherwise execute the new actions.

A second form of ASM refinement is parallel addition: (a)
define a new ASM to add the extra behavior, and (b) guard
the new ASM with the same conditions of the original
ASM. In effect, rule (b) is added after rule (a):

Our Term JBook Term Meaning
Gi syntaxi language grammar

Ii execJavai language interpreter

Ci compilei language compiler

Ji trustfulVMi virtual machine

Ti theoremi theorem of compiler correctness

Figure 3. Name Correspondences

Page 4

if cond then update1 // ASM rule (a)

if cond then update2 // ASM rule (b)

By ASM semantics, both are executed simultaneously if
cond is satisfied, effectively extending the first rule to be:

if cond then {update1; update2} // rules a + b

In AHEAD, this is expressed by the refinement pattern:

void m() { before; SUPER.m(); after; }

where either before or after could be null. Historically, a
null before is called an after-method, a null after is a
before-method, and non-null before and after actions are
an around-method [27]. See Appendix I for one more case.

Figure 4 shows the frequency of different kinds of refine-
ments used in building the AHEAD Tool Suite (ATS) [5].
Interestingly before and after methods were most common,
followed by around methods. Conservative extensions were
infrequent. Also included in Figure 4 are the corresponding
numbers for a legacy application (FRBDB [26]) that was ret-
rofitted with a feature design. ATS represents one extreme
where features had a premeditated design; FRBDB represents
another where features were an after-thought. Both exhibit
similar distributions.

It is hard to get comparable statistics for JBook, as ASM is
a parallel rule-based language. As best as we can tell,
before refinements and conservative extensions are com-
mon in JBook, and after and around are uncommon. The
reason is that after refinements are largely hidden in ASMs
because of their parallel-execution nature; sequential exe-
cution is encoded in state transitions rather than in straight-
line code. In any case, both AHEAD and JBook use compa-
rable ASM/method refinement techniques.

A third and by far most common form of refinement is add-
ing new elements or equivalently, mapping a null artifact to
a non-null artifact. Such refinements are called introduc-
tions. Adding new rules that apply to new states of execu-
tion is very common in JBook. Introductions are also very
common in AHEAD: a refinement of a class can add or

introduce new members (fields, methods) and can modify
existing methods (as indicated above). A refinement of a
package can add or introduce new classes and refine exist-
ing classes. As we will see, these simple concepts apply to
theorems as well.

5 Refinement of Artifacts

We now document the feature-refinement of grammars,
code, and theorems used in the JBook, and note their simi-
larity to feature-oriented program development.

5.1 Refining Grammars
The GExpI grammar is shown below (in black font), where a
Java imperative expression can be a literal, local variable,
unary expression, binary expression, conditional expres-
sion, or expression assignment:

Exp := Lit | Loc | Uop Exp | Exp Bop Exp
| Exp ? Exp : Exp | Asgn | Field
| Class.Field | Invk

Invk := Meth(Exps) | Class.Meth(Exps)
Exps := (Exp)+
Asgn := Loc = Exp | Field = Exp

| Class.Field = Exp

The ExpC feature refines this grammar by adding object
fields and method calls (indicated in red italic font
above). ExpC refines productions Exp and Asgn with addi-
tional right-hand sides, and introduces new productions
Invk and Exps. Exactly the same technique was used in
AHEAD to modularize and refine grammars [5].

5.2 Refining Code
Although ASMs are rule-based, they can express object-
oriented concepts of inheritance hierarchies and methods.
Adding hierarchies and methods to programs is conceptu-
ally not very interesting, but refining them is. In the follow-
ing, we present examples of JBook refinements of both.

5.2.1 Refining Inheritance Hierarchies
JBook calls the result of executing an expression or state-
ment a Phrase. Initially, ExpI defines a simple inheritance
hierarchy rooted at Phrase (Figure 5). The only subclass is
Val, and it has many different subclasses (boolean, byte,
short, etc.) which are depicted by a single class PrimValue.

Feature StmI adds subclasses to Phrase that represent the
possible results of executing imperative statements (e.g.,
Break, Continue, and Normal). Feature StmC adds the
Return class; feature ExpO adds Reference and Null sub-
classes to Val, and feature ExpE adds Exception as a new
subclass of Abruption, where an abruption is an interrup-
tion in flow control.3 Thus, the class hierarchy of Figure 5

Refinement
Name

Frequency
in ATS

Frequency
in FRBDB Code Pattern

before 26 142 before;
Super.m();

after 22 124 Super.m();
after;

around 5 63 before;
Super.m();
after;

conservative 4 13 if (!condNew)
SUPER.m();

else {...}

Figure 4. Frequency of Primitive Refinements

Page 5

is progressively revealed as features are composed. This is
typical of FOP designs.

5.2.2 Refining Methods
Besides adding new classes, features can refine existing
classes. In particular, existing methods can be refined. The
ASM concept of a “machine” or “submachine” closely
resembles a Java method. Feature StmC defines the ASM
actions (in black font) taken when a method is exited:

exitMethod(result) = // ASM definition

let (oldMeth, ...) = top(frames)
...
if methNm(meth)=”<clinit>” ∧

result=”norm” then ...
elseif methNm(meth)=”<init>” ∧

result=”norm” then ...
elseif ...

Feature ExpO adds constructor calls to the Java language.
This requires exitMethod to be refined to handle the
actions for constructors. The refinement adds the definition
in red italic font above. This change can be easily
expressed as a refinement of Java code.

5.3 Refining Theorems
Theorem T defines the correctness of the Java compiler. The
statement of T for Java1.0 consists of thirteen invariants,
nine are tersely described in Figure 6. A detailed knowledge
of these invariants is not needed for this paper: it is suffi-
cient to know that there are distinct named invariants. The
next sections explain how the statement of T (denoted by
T.S) and its proof (denoted by T.P) are refined by features.
Again, refinement means adding new elements (invariants,
proof cases) and refining existing elements (invariants,
proof cases). We show examples of each. Readers will note
the similarity of theorem refinement with grammar and
code refinement.

5.3.1 Adding New Invariants
T.S is a list of invariants. The T.S of the ExpI sublanguage
is defined by the (reg), (begE) and (exp) invariants. The
remaining invariants of Figure 6 are absent as they deal
with abstractions (statements, abruptions, and class initial-
izations) that cannot be defined using only ExpI concepts.

The StmI feature refines T.S by adding the invariants
(begS), (stm) and (abr) which deal with the normal and
abrupted termination of statement executions. The (stack),
(clinit) and (exc) invariants are not included as they
cannot be defined using only ExpI and StmI concepts.

Similarly, the ExpC feature adds the (stack) and (clinit)
invariants to T.S; the StmC feature leaves T.S unchanged.

Given these features, Figure 7 lists their compositions and
the invariants of T.S for each composition. The T.S for
composition j1 has three invariants; the T.S for j3 and j4
have eight. As Figure 7 shows, the set of invariants that
define the statement of theorem T in the JB product-line var-
ies from program to program. The remaining JB features
introduce the remaining invariants of T for Java1.0.

5.3.2 Refining Existing Invariants
Program invariants are also subject to refinement. A sketch
of the abruption (abr) invariant is:

3. ExpE adds exceptions to expressions. StmE adds throw-catch clauses
to Java. Without the StmE feature, exceptions will be thrown by expres-
sions and cannot be caught by a program.

Figure 5. Refinement of Phrase Inheritance Hierarchy

ExpI StmI StmC ExpEExpO

Phrase

Val Abruption

Break Continue Exception

Normal

Return

Reference

Null
PrimValue

ExpI StmI StmC ExpEExpO

Phrase

Val Abruption

Break Continue Exception

Normal

Return

Reference

Null
PrimValue

Phrase

Val Abruption

Break Continue Exception

Normal

Return

Reference

Null
PrimValue

Val Abruption

Break Continue Exception

Normal

Return

Reference

Null
PrimValue

Invariant Description
(reg) the equivalence of local variables in the language inter-

preter and the associated registers in the JVM interpreter
when both are in corresponding states

(begE) when the language interpreter begins to execute an
expression, the JVM interpreter begins to execute the
compiled code for that expression and the computed
intermediate values are equivalent

(exp) same as (begE) for a value returning termination of an
expression execution

(begS) same as (begE) except it applies to statements
(stm) conditions for normal statement termination
(abr) conditions for abrupted statement execution

(stack) frame-stack equivalence condition
(clinit) class initialization status equivalence condition
(exc) conditions for exception statement execution

Figure 6. Invariants Used in Compiler Correctness Proofs

Figure 7. Statement of Correctness

where:

j1 = ExpI
j2 = StmI•ExpI
j3 = ExpC•StmI•ExpI
j4 = StmC•ExpC•

StmI•ExpI

j1 j2 j3 j4 Java1.0

(reg)

(begE)

(exp)

(begS)

(stm)

(abr)

(stack)

(clinit)

(exc)

Page 6

if restbodyn/A=abr then <cond_1> (2)

That is, <cond_1> must hold when an abruption occurs. In
Section 5.2.1 we saw that feature ExpE extends the defini-
tion of an abruption to include exceptions. The <cond_1> of
(2) applies only to abruptions that are not exceptions.

ExpE uses a conservative extension to express this change.
First, ExpE refines invariant (2) by adding the qualifying
condition that the abruption is not an exception (below in
red italics). (2) becomes:

if restbodyn/A=abr and abr is not an exception
then <cond_1> (3)

Second, ExpE introduces invariant (exc) to T.S. to cover
the case where an abruption is an exception:

if restbodyn/A=abr and abr is an exception ...
then <cond_2> (4)

In general, each member of the JBook product line has a
correctness theorem. As features are composed, the theo-
rem statement of what it means to be a correct compiler is
refined by the addition of new invariants and the refinement
of existing invariants.

5.3.3 Adding Proof Cases
Let T.S(C) denote the set of invariants of T.S for feature
composition C. If G is a feature, G•C must be shown to sat-
isfy T.S(G•C) — the invariants collected and refined by G•C.

The structure of T.P in JBook is a list of cases. Feature G
refines T.P(C) by adding more cases and/or refining exist-
ing cases. Below we examine the refinements of T.P that
are made by each of the ExpI, StmI, ExpC and StmC features.

The ExpI feature defines the imperative expressions of
Java. Recall the recursive ExpI grammar definition:

Exp := Lit | Loc | Uop Exp | Exp Bop Exp
| Exp ? Exp : Exp | Asgn

Asgn := Loc = Exp

The proof for T is a case analysis using structural induction
on the definition of expressions and of their compilation.
The invariants (reg), (begE) and (exp) relate certain items
(e.g. variables) in the interpreter and JVM ASMs for ExpI.
If these invariants hold, the interpreter and JVM executions
are producing the same results. The T.P for ExpI is a list of
proof cases, one or more cases for each kind of expression
showing the ExpI invariants are preserved ([37] p179-184).

The StmI feature introduces the imperative statements of
Java. Its grammar refinement adds productions for Java
statements; no ExpI productions are refined:

Stm := ; | Loc = Exp; | Lab : Stm;
| break Lab; | continue Lab;
| if (Exp) Stm else Stm
| while (Exp) Stm | Block (5)

The invariants that StmI adds are about statement execu-
tions, while the invariants of ExpI are about expression
evaluations. Execution steps of the ExpI interpreter trivially
preserve the StmI invariants, and vice versa, as these invari-
ants relate sets of items that are disjoint.4 For the composed
interpreters to satisfy the invariants of StmI•ExpI, StmI
must add cases to T.P, one or more for each production in
(5), that prove the invariants of StmI are preserved. Note
that this induction on statements uses the proofs for the
statement subexpression invariants as induction hypothesis.

The grammar refinement of feature ExpC adds expressions
for static class fields, assignments to them, and expression
sequences. ExpC introduces frames and a frame stack to the
language and JVM interpreters respectively, and their val-
ues are related by a new invariant (stack). A second new
invariant (clinit) relates the class initialization status of
interpreter and JVM runs. As no ExpI and StmI interpreter
step references or updates frames or the class initialization
status, invariants (stack) and (clinit) are satisfied. ExpC
refines T.P with additional cases proving these two new
invariants hold, one case for each kind of new expression.
Since no ExpC execution step affects any of the previous
invariants, all the invariants hold for ExpC•StmI•ExpI.

StmC follows the above pattern: it adds no new invariants
and refines T.P with additional proof cases, one or more for
each production in its grammar refinement that adds
method calls and returns.

Figure 8 lists compositions of these features and the num-
ber of cases in T.P per composition. Each feature adds new
cases (or refines existing ones, see below) in the proof of T.

4. In proof arguments, we tacitly make use of the fact that an ASM execu-
tion step is guarded multiple assignments, in each step only the values of
those locations (i.e., variables) that occur in a rule with a true guard may
change, whereas the rest of the state remains unchanged. Therefore, each
time a new feature is introduced that adds a new invariant, that invariant is
trivially preserved by each execution step that does not affect a location
(variable) of the new invariant.

Composition total # of cases
in Proof of Theorem T

j1 = ExpI 13

j2 = StmI•ExpI 35

j3 = ExpC•StmI•ExpI 44

j4 = StmC•ExpC•StmI•ExpI 54

Java1.0 83

Figure 8. Proof of Correctness

Page 7

Cases can also be added as a result of refining invariants. In
Section 5.3.2, we showed the ExpE feature refined the
abruption invariant (abr). As the existing proof cases for
(abr) are not exceptions, their correctness remains unaf-
fected by this refinement. However, ExpE adds a new proof
case for the new invariant (exc) which expresses the
desired property for exceptions.

5.4 Refining Proof Cases
Proof cases are also subject to refinement. The ExpI feature
defines a case (in black font below) that shows the (exp)
and (reg) invariant, which were introduced by ExpI, hold
for variable assignment ([37] p183):

Case 9: context(posn) = α(loc = β val) and posn=β:
Assume … Hence invariant (exp) is satisfied in state
n+1… and invariant (reg) is satisfied as well.
The invariant (fin) remains true since…

The StmE feature introduces try-catch-finally state-
ments and a new invariant (fin) that deals with statement
return addresses. As the return addresses from finally
code are stored by the JVM in dedicated registers, it has
also to be checked that every register assignment preserves
the invariant. Therefore the case concerning variable
assignment must be refined with additional proof text (in
red italic font above).

A larger example of theorem refinement that includes the
addition and extension of both invariants and proof cases is
presented in Appendix II.

5.5 Further Structure
The ASM interpreter and compiler use a familiar object-ori-
ented structure. Each right-hand side of a production corre-
sponds to an abstract class and each left-hand side
corresponds to one of its subclasses. The inheritance hierar-
chy for expressions is rooted at abstract class called Exp
(expression), and it has concrete subclasses for literals
(Lit), variables (Loc), unary expressions (Uop), etc.
Instances of these classes define an AST for a parsed
expression [4].

The interpreter defines an abstract method interpret() in
the Exp class, and all subclasses are obliged to provide
implementations of this method (to interpret an expression).
Similarly, a compiler defines an abstract method compile()
in the Exp class, and all subclasses must provide implemen-
tations of this method (to compile an expression). Type
checking ensures the methods are present in subclasses.

The proof of T in the JBook is a sequence of cases. These
cases largely correspond to the following: an ‘abstract’ the-
orem is defined in the Exp class; all subclasses are obliged

to define a concrete (i.e., fully elaborated) theorem for each
subclass. The ‘abstract’ theorem defines the invariants that
are to hold for all expressions. The ‘concrete’ theorems pro-
vide the proofs that these invariants hold for particular
expression types. This is the essence of structural induction
(which was used in the proof of T). In creating the original
proof of the JBook, cases were initially missed (and subse-
quently discovered). Type-checking may have automati-
cally reported the absence of missing cases. We will see in
Section 7 that type checking can play a much more expan-
sive role in certifying theorems.

5.6 Recap and Insight
An obvious question is: why does this work? Ideally, fea-
tures only add new elements (e.g., ASMs, methods, classes,
proofs). But generally, this is not common.

More typically, features add new elements and extend
existing elements, as we have seen in all the program repre-
sentations used in the JBook. Such features have incremen-
tal or monotonic semantics. To the best of our knowledge,
in 20 years of building GenVoca product-lines, virtually all
features we have encountered have incremental semantics.

But there are domains where features have a more invasive
impact by erasing the definitions of existing elements
(methods, ASMs, proofs) and replacing them with defini-
tions that are specific to a composition of two or more fea-
tures. That is, the replaced definitions cannot be
incrementally built. This is known as feature interaction: it
usually accompanied by an abrupt discontinuity in seman-
tics where prior properties are no longer valid. The tele-
communications domain is replete with examples [14].
Appendix I shows how element definitions can be replaced.
[31] is a general theory of how feature interactions can be
integrated into a GenVoca model.

In summary, proofs, invariants, code and grammars have a
structure. And within a structure, there are extension points
or variation points [15] where more structure can be added
or existing structure can be replaced. Features exploit struc-
ture variability in that they modularize the structural
changes of all program representations [3][4][5][26].

6 Validation

The previous sections document the results of our valida-
tion. We spent many weeks (over several months) review-
ing the JBook details to isolate the contents of individual
features (ASM definitions, grammars, and theorems). The
task was not difficult and sometimes tedious as the relevant
part of the JBook on which we focussed covers 200 pages,
including the correctness proof which occupies 37 pages.

Page 8

We were pleased to find an explicit representation of a fea-
ture-based compositional verification structure. In a sense it
did not come as a surprise, since the major driving force for
developing ASM models by step-wise refinement had been
“splitting the overall definition and verification problem
into a series of tractable subproblems” ([37] p7) for a com-
plete (not some lightweight) version of Java/JVM. The
explicit feature-based formulation and proof of the proper-
ties that were exposed confirmed our belief that a clear
compositional design structure goes together with a feasible
structure of system invariants and their proofs.

7 Future Challenges
Feature-modularizing proofs is only a first step toward the
goal of automatically verifying programs in software prod-
uct lines. Further progress can be made by examining what
is synthesized when features are composed:

• the text of a program’s source. This text must be
compiled by a tool such as javac to verify that it is
both syntactically correct and type correct.

• the text of a grammar’s specification. This text must
be compiled by a tool such as javacc to verify it is
both syntactically correct and well-formed (i.e., it
type-checks according to the meta-grammar).

• the text of the program’s theorems. Here is where
we need help: how do we know that the text
constitutes a correct proof? If all program
representations are treated similarly, what is the
theorem counterpart to syntax and type checking?

In JBook and this paper, the proof analysis builds upon the
understanding of the subject matter by the engineer. In such
an endeavor, ASMs help engineers formalize their pro-
grams and prove needed properties. The effort needed for
manual proofs to convince humans is many times less than
for comparable automated proofs.5 But manual certification
of generated theorems is only a provisional solution. The
need for mechanized proofs for ASMs has been both recog-
nized and accomplished for various case studies using theo-
rem provers [21][22][33][34][35]. In particular, Schellhorn
has shown that developing proofs incrementally (much like
the incremental development in JBook) simplifies the task
of mechanically proving program properties [34].

Once the theorems are expressed in a machine manageable
form, proof-checkers can be used. Theorems are written in
a designated logic; a proof-checker certifies that the proof
statements are well-formed in that logic. In effect, proof
checking reduces to the type checking of terms that define
the logic’s syntax, judgements, and rule schemes [2]. So

verifying a program of a product-line is accomplished by
generating the program and its theorems, and using a proof
checker to certify theorems automatically. Doing this would
be a meaningful step forward: it opens a new line of
research that would further expose the structure (interfaces
and variation points) of theorems that are refined by fea-
tures, and it would provide a way to verify programs of a
product-line automatically using proof checkers.

The approach outlined above is conceptually no different
than verifying that the generated source of a program is
type-correct, i.e., generate the program’s source and to see
if it compiles without errors. Recent work shows how type
safety properties of all programs of a product-line can be
verified using SAT solvers [16][39]. This analysis should
apply to proof text as well. Proof trees may have holes that
are filled by refinements, e.g. when replacing an abstraction
by a detailed machine, for which the axiomatic assumptions
made for the abstraction have to be proved. Another exam-
ple is the introduction of a sub-induction (e.g. on expres-
sions) in a head induction (e.g. on statements). These
‘holes’ can be instantiated only by proof trees of a certain
‘shape’ (i.e., a theorem type). Guaranteeing that the ‘holes’
are instantiated properly is a problem of type-correctness.

8 Related Work
There is an enormous literature on verification. For lack of
space, we limit our discussion of related work to that rele-
vant to verifying software product lines.

Not all features are compatible; some features preclude or
require the use of others in a composition. Verifying com-
positions of features is discussed in [6], where feature mod-
els, grammars, and propositional formulas are related, and
techniques for validating feature models are discussed.

Czarnecki used [6] to show how feature models could be
used to check the well-formedness of all products of a prod-
uct line [16]. [39] is a follow-on work that showed how to
verify the type correctness of a product-line.

Collaborations are a fundamental way to express large-
scale refinements of object-oriented programs [5]. Krishna-
murthi and Fisler have explored the modular verification of
collaborations using model checkers. Their work showed
that predicates describing properties of state machines are
refined by features [28][29].

Hoare, Misra, and Shankar proposed a Verified Software
Grand Challenge in 2005 with the goal of scaling verifica-
tion to a million lines of code [23][25]. Verification would
be based on the text of a program and the annotations con-
tained within it [30]. We, like others, believe that verifica-
tion must be intimately integrated with software design and5. The reported ratio for two verification efforts was 1 to 4 [8][33].

Page 9

modularity [24][40]. Verifying product-lines, which
requires the integration of design and verification, seems a
fitting goal for a Verified Software Grand Challenge.

9 Conclusions
Providing warranties about programs is a long-standing
goal of Computer Science. A pragmatic extension of this
goal is to provide warranties for programs in a software
product line. We presented first steps toward this extended
goal by showing how features integrate program verifica-
tion and program design. A feature encapsulates program
fragments that implement the feature’s functionality, as
well as theorem fragments that prove the correctness of the
feature’s behavior. Composing features yields both com-
plete programs and their theorems.

Another contribution of this paper is the reinforcement that
features offer a fundamental way to modularize programs.
Disjoint communities (ASM and FOP) have independently
recognized the utility of features to define complex pro-
grams in an incremental manner. We used the ASM JBook
case study to illustrate the power of features and to add the-
orems to the growing set of representations that are feature-
refinable.

Although our work is preliminary, it provides us with new
insights on verification and opens new lines of research.
The next steps are to (a) evaluate the practicality of refining
theorems, (b) certify generated theorems by proof-checkers,
and (c) see if certification can scale to all programs in a
product line by exploiting recent advances in SPL verifica-
tion. Further, the similarity of refinements of different pro-
gram representations reinforces the possibility that general
tools can be developed for refining all program representa-
tions, rather than developing unique tools to accomplish the
same goals for different representations [5].

Acknowledgements. We thank Christian Lengauer, Harry
Li, Salvador Trujillo for their helpful comments. We also
thank Christian Kästner for the FRBDB statistics. This work
was support in part by NSF’s Science of Design Project
#CCF-0438786.

10 References
[1] B. Albahari, P Drayton and B. Merril. C# Essentials.

O’Reilly and Associates, 2001.
[2] A.W. Appel, N. Michael, A. Strump and R. Virga. “A Trust-

worthy Proof Checker”, J. of Automated Reasoning, 2003.
[3] D. Batory and S. O’Malley. “The Design and Implementation

of Hierarchical Software Systems with Reusable Compo-
nents”. ACM TOSEM, October 1992.

[4] D. Batory, B. Lofaso and Y. Smaragdakis. “JTS: Tools for
Implementing Domain-Specific Languages”. ICSR 1998.

[5] D. Batory, J.N. Sarvela and A. Rauschmayer. “Scaling Step-
Wise Refinement”. IEEE TSE, June 2004.

[6] D. Batory. “Feature Models, Grammars, and Propositional
Formulas”. SPLC 2005.

[7] BMW. www.bmwusa.com
[8] E. Börger and D. Rosenzweig. “The WAM - Definition and

Compiler Correctness”. In Logic Programming: Formal
Methods and Practical Applications, Studies in Computer
Science and Artificial Intelligence, 11, North-Holland, 1995

[9] E. Börger and W. Schulte. “Initialization Problems for Java”.
Software—Concepts & Tools, 20(4), 1999.

[10] E. Börger and R. Stärk. Abstract State Machines: A Method
for High-Level System Design and Analysis. Springer-Verlag,
2003.

[11] E. Börger. “The ASM Refinement Method”, Formal Aspects
of Computing, 2003.

[12] E. Börger and R.F. Stärk. “Exploiting Abstraction for Specifi-
cation Reuse. The Java/C# Case Study”, in Formal Methods
for Components and Objects: Second International Sympo-
sium (FMCO 2003 Leiden), 42-76, 2004.

[13] E. Börger, G. Fruja, V. Gervasi and R. Stärk. “A High-Level
Modular Definition of the Semantics of C#”. Theoretical
Computer Science, Vol. 336 #2-3, 2005.

[14] M. Calder, M. Kolberg, E.H. Magill, and S. Reiff-Marganiec.
“Feature Interaction: A Critical Review and Considered
Forecast”, Computer Networks, #41, 2003.

[15] K. Czarnecki and U. Eisenecker. Generative Programming
Methods, Tools, and Applications. Addison-Wesley, Boston,
MA, 2000.

[16] K. Czarnecki and K. Pietroszek. “Verification of Feature-
Based Model Templates Against Well-Formedness OCL
Constraints”. GPCE 2006.

[17] Dell Computers. www.dell.com
[18] N.G. Fruja and E. Boerger. “Modeling the .NET CLR Excep-

tion Handling Mechanism for a Mathematical Analysis”.
Journal of Object Technology, Vol. 5#3, 2006.

[19] N.G. Fruja. “Specification and Implementation Problems for
C#”. ASM 2004.

[20] N.G. Fruja. “Type Safety of C# and .NET CLR”, ETH Zur-
ich, 2006.

[21] A. Gargantini and E. Riccobene. “Encoding Abstract State
Machines in PVS”, Abstract State Machines: Theory and
Applications, Springer-Verlag, 2000.

[22] W. Goerigk, et al. “Compiler Correctness and Implementa-
tion Verification: The Verifix Approach”, Int. Conf. on Com-
piler Construction, Proc. Poster Session of CC 1996.

[23] T. Hoare, J. Misra and N. Shankar. “The IFIP Working Con-
ference on Verified Software: Theories, Tools, Experiments”.
tinyurl.com/nrhdl, October 2005.

[24] G.C. Hunt, et al. “Sealing OS Processes to Improve Depend-
ability and Security”. Microsoft Research Technical Report
MSR-TR-2005-135, April 2006.

Page 10

[25] C. Jones, P. O’Hearn and J. Woodcock. “Verified Software: A
Grand Challenge”. IEEE Computer, April 2006.

[26] C. Kästner, S. Apel and D. Batory. “A Case Study Imple-
menting Features Using AspectJ”, SPLC 2007.

[27] G. Kiczales, J. des Rivieres and D. G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[28] S. Krishnamurthi and K. Fisler. “Modular Verification of
Collaboration-Based Software Designs”. FSE 2001.

[29] S. Krishnamurthi, K. Fisler and M. Greenberg. “Verifying
Aspect Advice Modularly”. ACM SIGSOFT 2004.

[30] G.T. Leavens, et al. “Roadmap for Enhanced Languages and
Methods to Aid Verification”. GPCE 2006

[31] J. Liu, D. Batory, and C. Lengauer. “Feature Oriented Refac-
toring of Legacy Applications”, ICSE 2006.

[32] K. Pohl, G. Bockle and F v.d. Linden. Software Product Line
Engineering: Foundations, Principles and Techniques.
Springer 2005.

[33] G. Schellhorn and W. Ahrendt. “The WAM Case Study: Veri-
fying Compiler Correctness for Prolog with KIV”, Auto-
mated Deduction — A Basis for Applications III, Kluwer
Academic Publishers, 1998.

[34] G. Schellhorn, “Verification of Abstract State Machines”,
Ph.D. Thesis, University of Ulm, 1999.

[35] G. Schellhorn et al. “A Systematic Verification Approach for
Mondex Electronic Purses Using ASMs”. Dagstuhl Seminar
on Rigorous Methods for Software Construction and Analy-
sis. LNCS 2007 (to appear).

[36] G. Schellhorn. “ASM Refinement Preserving Invariants”.
ASM 2007.

[37] R.F. Stärk, J. Schmid and E. Börger. Java and the Java Vir-
tual Machine: Definition, Verification, Validation. Springer-
Verlag, 2001.

[38] W. Taha and T. Sheard. “Multi-Stage Programming with
Explicit Annotations”, PEPM 1997.

[39] S. Thaker. “Design and Analysis of Multidimensional Pro-
gram Structures”. M.Sc. Thesis, Department of Computer
Sciences, The University of Texas at Austin, 2006.

[40] F. Xie and J. Browne. “Verified System by Composition from
Verified Components”. ACM SIGSOFT/FSE 2003.

Appendix I: Replacement Refinements

There is an additional refinement possibility in AHEAD:
calls to SUPER.m() may be conditional. Consider the fol-
lowing refinement pattern:

void m() {before; if (cond) SUPER.m(); after;} (6)

which is a blend of parallel addition and conservative
extension. A special case of (6) that arises infrequently is
when cond is always false (i.e., the original method is
never called). This refinement is called replacement. The
simplest known counter-example deals with element dele-
tion in data structures. The element removal operation is:

void remove() {… remove current element …}

When the feature of logical deletion is added to a data struc-
ture, elements are simply flagged deleted and are never
removed. The logical deletion refinement of remove() is:

void remove() {set delete flag of element;
 if (false) {… remove current element …}}

which is a replacement as the original method is not called.

Appendix II: Complex Theorem Refinement
A feature can refine a theorem (statement and/or proof),
namely by adding (Add) new and refining (Ref) existing
invariants (Inv) and proof cases (Prf). We present an exam-
ple that illustrates all of these possibilities.

Consider an abruption that is not an exception, say due to a
return statement. If it occurs within a try block of a try-
catch-finally statement and the corresponding target
statement contains some try-catch-finally statement,
then the Java semantics requires that all finally blocks
between the return statement and its target have to be exe-
cuted in innermost order before returning. To verify that
this is correctly realized by the appropriately refined com-
piler (Fig.12.3 p164, which refines Fig.10.3 p153 and
Fig.9.4 p144 in [37]), feature StmE introduces a new invari-
ant (fin) which states the correctness condition for return
addresses from finally code that has to be executed when
an abruption is encountered.

(fin) is a new condition for the newly introduced excep-
tions and try-catch-finally statements and thus is added
to the list of invariants (Add-Inv). This triggers also a new
proof part requiring new cases (Add-Prf), which are added
to the existing proof (JBook cases #76-80 for finally
statements p199-201).

But the new invariant also refines the invariant that had
already been imposed by the previously introduced features
on abruptions that are not exceptions. In fact (fin) contains
a refinement of the invariant for return statements (Ref-
Inv) expressing that the correctness of the return address is
preserved during the corresponding run segments for the
finally code in the two interpreters executing the return
statement. This triggers also a refinement of the proof cases
(Ref-Prf) for return statements to guarantee that (fin)
holds, namely adding the (fin)-related part to the original
cases #48 (p191), #52 (top of p193), #53 (p193). Note that
this refinement can be viewed as a conservative extension
of the case of a return statement without finally code,
because in the latter case the invariant (fin) is void.

Finally, an existing proof case is refined (Ref-Prf), which is
discussed in Section 5.3.3.

