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Abstract. We introduce a new abstract system, called the truth system.
In the truth system, a process deduces a true value, with high proba-
bility, from an incoming stream of both true and false values, where the
probability that a value in the incoming stream is true is at least 0.6.
At each instant, the receiving process maintains at most one candidate
of the true value, and eventually the process reaches the conclusion that
its candidate value equals, with high probability, the true value. In this
paper, we present three versions of the truth system, discuss their prop-
erties, and show how to choose their parameters so that their probability
of error is small, i.e. about 10−6. The third version, called the stable sys-
tem, is the most valuable. We employ the stable system as a building
block in a stabilizing unidirectional token ring of n processes. When n is
small, i.e. about 100 or less, the stable system can be considered error-
free and we argue that the resulting token ring is stabilizing with high
probability. We simulate the token ring, when n is at most 100, and ob-
serve that the ring always stabilizes even though each process lies about
its state 40% of the time.
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1 Introduction

Faults, that are often assumed to plague the communications between different
processes in a distributed system, can be distinguished into natural faults and
malicious faults [5]. On one hand, natural communication faults are assumed to
occur independently of the underlying computation of the distributed system,
and are usually assumed to be random. On the other hand, malicious communi-
cation faults are assumed to occur in the worst possible times for the underlying
computation of the distributed system, and are usually assumed to be delib-
erate and based on complete knowledge (by the adversary) of the underlying
computation.
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Distributed systems that tolerate natural communication faults are elegant,
inexpensive, and practical to implement and use. However, such systems cannot
tolerate malicious communication faults if they happen to occur. By contrast,
distributed systems that tolerate malicious communication faults are complex,
expensive, and sometimes impossible to design.

Well-known examples of natural communication faults and how to tolerate
them are as follows.

– Loss : Some sent values from one process to another are lost. These faults can
be tolerated by making the sending process send the same value repeatedly
until the sending process receives an “acknowledgement” from the receiving
process [6].

– Delay: Some sent values from one process to another are delayed for an
unbounded time period before these values are received by their intended
receivers. Sometimes, these faults cannot be tolerated as discussed in [4].
This realization has led researchers to adopt weaker model of faults, for
example imperfect fault detectors, that can be tolerated [2] and [13].

– Corruption: Some sent values are corrupted randomly after they are sent by
one process and before they are received by another process. These faults
can be detected by adding a checksum to each sent value. In this case, any
random corruption of a sent value and its checksum can be detected, with
high probability, by the receiving process [11].

– Topology Change: The topology of the distributed system changes over time,
for example due to the mobility of the processes within the system. Methods
for tolerating these “faults” are discussed in [12].

– Anonymity: Each sent value does not include the identity of the sending
process and is received by an arbitrary process in the distributed system.
Methods for tolerating these “faults” are discussed in [1].

– Modification: A sent value from one process to another is modified before it is
received as follows. The value is replaced by any wrong (possibly malicious)
value in such a way that the receiving process cannot tell, by examining
the received value, that the received value is in fact a false value different
from the true value that was sent. For example, if a checksum is attached
to the sent value, then a modification fault causes both the value and its
checksum to be replaced as follows. The true value is replaced by any false
(possibly malicious) value, and the checksum is replaced by the checksum of
the false value and so the receiving process cannot tell that the true value
and its checksum are replaced by a false value and its checksum. Methods
for tolerating modification faults in the context of distributed voting are
presented in [10] and [8].

Well-known examples of malicious communication faults and how to tolerate
them are discussed in [7] and [9].

In this paper, we present a new method, which we call the truth system, for
tolerating modification faults. The truth system is different from the distributed
voting systems, discussed in [10] and [8], in several ways. Most notably, the two
systems have different objectives. The objective of the truth system is to deduce,
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with a predefined high probability, the true value from an unbounded stream of
both true and false values. In particular, the parameters of the truth system can
be set such that the probability of the deduced value being wrong is very small,
say 10−6. By contrast, the objective of a distributed voting system is to deduce
the value that has the highest probability of being true from a bounded stream
of both true and false values, but the probability of the deduced value being
wrong can be as high as 0.5.

2 Three Versions of the Truth System

The goal of this paper is to introduce a new abstract system, called the truth
system, discuss its properties, and show that this system can tolerate, with high
probability, modification faults. In the truth system, a process deduces a true
value from a mixed stream of both true and false values. The probability, that
a value in the mixed stream is true (or false), is at least 0.6 (or at most 0.4, re-
spectively). The process correctly deduces the true value with a high probability,
that is around (1-10−6).

It is important to explain why we chose the probability, of a value in the
mixed stream being true, to be at least 0.6. First, if we chose this probability to
be at most 0.5, then no system can deduce the true value with any probability
greater than 0. Second, if we chose this probability to be higher than 0.5 but
less than 0.6, then as shown at the end of Section 3 the truth system may need
up to 1700 values in the input stream to deduce the true value. This is 10 times
the number of values needed in the input stream, to deduce the true value, when
the probability of a value in the mixed stream being true, is at least 0.6.

The truth system consists of two processes: source and monitor. Process
source has an integer state, and process monitor attempts to correctly deduce
the integer state of process source.

Periodically, process source sends an integer s to process monitor. With a
probability of at least 0.6, the sent s is the true value of the state of process
source, and with a probability of less than 0.4, the sent s is an arbitrary integer.
Process monitor receives the s integers, one by one, and maintains at most one
candidate for the state of process source. Eventually process monitor reaches the
conclusion that its maintained candidate for the state of process source equals,
with high probability, the true state of process source.

The state of process source can change over time, but we assume that this
change occurs at a slow rate. This is because if the state of source is changed at
a fast rate, the monitor process may never be able to catch up and deduce the
state of source. As shown at the end of Section 3, to ensure that the change rate
of the state of process source is slow, we assume that the state of source is not
changed until process source has sent out this state 170 or more times.

Our presentation of the truth system in this paper consists of three steps. In
each step, we present a version of the truth system and discuss its properties.
We then point out some problem with this version and so clear the way for the
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next version that is to be presented in the next step, and so on. The version
presented in the third (and last) step has no problems, as far as we can tell.

In the first step, we present a version of the truth system where the monitor
process terminates as soon as it concludes that its maintained candidate for the
state of process source equals, with high probability, the true state of process
source. The problem of this truth system is that the monitor process deduces
exactly one true state of process source, even if the state of process source is
changed many times afterwards. We refer to this truth system as the one-shot
system.

In the second step, we modify the one-shot system to make the monitor pro-
cess continue to operate indefinitely, even after it concludes that its maintained
candidate for the state of process source equals, with high probability, the true
state of process source. We refer to this truth system as the continuing system.
The problem with the continuing system is that the conclusion reached by pro-
cess monitor (that its candidate for the state of process source equals, with high
probability, the true state of source) is not stable, but it can fluctuate wildly
over time, even when the true state of process source remains fixed for a long
time period.

In the third step, we modify the continuing system to ensure that, when the
true state of process source remains fixed for a long time period, the conclusion
reached by process monitor (that its candidate for the state of process source
equals, with high probability, the true state of source) remains stable over time.
We refer to this truth system as the stable system.

3 The One-Shot System

In this section, we present our first version of the truth system, called the one-
shot system. In the one-shot system, as soon as process monitor concludes, that
its maintained candidate for the state of process source equals, with high prob-
ability, the true state of process source, process monitor terminates.

Process source in the one-shot system is specified in Protocol 1. This process
has one action that it executes over and over, since the guard of the action is
true. During each execution of the action, process source sends an integer s to
process monitor. With probability p/100, the sent s is the value of input state,
and with probability (100-p)/100, the sent s can be any integer, where p is an
input of process source.

Input p can be regarded as the probability of process source telling the truth,
and input state can be regarded as the true state of process source. From the
received s integers, process monitor is expected to deduce the true value of input
state in process source. It is straightforward to show that if the value of p is in
the range 0..50, then process monitor can never deduce the true value of state.
At the end of Section 3, we argue that if the value of p is in the range 51..59,
then process monitor may need to receive up to 1700 s integers (instead of 170)
in order to deduce the true value of state with high probability. That is why we
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Protocol 1 process source

const pmin : 60..99
input p : pmin..99

state : integer {state of source}
variable r : 0..99 {random number}

s : integer {sent state}
begin

true →
r := random

if r ≥ p then

s := any {assign malicious value}
else

s := state
end

send s to monitor
end

specified the value of p to be in the range pmin..99, where pmin is a constant
whose value is in the range 60..99.

Both p and state are inputs to process source. Thus, their values can be
changed over time by an outside agent. As shown at the end of Section 3, we
assume that once the value of state is changed, the value of state remains fixed
until process source executes its action 170 or more times.

Process monitor in the one-shot system is specified in Protocol 2. Process
monitor has three variables: c, st and s. Variable c is a counter whose value is
in the range 0..cmax, where cmax is a constant of process monitor. Variable
st stores the latest candidate for the state of process source. Variable s stores
the latest received integer from process source. The value of counter c indicates
whether process monitor can conclude that the current value of st equals, with
high probability, the value of state in process source. Process monitor reaches
this conclusion when, and only when, the value of counter c is cmax.

Process monitor has only one action that is executed each time the process
receives an integer s from process source. When an integer s is received, process
monitor checks the value of its counter c. If c = 0, then variable st is assigned s
and counter c is assigned 1. If c > 0 and st is different from the received s, then
c is decreased by 1. If c > 0 and st equals the received s, then c is increased
by 1 (provided that c does not exceed its maximum value cmax ). Then process
monitor compares the values of c with cmax. If c = cmax, then process monitor
concludes that the current value of its variable st equals, with high probability,
the value of state in process source.

To complete the specification of process monitor, we need now to compute
the value of constant cmax in monitor. The value of cmax should be chosen such
that the probability of error of the one-shot system is kept small, say around
10−6.
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Protocol 2 process monitor of the one-shot system

const pmin : 60..99 {same as pmin in source}
cmax : integer

variable c : 0..cmax {counter, init. 0}
s : integer {received state}
cs : integer {candidate state}

begin

rcv s from source →
if c = 0 then

c := 1
cs := s

else if cs 6= s then

c := c - 1
else

c := min(c+1, cmax)
end

if c = cmax then

{conclude: cs = state} terminate

end

end

The probability of error, denoted p(error), of the one-shot system is the prob-
ability that starting from its initial global state where c = 0, the system reaches
a global state where c = cmax and cs 6= state.

In Theorem 1 below, we give a formula that describes the relationship be-
tween pmin, cmax, and p(error) for the one-shot system. Our proof of this theo-
rem is based on two simplifying assumptions. First, we assume that the state of
process source does not change over time. This assumption is acceptable given
our understanding that the change rate of the state of process source is slow
anyway. Second, we assume that whenever process source sends an arbitrary in-
teger s to process monitor, process source always sends the same integer that is
different from the state of process source. This assumption represents the worst
case scenario that assigns p(error) its highest value. We adopt these two assump-
tions in proving all the theorems in this paper. All the proofs are shown in the
Appendix at the end of the paper.

Theorem 1 (pmin, cmax, and p(error) for the one-shot system).

p(error) =
(1 − pmin)cmax

(1 − pmin)cmax + (pmin)cmax
. ⊓⊔

For many applications, it is reasonable to expect that p(error) should be
around 10−6. In this case, we can use the formula in Theorem 1 to produce the
relationship between pmin and cmax, for the one-shot system, shown in Table 1.

An execution step of the one-shot system consists of two parts. First, process
source executes its (sending) action, then process monitor executes its (receiving)
action.
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Table 1.

pmin cmax

0.6 34

0.7 16

0.8 10

0.9 6

If pmin in this system is 0.6 and the value of variable cs in process monitor
is the correct state of process source, then in each step of the system, counter c
in process monitor is incremented by 1 with probability 0.6, and is decremented
by 1 with probability 0.4. In other words, each step of the system increments
counter c by 0.2 on the average. Thus, the system needs to execute cmax/0.2
steps on the average before counter c reaches its maximum value cmax and the
system terminates. Because cmax in this system is 34 from Table 1, the system
needs to execute 170 steps before it terminates.

If we choose pmin in this system to be 0.51, and assume that cmax remains 34
(rather than being increased in value as it should), and follow the same analysis
in the previous paragraph, we conclude that the system will execute on average
(34/0.02)= 1700 steps before it terminates. In other words, choosing pmin to be
in the range from 0.51 to 0.59 can lead to (sometimes substantial) increase in
the number of steps to be executed. This should explain our choice of pmin to
be at least 0.6.

The above analysis for computing the average number of steps that need to be
executed by the one-shot system before it terminates is based on the assumption
that the state of process source does not change during execution. This is an
important assumption; for instance, if the state is changed at least once every 5
execution steps, the one-shot system may never terminate. This should explain
our above requirement that the state of process source remains fixed for the
duration of 170 steps.

4 The Continuing System

The problem of the one-shot system is that process monitor terminates as soon
as it concludes that the value of its cs variable equals, with high probability,
the value of input state in process source. Thus, monitor cannot observe any
change in the state of process source. To remedy this problem, we modify process
monitor such that the process continues to execute indefinitely. This modification
is achieved by replacing statement terminate by a statement skip in the action
of process monitor. We refer to the resulting system as the continuing system.

Because the continuing system is nonterminating, the initial state of the
system, where c = 0, is irrelevant. Rather, we define the probability of error
p(error) of the continuing system as the steady state probability that the system
is in a global state where c = cmax and cs 6= state. The following theorem gives
a formula that describes the relationship between pmin, cmax, and p(error) for
the continuing system.
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Theorem 2 (pmin, cmax, and p(error) for the continuing system).

p(error) =
(1 − pmin)2×cmax

(1 − pmin)2×cmax + (pmin)2×cmax
. ⊓⊔

Assuming that p(error) is around 10−6, we can use the formula in Theorem 2
to produce the relationship between pmin and cmax, for the continuing system,
shown in Table 2. Notice that the cmax values in the one-shot system, shown in
Table 1, are twice the cmax values in the continuing system, shown in Table 2.

The continuing system has an interesting problem. Even if the state of process
source remains fixed for a long time period T, the value of counter c in process
monitor can fluctuate during period T between c < cmax (when process monitor
cannot conclude that cs = state) and c = cmax (when process monitor can
conclude that cs = state). This observation suggests the following definition.

The probability of no conclusion, denoted p(no-conclusion), of the continuous
system is the steady state probability that the system is in a global state where
c < cmax. The following theorem gives a formula for computing p(no-conclusion)
as a function of pmin and cmax.

Theorem 3 (p(no-conclusion) for the continuing system).

p(no-conclusion) =

∑2×cmax−1

i=1
(1−pmin

pmin
)i

∑2×cmax

j=0
(1−pmin

pmin
)j

. ⊓⊔

Using the formula in Theorem 3 and the values of pmin and cmax in Table 2,
we can compute the values of p(no-conclusion), for the continuing system, as
shown in Table 2.

Table 2.

pmin cmax p(no-conclusion)

0.6 17 0.667

0.7 8 0.429

0.8 5 0.250

0.9 3 0.111

From the first row in Table 2, if pmin and cmax for the continuing system
are 0.6 and 17 respectively, then p(no-conclusion) for this system is 0.667. This
means that even if the state of process source remains fixed for a long time
period T, process monitor cannot conclude that cs = state for 66.7% of the
time during period T. Clearly, this is not acceptable and a modification of the
continuing system is in order. In the next section, we describe how to modify
the continuing system to remedy this problem. We refer to the modified system
as the stable system.
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5 The Stable System

The stable system is obtained from the continuing system, discussed in the pre-
vious section, by making the following two modifications to process monitor (in
the continuing system). First, a new variable named ss is added to process mon-
itor. Variable ss stores the latest stable estimate (by process monitor) of the
state of process source. Second, the last if -statement in the action of process
monitor is modified to become as shown in Figure 1. (The first if -statement in
the action of process monitor remains unchanged.)

if c = cmax then

{conclude: cs = state} ss := cs
end

Fig. 1.

The probability of error p(error) of the stable system is defined as the steady
state probability that the system is in a global state where ss 6= state. The
following theorem describes the relationship between pmin, cmax, and p(error)
for the stable system.

Theorem 4 (pmin, cmax, and p(error) for the stable system). Given
that p(error) for the stable system is around 10−6, we have the following rela-
tionship between pmin and cmax for the stable system.

Table 3.

pmin cmax

0.6 20

0.7 9

0.8 5

0.9 4

⊓⊔

A step of the stable system consists of two parts. First, process source ex-
ecutes its action once. Second, process monitor executes its action once. The
convergence span of the stable system is the average number of steps that needs
to be executed by the stable system in order to change the global state of the
system from one where c = cmax and ss 6= state to one where c = cmax and
ss = state. The following theorem gives an approximate formula for computing
the convergence span of the stable system.
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Theorem 5 (convergence span of the stable system).

convergence span ≈
2 × cmax

2 × pmin − 1
. ⊓⊔

Using the formula in this theorem and the values of pmin and cmax from
Table 3, we compute the convergence span of the stable system as shown in
Table 4.

Table 4.

pmin cmax convergence span

0.6 20 200

0.7 9 45

0.8 5 17

0.9 4 10

6 A Stabilizing Token Ring

In this section, we discuss how to employ the stable system, presented in the
previous section, as a building block in constructing a stabilizing unidirectional
token ring of up to 100 processes, where each process can lie about its state
at most 40% of the time. We start our discussion by presenting a unidirectional
token ring, in Protocol 3, where processes do not lie about their states. Note that
this ring is similar to Dijkstra’s token ring in [3] with two exceptions. First, the
execution of this ring is synchronous, whereas the execution of Dijkstra’s token
ring is asynchronous. Second, this ring uses message passing primitives whereas
Dijkstra’s token ring uses shared memory primitives.

In this ring, each process p[i] has two variables, s and ss, where variable s
stores the latest state that p[i] has sent or received, and variable ss stores the
state of p[i]. Each p[i] also has two actions: a sending action where p[i] sends its
own state to p[i+1 mod n], and a receiving action where p[i] receives the state
of p[i-1 mod n] then modifies its own state based on the received state.

A global state of this ring is defined by a value for each ss variable in the
ring. (This means that the s variables are not considered part of the global state
of the ring.)

A transition of this ring is a pair (S, S’) of global states of the ring such
that if the ring is in a global state S and a “step” is executed, then the ring
becomes in a global state S’. Executing a step in the ring consists of two parts.
First, each process in the ring executes its sending action, then each process in
the ring executes its receiving action. Thus, each process in the ring ends up
executing both its (sending and receiving) actions in a step.

A computation of this ring is an infinite sequence S.0, S.1, ... of global states
of the ring such that each pair (S.i, S.(i+1)) of consecutive states in the sequence
is a transition of the ring.
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Protocol 3 process p[i : 0..n-1] in the original token ring

variable s : 0..n-1 {sent/received state}
ss : 0..n-1 {state}

begin

true →
s := ss
send s to p[i+1 mod n]

|| rcv s from p[i-1 mod n] →
if i > 0 then

ss := s
else if ss = s then

ss := ss + 1 mod n
end

end

It is straightforward to show that each computation of this ring reaches a
legitimate global state where the values of all the ss variables are equal after at
most 2n transitions, and so this ring is stabilizing.

Clearly, stabilization of the ring in Protocol 3 depends heavily on the fact
that the ring processes do not lie when they send their states to other processes.
To allow the ring processes to lie about their states, 40% of the time, and still
retain the stabilization of the ring, we employ the stable system, discussed in the
previous section, in constructing the new ring. Specifically, each process p[i] in
the ring is modified to act as a source when p[i] sends a state s to process p[i+1
mod n], and act as a monitor when p[i] receives a state s from process p[i-1 mod
n]. The new ring is shown in Protocol 4.

A global state of the new ring is defined by a value for each ss variable in
the ring. (This means that none of the other variables, namely r, c, s, and cs, is
considered part of the global state of the new ring.)

A transition of the new ring is a pair (S, S’) of the global states of the new
ring such that if the ring is in a global state S and a “step” is executed, then the
ring becomes in a global state S’. Executing a step in the new ring consists of
two parts. First, each process in the ring executes its sending (or source) action.
Second, each process in the ring executes its receiving (or monitor) action.

A computation of the new ring is an infinite sequence S.0, S.1, ... of global
states of the ring such that each pair (S.i, S.(i+1)) of consecutive states in the
sequence is a transition of the new ring.

The new ring can be viewed as consisting of n stable systems, and each ss
variable in the ring can be viewed as belonging to the monitor of one of those
stable systems. For the new ring to stabilize, if it is to stabilize, each ss variable
needs to be assigned a value around 2×n times. From Table 4 and given that
pmin is 0.6, a stable system needs to execute on average 200 steps in order to
assign a value to its ss variable. Therefore, for the new ring to stabilize, if it is to
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Protocol 4 process p[i : 0..n-1] in the new token ring

const pmin : 60..99 {pmin = 60}
cmax : integer {cmax = 20}

variable r : 0..99 {random number}
c : 0..cmax {counter, init. 0}
s : 0..n-1 {sent/received state}
cs : 0..n-1 {candidate state}
ss : 0..n-1 {stable state}

begin

true →
r := random

if r ≥ pmin then

s := any

else

s := ss
end

send s to p[i+1 mod n]

|| rcv s from p[i-1 mod n] →
if c = 0 then

c := 1
cs := s

else if cs 6= s then

c := c - 1
else

c := min(c+1, cmax)
end

if c = cmax then

if i > 0 then

ss := cs
else if ss = cs then

ss := ss + 1 mod n
end

end

end

stabilize, each of the n stable systems in the ring needs to execute around n×400
steps. By choosing n to be relatively small, say 100, each stable system in the
ring needs to execute a small number of steps, around 40000 steps in order for
the ring to stabilize. Because the probability of error of a stable system is very
small, around 10−6, it is reasonable to assume that whenever any ss variable is
assigned a value, in the first 40000 transitions of a computation, it is assigned a
correct value. We refer to this assumption as the no-use-lying assumption.

Now consider a computation S.0, ..., S.40000, ... of the new ring. Under the
no-use-lying assumption, whenever an ss variable is assigned a value in the first
40000 transitions of this computation, it is assigned a correct value. Therefore,



The Truth System: Can a System of Lying Processes Stabilize? 13

the global state S.40000 in this computation is a legitimate state, with high
probability. Therefore, the new ring is stabilizing, with high probability.

The probabilistic stabilization of the new ring depends heavily on the validity
of the no-use-lying assumption. To check the validity of this assumption, we have
run 100 simulations of the new ring. For each simulation, we chose n (the number
of processes in the ring) to be 100, the initial global state of the ring to be
random, and the wrong state that each process sends in place of its correct state
to be 0. We observed that each simulation has stabilized to a legitimate global
state, after no more than 32440 transitions. These simulation results justify our
adoption of the no-use-lying assumption.

7 Concluding Remarks

The truth system is a building block that can be employed in a distributed system
to ensure that the system performs its intended function, with high probability,
even if up to 40% of the sent values by each process in the system are completely
arbitrary. In this paper, we presented three versions of the truth system: the one-
shot system, the continuing system, and the stable system. We also compared
the properties of these three versions and concluded that the stable system is
superior to the other two. Finally we showed how to employ the stable system in
a unidirectional token ring so that the ring performs its intended function even
if up to 40% of the values sent by each process in the ring are arbitrary.

This paper suggests a number of interesting problems that merit further re-
search. First, are there interesting versions of the truth system other than those
discussed in this paper? Second, are there algorithms that take a distributed sys-
tem that performs a function f under the assumption of perfect communication
and produce a distributed system that employs a version of the truth system
as a building block and performs function f, with high probability, under the
assumption that up to 40% of the values sent by each process in the system are
arbitrary. Third, are there effective methods to compute the probability of error
and the convergence span for a distributed system where a version of the truth
system is employed as a building block?
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8 Appendix: Proofs of Theorems

8.1 Proof of Theorem 1

pmin 1-pmin

pmin1-pmin

1-pmin 1-pminpminpmin

1,G

1-pmin

cmax-1,G

1-pmin

0, - 1,B

pmin

cmax-1,B

pmin

cmax,G represents c = cmax and cs = state of source Global state

pmin

cmax,G cmax,B

1-pmin

Fig. 2. State transition graph for the one-shot system

The state transition graph for the one-shot system is shown in figure 2.
There are two elements in each global state in the state transition graph. The
first element is the current counter value c, and the second element represents
whether the candidate state cs maintained in process monitor equals state of
process source. If cs = state then we say cs is good(G), otherwise, cs is bad(B).
When c = 0, cs can be either good(G) or bad(B).

The probability of error when counter c reaches cmax is the probability from
the start state (0,−) to the end state (cmax, B). Let pG denotes the probability
from start state (0,−) to end state (cmax, G) and pB denotes the probability
from start state (0,−) to end state (cmax, B). Thus we have pB = p(error).
Since process monitor will terminate when c = cmax, it can only terminate
at one of the two end states, which is either (cmax, G) or (cmax, B). So the
following formula holds:

pG + pB = 1.0 . (1)

pB is the sum of probability of each path from start state (0,−) to end state
(cmax, B). Because of the symmetric property of the state transition graph, each
global state with cs being bad(B) has a one-to-one corresponding state with cs
being good(G). Thus, for every path from (0,−) to (cmax, B), called original
path, we can construct exactly one corresponding path from (0,−) to (cmax, G),
which is called a mirrored path. Furthermore, for each loop in the mirrored path,
the probability of that loop is the same as the one in the original path. We
call this property loop symmetry. For each path from (0,−) to (cmax, B), no
matter how many loops it has, the probability must have the multiplication
factor (1 − pmin)cmax since the path finally need to go out of the loops and
reach final state (cmax, B). Similarly, for each path from (0,−) to (cmax, G),
the probability must have the multiplication factor pmincmax. And the loops
in the mirrored paths have the same probability as that in the original paths
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because of loop symmetry. Thus, we have the following formula:

pB

pG

=
(1 − pmin)cmax

(pmin)cmax
. (2)

From equation 1 and 2, we can get

pB =
(1 − pmin)cmax

(1 − pmin)cmax + (pmin)cmax
. (3)

Since p(error) = pB, the theorem holds.

8.2 Proof of Theorem 2

1-pmin

1-pmin 1-pmin

pminpmin

1-pmin 1-pmin1-pmin1-pmin

1,G

pmin

cmax,G

pmin

0, - 1,B

pmin

cmax,B

pmin

cmax,G represents c = cmax and cs = state of source Global state

pmin

Fig. 3. State transition graph for the continuing system

Since the starting state has no effect in steady state, process monitor of the
continuing system can be described as a birth-death process as shown in Figure 3.
The probability of giving a birth at any time t is 1− pmin while the probability
of death at any time t is pmin. Let i, i = 0, . . . , 2× cmax denote the ith global
state from left to right in Figure 3. And let πi, i = 0, . . . , 2 × cmax denotes
the probability at global state i. The stationary distribution of this birth-death
process is:

πi+1 =
1 − pmin

pmin
× πi, for i = 0, . . . , 2 × cmax . (4)

2×cmax
∑

i=0

πi = 1 . (5)

From equation 4, we can get:

πi = (
1 − pmin

pmin
)i × π0, for i = 0, . . . , 2 × cmax . (6)
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By the definition of p(error) in the continuing system, we have

p(error) =
π2×cmax

π0 + π2×cmax

. (7)

Substituting 6 in 7, we can get:

p(error) =
(1 − pmin)2×cmax

(1 − pmin)2×cmax + (pmin)2×cmax
. (8)

Thus the theorem holds.

8.3 Proof of Theorem 3

By the definition of p(no-conclusion) in the continuing system, we have

p(no-conclusion) =

2×cmax−1
∑

i=1

πi . (9)

From equation 4 and 5, we have

π0 =
1

∑2×cmax

i=0
(1−pmin

pmin
)i

. (10)

Substituting 6 and 10 in 9, we can get:

p(no-conclusion) =

∑2×cmax−1

i=1
(1−pmin

pmin
)i

∑2×cmax

j=0
(1−pmin

pmin
)j

. (11)

8.4 Proof of Theorem 4

0
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pminpmin

1,G,B 0, B,B 1,B,B cmax,B,Bcmax-1,G,B
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1-pmin 1-pmin

pminpmin
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1-pmin
pmin

1-pmin

pmin

1-pmin

pmin

1-pmin

pmin

1-pmin

pmin

1-pmin

pmin

1-pmin

pmin

pmin

1-pmin

pmin

1-pmin

pmin

3cmax-13cmax-22cmax 3cmax

2cmax-1

cmax cmax+1cmax-1

Fig. 4. State transition graph for the stable system
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The state transition graph for the stable system is shown in Figure 4, which
basically is a Markov chain. Each global state includes three elements as follows.
The first element is the current counter value c of process monitor. The second
element represents whether the candidate value cs maintained in process monitor
equals the state of process source. We use G (Good) to represent cs = state and
use B (Bad) to represent cs 6= state. The third element represents whether the
stable state ss maintained in process monitor equals the state of process source.
Similar to the second element, we use G (Good) to indicate that ss = state
and use B (Bad) otherwise. The initial state is (0,B,B) which means in process
monitor, counter c is zero and neither cs nor ss equals the state of process source.
As stated in Figure 1, ss can only be changed to cs when the counter value c is
equal to cmax, and ss will remain unchanged even when the candidate value cs
changes but counter value c is less than cmax.

Let i, i = 0, . . . , 4×cmax−1 denote the ith global state from left to right as
shown in Figure 4. And let πi, i = 0, . . . , 4× cmax− 1 denotes the probability
at the ith global state in equilibrium and let π = [π0, π1, . . . , π4×cmax−1]. By
the definition of p(error) in the stable system, we have the following equation:

PE =

4×cmax−1
∑

i=2×cmax

πi . (12)

Since the state transition graph forms a Markov chain, we have the following
equations:

4×cmax−1
∑

i=0

πi = 1.0 . (13)

π × P = π . (14)

where P is the transition probability matrix of the Markov chain.

P (i, j) =











1 − tr if α

tr if β

0 otherwise

The boolean conditions α and β are defined as follows:

α =(0 ≤ i < 4 × cmax − 2 ∧ i 6= 2 × cmax − 1 ∧ j = i + 1)

∨ (i = 2 × cmax − 1 ∧ j = 4 × cmax − 1)

β =(1 ≤ i < 4 × cmax − 1 ∧ i 6= 2 × cmax ∧ j = i − 1)

∨ (i = 2 × cmax ∧ j = 0)

By solving equations 13 and 14, we can get the probability at the ith global
state πi for i = 0, . . . , 4 × cmax − 1. Thus we can compute p(error) using
equation 12. When pmin = 0.6 and cmax=20 , p(error)= 1.2 ×10−6; when
pmin = 0.7 and cmax=9 , p(error)= 2.3 ×10−6; when pmin = 0.8 and cmax=5
, p(error)= 6.9 ×10−6; when pmin = 0.9 and cmax=4 , p(error)= 1.6 ×10−7.
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pmin pmin

1-pmin1-pmin

1,B,B 0, B,B 1,G,B cmax-1,G,Bcmax,B,B
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cmax,G,G

pmin

1-pmin
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pmin

1-pmin

pmin
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Fig. 5. State transition graph for convergence span

8.5 Proof of Theorem 5

By the definition of convergence span, the state transition graph of the stable
system for convergence span is shown in Figure 5. The three elements in each
global state are explained in the proof for theorem 4. From any state other than
the start state (cmax,B,B) and end state (cmax,G,G), the probability of going
one step forward to the end state (cmax,G,G) is pmin, while the probability of
going one step backward towards the start state (cmax,B,B) is 1-pmin. So this
is equivalent to say that from any state other than the end state (cmax,G,G)
and start state (cmax,B,B), the probability of going absolute one step forward
is pmin-(1-pmin), which is 2 × pmin − 1, and the probability of staying in that
state is 2−2×pmin. For simplicity, we consider the approximate formula of the
convergence span. That is, we make the probability of going one step forward
from start state the same as that of other states, which is 2×pmin−1, instead of
pmin. And accordingly the probability of staying in the start state is considered
as 2− 2× pmin, instead of 1-pmin. Since we need to go forward 2× cmax steps,
with the probability of going one step forward as 2× pmin− 1, the approximate
average number of steps from start state to end state is 2×cmax

2×pmin − 1
.


