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Abstract

The periodic update transaction model has been used to
maintain freshness (or temporal validity) of real-time data.
Period and deadline assignment has been the main focus in
the past studies such as the More-Less scheme [25] in which
update transactions are guaranteed by the Deadline Mono-
tonic scheduling algorithm [16] to complete by their dead-
lines. In this article, we propose adeferrable scheduling
algorithm for fixed priority transactions – a novel approach
for minimizing update workload while maintaining the tem-
poral validity of real-time data. In contrast to prior work
on maintaining data freshness periodically, update trans-
actions follow an aperiodic task model in the deferrable
scheduling algorithm. The deferrable scheduling algorithm
exploits the semantics of temporal validity constraint of
real-time data by judiciously deferring the sampling times
of update transaction jobs as late as possible. We present
a theoretical estimation of its processor utilization, anda
sufficient condition for its schedulability. Our experimental
results verify the theoretical estimation of the processoruti-
lization. We demonstrate through the experiments that the
deferrable scheduling algorithm is an effective approach,
and it significantly outperforms the More-Less scheme in
terms of reducing processor workload.
Keywords - Deferrable scheduling, real-time databases,
temporal validity, fixed priority scheduling

1 INTRODUCTION

Real-time and embedded systems are applied in many
application domains that require timely processing of mas-
sive amount of real-time data. Examples of real-time data
include sensor data in sensor networks, positions of aircrafts

∗This work was partially done while the co-author was at City Univer-
sity of Hong Kong.

in air traffic control systems [14], and vehicle velocity in
adaptive cruise control applications [6]. Such real-time data
are typically managed in a real-time database system (RT-
DBS). Those data values are used to model the current sta-
tus of entities in a system environment. However, real-time
data are different from traditional data in that they have time
semantics in which sampled values are valid only for a cer-
tain time interval [19, 18, 23]. The concept oftemporal va-
lidity is used to define the correctness of real-time data [19].
A real-time data object isfresh (or temporally valid) if its
value truly reflects the current status of the corresponding
entity in the system environment. Each real-time data ob-
ject is associated with avalidity intervalas the lifespan of
the current data value defined based on the dynamic prop-
erties of the data object. A new data value needs to be in-
stalled into the database before the validity interval of the
old value expires, i.e., the old one becomes temporally in-
valid. Otherwise, the RTDBS cannot detect and respond to
environmental changes in a timely manner. In recent years,
there has been tremendous amount of work devoted to this
area [5, 1, 12, 14, 30, 19, 20, 21, 22, 26, 11, 25, 8].

To maintain temporal validity,sensor update transac-
tions, which capture the latest status of the entities in the
system environment, are generated to refresh the values of
the real-time data periodically [19, 14, 25]. A sensor update
transaction has an infinite number of periodic jobs, which
have fixed length periods and relative deadlines. The update
problem for periodic update transactions consists of two
parts [25]: (1) the determination of the sampling periods
and deadlines of update transactions; and (2) the schedul-
ing of update transactions. Prior work has proposed two ap-
proaches for minimizing the update workload while main-
taining real-time data freshness. As explained in [19, 14],
a simple method to maintain the temporal validity of real-
time data is to use theHalf-Half (HH) scheme in which the
update period for a real-time data object is set to be half of

1



the validity interval of the object. To further reduce the up-
date workload, theMore-Less (ML)scheme is proposed and
studied in [2, 25].

This article presentsDeferrable Schedulingfor Fixed
Priority transactions (DS-FP), a novel algorithm for main-
taining real-time data freshness, with the objective beingto
minimize the update workload [27, 28]. We study the prob-
lem of data freshness maintenance for firm real-time update
transactions in a single processor RTDBS. Distinct from the
past work ofHH andML, which have a fixed period and rel-
ative deadline for each transaction,DS-FPadopts anaperi-
odictask model. In contrast toML, in which a relative dead-
line is always equivalent to the worst-case response time
of a transaction,DS-FPdynamically assigns relative dead-
lines to transaction jobs by deferring the sampling time of
a transaction job as much as possible while still guarantee-
ing the temporal validity of real-time data. The deferral of
a job’s sampling time results in a shorter relative deadline
than its worst-case response time, which in turn increases
the separation of two consecutive jobs. Thus, the deferral
of sampling time lends itself to a reduced processor work-
load produced by update transactions. We prove thatDS-
FP outperformsML in terms of schedulability and present a
sufficient condition for the schedulability of a set of transac-
tions underDS-FP. We also analyze the average processor
utilization underDS-FP. Our experimental study ofDS-FP
demonstrates that it is an effective algorithm for reducing
the workload of real-time update transactions. It also ver-
ifies the accuracy of our theoretical estimation of average
processor utilization underDS-FP, and demonstrates the ef-
fectiveness of theDS-FPalgorithms.

The rest of the article is organized as follows: Section
2 reviews the existing approaches for real-time data fresh-
ness maintenance. In Section 3, we propose the Deferrable
Scheduling algorithm for Fixed Priority transactions (DS-
FP). Our detailed discussion onDS-FP includes an analy-
sis of its schedulability and non-optimality, as well as an
estimation of its average processor utilization. Section 4
presents the performance studies and Section 5 briefly de-
scribes the related work. Finally, we conclude our study in
Section 6 and present open questions forDS-FP.

2 BACKGROUND: DATA FRESHNESS
MAINTENANCE

Real-time data, whose state may become invalid with the
passage of time, need to be refreshed by sensor update trans-
actions generated by intelligent sensors that sample the val-
ues of real world entities. To monitor the states of entities
faithfully, real-time data must be refreshed before they be-
come invalid. The actual length of the temporal validity
interval of a real-time data object is application-dependent.
For example, real-time data with validity interval require-
ments are discussed in [19, 20, 18]. One of the important

design goals of RTDBSs is to guarantee that real-time data
remain fresh, i.e., they are always valid.

2.1 Temporal Validity for Data Freshness

As real-time data values change continuously with time,
the correctness of a real-time data objectXi depends on the
difference between the real-time statusS(Ei) of the real
world entityEi and the current sampling valueV al(Xi) of
Xi.

Definition 2.1: A real-time data objectXi at timet is tem-
porally valid (or temporally consistent) if, for its updatejob
Ji,j finished last beforet, the sampling timeri,j plus the va-
lidity interval length (or validity length for short)Vi of the
data object is not less thant, i.e., ri,j + Vi ≥ t [21, 19, 1].
2

A data value for real-time data objectXi sampled at any
time t will be valid for Vi following that t up to (t + Vi).
Next, we review existing approaches that adopt a periodic
task model for sensor update transactions.

2.2 Half-Half and More-Less

In this section, traditional approaches for maintaining
temporal validity, namely theHalf-Half (HH) and More-
Less(ML) approaches are reviewed.

In this article,T = {τi}
m
i=1 refers to a set of periodic up-

date transactions{τ1, τ2, .., τm} andX = {Xi}
m
i=1 refers to

a set of real-time data objects. We assume thatτi has higher
priority thanτj for i < j unless specified otherwise. All
real-time data objects are assumed to be kept in main mem-
ory. Associated withXi (1 ≤ i ≤ m) is a validity interval
of lengthVi: transactionτi (1 ≤ i ≤ m) updates the corre-
sponding data objectXi. Because each update transaction
updates a different data object, no concurrency control is
considered for update transactions. We assume that a sensor
always samples the value of a real-time data object at the be-
ginning of its period, and the system issynchronous(i.e., all
the first jobs of update transactions are initiated at the same
time) unless stated otherwise. For convenience, letdi,j , fi,j
andri,j denote the absolute deadline, completion (finishing)
time, and sampling (release) time of jobJi,j of τi, respec-
tively. We also assume that jitter between sampling time
and release time of a job is zero for convenience of presen-
tation (readers are referred to Section 3.3 for how jitters can
be handled). Formal definitions of the frequently used sym-
bols are given in Table 1. Deadlines of update transactions
are firm deadlines. The goal ofHalf-Half andMore-Less,
which adopt aperiodic task model, is to determine period
Pi and relative deadlineDi so that all the update transac-
tions are schedulable and the CPU workload resulting from
periodic update transactions is minimized.

Both HH andML assume a simple execution semantics
for periodic transactions: a transaction must be executed
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Symbol Definition
Xi Real-time data objecti
τi Update transaction updatingXi

Ji,j The(j + 1)th job of τi (i = 1, .., m, j = 0, 1, 2, ..)
Ri,j Response time ofJi,j

Ci Computation time of transactionτi

Vi Validity (interval) length ofXi

fi,j Finishing (completion) time ofJi,j

ri,j Release (Sampling) time ofJi,j

di,j Absolute deadline ofJi,j

Pi Period of transactionτi in ML
Di Relative deadline of transactionτi in ML
Pi,j Separation of jobs (i.e.,ri,j+1 − ri,j) in DS-FP
Di,j Relative deadline ofJi,j in DS-FP
P i Average period of transactionτi in DS-FP
Di Average relative deadline of transactionτi in DS-FP
UDS Average processor utilization inDS-FP
Θi(a, b) Total cumulative processor demands from higher-

priority transactions received byτi in interval [a, b)

Table 1. Symbols and definitions
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Figure 1. Extreme execution cases ofJi,j andJi,j+1

once every period. However, there is no guarantee on when
a job of a periodic transaction is actually executed within a
period. Throughout this article we assume the scheduling
algorithms are preemptive and ignore all preemption over-
head. For convenience, we use terms transaction and task
interchangeably.
Half-Half : In HH, the period and relative deadline of an up-
date transaction are each typically set to be one-half of the
data validity length [19, 14]. In Figure 1, the farthest dis-
tance of two consecutive jobs ofτi (based on the sampling
time ri,j of job Ji,j and the deadlinedi,j+1 of its next job)
is 2Pi. If 2Pi ≤ Vi, then the validity of real-time objectXi

is guaranteed as long as jobs ofτi meet their deadlines. Un-
fortunately, this approach incurs an unnecessarily high CPU
workload of update transactions in the RTDBSs compared
to More-Less.
More-Less: Consider the worst-case response time for any
job of a periodic transactionτi where the response time is
the difference between the transaction initiation time(Ii +
KPi) and the transaction completion time whereIi is the
offset within the period andK is a natural number.

Lemma 2.1: For a set of periodic transactionsT = {τi}
m
i=1

(Di ≤ Pi) with transaction initiation time(Ii+KPi) (K =
0, 1, 2, ...), the worst-case response time for any job ofτi
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Figure 2. Illustration ofMore-Lessscheme

occurs for the first job ofτi whenI1 = I2 = ... = Im = 0.
[16] 2

For Ii = 0 (1 ≤ i ≤ m), the transactions aresyn-
chronous. A time instant after which a transaction has the
worst-case response time is called acritical instant, e.g.,
time 0 is a critical instant for all the transactions if those
transactions aresynchronous.

To minimize the update workload and guarantee tem-
poral validity,ML usesDeadline Monotonic(DM) [16] to
schedule periodic update transactions [2, 25]. There are
three constraints to follow forτi (1 ≤ i ≤ m):

• Validity constraint: the sum of the period and relative
deadline of transactionτi is always less than or equal
to Vi, i.e.,Pi + Di ≤ Vi, as shown in Figure 2.
• Deadline constraint: the period of an update transac-

tion is assigned to be more than half of the validity
length of the object to be updated, while its corre-
sponding relative deadline is less than half of the valid-
ity length of the same object. Forτi to be schedulable,
Di must be greater than or equal toCi, the worst-case
execution time ofτi, i.e.,Ci ≤ Di ≤ Pi.
• Schedulability constraint: for a given set of update

transactions, theDeadline Monotonicscheduling algo-
rithm [16] is used to schedule the transactions. Conse-
quently,

∑i

j=1(⌈
Di

Pj
⌉ · Cj) ≤ Di (1 ≤ i ≤ m) if τj

has higher priority thanτi for i > j.

ML assigns priorities to transactions based onShortest Va-
lidity First (SVF), i.e., in theinverseorder of validity length
and ties are resolved in favor of transactions with less slack
(i.e.,Vi − Ci for τi). It assigns deadlines and periods toτi

as follows:

Di = fml
i,0 − rml

i,0 , (1)

Pi = Vi −Di, (2)

wherefml
i,0 andrml

i,0 are finishing and sampling times of the
first job of τi underML, respectively. Note that in a syn-
chronous system,rml

i,0 = 0 and the first job’s response time
is the worst-case response time inML. In this article, super-
script ml is used to distinguish the finishing and sampling
times inML from those inDS-FP.

3 DEFERRABLE SCHEDULING

All schedulers discussed in this article arework-
conservingfor released jobs. In other words, the sched-
uler never idles the processor while there is a job awaiting
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Figure 3. Illustration ofDS-FPscheduling (ri,j+1 is
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execution (i.e., after it is released). Next, we introduce the
Deferrable Scheduling algorithm for Fixed Prioritytransac-
tions (DS-FP). Section 3.1 presents the intuition of the algo-
rithm, and Section 3.2 describes the details of the algorithm.
Section 3.3 compares it withML. Section 3.4 provides an
estimation ofDS-FP’s average processor utilization. Sec-
tion 3.5 discusses whether the algorithm is optimal.

3.1 Intuition of DS-FP

In ML, Di is determined by the first job’s response time,
which is theworst-caseresponse time of all jobs ofτi.
Thus,ML is pessimistic on the deadline and period assign-
ment in the sense that it uses a periodic task model that has a
fixed period and relative deadline for each task, and the rel-
ative deadline is equivalent to the worst-case response time.
It should be noted that thevalidity constraintcan always be
satisfied as long asPi + Di ≤ Vi. However, the processor
workload is minimized only ifPi + Di = Vi. Otherwise,
Pi can always be increased to reduce processor workload as
long asPi + Di < Vi. Given release timeri,j of job Ji,j

and deadlinedi,j+1 of job Ji,j+1 (j ≥ 0),

di,j+1 ≤ ri,j + Vi (3)

guarantees that thevalidity constraintcan be satisfied, as
depicted in Figure 3. Correspondingly, the following equa-
tion follows directly from Eq. 3.

(ri,j+1 − ri,j) + (di,j+1 − ri,j+1) ≤ Vi. (4)

If ri,j+1 is shifted onward tor
′

i,j+1 along the time line in
Figure 3, it does not violate Eq. 4 andJi,j+1 can still be
completed by its deadline. This shift can be achieved, e.g.,
in the ML schedule, if preemption toJi,j+1 from higher-
priority transactions in[ri,j+1, di,j+1] is less than the worst-
case preemption to the first job ofτi. Thus, temporal valid-
ity can still be guaranteed as long asJi,j+1 is completed by
its deadlinedi,j+1.

The intention ofDS-FP is to defer the sampling time,
ri,j+1, of Ji,j ’s subsequent job as late as possible while still
guaranteeing thevalidity constraint. Note that the sampling

time of a job is also its release time, i.e., the time that the job
is ready to execute, as we assume zero cost for sampling and
no arrival jitter for a job for convenience of presentation.

The deferral of jobJi,j+1’s release time reduces the rela-
tive deadline of the job if its absolute deadline is fixed as in
Eq. 3. For example, althoughri,j+1 is deferred tor

′

i,j+1 in
Figure 3, it still has to be completed by its deadlinedi,j+1

in order to satisfy thevalidity constraint(Eq. 3). Thus its
relative deadline,Di,j+1, becomesdi,j+1 − r

′

i,j+1, which
is less thandi,j+1 − ri,j+1. The deadline ofJi,j+1 ’s subse-
quent job,Ji,j+2, can be further deferred to(r

′

i,j+1 + Vi)
to satisfy thevalidity constraint. Consequently, the pro-
cessor utilization for completion of three jobs,Ji,j , Ji,j+1,
andJi,j+2 then becomes 3Ci

2Vi−(di,j+1−r′

i,j+1
)
. It is less than

the utilization 3Ci

2Vi−(di,j+1−ri,j+1)
required for completion

of the same amount of work inML.

Definition 3.1: Let Θi(a, b) denote the totalcumulative pro-
cessor demandsmade by all jobs of higher-priority transac-
tion τj for ∀j (1 ≤ j ≤ i−1) during the time interval[a, b)
from a scheduleS produced by a fixed priority scheduling
algorithm. Then,

Θi(a, b) =

i−1∑

j=1

θj(a, b),

whereθj(a, b) is the total processor demands made by all
jobs of single transactionτj during[a, b). 2

Next, we discuss how much a job’s release time can be
deferred. We shall useri,j+1 instead ofr

′

i,j+1 to denote
the final deferred release time. According to fixed priority
scheduling theory,ri,j+1 can be derived backwards from its
deadlinedi,j+1 as follows:

ri,j+1 = di,j+1 −Ri,j+1(ri,j+1, di,j+1); (5)

Ri,j+1(ri,j+1, di,j+1) = Θi(ri,j+1, di,j+1) + Ci; (6)

whereRi,j+1(ri,j+1, di,j+1) denotes the response time of
Ji,j+1 in the time interval[ri,j+1, di,j+1). Note that the
schedule of all higher-priority jobs that are released prior
to di,j+1 needs to be computed beforeΘi(ri,j+1, di,j+1) is
computed. This computation can be invoked using a re-
cursive process from jobs of lower-priority transactions to
higher-priority transactions. Nevertheless, it does not re-
quire that acompleteschedule of all jobs should be con-
structed off-line before the task set is executed. Indeed, the
computation of job deadlines and their corresponding re-
lease times is performed on-line while the transactions are
being scheduled. We only need to compute the first jobs’
response times when system starts. Upon the completion of
job Ji,j , the deadline of its next job,di,j+1, is firstly derived
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Figure 4. ComparingML andDS-FPschedules

from Eq. 3, then the corresponding release timeri,j+1 is de-
rived from Eq. 5. IfΘi(ri,j+1, di,j+1) cannot be computed
due to incomplete schedule information of release times
and absolute deadlines from higher-priority transactions,
DS-FPcomputes their schedule information on-line until it
can gather enough information to deriveri,j+1. JobJi,j ’s
DS-FPscheduling information (e.g., release time, deadline,
bookkeeping information, etc.) can be discarded after it is
completed and no lower-priority transactions need its infor-
mation for deriving their schedules. This process is called
garbage collectionin DS-FP.

Let SJ(t) denote the set of jobs of all transactions whose
deadlines have been computed by timet. Also letLSDi(t)
denote the latest scheduled deadline ofτi at t, i.e., max-
imum of all di,j for jobs Ji,j of τi whose deadlines have
been computed byt, then

LSDi(t) = max
Ji,j∈SJ(t)

{di,j} (j ≥ 0). (7)

Given jobJk,j whose scheduling information has been com-
puted at timet, and∀i (i > k), if

LSDi(t) ≥ dk,j , (8)

then the information ofJk,j can be garbage collected.

Example 3.1: Suppose that there are three update transac-
tions whose parameters are shown in Table 2. The result-
ing periods and deadlines inHH andML are shown in the
same table. Utilizations ofHH andML areUml ≈ 0.68 and
Uhh = 1.00, respectively.

Figures 4 (a) and (b) depict the schedules produced by
ML and DS-FP, respectively. It can be observed from
both schedules that the release times of transaction jobs
J3,1, J2,3, J2,4 are shifted from times14, 21, 28 in ML to
18, 22, 30 in DS-FP, respectively. 2

TheDS-FPalgorithm is described in Section 3.2.

3.2 Deferrable SchedulingAlgorithm

This subsection presentsDS-FP, afixed priorityschedul-
ing algorithm. Transaction priority assignment policy in

i Ci Vi
Ci

Vi
ML Half-Half
Pi Di Pi(Di)

1 1 5 0.2 4 1 2.5
2 2 10 0.2 7 3 5
3 2 20 0.1 14 6 10

Table 2. Parameters and results for Example 3.1

DS-FP is the same as inML, i.e., Shortest Validity First.
Given an update transaction setT , it is assumed thatτi has
a priority higher thanτj if i < j as we letVi ≤ Vj . Algo-
rithm 3.1 presents theDS-FPalgorithm. For convenience of
presentation, garbage collection is omitted in the algorithm.
There are two cases for theDS-FPalgorithm: 1) At system
initialization time, Lines 13 to 20 iteratively calculate the
first job’s response time forτi. The first job’s deadline is
set as its response time (Line 21). 2) Upon completion of
τi’s job Ji,k (1 ≤ i ≤ m, k ≥ 0), the deadline of its next
job (Ji,k+1), di,k+1, is derived at Line 27 so that the far-
thest distance ofJi,k ’s sampling time andJi,k+1’s finishing
time is bounded by the validity lengthVi (Eq. 3). Finally,
the sampling time ofJi,k+1, ri,k+1, is derived backwards
from its deadline by accounting for the interferences from
higher-priority transactions (Line 29).

Algorithm 3.1 DS-FPalgorithm:
Input: A set of update transactionsT = {τi}

m
i=1 (m ≥ 1)

with known{Ci}
m
i=1 and{Vi}

m
i=1.

Output: Construct a partial scheduleS if T is feasible;
otherwise, reject.

1 case (system initialization time) :
2 t← 0; // Initialization
3 // LSDi – Latest Scheduled Deadline ofτi’s jobs.
4 LSDi ← 0, ∀i (1 ≤ i ≤ m);
5 ℓi ← 0, ∀i (1 ≤ i ≤ m);
6 // ℓi is the latest scheduled job ofτi

7 for i = 1 to m do
8 // Schedule finish time forτi,0.
9 ri,0 ← 0;

10 fi,0 ← Ci;
11 // Calculate higher-priority (HP) preemptions.
12 oldHPPreempt← 0; // initial HP preemptions
13 hpPreempt← CalcHPPreempt(i, 0, 0, fi,0);
14 while (hpPreempt> oldHPPreempt) do
15 // Accounting for the interferences of HP tasks
16 fi,0 ← ri,0 + hpPreempt+ Ci;
17 if (fi,0 > Vi − Ci) then abortendif;
18 oldHPPreempt← hpPreempt;
19 hpPreempt← CalcHPPreempt(i, 0, 0, fi,0);
20 end
21 di,0 ← fi,0;
22 end
23 return;
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25 case (upon completion ofJi,k) :
26 // Schedule release time forJi,k+1.
27 di,k+1 ← ri,k + Vi; // get next deadline forJi,k+1

28 // ri,k+1 is also the sampling time forJi,k+1

29 ri,k+1 ← ScheduleRT(i, k + 1, Ci, di,k+1);
30 return;

Algorithm 3.2 ScheduleRT(i, k, Ci, di,k):

Input: Ji,k with Ci anddi,k.
Output: ri,k.

1 oldHPPreempt← 0; // initial HP preemptions
2 hpPreempt← 0;
3 ri,k ← di,k − Ci;
4 // Calculate HP preemptions backwards fromdi,k.
5 hpPreempt← CalcHPPreempt(i, k, ri,k, di,k);
6 while (hpPreempt> oldHPPreempt) do
7 // Accounting for the interferences of HP tasks
8 ri,k ← di,k − hpPreempt− Ci;
9 if (ri,k < di,k−1) then abortendif;

10 oldHPPreempt← hpPreempt;
11 hpPreempt← GetHPPreempt(i, k, ri,k, di,k);
12 end
13 returnri,k;

Algorithm 3.3 CalcHPPreempt(i, k, t1, t2):

Input: Ji,k, and a time interval[t1, t2).
Output: Total cumulative processor demands from

higher-priority transactionsτj (1 ≤ j ≤ i− 1) during
[t1, t2).

1 ℓi ← k; // Record latest scheduled job ofτi.
2 di,k ← t2;
3 LSDi ← t2;
4 if (i = 1)
5 then // No preemptions from higher-priority tasks.
6 return0;
7 elsif (LSDi−1 ≥ LSDi)
8 then // Get preemptions fromτj (∀j, 1 ≤ j < i)
9 // becauseτj ’s schedule is complete beforet2.

10 return GetHPPreempt(i, k, t1, LSDi);
11 endif
12 // buildS up to or exceedingt2 for τj (1 ≤ j < i).
13 for j = 1 to i− 1 do
14 while (dj,ℓj

< LSDi) do
15 dj,ℓj+1 ← rj,ℓj

+ Vj ;
16 rj,ℓj+1 ← ScheduleRT(j, ℓj + 1, Cj , dj,ℓj+1);
17 ℓj ← ℓj + 1;
18 LSDj ← dj,ℓj

;
19 end
20 end
21 return GetHPPreempt(i, k, t1, LSDi);

FunctionScheduleRT(i, k, Ci, di,k) (Algorithm 3.2)
calculates the release timeri,k with known computation
time Ci and deadlinedi,k. It starts with release time
ri,k = di,k − Ci, then iteratively calculatesΘi(ri,k, di,k),
the total cumulative processor demands made by all higher-
priority jobs ofJi,k during the interval[ri,k, di,k), and ad-
justs ri,k by accounting for the interferences from higher-
priority transactions (Lines 5 to 12). The computation of
ri,k continues until the interferences from higher-priority
transactions do not change in an iteration. In particular,
Line 9 detects any infeasible schedule. A schedule becomes
infeasible underDS-FP if ri,k < di,k−1 (k > 0), i.e., re-
lease time ofJi,k becomes earlier than the deadline of its
preceding jobJi,k−1. FunctionGetHPPreempt(i, k, t1, t2)
scans the interval[t1, t2), adds up total preemptions fromτj

(∀j, 1 ≤ j ≤ i − 1), and returnsΘi(t1, t2), the cumula-
tive processor demands ofτj during [t1, t2) from schedule
S that has been built.

FunctionCalcHPPreempt(i, k, t1, t2) (Algorithm 3.3)
calculatesΘi(t1, t2), the total cumulative processor de-
mands made by all higher-priority jobs ofJi,k during the
interval [t1, t2). Line 7 ensures that(∀j, 1 ≤ j < i), τj ’s
schedule is completely built before timet2. This is because
τi’s schedule cannot be completely built beforet2 unless
the schedules of its higher-priority transactions are com-
plete beforet2. In this case, the function simply returns an
amount of higher-priority preemptions forτi during[t1, t2)
by invoking GetHPPreempt(i, k, t1, t2), which returns
Θi(t1, t2). If any higher-priority transactionτj (j < i) does
not have a complete schedule during[t1, t2), its scheduleS
up to or exceedingt2 is built on the fly (Lines 14 to 19). This
enables the computation ofΘi(t1, t2). The latest scheduled
deadline ofτi’s job, LSDi, indicates the latest deadline of
τi’s jobs that have been computed.

Theworst-casecomplexity ofScheduleRTis O(m · V2
m)

assuming thatVm

V1
is a constant. An important property of

ScheduleRT(i, k, Ci, di,k) terminating at timet = di,k

is that the latest scheduled deadline ofτl (LSDl(t)) is no
larger than that ofτj (LSDj(t)) if τl does not have a priority
higher thanτj (l ≥ j). This is proved in the following
lemma.

Lemma 3.1: Given a synchronous update transaction set
T andScheduleRT(i, k, Ci, t) (1 ≤ i ≤ m & k ≥ 0),
LSDl(t) ≤ LSDj(t) (i ≥ l ≥ j) holds whenSched-
uleRT(i, k, Ci, t) terminates at timet.

Proof. This can be proved by contradiction. Suppose
that LSDl(t) > LSDj(t) (i ≥ l ≥ j) when Sched-
uleRT(i, k, Ci, t) terminates att. If LSDl(t) < t,
thenCalcHPPreempt(i, k, t1, t2) does not terminate ac-
cording to Line 14 becausedl,ℓl

< LSDi(t) = t. Thus
LSDl(t) ≥ LSDi(t) = t. Let LSDl(t) = t2 in CalcH-
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τ1 τ2 τ3

Job ML/DS-FP ML DS-FP ML DS-FP
0 (0,1) (0, 3) (0, 3) (0, 6) (0, 6)
1 (4,5) (7, 10) (7, 10) (14, 20) (18, 20)
2 (8,9) (14, 17) (14, 17) (28, 34) (35, 38)
3 (12,13) (21, 24) (22, 24) ... ...
4 (16,17) (28, 31) (30, 32)
5 (20,21) (35, 38) (38, 40)
6 (24,25) ... ...
7 (28,29)
8 (32,33)
9 (36,37)

Table 3. Release time and deadline comparison

PPreempt(l, kl, t1, t2), which must be invoked before
ScheduleRT(i, k, Ci, t) terminates att. As we assume
that LSDj(t) < LSDl(t) = t2, similarly CalcHPPre-
empt(l, kl, t1, t2) has not reached the point to terminate
according to Line 14. This contradicts the assumption.2

The next example illustrates how theDS-FPalgorithm
works with the transaction set in Example 3.1.

Example 3.2: Table 3 presents the comparison of (release
time, deadline) pairs assigned byML and DS-FP (Algo-
rithm 3.1) for the jobs ofτ1, τ2 andτ3 in Example 3.1. Note
that only release times and deadlines before time40 are de-
picted in the table. Please also note thatτ1 has same re-
lease times and deadlines for all jobs underML andDS-FP.
However,J2,3, J2,4, J2,5, J3,1, andJ3,2 have different re-
lease times and deadlines underML andDS-FP. Algorithm
3.1 starts atsystem initializationtime. It calculates dead-
lines forJ1,0, J2,0, J3,0. Upon completion ofJ3,0 at time 6,
d3,1 is set tor3,0 + V3 = 20. Then Algorithm 3.1 invokes
ScheduleRT(3, 1, 2, 20) at Line 29, which derivesr3,1. At
this moment, Algorithm 3.1 has already calculated the com-
plete schedule up tod3,0 (time 6). But the schedule in the
interval(6, 20] has only been partially derived. Specifically,
only schedule information ofJ1,0, J1,1, J1,2, J1,3 J2,0, and
J2,1 has been derived forτ1 andτ2. Algorithm 3.2 (Sched-
uleRT) obtainsr3,1 = 20 − 2 = 18 at Line 3, then invokes
CalcHPPreempt(3, 1, 18, 20). Algorithm 3.3 (CalcHPPre-
empt) finds thatLSD2 = 10 < t2 = 20, then it jumps to the
for loop starting at Line 13 to build the complete schedule
of τ1 andτ2 in the interval(6, 20], where the release times
and deadlines forJ1,4, J1,5, J2,2, J1,6, andJ2,3 are derived.
Thus, higher-priority transactionsτ1 andτ2 have a complete
schedule before time20. Note thatr1,6 andd1,6 for J1,6 are
derived when we calculater2,3 andd2,3 such that the com-
plete schedule up to timed2,3 is built for transactions with
priorities higher thanτ2. As r2,2 is set to14 by earlier cal-
culation,d2,3 is set to24. It derivesr2,3 backwards from
d2,3 and sets it to22 becauseΘ2(22, 24) = 0. Similarly,
d3,1 andr3,1 are set to20 and18, respectively. 2

3.3 Comparison of DS-FP and ML

Note thatML is based on theperiodictask model, while
DS-FPadopts theaperiodictask model. The relative dead-
line of a transaction inDS-FP is not fixed. Theoretically,
the separation of two consecutive jobs ofτi in DS-FP,
ri,j − ri,j−1, satisfies the following condition:

Vi − Ci ≥ ri,j − ri,j−1 ≥ Vi −WCRTi (j ≥ 1), (9)

whereWCRTi is the worst-case response time of jobs of
τi in DS-FP. Note that the maximal separation ofJi,j and
Ji,j−1 (j ≥ 1), maxj{ri,j − ri,j−1}, cannot exceedVi −
Ci, which can be obtained when there are no higher-priority
preemptions in the execution of jobsJi,js (e.g., the highest
priority transactionτ1 always has separationV1 − C1 for
J1,j and J1,j−1). Thus, the processor utilization forDS-
FP should be greater than

∑m

i=1
Ci

Vi−Ci
, which is the CPU

workload resulting from the maximal separationVi −Ci of
each transaction.

If fml
i,0 ≤

Vi

2 wherefml
i,0 is the first job’s response time (i.e.,

the worst-case response time) ofτi’s job in ML, ML can
be regarded as a special case ofDS-FP in which sampling
(or release) timerml

i,j+1 and deadlinedml
i,j+1 (j ≥ 0) can be

specified as follows:

dml
i,j+1 = rml

i,j + Vi, (10)

rml
i,j+1 = dml

i,j+1 − (Θi(r
ml
i,0 , fml

i,0) + Ci). (11)

It is clear thatΘi(rml
i,0 , fml

i,0) + Ci = fml
i,0 when rml

i,0 = 0
(1 ≤ i ≤ m) in ML.

Theorem 3.1: Given a synchronous update transaction set
T with knownCi andVi (1 ≤ i ≤ m), if (∀i) fml

i,0 ≤
Vi

2 in
ML, then

WCRTi ≤ fml
i,0

whereWCRTi andfml
i,0 denote the worst-case response time

of τi in DS-FPandML, respectively.

Proof. This can be proved by contradiction. Suppose that
τk is the highest priority transaction such thatWCRTk >

fml
k,0 holds inDS-FP. Also it is assumed that the response
time of Jk,n (n ≥ 0), Rk,n, is the worst forτk in DS-FP.
Note that schedules ofτ1 in ML andDS-FPare the same as
in both cases,τ1 jobs have the same relative deadline (C1)
and separation/period (V1 − C1). Therefore,1 < k ≤ m

holds.
As WCRTk > fml

k,0, there must be a transactionτl such
that (a)τl has a priority higher thanτk (1 ≤ l < k); (b)
at least two consecutive jobs ofτl, Jl,j−1 andJl,j , overlap
with Jk,n, and (c) the separation ofJl,j−1 andJl,j satisfies
the following condition:

rl,j − rl,j−1 < Vl − fml
l,0 (j > 0), (12)
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whereVl − fml
l,0 is the period (i.e., separation) of jobs ofτl

in ML.
Claim (a) is true becausek > 1. It is straightforward

that if each higher priority transaction ofτk only has one
job overlapping withJk,n, thenRk,n ≤ fml

k,0. This implies
that Claim (b) is true. Finally, for(∀l < k) andJl,j−1 and
Jl,j overlapping withJk,n, if

rl,j − rl,j−1 ≥ Vl − fml
l,0 (j > 0),

thenRk,n > fml
k,0 cannot be true because the amount of pre-

emptions from higher priority transactions received byJk,n

in DS-FPis no more than that received byJk,0 in ML. Thus,
Claim (c) is also true.

We know that release timerl,j in DS-FP is derived as
follows:

rl,j = dl,j −Rl,j (13)

whereRl,j is the calculated response time of jobJl,j , i.e.,
Θl(rl,j , dl,j) + Cl. Following Eq. 12 and 13,

dl,j −Rl,j = rl,j {By Eq. 13}

< rl,j−1 + Vl − fml
l,0 {By Eq. 12}

= dl,j − fml
l,0 {By Eq. 3}

Finally,
Rl,j > fml

l,0 . (14)

Eq. 14 contradicts the assumption thatτk is the highest pri-
ority transaction such thatWCRTk > fml

k,0 holds. Therefore,
the theorem is proved. 2

The following theorem gives a sufficient condition for the
schedulability ofDS-FP.

Theorem 3.2: Given a synchronous update transaction set
T with knownCi andVi (1 ≤ i ≤ m), if (∀i) fml

i,0 ≤
Vi

2 in
ML, thenT is schedulable withDS-FP.

Proof. If fml
i,0 ≤

Vi

2 , then the worst-case response times of
τi (1 ≤ i ≤ m) in DS-FP, WCRTi, satisfy the following
condition (by Theorem 3.1):

WCRTi ≤ fml
i,0 ≤

Vi

2
.

That is,WCRTi is no more thanVi

2 . Because the following
three equations hold inDS-FPaccording to Eq. 5 and 6:

ri,j = di,j −Ri,j , (15)

di,j+1 = ri,j + Vi. (16)

di,j+1 = ri,j+1 + Ri,j+1, (17)

Replacingri,j anddi,j+1 in Eq. 16 with Eq. 15 and 17,
respectively, it follows that

ri,j+1 + Ri,j+1 = di,j −Ri,j + Vi.

That is,

ri,j+1 − di,j + Ri,j+1 + Ri,j = Vi. (18)

Because

Ri,j+1 + Ri,j ≤ 2 ·WCRTi ≤ Vi,

it follows from Eq. 18 thatri,j+1 − di,j ≥ 0 holds. This
ensures that it is schedulable to schedule two jobs ofτi in
one validity intervalVi underDS-FP. ThusT is schedulable
with DS-FP. 2

The following corollary states the correctness ofDS-FP.

Corollary 3.1: Given a synchronous update transaction set
T with knownCi andVi (1 ≤ i ≤ m), if (∀i) fml

i,0 ≤
Vi

2 in
ML, thenDS-FPcorrectly guarantees thetemporal validity
of real-time data.

Proof. As deadline assignment inDS-FPfollows Eq. 3, the
largest distance of two consecutive jobs,di,j+1 − ri,j (j ≥
0), does not exceedVi. Thevalidity constraintcan be satis-
fied if all jobs meet their deadlines, which is guaranteed by
Theorem 3.2. 2

If T can be scheduled byML, then byML definition (∀i)
fml
i,0 ≤

Vi

2 . Thus Corollary 3.2, which states a sufficient
schedulability condition forDS-FP, directly follows from
Theorem 3.2.

Corollary 3.2: Given a synchronous update transaction set
T with knownCi andVi (1 ≤ i ≤ m), if T can be sched-
uled byML, then it can also be scheduled byDS-FP.

However, the converse statement of Corollary 3.2 is not
true. That is, ifT can be scheduled byDS-FP, then it is not
necessarily true thatT can also be scheduled byML. This
is demonstrated in the following examples.

Example 3.3: Consider a set of two transactions{τ1, τ2}
with computation times2, 3, and validity intervals6, 12,
respectively. Figure 5(a) shows aDS-FPschedule for this
transaction set. This schedule is valid because the pattern
between time7 and19 repeats itself forever. On the other
hand, this transaction set is not schedulable byML because
the first job ofτ2, J2,0, completes at time7, which is greater
thanV2

2 (i.e.,6).
In this example,DS-FPworks better because it allows

J2,0 to be completed later thanV2

2 . 2

Example 3.4: Consider a set of three transactions{τ1, τ2,
τ3} with computation times2, 3, 3, and validity intervals6,
15, 47, respectively. Figure 5(b) depicts a schedule of the
transactions underML. The first job ofτ3, J3,0, completes at
time24, which is greater thanV3

2 (i.e.,23.5). Thus the set of
transactions is not schedulable byML. Figure 5(c) depicts a
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Figure 5. Transaction sets schedulable byDS-FPbut
notML

schedule of the transactions underDS-FP. The same trans-
action set is schedulable byDS-FP because the schedule
pattern between time 26 and 50 repeats itself forever.

Different from Example 3.3, it is observed in thisDS-FP
schedule that the first jobs of all transactions finish before
half of their respective validity intervals. 2

Note that in these two examples,DS-FP fully utilizes
the processor. We could easily derive examples in which
the processor idles once in a while. For example, in Figure
5(a) we could changeC2 to 2.5 and in Figure 5(b) we could
changeC3 to 2.75. After both changes the transaction sets
cannot be scheduled byML. However, they can be sched-
uled byDS-FP. Moreover,we can also scale up the numbers
to make them all integers again.

In summary, if a set of synchronous update transactions
can be scheduled byML to satisfy thevalidity constraint,
then it can also be scheduled byDS-FP. However, the con-
verse statement is not true, which implies thatDS-FP out-
performs ML in terms of schedulability. Thus, the following
corollary directly follows from both Corollary 3.2 and Ex-
ample 3.4.

Corollary 3.3: DS-FP outperforms ML in terms of schedu-
lability for satisfying thevalidity constraint.
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Figure 6. DS-FPschedules withfixed patterns

Discussion of jitters: Our results can be easily extended to
the case that jitter between sampling time and release time
of a job is non-zero if the maximum jitter of a transaction is
known. In the presence of non-zero jitters, we can transform
a transactionτ ′

i (with validity lengthV ′
i and maximum jitter

δi) to a transactionτi (with validity lengthVi = V ′
i− δi and

zero jitter). Such a transformation guarantees that ifτi can
meet its validity constraint, thenτ ′

i can also meet its validity
constraint.

3.4 Theoretical Estimation of Processor
Utilization for DS-FP

This subsection presents means of estimating average
CPU utilization. Note thatDS-FPdoes not usually schedule
transactions periodically. Thus, it is hard to derive its exact
CPU utilization unless there is a fixed pattern that repeats
itself in aDS-FPschedule. In what follows, we shall inves-
tigate two cases in order: (1) aDS-FPschedule that has a
detected pattern repeating itself from certain point in time;
(2) aDS-FPschedule that has no detected pattern.

3.4.1 DS-FPwith a Detected Pattern
We introducefixed patternin aDS-FPschedule with a sim-
ple example, which is shown below.

Example 3.5: Consider aDS-FPschedule for two transac-
tionsτ1 andτ2 in Figure 6(a). Note that transaction param-
eters (Ci’s andVi’s) are given in the figure. We observe that
there is afixed patternrepeating itself in the schedule every
3 time units, starting from time8. If time goes to infinity,
we can estimate that the average CPU utilization of theDS-
FP schedule is about66.7%. Similarly, given three trans-
actions in Figure 6(b), we observe afixed patternrepeating
itself in the schedule every4 time units, starting from time
13. Again, we can easily estimate that its CPU utilization is
close to100%. 2
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Needless to say, the average CPU utilization for aDS-FP
schedule can be approximated based on afixed patternif
such a pattern exists in the schedule. However, it is not true
that we can always easily detect a fixed pattern in everyDS-
FP schedule. It becomes harder to detect afixed patternin
a DS-FPschedule if the size of the transaction set is larger.
This is because the complexity of pattern detection grows
exponentially with the size of the transaction set. Indeed,
it remains open whether there is always a fixed pattern in
everyDS-FPschedule. As manyDS-FPschedules may
not be detected to have suchfixed patterns, it becomes more
important to estimate the average CPU utilization for such
DS-FPschedules.

3.4.2 DS-FPwithout a Detected Pattern
We now present an approximation of average processor uti-
lization ofDS-FPfrom statistical perspectivein the absence
of detected patterns inDS-FPschedules. Note thatour ap-
proximation only works provided thatT can be scheduled
byML. This implies that the approximation is applicable to
transaction sets that all deadlines are not greater than their
corresponding periods inML. Our approximation is quite
close to the average CPU utilization obtained in our experi-
ments. The CPU utilization approximation depends on the
approximate values of the average deadlineD and periodP
of transactions, which is described as follows.

Given a set of transactionsT = {τi}
m
i=1, let UDS de-

note the average processor utilization inDS-FP, andP j the
average period forτj . The average relative deadline ofτi,
namelyDi, is approximated as follows:

Di = Ci +

i−1∑

j=1

[(
Di

P j

)× Cj ] (1 ≤ i ≤ m). (19)

Let Pi,j andDi,j+1 (1 ≤ i ≤ m ∧ j ≥ 0) denoteri,j+1 −
ri,j anddi,j+1− ri,j+1 in Eq. 4, respectively. It follows that

Pi,j + Di,j+1 = Vi. (20)

Thus the following equation holds given an arbitrarily
largen (n→∞), wheren is the number of jobs in averag-
ing:

P i + Di = Vi. (21)

Following Eq. 19 and 21,Di andP i (1 ≤ i ≤ m) can
be calculated (from the highest priority transactionτ1 to the
lowest priority transactionτm) as following, respectively:

Di =
Ci

1−
∑i−1

j=1
Cj

P j

(1 ≤ i ≤ m) (22)

P i = Vi −Di (1 ≤ i ≤ m) (23)

Finally, UDS , the average utilization of the transaction set
T underDS-FPcan be approximated as:

UDS =

m∑

i=1

Ci

P i

=

m∑

i=1

(
Ci

Vi −
Ci

1−
∑

i−1

j=1

Cj

P j

) (24)

The following example illustrates how the average uti-
lization is estimated.

Example 3.6: Given the transaction set in Table 2, we cal-
culate the average relative deadline and period ofτi (i =
1, 2, 3) as follows:

D1 = C1 = 1, P 1 = V1 −D1 = 4,

D2 =
C2

1− C1

P 1

= 2.7, P 2 = V2 −D2 = 7.3,

D3 =
C3

1− (C1

P 1

+ C2

P 2

)
= 4.2, P 3 = V3 −D3 = 15.8.

The average processor utilization isUDS =
∑m

i=1
Ci

P i

=

0.65. Given the transaction set in Table 2, it can be verified
that the processor utilization for the first200 time units is
63%, which is very close to our theoretical estimation and
lower than the processor utilization fromML (68%). 2

Discussion of fixed patterns: A fixed patternin a DS-FP
schedule may be exponentially long (with respect to the
number of transactions). Thus, it can be very expensive
to detect. Assume that the minimal number of jobs per
transaction in this pattern isn. If n is large, then Eq. 24
can be used to estimate the average CPU utilization of the
fixed pattern, which in turn is the utilization estimation of
the schedule.

In summary, the average CPU utilization of aDS-FP
schedule can be approximated based on a fixed pattern if
such a pattern exists in the schedule. Otherwise, the CPU
utilization can be estimated by Eq. 24 if the transaction set
is schedulable according to Corollary 3.2.

3.5 The Non-Optimality of DS-FP

We have proven in Section 3.4 thatDS-FPis close to op-
timal in terms of minimizing CPU workload from the statis-
tical perspective. Intuitively,DS-FPshould be very close to
an optimal algorithm because it always defers the execution
of a job as late as possible, and hence reducing the work-
load as much as possible. We have also proven thatDS-FP
can schedule any transaction set that is schedulable byML
in Section 3.3. Now it is interesting to know ifDS-FPis an
optimal algorithm in terms of schedulability. That is,given
any transaction set, if it is schedulable by a fixed priority
scheduler, can it be scheduled byDS-FP? Unfortunately, the
answer to the aforementioned question is negative, which
can be demonstrated with the following example.
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Example 3.7: Consider a set of three transactions{τ1, τ2,
τ3}with computation times4, 4, 3, and validity intervals12,
22, 36, respectively. This set is not schedulable byDS-FP
as it fails at time36, shown in Figure 7(a). In this case, the
second job ofτ3 cannot be completed by the end of its first
validity interval. However, ifJ1,2 is scheduled2 time units
earlier, this transaction set can be successfully scheduled
because there is afixed patternrepeating itself every32 time
units starting from time27, as depicted in Figure 7(b). Note
that such a schedule is also a fixed priority schedule because
no lower priority jobs may interrupt a higher priority job
once the higher one is released. By doing so, the release
time ofJ2,1 is postponed to time18 as shown in Figure 7(b)
(from time14 in Figure 7(a)). Hence the deadline ofJ2,2 is
also postponed. 2

DS-FPrequires that every transactionτi should finish its
first two jobs in [0,Vi). If the requirement is relaxed so
that the first two jobs are allowed to finish in[ri,0, ri,0 +Vi)
whereri,0 denotes the time at whichJi,0 actually starts, then
DS-FPcan schedule the set in Example 3.7. In this case,
the first jobs of transactions startasynchronously. An asyn-

Parameters Meaning Value
NCPU No. of CPU 1
NT No. of real-time data objects [10, 300]

Vi (ms) Validity interval of dataXi [4000, 8000]
Ci (ms) CPU time for updatingXi [5, 15]
Length No. of data to update 1

Table 4. Experimental parameters and settings

chronous schedule for the same transaction set in Example
3.7 is depicted in Figure 7(c), in which there is afixed pat-
ternbetween time16 and48 repeating itself forever. In gen-
eral, whether the asynchronousDS-FPalgorithm is optimal
in terms of schedulability remains an open question.

Another interesting observation is that the transaction set
in Example 3.7 is schedulable byDS-FPif a priority order
different fromShortest Validity First(SVF) is used. For ex-
ample, if we swap the priorities ofτ1 andτ2, DS-FPcan
schedule the set, as depicted in Figure 8. In this case there
is afixed patternbetween time 27 and 207 repeating itself
forever.

In summary,DS-FP is not optimal for a set of syn-
chronous update transactions in terms of schedulability. But
it remains open if it is optimal for asynchronous trans-
actions, or transaction priorities assigned differently from
SVF.

4 PERFORMANCE EVALUATION

This section presents the important results from our
simulation studies. Section 4.1 describes our simulation
model and parameters. Section 4.2 comparesDS-FPwith
the More-Less (ML) algorithm. ML is known to outper-
form Half-Half [25], which is not compared here. The
experiments demonstrate that our proposed approaches re-
duce CPU utilization while guaranteeing data validity con-
straints.

4.1 Simulation Model and Parameters

Our experiments compare the update transaction work-
loads produced byDS-FPandML. It is demonstrated that
DS-FPproduces a lower CPU workload thanML. Also, the
experiments demonstrate that the increase of average sam-
pling period fromDS-FP is the main reason for its lower
workload. The primary performance metric used in the
experiments is CPU workload.

A summary of the parameters and default settings used
in experiments is presented in Table 4. The baseline val-
ues for the parameters follow those used in [25], which are
originally from air traffic control applications. We consider
a single CPU, main memory based RTDBS. The number of
real-time data objects varies from 10 to 300 and the valid-
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Figure 9. CPU workloads comparison

ity interval of each real-time data object is uniformly dis-
tributed between 4000 ms and 8000 ms. Each transaction
updates one real-time data object, and the CPU time for
each transaction is uniformly distributed between 5 ms and
15 ms. In the experiments,95 percent confidence intervals
have been obtained whose widths are less than±5 percent
of the point estimate for the performance metrics.

4.2 Experimental Results

In our experiments, the CPU workloads of update trans-
actions produced byML andDS-FPare quantitatively com-
pared. Update transactions are generated randomly accord-
ing to the parameter settings in Table 4.

The resulting CPU workloads generated fromML and
DS-FPare depicted in Figure 9. From the results, we ob-
serve that the CPU workload produced byDS-FPis consis-
tently lower than that ofML. In fact, the difference widens
as the number of update transactions increases. The differ-
ence reaches18% when the number of transactions is 300.
It is also observed that the CPU utilization ofDS-FPmea-
sured in our experiments (DS-FP(Expt.)) nearly matches
the CPU workload estimationUDS (Eq. 24), shown asDS-
FP(Est.) in the figure. Moreover, theDS-FPCPU workload
is only slightly higher than

∑m

i=1
Ci

Vi−Ci
, which is the CPU

workload resulting from the maximal separationVi − Ci

(1 ≤ i ≤ m) of each transaction (see Section 3.3). In fact,
the difference is insignificant in Figure 9. The improvement
of the CPU workload inDS-FP is due to the fact thatDS-
FP adaptively samples real-time data objects at a lower rate.
This is verified by the average sampling periods of update
transactions obtained from experiments.

Figure 10 shows the average sampling period for each
transaction inDS-FPwhen the number of update transac-
tions is300. Given a set of update transactions, the period
of transactionτi in ML (Pml

i ) is a constant and it can be
calculated off-line [25], while the separation of sampling
times of two consecutive jobs from the same transaction in
DS-FP is dynamic and it is obtained on-line in the experi-
ments. The mean value of the separations, i.e., the average

sampling period,P
ds

i , for transactionτi is calculated as fol-
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Figure 10. Average sampling period comparison
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lows, wheren is the number of jobs generated byτi in the
experiments.

P
ds

i =
1

n− 1

n−1∑

j=1

(ri,j − ri,j−1) (25)

In Figure 10, it is observed thatP
ds

i is consistently larger

thanPml
i while the difference (P

ds

i − Pml
i ) increases with

the decreasing of the transaction’s priority.DS-FPreduces
the average sampling rate more for lower-priority transac-
tions, thus reducing the workload of CPU. Figure 10 also

shows that the trend of (P
ds

i

P ml
i

) increases similarly to that of

(P
ds

i − Pml
i ), although it fluctuates.

Figure 11 depicts how much the CPU workload esti-
mation (DS-FP(Est.)) differs from the actual CPU utiliza-
tion obtained from the experiments (DS-FP(Expt.)) in finer
granularity. The x-axis depicts the size of update transac-
tions and the y-axis depicts the relative difference between
DS-FP(Est.) andDS-FP(Expt.), which is defined as

| DS-FP(Expt.)− DS-FP(Est.) |

DS-FP(Expt.)
× 100%.

Both maximum and mean relative differences are depicted
in the figure. In our experiments, it is observed thatDS-
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FP(Expt.) is consistently higher thanDS-FP(Est.). As ob-
served from the figure, our CPU workload estimation nearly
matches the measured CPU utilization in our experiments as
the maximum relative difference never exceeds0.6%.

We also conducted a set of experiments by varyingVi

Ci

and fixing
∑m

i=1
Ci

Vi
of the update transaction set at45%.

The results are depicted in Figure 12, which comparesML,
DS-FP,

∑m

i=1
Ci

Vi
and

∑m

i=1
Ci

Vi−Ci
. Similar to Figure 9,

the actual utilization forDS-FPis very close to the utiliza-
tion estimationUDS (shown asDS-FP(Est.)). Note that∑m

i=1
Ci

Vi−Ci
is the CPU workload resulting from the pos-

sible maximum separationVi − Ci satisfying thevalidity
constraintfor each transactionτi. It is a CPU lower bound
ignoring transaction interference. It is observed in Figure
12 that a CPU workload ofDS-FP is very close to that
of

∑m

i=1
Ci

Vi−Ci
. The largerVi

Ci
is, the closerDS-FPand∑m

i=1
Ci

Vi−Ci
are. This is because the probability of transac-

tion interference decreases forDS-FPwhen Vi

Ci
increases.

We have conducted more experiments with different ex-
perimental settings to verify whetherDS-FPis sensitive to
parameters. In Figure 13, we vary the validity length (Vi)
from 1000 to 8000 to have more spread on validity length.
In Figure 14, while we vary the validity length from1000
to 8000, we also vary the computation time (Ci) from 5 to
50 so that a single transaction may have higher CPU utiliza-
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tion. It is demonstrated in both figures that our observations
from Figure 9 are well maintained under various parameter
settings. Indeed, these results demonstrate that the improve-
ment of the CPU workload inDS-FPis due to the fact that
DS-FPadaptively samples real-time data objects at a lower
rate. This again is verified by the average sampling periods
of update transactions obtained from experiments.

In summary, when a set of update transactions is sched-
uled by DS-FP to maintain the temporal validity of real-
time data objects, it produces a schedule with a much lower
CPU workload thanML does. Thus more CPU capacity is
available for improving the performance of other workloads
(e.g., triggered transactions [27]) in the system.

5 RELATED WORK

There has been a lot of work on RTDBSs in which va-
lidity intervals are associated with real-time data [21, 22, 1,
12, 13, 14, 5, 26, 11, 30, 8, 7, 25, 10]. In [6], a safety-critical
automotive application, adaptive cruise control, is studied.
It deals with critical data and involves deadline bound com-
putations on data gathered from the automobiles’ environ-
ment. These applications have stringent requirements on
the freshness of data objects and completion times of the
tasks. In [8], a vehicular application with embedded engine
control systems is presented, and an on-demand schedul-
ing algorithm is proposed for enforcing base and derived
data freshness. In [7], an algorithm (ODTB) is proposed for
updating data items that can skip unnecessary updates, al-
lowing for better utilization of the CPU in the vehicular ap-
plication. Such systems introduce the need to maintain data
temporal consistency in addition to logical consistency.

In the model introduced in [22], a real-time system con-
sists of periodic tasks which are either read-only, write-only
or update (read-write) transactions. Data objects are tempo-
rally inconsistent when their ages or dispersions are greater
than the absolute or relative thresholds allowed by the ap-
plication. Two-phase locking and optimistic concurrency
control algorithms, as well as rate-monotonic and earliest
deadline first scheduling algorithms are studied in [22]. In
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[12, 13], real-time data semantics are investigated and a
class of real-time data access protocols called SSP (Simi-
larity Stack Protocols) is proposed. The correctness of SSP
is based on the concept of similarity, which allows differ-
ent but sufficiently timely data to be used in a computation
without adversely affecting the outcome.

In [14], similarity-based principles are coupled with the
Half-Half approach to adjust the real-time transaction load
by skipping the execution of task instances. The concept
of data-deadlineis proposed in [26]. It also proposes data-
deadline based scheduling, forced-wait and similarity-based
scheduling techniques to maintain the temporal validity of
real-time data and to meet transaction deadlines in RTDBSs.
In [10], Jha et al. study whether, given an update transaction
schedule, a periodic query would read mutually consistent
data. They propose design approaches to decide the period
and relative deadline of a query so that it satisfies mutual
consistency. They then suggest ways of reducing the com-
plexity of the solution approach using harmonic periods in
general.

Our work is related to theML scheme in [2, 25, 30].ML
guarantees a bound on the sampling time of a periodic trans-
action job and the finishing time of its next job. But, as we
showed, the deadline and period of a periodic transaction
are derived from the worst-case response time of the trans-
action. This is different from the aperiodic task model based
DS-FPalgorithm in which the deadline of a transaction job
is derived adaptively, and the separation of two consecutive
jobs is not a constant.DS-FP reduces the CPU workload
resulting from update transactions further by adaptively ad-
justing the separation of two consecutive jobs while satisfy-
ing thevalidity constraint. DS-FPis also different from the
distance constrained scheduling, which guarantees a bound
of the finishing times of two consecutive instances of a task
[9]. The EDL algorithm proposed in [4] processes tasks
as late as possible based on the Earliest Deadline schedul-
ing algorithm [17]. However,EDL assumes that all dead-
lines of tasks are given whereasDS-FPderives deadlines
dynamically. Finally, ourDS-FPalgorithm is applicable to
the scheduling ofage constrainttasks in real-time systems
[24].

6 CONCLUSIONS AND FUTURE WORK

This article proposes a novel algorithm, namely de-
ferrable scheduling for fixed priority transactions (DS-FP).
Distinct from past studies of maintaining the freshness (or
temporal validity) of real-time data in which the periodic
task model is adopted,DS-FP adopts theaperiodic task
model. The deadlines of jobs and the separation of two
consecutive jobs of an update transaction are adjusted ju-
diciously so that the farthest distance of the sampling time
of a job is achieved and the completion time of its next job is
bounded by the validity length of the updated real-time data.

This article presents a sufficient condition for its schedula-
bility. It also proposes a theoretical estimation of the pro-
cessor utilization ofDS-FP, which is verified in our exper-
imental studies. It is also demonstrated in our experiments
that DS-FPgreatly reduces update workload compared to
ML while guaranteeing the validity constraint.

However, there are still many open questions to be an-
swered forDS-FP. For example, it is not clear what a suf-
ficient and necessary condition is for schedulability ofDS-
FP, if time 0 is a critical instant for a synchronous trans-
action set scheduled byDS-FP, and if there is a least upper
bound of CPU utilization forDS-FP. Moreover, the concept
of deferrable schedulingis only used to schedule update
transactions with fixed priority in this article. It is possible
for the same concept to be used in the scheduling of up-
date transactions with dynamic priority, e.g., in the Earliest
Deadline scheduling [17, 4] of update transactions.
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