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Abstract in air traffic control systems [14], and vehicle velocity in
adaptive cruise control applications [6]. Such real-tiratad
The periodic update transaction model has been used toare typically managed in a real-time database system (RT-
maintain freshness (or temporal validity) of real-time@at DBS). Those data values are used to model the current sta-
Period and deadline assignment has been the main focus irtus of entities in a system environment. However, real-time
the past studies such as the More-Less scheme [25] in whichdata are different from traditional data in that they harreeti
update transactions are guaranteed by the Deadline Mono-semantics in which sampled values are valid only for a cer-
tonic scheduling algorithm [16] to complete by their dead- tain time interval [19, 18, 23]. The conceptteinporal va-
lines. In this article, we propose deferrable scheduling lidity is used to define the correctness of real-time data [19].
algorithm for fixed priority transactions — a novel approach A real-time data object ifresh (or temporally valig if its
for minimizing update workload while maintaining the tem- value truly reflects the current status of the corresponding
poral validity of real-time data. In contrast to prior work entity in the system environment. Each real-time data ob-
on maintaining data freshness periodically, update trans- ject is associated with @alidity interval as the lifespan of
actions follow an aperiodic task model in the deferrable the current data value defined based on the dynamic prop-
scheduling algorithm. The deferrable scheduling algarith  erties of the data object. A new data value needs to be in-
exploits the semantics of temporal validity constraint of stalled into the database before the validity interval ef th
real-time data by judiciously deferring the sampling times old value expires, i.e., the old one becomes temporally in-
of update transaction jobs as late as possible. We presentvalid. Otherwise, the RTDBS cannot detect and respond to
a theoretical estimation of its processor utilization, amd  environmental changes in a timely manner. In recent years,
sufficient condition for its schedulability. Our experinten  there has been tremendous amount of work devoted to this
results verify the theoretical estimation of the procesger area[5, 1, 12, 14, 30, 19, 20, 21, 22, 26, 11, 25, 8].
lization. We demonstrate through the experiments that the To maintain tempora| Va|iditysen50r update transac-
deferrable scheduling algorithm is an effective approach, tions which capture the latest status of the entities in the
and it significantly outperforms the More-Less scheme in system environment, are generated to refresh the values of

terms of reducing processor workload. the real-time data periodically [19, 14, 25]. A sensor updat
Keywords - Deferrable scheduling, real-time databases, transaction has an infinite number of periodic jobs, which
temporal validity, fixed priority scheduling have fixed length periods and relative deadlines. The update
problem for periodic update transactions consists of two
1 INTRODUCTION parts [25]: (1) the determination of the sampling periods

) o and deadlines of update transactions; and (2) the schedul-
Real-time and embedded systems are applied in manyng of ypdate transaction®rior work has proposed two ap-
application domains that require timely processing of mas- yr5aches for minimizing the update workload while main-
sive amount of reaI—_tlme data. Examples o_f_real—'ume datataining real-time data freshness. As explained in [19, 14],
include sensor data in sensor networks, positions of discra 5 simple method to maintain the temporal validity of real-
*This work was partially done while the co-author was at Cityigr- time data i§ to use tHdalf'_Half (HH) sc;heme in which the
sity of Hong Kong. update period for a real-time data object is set to be half of




the validity interval of the object. To further reduce the up design goals of RTDBSs is to guarantee that real-time data
date workload, thtore-Less (MLkcheme is proposed and remain fresh, i.e., they are always valid.
studied in [2, 25]. . 1s

This article present®eferrable Schedulindgor Fixed 2.1 Temporal Validity for Data Freshness
Priority transactionsS-FP), a novel algorithm for main- As real-time data values change continuously with time,
taining real-time data freshness, with the objective b&ing the correctness of a real-time data obj&¢idepends on the
minimize the update workload [27, 28]. We study the prob- difference between the real-time staifiéF;) of the real
lem of data freshness maintenance for firm real-time updateworld entity £; and the current sampling valGé:i(X;) of
transactions in a single processor RTDBS. Distinct from the X,
past work ofHH andML, which have a fixed period and rel-
ative deadline for each transacti@ﬁ_lzpadopts amperi_ Definition 2.1; A real-time data ObjecKi at timet is tem-
odictask model. In contrast tdL, in which a relative dead- ~ Porally valid (or temporally consistent) if, for its updatd
line is always equivalent to the worst-case response timeJ: ; finished last before, the sampling time; ; plus the va-
of a transactionDS-FPdynamically assigns relative dead- lidity interval length (or validity length for shorfy; of the
lines to transaction jobs by deferring the sampling time of data object is not less thani.e.,r; ; +V; > ¢[21, 19, 1].
a transaction job as much as possible while still guarantee-

ing the temporal validity of real-time data. The deferral of d lue f -t d bi led
a job’s sampling time results in a shorter relative deadlineA.‘ ata value for rea “time ata} objeal; sampled at any
time ¢ will be valid for V; following thatt up to (¢ + V;).

than its worst-case response time, which in turn increase : . -
. L ext, we review existing approaches that adopt a periodic
the separation of two consecutive jobs. Thus, the deferral :
task model for sensor update transactions.

of sampling time lends itself to a reduced processor work-
load produced by update transactions. We prove Bt 2.2 Half-Half and More-Less
FP outperformaML in terms of schedulability and present a
sufficient condition for the schedulability of a set of trans
tions undeDS-FP. We also analyze the average processor
utilization undeDS-FP. Our experimental study &S-FP
demonstrates that it is an effective algorithm for reducing
the workload of real-time update transactions. It also ver-
ifies the accuracy of our theoretical estimation of average
processor utilization und&S-FP, and demonstrates the ef-
fectiveness of th®S-FPalgorithms.

The rest of the article is organized as follows: Section ) . ,
2 reviews the existing approaches for real-time data fresh-Olc IengthVi. transgctlom (1 <1 < m) updates the corre-
ness maintenance. In Section 3, we propose the Deferrablépondlng data object;. Because each update transaction

Scheduling algorithm for Fixed Priority transactiori3S- upda_tdes ad?ffere(rjlt tda}[ta objegt, novcvoncurrenC)t/hcct)ntrol IS
FP). Our detailed discussion ddS-FPincludes an analy- ~ cons'derediorupdalé transactions. Ve assume that a sensor

sis of its schedulability and non-optimality, as well as an always samples the value of a real-time data object at the be-

estimation of its average processor utilization. Section 4 9nning of its period, and the systemrsgnchronoug.e.., all

presents the performance studies and Section 5 briefly deghe first jobs of update transactions are initiated at theesam

scribes the related work. Finally, we conclude our study in time) unless stated otherwise. qu convemen_ccdi!gtf?d .
Section 6 and present open questionsi&¢FP. a_mdriyj denote th_e absolute dez?\dllne, <_:0mplet|on (finishing)
time, and sampling (release) time of jap; of 7;, respec-
2 BACKGROUND: DATA FRESHNESS tively. We also assume that jitter between sampling time
MAINTENANCE and release time of a job is zero for convenience of presen-
tation (readers are referred to Section 3.3 for how jitters ¢
Real-time data, whose state may become invalid with the be handled). Formal definitions of the frequently used sym-
passage of time, need to be refreshed by sensor update tranbols are given in Table 1. Deadlines of update transactions
actions generated by intelligent sensors that sample the va are firm deadlines. The goal éfalf-Half and More-Less
ues of real world entities. To monitor the states of entities which adopt goeriodictask model, is to determine period
faithfully, real-time data must be refreshed before they be P; and relative deadlin®; so that all the update transac-
come invalid. The actual length of the temporal validity tions are schedulable and the CPU workload resulting from
interval of a real-time data object is application-depenide  periodic update transactions is minimized.
For example, real-time data with validity interval require Both HH andML assume a simple execution semantics
ments are discussed in [19, 20, 18]. One of the importantfor periodic transactions: a transaction must be executed

In this section, traditional approaches for maintaining
temporal validity, namely thélalf-Half (HH) and More-
Less(ML) approaches are reviewed.

In this article, 7 = {r;}*, refers to a set of periodic up-
date transactiongr, 72, .., 7, } @andX’ = {X;}", refersto
a set of real-time data objects. We assumethhas higher
priority than; for i < j unless specified otherwise. All
real-time data objects are assumed to be kept in main mem-
ory. Associated withX; (1 < i < m) is a validity interval



Symbol | Definition

; Real-time data objeat

Update transaction updatingj;

The(j + 1)**jobofr, (i = 1,..,m, j =0,1,2,.)
Response time af; ;

Computation time of transaction

Validity (interval) length ofX;

Finishing (completion) time ad; ;

Release (Sampling) time df ;

Absolute deadline od; ;

Period of transaction; in ML

Relative deadline of transactienin ML
Separation of jobs (i.et; j+1 — rs,;) in DS-FP
Relative deadline oJ; ; in DS-FP

Average period of transaction in DS-FP

Average relative deadline of transactipnn DS-FP
Average processor utilization DS-FP

Total cumulative processor demands from higher-
priority transactions received by in interval[a, b)
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Table 1. Symbols and definitions

Figure 1. Extreme execution cases &f; andJ; ;41

once every period. However, there is no guarantee on when

a job of a periodic transaction is actually executed within a
period. Throughout this article we assume the scheduling
algorithms are preemptive and ignore all preemption over-

head. For convenience, we use terms transaction and task

interchangeably.
Half-Half : In HH, the period and relative deadline of an up-

[f >

T 2

d

i+l

(:r., .+P.+D\) (:rl‘ J+2P|)

ri‘ j+1

(:rly J+P‘)

]

(:r“ |+D')
Figure 2. lllustration ofMore-Lessscheme

occurs for the first job of; whenl; = I, = ... = I,,, = 0.
[16] O

ForI; = 0 (1 < i < m), the transactions argyn-
chronous A time instant after which a transaction has the
worst-case response time is callecr#tical instant, e.g.,
time 0 is a critical instant for all the transactions if those
transactions argynchronous

To minimize the update workload and guarantee tem-
poral validity, ML usesDeadline Monotoni¢dDM) [16] to
schedule periodic update transactions [2, 25]. There are
three constraints to follow for; (1 < i < m):

¢ Validity constraint the sum of the period and relative

deadline of transaction; is always less than or equal

toV;,i.e.,P,+ D; <V, as shown in Figure 2.

Deadline constraintthe period of an update transac-

tion is assigned to be more than half of the validity

length of the object to be updated, while its corre-
sponding relative deadline is less than half of the valid-
ity length of the same object. Foy to be schedulable,

D; must be greater than or equald®, the worst-case

execution time of, i.e.,C; < D; < P;.

e Schedulability constraint for a given set of update
transactions, thBeadline Monotonischeduling algo-
rithm [16] is used to schedule the transactions. Conse-
quently,>>;_,([B:]-Cj) < Di (1 < i <m)if
has higher priority tham; for i > j.

ML assigns priorities to transactions basedstrortest Va-

date transaction are each typically set to be one-half of thelidity First (SVF), i.e., in thénverseorder of validity length

data validity length [19, 14]. In Figure 1, the farthest dis-
tance of two consecutive jobs of (based on the sampling
timer; ; of job J; ; and the deadlind; ;,; of its next job)
is2P;. If 2P; < V;, then the validity of real-time object;

is guaranteed as long as jobsrpMmeet their deadlines. Un-
fortunately, this approachincurs an unnecessarily higd CP
workload of update transactions in the RTDBSs compared
to More-Less

More-Less Consider the worst-case response time for any
job of a periodic transaction, where the response time is
the difference between the transaction initiation tifhe+

K P;) and the transaction completion time whdtds the
offset within the period and is a natural number.

Lemma2.1: For a set of periodic transactiofis= {7;}1",
(D; < P;) with transaction initiation timél; + K P;) (K =
0,1,2,...), the worst-case response time for any jobrof

and ties are resolved in favor of transactions with lesskslac
(i.e.,V; — C; for 1;). It assigns deadlines and periodsrio
as follows:

D; =17 — 7, (1)

WherefZ“‘Ol and r;’fol are finishing and sampling times of the
first job of 7; underML, respectively. Note that in a syn-
chronous system,}?ol = 0 and the first job’s response time
is the worst-case response timeMi.. In this article, super-
scriptml is used to distinguish the finishing and sampling
times inML from those inDS-FP.

3 DEFERRABLE SCHEDULING

All schedulers discussed in this article aweork-
conservingfor released jobs. In other words, the sched-
uler never idles the processor while there is a job awaiting



J 9, i time of ajob is also its release time, i.e., the time thatdie j
v | Hrigzrir-zzﬁrgy , is ready to execute, as we assume zero cost for sampling and
e ' m preemp it no arrival jitter for a job for convenience of presentation.
§ } ) f The deferral of jold; ;11's release time reduces the rela-
d, d tive deadline of the job if its absolute deadline is fixed as in
Vi \ Eq. 3. For example, although ;. is deferred tcr;,j+1 in
e b2 Figure 3, it still has to be completed by its deadlthg 1
¢ in order to satisfy thevalidity constraint(Eq. 3). Thus its
e relative deadlineD; j.1, becomesl; ;.1 — r; ., which
Figure 3. lllustration of DS-FPscheduling(; ;1 is 1S Iess_thardidH — i j+1. The deadline Oﬂi,jfl's subse-
shifted tor;_jﬂ) quent_job,Jl-,jJrQ,_c_an be further deferred t(CIrm-+1 + Vi)
’ to satisfy thevalidity constraint Consequently, the pro-
cessor utilization for completion of three jokk,;, J; 11,
execution (i.e., after it is released). Next, we introddee t andJ; ;- then becomegvli(dk?fiir,v —. Itis less than
Deferrable Scheduling algorithm for Fixed Prioritsansac- the utilization s, o Ji]rgd for completion
tions OS-FP. Section 3.1 presents the intuition of the algo- 2Vi—(Gijp1—Ti i) q P
rithm, and Section 3.2 describes the details of the algorith  ©f the same amount of work L.
Section 3.3 compares it withlL. Section 3.4 provides an
estimation ofDS-FPs average processor utilization. Sec-
tion 3.5 discusses whether the algorithm is optimal.

r i j+1

Definition 3.1: Let©;(a, b) denote the totatumulative pro-
cessor demandwnade by all jobs of higher-priority transac-
tion 7; for vj (1 < j < ¢ —1) during the time interval, b)
3.1 Intuition of DS-FP from a schedule& produced by a fixed priority scheduling

In ML, D; is determined by the first job’s response time, algorithm. Then,

which is theworst-caseresponse time of all jobs of;. i—1
Thus,ML is pessimistic on the deadline and period assign- 0,(a,b) = Z 0;(a,b),
mentin the sense that it uses a periodic task model that has a i=1

fixed period and relative deadline for each task, and the rel-

ative deadline is equivalent to the worst-case response tim Whered;(a, b) is the total processor demands made by all
It should be noted that thealidity constraintcan always be  jobs of single transaction; during|a, ). 0
satisfied as long aB; + D; < V;. However, the processor
workload is minimized only ifP; + D; = V;. Otherwise,

P; can always be increased to reduce processor workload a:
long asP; + D; < V;. Given release time; ; of job J; ;

and deadlingl; ;41 of job J; ;+1 (j > 0),

Next, we discuss how much a job’s release time can be
geferred. We shall usg ;1 instead ofr;_’jJrl to denote
the final deferred release time. According to fixed priority
scheduling theory,; ;1 can be derived backwards from its
deadlined; ;1 as follows:

ijy1 <rij+ Vs (3

guarantees that thealidity constraintcan be satisfied, as Fij+1 = Gij1 — Rijr1(Fije1,dijy1); (5)
depicted in Figure 3. Correspondingly, the following equa-  R; j11(ri j+1,dij+1) = ©:(ri j+1,dij41) + Ci; (6)
tion follows directly from Eq. 3.
whereR; ;11(r; j+1,0d ;+1) denotes the response time of
(Fija1 — Fig) + (dij41 —Tijr1) < Vi 4) Jij+1 in the time intervallr; j1,d; ;+1). Note that the
schedule of all higher-priority jobs that are released rprio
If r; ;41 is shifted onward t(r;_’jJrl along the time line in  tod; ;41 needs to be computed befdBg(r; j;+1,d; j+1) is
Figure 3, it does not violate Eq. 4 adg;; can still be computed. This computation can be invoked using a re-
completed by its deadline. This shift can be achieved, e.g.,cursive process from jobs of lower-priority transactioos t
in the ML schedule, if preemption td; ;1 from higher- higher-priority transactions. Nevertheless, it does met r
priority transactions ifr; ;+1, d; ;11] is less than the worst-  quire that acompleteschedule of all jobs should be con-
case preemption to the first job of Thus, temporal valid-  structed off-line before the task set is executed. Indéwed, t
ity can still be guaranteed as long&g.: is completed by ~ computation of job deadlines and their corresponding re-
its deadlined; ;. lease times is performed on-line while the transactions are
The intention ofDS-FPis to defer the sampling time, being scheduled. We only need to compute the first jobs’
rij+1, 0f J; ;'s subsequent job as late as possible while still response times when system starts. Upon the completion of
guaranteeing thealidity constraint Note that the sampling  job J; ;, the deadline of its nextjol; ;1, is firstly derived
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Figure 4. ComparingML andDS-FPschedules

from Eq. 3, then the corresponding release time ; is de-
rived from Eq. 5. If©;(r; j4+1,d; j+1) cannot be computed
due to incomplete schedule information of release times
and absolute deadlines from higher-priority transactions
DS-FPcomputes their schedule information on-line until it
can gather enough information to derivg. ;. JobJ; ;’s
DS-FPscheduling information (e.g., release time, deadline,
bookkeeping information, etc.) can be discarded after it is
completed and no lower-priority transactions need itsrinfo
mation for deriving their schedules. This process is called
garbage collectionn DS-FP.

Let S3(t) denote the set of jobs of all transactions whose
deadlines have been computed by tim@also let LS D;(t)
denote the latest scheduled deadlinerpoft ¢, i.e., max-
imum of all d; ; for jobs J; ; of 7; whose deadlines have
been computed b, then

LSD,(t) =

max
\]i,j GSJ(t

){di,j} (4 >0). (7)

Given jobJ;, ; whose scheduling information has been com-
puted at time, andVi (i > k), if
LSD;(t) = dj, (8)

then the information od;, ; can be garbage collected.

Example 3.1: Suppose that there are three update transac-
tions whose parameters are shown in Table 2. The result-

ing periods and deadlines lH andML are shown in the
same table. Utilizations diH andML arelf,,,; ~ 0.68 and
Uy, = 1.00, respectively.

Figures 4 (a) and (b) depict the schedules produced by
ML and DS-FP, respectively. It can be observed from

both schedules that the release times of transaction jobs

Js.1, J2,3, J2,4 are shifted from timeg4, 21, 28 in ML to
18, 22, 30 in DS-FP, respectively. O

TheDS-FPalgorithm is described in Section 3.2.
3.2 Deferrable SchedulindAlgorithm

This subsection preseriis-FP, afixed priorityschedul-
ing algorithm. Transaction priority assignment policy in

J

i |Gl v | 5| ML Half-Half
[P D | By

11 |5 024 |1 [25

2|2 |10]02|7 |3 |5

3|2 |[20]|01]14]6 |10

Table 2. Parameters and results for Example 3.1

DS-FPis the same as iML, i.e., Shortest Validity First
Given an update transaction gt it is assumed that; has
a priority higher thar; if i < j as we lety; <V;. Algo-
rithm 3.1 presents tHeS-FPalgorithm. For convenience of
presentation, garbage collection is omitted in the algorit
There are two cases for ti¥S-FPalgorithm: 1) At system
initialization time, Lines 13 to 20 iteratively calculatieet
first job’s response time for;. The first job’s deadline is
set as its response time (Line 21). 2) Upon completion of
i'sjob Jr (1 < i < m,k > 0), the deadline of its next
job (J; k+1), di k41, is derived at Line 27 so that the far-
thest distance af; 's sampling time and, ;s finishing
time is bounded by the validity lengt; (Eq. 3). Finally,
the sampling time o8; ;,11, r; x+1, iS derived backwards
from its deadline by accounting for the interferences from
higher-priority transactions (Line 29).

Algorithm 3.1 DS-FPalgorithm:
Input: A setof update transactiofs = {7;}7, (m > 1)
with known{C; }:*; and{V;}7,.
Output: Construct a partial scheduls§ if 7 is feasible;
otherwise, reject.
1 case (System initialization timeg:
2 t « 0; // Initialization
3 /Il LSD; — Latest Scheduled Deadlineqfs jobs.
4 LSD; <0, Vi (1 <i<m);
5 0; — 0, Vi (1<i<m);
6 // ¢; is the latest scheduled job of
7 for ¢ =1 to m do
/I Schedule finish time for; .
rio < 0;
fio = Ci
/I Calculate higher-priority (HP) preemptions.
oldHPPreempt— 0; [l initial HP preemptions
hpPreempt— CalcHPPreemyt, 0,0,f; ,);
while (hpPreempt> oldHPPreemptdo
/I Accounting for the interferences of HP tasks
f. 0 < rio + hpPreempt- C;;
if (f, o > Vi — C;) then abortendif;
oldHPPreempt— hpPreempt
hpPreempt— CalcHPPreemyit, 0, 0,f; ,);
end
21 di,O — fi,O;
22 end
23 return



25 case (upon completion od; 1) :

26 // Schedule release time oy ;. ;.

27 O; g1 — Mig + Vi; /I get next deadline fad; ;41
28 /I 1; 41 is also the sampling time fa¥; 41

29 I k11 < SChEdU|eR-|(i, k+1,C;, di,kJrl);

30 return

Algorithm 3.2 ScheduleRT(, &, C;, d; 1):
Ji,k with C; anddiyk.

Ti,k-

Input:
Output:

oldHPPreempt— 0;
hpPreempt— 0;
ik — dik — Ci;
I/ Calculate HP preemptions backwards frdg.
hpPreempt— CalcHPPreemit, k,r; 1, d; 1 );
while (hpPreempt- oldHPPreemptdo
/I Accounting for the interferences of HP tasks
rix < di , — hpPreempt- Cj;
if (r;,,x < dik—1) then abortendif;
oldHPPreempt— hpPreempt
hpPreempt— GetHPPreemt, k,r; 1., d; 1.);

/l initial HP preemptions

© 00 N O U~ W N PP

=
o

11
end
returnr; j;

Algorithm 3.3 CalcHPPreempt(i, k, t1, t2):
Input:  J; 5, and a time intervalt,, t2).

Output:  Total cumulative processor demands from
higher-priority transactions; (1 < j <14 —1) during

[t1,t2).
1 4; — k; // Record latest scheduled jobnf
2 O — to;
3 LSDl — tQ;
aif (i=1)
5 then // No preemptions from higher-priority tasks.
6 return0;
g8 then // Getpreemptions from; (Vj,1 < j < 1)
9 /I because;’s schedule is complete befotge

=
o

return GetHPPreemfat k,t,, LSD;);
endif
/'build S up to or exceeding, for 7; (1 < j < i).
for j=1t0i-1do
while (d; ¢, < LSD;) do
dj,fj+l — T + V55
041 < ScheduleRT(j, fj + 1, Cj, dj,gj+1);
b—14;+1;
LSDj — djyg].;
end
end
return GetHPPreemfit k,t1, LSD;);

=
N P

13
14
15
16
17
18
19
20
21

Function ScheduleRE, k, C;, d;x) (Algorithm 3.2)
calculates the release tinrg; with known computation
time C; and deadlined; ;. It starts with release time
rix = dir — C;, then iteratively calculate®;(r; i, d; ),
the total cumulative processor demands made by all higher-
priority jobs ofJ; ;. during the intervalr; , d; ), and ad-
justsr; 5 by accounting for the interferences from higher-
priority transactions (Lines 5 to 12). The computation of
r;r continues until the interferences from higher-priority
transactions do not change in an iteration. In particular,
Line 9 detects any infeasible schedule. A schedule becomes
infeasible undeDS-FPif r; , < d;x,—1 (k > 0), i.e., re-
lease time ofJ; , becomes earlier than the deadline of its
preceding jolJ; ;. FunctionGetHPPreemgt, k, t1, t2)
scans the intervdl,, t2), adds up total preemptions from
V5, 1 < j <i—1), and return®;(¢1,t2), the cumula-
tive processor demands of during[t,,t2) from schedule
S that has been built.

FunctionCalcHPPreempt, &, t1, t2) (Algorithm 3.3)
calculatesO;(t1, t2), the total cumulative processor de-
mands made by all higher-priority jobs df; during the
interval [t1, t2). Line 7 ensures thatj,1 < j < i), 75's
schedule is completely built before timg This is because
7;'s schedule cannot be completely built befeseunless
the schedules of its higher-priority transactions are com-
plete before,. In this case, the function simply returns an
amount of higher-priority preemptions fer during|[t1, t2)
by invoking GetHPPreemgt, &, ti, t¢2), which returns
©;(t1,t2). If any higher-priority transaction; (j < ¢) does
not have a complete schedule durjng ts), its scheduleS
up to or exceeding, is built on the fly (Lines 14 to 19). This
enables the computation &f;(¢1, t2). The latest scheduled
deadline ofr;’s job, LS D;, indicates the latest deadline of
7;'s jobs that have been computed.

Theworst-casecomplexity ofScheduleRTs O(m - V2)
assuming thal‘% is a constant. An important property of
ScheduleRT, &, C;, d; ) terminating at time = d;
is that the latest scheduled deadlinerp{L.SD,(t)) is no
larger than that of; (LS D, (t)) if 7, does not have a priority
higher thanr; (I > j). This is proved in the following
lemma.

Lemma 3.1: Given a synchronous update transaction set
7 andScheduleRT, k, C;, t) (1 < i < m&k > 0),
LSDy(t) < LSD;(t) (i > | > j) holds whenSched-
uleRT(i, k, C;, t) terminates at time.

Proof. This can be proved by contradiction. Suppose
that LSD;(t) > LSD,(t) (i > | > j) when Sched-
uleRTi, k, C;, t) terminates at. If LSD;(t) < t,
thenCalcHPPreempti, &, ¢1, t2) does not terminate ac-
cording to Line 14 becaus# ,, < LSD;(t) = t. Thus
LSD;(t) > LSD;(t) = t. Let LSD;(t) = t5 in CalcH-



T1 T2 T3
Job [ ML/DS-FP | ML DS-FP | ML DS-FP
0 | (1) ©,3) | ©3) |©6 |©B6)
1 | @5) (7,10) | (7,10) | (14,20) | (18, 20)
2 | (89 (14, 17) | (14,17) | (28, 34) | (35, 38)
3 | (12,13) (21, 24) | (22,24) | ...
4 | (16,17) (28, 31) | (30, 32)
5 | (20,21) (35, 38) | (38, 40)
6 | (24,25)
7 | (28,29)
8 | (32,33)
9 | (36,37)

Table 3. Release time and deadline comparison

PPreemptl, k;, t1, t2), which must be invoked before
ScheduleRT, k&, C;, t) terminates at. As we assume
that LSD;(t) < LSD;(t) = ta, similarly CalcHPPre-
emptl, ki, t1, t2) has not reached the point to terminate
according to Line 14. This contradicts the assumptiofl

The next example illustrates how ti¥S-FP algorithm
works with the transaction set in Example 3.1.

3.3 Comparison of DS-FP and ML

Note thatML is based on thperiodictask model, while
DS-FPadopts theaperiodictask model. The relative dead-
line of a transaction IDS-FPis not fixed. Theoretically,
the separation of two consecutive jobs ©fin DS-FP,
ri,; — Ti,j—1, satisfies the following condition:

Vi - Cl Z Tig — Tij—1 Z Vl - WCR-I; (] 2 1), (9)
where WCRYT, is the worst-case response time of jobs of
7; in DS-FP. Note that the maximal separation &f; and
Ji,j—l (j > 1), maxj{n-,j — ri,j—l}! cannot exceeﬁi’i —

C;, which can be obtained when there are no higher-priority
preemptions in the execution of joBs;s (e.g., the highest
priority transactionr; always has separatios, — C; for

Ji,; andJ; ;_1). Thus, the processor utilization f@S-

FP should be greater thaj " | 7%, which is the CPU
workload resulting from the maximal separatign— C; of
each transaction.

If £ < Y wheref!'} is the first job’s response time (i.e.,
the worst-case response time) ©f% job in ML, ML can
be regarded as a special casdd&-FPin which sampling

Example 3.2: Table 3 presents the comparison of (release (or release) time;”/, ; and deadlin«d?fjl+1 (j > 0) can be

time, deadline) pairs assigned bjL. and DS-FP (Algo-
rithm 3.1) for the jobs ofy, 7, andr; in Example 3.1. Note
that only release times and deadlines before tithare de-
picted in the table. Please also note thathas same re-
lease times and deadlines for all jobs unkliérandDS-FP.
However,J; 3, J2.4, J2.5, J3,1, andJs o have different re-
lease times and deadlines und#r andDS-FP. Algorithm
3.1 starts asystem initializatiortime. It calculates dead-
lines forJ; o, J2,0, J3,0. Upon completion o8s o at time 6,
ds ;1 is settors o + V3 = 20. Then Algorithm 3.1 invokes
ScheduleR{B, 1, 2,20) at Line 29, which derives; ;. At

this moment, Algorithm 3.1 has already calculated the com-

plete schedule up tds o (time 6). But the schedule in the
interval(6, 20] has only been partially derived. Specifically,
only schedule information af; o, Ji,1, J1,2, Ji,3 J2,0, and
J2.1 has been derived far, andr,. Algorithm 3.2 Sched-
uleRT) obtainsr; ; = 20 — 2 = 18 at Line 3, then invokes
CalcHPPreemp8, 1, 18, 20). Algorithm 3.3 CalcHPPre-
emp} finds thatLS D, = 10 < ¢ = 20, thenit jumps to the

for loop starting at Line 13 to build the complete schedule

of 1 andr, in the interval(6, 20], where the release times
and deadlines fad; 4, Ji 5, J2.2, J1 6, andJ, 3 are derived.
Thus, higher-priority transactions andr, have a complete
schedule before tim20. Note thatr; ¢ andd, ¢ for J; ¢ are
derived when we calculatg 3 andd; 3 such that the com-
plete schedule up to tima, 5 is built for transactions with
priorities higher thams. Asr, o is set tol4 by earlier cal-
culation,ds 3 is set to24. It derivesry 3 backwards from
do.3 and sets it t@2 because,(22,24) = 0. Similarly,
ds 1 andrs ; are set t®0 and18, respectively. O

specified as follows:

a7 7+ Vi, (10)
f?ffﬂ d?jl-s—l - (Gi(r%laf%) +C5).  (11)
It is clear that®, (7, 7)) + C; = ' whenr = 0

(1 <i<m)inML.

Theorem 3.1: Given a synchronous update transaction set
7 with knownC; andV; (1 < i < m), if (Vi) 7§ < % in
ML, then

WCRT, < f7}

whereWCRT, andf;’_}f denote the worst-case response time
of r; in DS-FPandML, respectively.

Proof. This can be proved by contradiction. Suppose that
7% IS the highest priority transaction such th&@CRT, >
fZ:‘é holds inDS-FP. Also it is assumed that the response
time of J;,, (n > 0), Ry », is the worst forr, in DS-FP.
Note that schedules af in ML andDS-FPare the same as
in both casesr; jobs have the same relative deadlidg )
and separation/period( — C;). Thereforel < k < m
holds.

As WCRT, > f}c’ff), there must be a transactiensuch
that (a)7; has a priority higher tham;, (1 < I < k); (b)
at least two consecutive jobs aof, J; j_; andJ; ;, overlap
with Ji, ,,, and (c) the separation Jf ;_; andJ; ; satisfies
the following condition:

My — -1 <V — 1 (> 0), (12)



whereV;, — f}’?ol is the period (i.e., separation) of jobs of
in ML. '

Claim (a) is true becauske > 1. It is straightforward
that if each higher priority transaction ef only has one
job overlapping withJy, ,,, thenRy, ,, < f}c’ff). This implies
that Claim (b) is true. Finally, fo(vi < k) andJ; ;—, and
J;; overlapping withJy, ,, if

1.
My —r-1 =2V =1 (G >0),

thenRy, ,, > f}c’ff) cannot be true because the amount of pre-
emptions from higher priority transactions receivedipy,
in DS-FPis no more than that received By in ML. Thus,
Claim (c) is also true.

We know that release timg ; in DS-FPis derived as
follows:
(13)

whereR, ; is the calculated response time of jab;, i.e.,
©y(ry,5,d; ;) + C;. Following Eq. 12 and 13,

r =d;— R

dl_’j — Rl_’j = rlyj {By Eq 13}
< roi+ V-1 {By Eq. 12
= dy; —f {ByEq. 3
Finally,
Ry > 1. (14)

Eq. 14 contradicts the assumption thais the highest pri-
ority transaction such th&/CRT, > f}c’ff) holds. Therefore,
the theorem is proved. O
The following theorem gives a sufficient condition for the
schedulability oDS-FP.

That is,

ij+1 —Oij + Rij41 + Rij = Vi (18)

Because
Rijy1+ Rij <2-WCRT <V,

it follows from Eq. 18 that; ;41 — d; ; > 0 holds. This
ensures that it is schedulable to schedule two jobs of
one validity interval/; undeDS-FP. Thus7 is schedulable
with DS-FP. m|
The following corollary states the correctnes®©&-FP.

Corollary 3.1: Given a synchronous update transaction set
7 with knownC; andV; (1 < i < m), if (Vi) 7§ < % in

ML, thenDS-FPcorrectly guarantees tliemporal validity

of real-time data.

Proof. As deadline assignment dS-FPfollows Eq. 3, the
largest distance of two consecutive jods, 1 —r; ; (j >

0), does not exceeY;. Thevalidity constraintcan be satis-
fied if all jobs meet their deadlines, which is guaranteed by
Theorem 3.2. a

If 7 can be scheduled hylL, then byML definition (V%)

f;’fol < Yi. Thus Corollary 3.2, which states a sufficient
schedulability condition foDS-FP, directly follows from
Theorem 3.2.

Corollary 3.2: Given a synchronous update transaction set
7 with knownC; andV; (1 < ¢ < m), if T can be sched-
uled byML, then it can also be scheduled b§-FP.

However, the converse statement of Corollary 3.2 is not

Theorem 3.2: Given a synchronous update transaction set true. That is, if7 can be scheduled lyS-FP, then it is not

7 with knownC; andV; (1 < < m), if (i) f/5 < % in
ML, then7 is schedulable witiDS-FP.

Proof. If f;’_}f < i, then the worst-case response times of
7; (1 <4 < m) in DS-FRB, WCRT, satisfy the following
condition (by Theorem 3.1):

WCRT, < ] < VE

That is, WCRT; is no more than‘%. Because the following
three equations hold iDS-FPaccording to Eq. 5 and 6:

rij = dij—Rij, (15)
di,j—ﬁ-l = I; +V (16)
dijr1 = Tijr1+ Rijp, (17)

Replacingr; ; andd; ;41 in Eq. 16 with Eq. 15 and 17,
respectively, it follows that

lij+1+ Rijy1 =0dij — Rij + Vi

necessarily true thaf can also be scheduled L. This
is demonstrated in the following examples.

Example 3.3: Consider a set of two transactiofis;, 7}
with computation timeg, 3, and validity intervalss, 12,
respectively. Figure 5(a) showss-FP schedule for this
transaction set. This schedule is valid because the pattern
between timer and19 repeats itself forever. On the other
hand, this transaction set is not schedulabléthybecause
the first job ofry, J2 o, completes at tim&, which is greater
than2 (i.e.,6).

In this example DS-FP works better because it allows
J2,0 to be completed later tha¥y. O

Example 3.4: Consider a set of three transactidns, 72,

73} with computation timeg, 3, 3, and validity intervals,

15, 47, respectively. Figure 5(b) depicts a schedule of the
transactions undévL. The first job ofrs, Js o, completes at
time 24, which is greatertha#gi (i.e.,23.5). Thusthe set of
transactions is not schedulableMy.. Figure 5(c) depicts a
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(b) ML fails 3 transactions (b) A DS-FP schedule for 3 transactions
T1 T2 Ts R . Figure 6. DS-FPschedules wittiixed patterns
] ] 0 epeating pattern

T, finishes before V4/2 ,,/”’7 Discussion of jitters Our results can be easily extended to
_________ /f—”—;r’—\ e . . .
L - H the case that jitter between sampling time and release time

Time of a job is non-zero if the maximum jitter of a transaction is
known. In the presence of non-zerojitters, we can transform

- 1
W Time a transaction (with validity lengthV! and maximum jitter

50 60 70 30 9% 100 d;) to a transactiom; (with validity lengthV; = V! —§; and

(c) A DS-FP schedule for 3 transactions that ML fails zero jitter). Such a transformation guarantees that dan
meet its validity constraint, therj can also meet its validity
constraint.

Figure 5. Transaction sets schedulableg-FPbut
notML 3.4 Theoretical Estimation of Processor
Utilization for DS-FP

schedule of the transactions und¥8-FP. The same trans- This subsection presents means of estimating average

action sbet s sche_dulz;%le hd-‘ySS'OFP becau_se ﬁ?fe schedule  cpy ytilization. Note thabS-FPdoes not usually schedule

pa‘itje_;fn etV\f/een téme |ar:; 3 r epEats |ts§_ o&eép transactions periodically. Thus, it is hard to derive ita@x
ffferent from Example 3.3, it is observed in tHixs- CPU utilization unless there is a fixed pattern that repeats

schedule that the first jobs of all transactions finish before itself in aDS-FPschedule. In what follows. we shall inves-

half of their respective validity intervals. tigate two cases in order: (1)@S-FPschedule that has a

Note that in these two exampleBS-FP fully utilizes detected pattern repeating itself from certain point iretim
the processor. We could easily derive examples in which (2) aDS-FPschedule that has no detected pattern.
the processor idles once in a while. For example, in Figure _

5(a) we could chang€, to 2.5 and in Figure 5(b) we could ~ 3-4-1 DS-FPwith a Detected Pattern

changeC; to 2.75. After both changes the transaction sets We introducdixed patterrin aDS-FPschedule with a sim-
cannot be scheduled ByL. However, they can be sched- Ple example, which is shown below.

uled byDS-FP. Moreover,we can also scale up the numbers
to make them all integers again.

In summary, if a set of synchronous update transactions
can be scheduled hylL to satisfy thevalidity constraint
then it can also be scheduled bp-FP. However, the con-
verse statement is not true, which implies tB&-FP out-
performs ML in terms of schedulabilityhus, the following
corollary directly follows from both Corollary 3.2 and Ex-
ample 3.4.

Example 3.5: Consider @S-FPschedule for two transac-
tions; andr, in Figure 6(a). Note that transaction param-
eters (;’s andV;’s) are given in the figure. We observe that
there is dixed patterrrepeating itself in the schedule every
3 time units, starting from tim@&. If time goes to infinity,
we can estimate that the average CPU utilization ofiBe
FP schedule is aboui6.7%. Similarly, given three trans-
actions in Figure 6(b), we observdiged patterrrepeating
itself in the schedule everytime units, starting from time
Corollary 3.3: DS-FP outperforms ML in terms of schedu- 13. Again, we can easily estimate that its CPU utilization is
lability for satisfying thevalidity constraint close t0100%. ]



Needless to say, the average CPU utilization f@%FP Finally, U ps, the average utilization of the transaction set

schedule can be approximated based dixed patternif 7 underDS-FPcan be approximated as:

such a pattern exists in the schedule. However, it is not true . .

that we can always easily detect a fixed pattern in elzS8y Z g Z ) (24)
FP schedule. It becomes harder to detefikad patternin =P Vi o
aDS-FPschedule if the size of the transaction set is larger. 1= Z] 17,

This is because the complexity of pattern detection grows
exponentially with the size of the transaction set. Indeed,
it remains open whether there is always a fixed pattern in
everyDS-FPschedule.  As manS-FPschedules may  Example 3.6: Given the transaction set in Table 2, we cal-
not be detected to have suitked patters, it becomes more  cyjate the average relative deadline and period; df =
important to estimate the average CPU utilization for such 1 9 3) as follows:

DS-FPschedules.

The following example illustrates how the average uti-
' lization is estimated.

3.4.2 DS-FPwithout a Detected Pattern ol Co —
We now present an approximation of average processor uti- 1-— % '
lization of DS-FPfrom statistical perspectiva the absence b
of detected patterns iBS-FPschedulesNote thatour ap- D3 = ——@——a~ = 42, P3=V3;— D3 =1538.
proximation only works provided th&ft can be scheduled 1= (Fl + F_z)

by ML. This implies that the approximation is applicable to

transaction sets that all deadlines are not greater tham the The average processor utilizationlgps = -7, ? =
corresponding periods iklL. Our approximation is quite  0.65. Given the transaction set in Table 2, it can be verified
close to the average CPU utilization obtained in our experi- that the processor utilization for the fira0 time units is
ments. The CPU utilization approximation depends on the 63%, which is very close to our theoretical estimation and
approximate values of the average deadlinand periodP lower than the processor utilization frodil (68%). D

of transactions, which is described as follows.

Given a set of transactiors = {r;}",, let Upg de-
note the average processor utilizatiorD8-FP, andP; the
average period for;. The average relative deadline of
namelyD;, is approximated as follows:

Discussion of fixed patterns A fixed patternn a DS-FP
schedule may be exponentially long (with respect to the
number of transactions). Thus, it can be very expensive
to detect. Assume that the minimal number of jobs per
transaction in this pattern is. If n is large, then Eq. 24
can be used to estimate the average CPU utilization of the
fixed pattern, which in turn is the utilization estimation of

— —. D;
D; =C; + Z[(__) x Cj] (1<i<m). (19) the schedule. -
= P; In summary, the average CPU utilization ofs-FP
schedule can be approximated based on a fixed pattern if
LetP,; andD; ;11 (1 <i<m A j>0)denoter; ;i — such a pattern exists in the schedule. Otherwise, the CPU

r;; andd; ;11 —r; ;41 in Eq. 4, respectively. It follows that utilization can be estimated by Eq. 24 if the transaction set
' ' ' is schedulable according to Corollary 3.2.

Pij+ Dijs1=Vi. (20) 3.5 The Non-Optimality of DS-FP

Thus the following equation holds given an arbitrarily e have proven in Section 3.4 tHaB-FPis close to op-
largen (n — oo), wheren is the number of jobs in averag- timalin terms of minimizing CPU workload from the statis-

ing: tical perspective. Intuitive\DS-FPshould be very close to
B4 D =V, (21) an optimal algorithm because it always defers the execution
! ! v of a job as late as possible, and hence reducing the work-
Following Eq. 19 and 21D; andP; (1 < i < m) can load as much as possible. We have also proverDisaFP

be calculated (from the highest priority transactipno the ~ ¢an schedule any transaction set that is schedulablélby

lowest priority transactiom,,) as following, respectively: ~ in Section 3.3. Now it s interesting to knowlfS-FPis an
optimal algorithm in terms of schedulability. That ggyen

any transaction set, if it is schedulable by a fixed priority

Di = Z e (I<i<m) (22) scheduler, can it be scheduledD$-FP? Unfortunately, the
. - =1 P; answer to the aforementioned question is negative, which
P, = V,-D; (1<i<m) (23) can be demonstrated with the following example.

10



[ - _ _ _ Parameters Meaning Value
T3 misses deadline by 2 units Neopu No. of CPU 1
Nr No. of real-time data objects [10, 300]
l T %W\ T T M T M TTTTT T T T T T I T T 1T ™ Vi (Ms) Validity interval of dataX; [4000, 8000]
0 A * “© % * C; (ms) CPU time for updatingX; 5,15
il.' (@) An unsuccessful DS-FP schedule Length No. of data to update 1
ii Repeating pattern
- Table 4. Experimental parameters and settings

e
P SN e
0 10 20 30 40 50 60
(b) A successful schedule
Repeating pattern chronous schedule for the same transaction set in Example

— T 3.7 is depicted in Figure 7(c), in which there i$ixed pat-

— - . . = . ternbetween time 6 and48 repeating itself forever. In gen-
° 10 @ * “ * * eral, whether the asynchrondd$-FPalgorithm is optimal
(c) An asynchronous DS-FP schedule in terms of schedulability remains an open question.
_ _ _ Another interesting observation is that the transaction se
Figure 7. DS-FPis not optimal in Example 3.7 is schedulable BS-FPif a priority order
different fromShortest Validity Firs{SVF is used. For ex-
. e ample, if we swap the priorities afi and», DS-FPcan
27 «--- Repeating pattern - zo7 schedule the set, as depicted in Figure 8. In this case there
' o : SO
Summm m ‘ - — _ is afixed patterrbetween time 27 and 207 repeating itself
FTTTTT FTTTT FTTTTTT T FTTTTTT forever_
0 10 20 30 40 50 60 3 .
BT EmERa N RS- _ In summary,DS-FP is _not pptlmal for a set of syn-
ST T e e e T chronous update transactions in terms of schedulability. B
H SY TNy '—W—H—;H—v—v—’ it r_emains open if !t is olpti_mal for .asynchronous trans-
g e et 1 actions, or transaction priorities assigned differenttyni
ST NS e TSy O Ny ], SVF.
TTTTT T T T T I T T T I T T T T I Tl rrrrrrr =
180 190 200 210 220 230 240
4 PERFORMANCE EVALUATION
Figure 8. SVFis not optimal forDS-FP This section presents the important results from our

simulation studies. Section 4.1 describes our simulation
model and parameters. Section 4.2 comp&®8g-Pwith

. . . the More-Less NIL) algorithm. ML is known to outper-
22,.36,.respelct|vely. This ;et IS not schedulab.IeED@-FP form Half-Half [25], which is not compared here. The
as it fails at time36, shown in Figure 7(a). In this case, the experiments demonstrate that our proposed approaches re-

sego_nd_job o¥; cannot be (_:omp_leted by the end of 'tS first duce CPU utilization while guaranteeing data validity con-
validity interval. However, if); » is schedule@ time units straints

earlier, this transaction set can be successfully schddule
because there isfixed pattermrepeating itself ever§2 time 4.1 Simulation Model and Parameters
units starting from tim&7, as depicted in Figure 7(b). Note

that such a schedule is also a fixed priority schedule becaus?Oads produced bpS-FPandML. It is demonstrated that

no lower pT'o”ty JObS. may Interrupt a hlgher priority job DS-FPproduces a lower CPU workload th&fi.. Also, the
once the higher one is released. By doing so, the release : .
. . : 2 experiments demonstrate that the increase of average sam-
time of J, ; is postponed to timé8 as shown in Figure 7(b)

. A . . pling period fromDS-FPis the main reason for its lower
(from time 14 in Figure 7(a)). Hence the deadlinef, is workload. The primary performance metric used in the

Example 3.7: Consider a set of three transactigns, 7,
73} with computation timeg, 4, 3, and validity intervald 2,

Our experiments compare the update transaction work-

also postponed. H experiments is CPU workload.

DS-FPrequires that every transactionshould finish its A summary of the parameters and default settings used
first two jobs in[0,V;). If the requirement is relaxed so in experiments is presented in Table 4. The baseline val-
that the first two jobs are allowed to finish[m g, ;.0 + Vi) ues for the parameters follow those used in [25], which are

wherer; ¢ denotes the time at which o actually starts, then  originally from air traffic control applications. We consid
DS-FPcan schedule the set in Example 3.7. In this case,a single CPU, main memory based RTDBS. The number of
the first jobs of transactions stasynchronouslyAn asyn- real-time data objects varies from 10 to 300 and the valid-

11
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064 —2—Ds-FP (Expt) - 8
—o—DS - FP (Est.) = 189
0.54] —x—Sum(Ci/ (Vi-Ci) 8 .- 14
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Figure 9. CPU workloads comparison Figure 10. Average sampling period comparison
ity interval of each real-time data object is uniformly dis- 0609 e
tributed between 4000 ms and 8000 ms. Each transaction 055
updates one real-time data object, and the CPU time for '
each transaction is uniformly distributed between 5 ms and ~ 0.501
15 ms. Inthe experiment8} percent confidence intervals % b "
have been obtained whose widths are less thampercent g 0451 \D/D/ X/
of the point estimate for the performance metrics. S 0.40 —
E VY X%
X
4.2 Experimental Results o 035 —
In our experiments, the CPU workloads of update trans- 0.30
actions produced bylL andDS-FPare quantitatively com- "0 50 100 150 200 250 300
pared. Update transactions are generated randomly accord- Number of Update Transactions
ing to the parameter settings in Table 4. Figure 11. CPU workloads estimation error

The resulting CPU workloads generated frdwih and
DS-FPare depicted in Figure 9. From the results, we ob- lows, wheren is the number of jobs generated Bbyin the
serve that the CPU workload produced®$-FPis consis- experiments.
tently lower than that oML. In fact, the difference widens

n—1

as the number of update transactions increases. The differ- B _ 1 N N o5
ence reaches8% when the number of transactions is 300. ] Z(TW ~Tij-1) (25)
It is also observed that the CPU utilization@5-FPmea- =1

sured in our experiment®G-FREXpt.)) nearly matches
the CPU workload estimatioti ps (Eq. 24), shown aBS- N _ o " _
FP(Est.) in the figure. Moreover, tH2S-FPCPU workload ~ thanP™" while the differencef; — P™) increases with
is only slightly higher thary"" | V%C whichis the CPU  the decreasing of the transaction’s prioriBS-FPreduces
workload resulting from the maximal separativh— C; the average sampling rate more for lower-priority transac-
(1 < i < m) of each transaction (see Section 3.3). In fact, tions, thus reducing thgdworkload of CPU. Figure 10 also
the difference is insignificant in Figure 9. The improvement shows that the trend ofgﬁ) increases similarly to that of
of the CPU workload irDS-FPis due to the fact thabS- —ds ol o
FP adaptively samples real-time data objects at a lower rate.(Pi_ — Fi™), although it fluctuates. _
This is verified by the average sampling periods of update ~ Figure 11 depicts how much the CPU workload esti-
transactions obtained from experiments. mation OS-FREst.)) differs from the actual CPU utiliza-
Figure 10 shows the average sampling period for eachtion obtained from the experimen®$-FREXpt.)) in finer
transaction irDS-FPwhen the number of update transac- 9dranularity. The x-axis depicts the size of update transac-
tions is300. Given a set of update transactions, the period ions and the y-axis depicts the relative difference betwee
of transactionr; in ML (P/™) is a constant and it can be PS-FRESt.) and>S-FRExpt.), which is defined as
c_alculated off-line [25], while the separation of sampling_ | DS-FR Ezpt.) — DS-FREst.) |
times of two consecutive jobs from the same transaction in DS-FREapt.)
DS-FPis dynamic and it is obtained on-line in the experi- TPt
ments. The mezﬂlvalue of the separations, i.e., the averaggoth maximum and mean relative differences are depicted
sampling periodPis, for transaction; is calculated as fol-  in the figure. In our experiments, it is observed tB&-

In Figure 10, it is observed thﬁfs is consistently larger

x 100%.
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Figure 12. CPU workloads with fixed_." |
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Figure 13. CPU workloads comparison

FP(Expt.) is consistently higher thddS-FRESst.). As ob-
served from the figure, our CPU workload estimation nearly
matches the measured CPU utilization in our experiments as

0.25+
0.204
0.15+
0.10+

—a—Sum (Gi/ (Vi - Ci))
—0—DS - FP (Est.)
—x—DS - FP (Expt.)
—o—ML

T T T
25 50 75
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Number of Update Transactions

i

the maximum relative difference never exceédss.

We also conducted a set of experiments by vary}é@‘ug

and fixing>>" | Vl of the update transaction set 4i%.
The results are deplcted in Figure 12, which comptes
1 vl andy>", vcic
the actual utilization foDS-FPis very close to the utiliza-
tion estlmatlonUDS (shown asDS-FREst.)). Note that
is the CPU workload resulting from the pos-
sible maximum separatioy; — C; satisfying thevalidity
constraintfor each transaction;. It is a CPU lower bound
ignoring transaction interference.
12 that a CPU workload obS-FPis very close to that
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Figure 14. CPU workloads comparison

tion. Itis demonstrated in both figures that our observation
from Figure 9 are well maintained under various parameter
settings. Indeed, these results demonstrate that the u@pro
ment of the CPU workload iDS-FPis due to the fact that
DS-FPadaptively samples real-time data objects at a lower
rate. This again is verified by the average sampling periods
of update transactions obtained from experiments.

In summary, when a set of update transactions is sched-
uled by DS-FPto maintain the temporal validity of real-
time data objects, it produces a schedule with a much lower
CPU workload tharML does. Thus more CPU capacity is
available for improving the performance of other workloads
(e.g., triggered transactions [27]) in the system.

5 RELATED WORK

There has been a lot of work on RTDBSs in which va-
lidity intervals are associated with real-time data [21, 22
12,13,14,5, 26,11, 30, 8, 7, 25, 10]. In [6], a safety-caitic
automotive application, adaptive cruise control, is sddi

It deals with critical data and involves deadline bound com-
putations on data gathered from the automobiles’ environ-
ment. These applications have stringent requirements on
the freshness of data objects and completion times of the
tasks. In [8], a vehicular application with embedded engine
control systems is presented, and an on-demand schedul-
ing algorithm is proposed for enforcing base and derived
data freshness. In [7], an algorithm (ODTB) is proposed for
updating data items that can skip unnecessary updates, al-
lowing for better utilization of the CPU in the vehicular ap-
plication. Such systems introduce the need to maintain data

are. This is because the probability of transac- temporal consistency in addition to logical consistency.

In the model introduced in [22], a real-time system con-

We have conducted more experiments W|th different ex- sists of periodic tasks which are either read-only, writdyo

perimental settings to verify whethBXS-FPis sensitive to
parameters. In Figure 13, we vary the validity length) (
from 1000 to 8000 to have more spread on validity length.
In Figure 14, while we vary the validity length frod00

to 8000, we also vary the computation timé’y) from 5 to

or update (read-write) transactions. Data objects aredemp
rally inconsistent when their ages or dispersions are great
than the absolute or relative thresholds allowed by the ap-
plication. Two-phase locking and optimistic concurrency
control algorithms, as well as rate-monotonic and earliest

50 so that a single transaction may have higher CPU utiliza- deadline first scheduling algorithms are studied in [22]. In



[12, 13], real-time data semantics are investigated and aThis article presents a sufficient condition for its schaelul
class of real-time data access protocols called SSP (Simi-ility. It also proposes a theoretical estimation of the-pro
larity Stack Protocols) is proposed. The correctness of SSPcessor utilization oDS-FP, which is verified in our exper-

is based on the concept of similarity, which allows differ- imental studies. It is also demonstrated in our experiments
ent but sufficiently timely data to be used in a computation that DS-FP greatly reduces update workload compared to
without adversely affecting the outcome. ML while guaranteeing the validity constraint.

In [14], similarity-based principles are coupled with the However, there are still many open questions to be an-
Half-Half approach to adjust the real-time transaction load swered forDS-FP. For example, it is not clear what a suf-
by skipping the execution of task instances. The conceptficient and necessary condition is for schedulabilityb&-
of data-deadlinas proposed in [26]. It also proposes data- FP, if time 0 is a critical instant for a synchronous trans-
deadline based scheduling, forced-waitand similarityeldla  action set scheduled lyS-FP, and if there is a least upper
scheduling techniques to maintain the temporal validity of bound of CPU utilization foDS-FP. Moreover, the concept
real-time data and to meet transaction deadlines in RTDBSsof deferrable schedulings only used to schedule update
In[10], Jha et al. study whether, given an update transactio transactions with fixed priority in this article. It is polsk
schedule, a periodic query would read mutually consistentfor the same concept to be used in the scheduling of up-
data. They propose design approaches to decide the periodate transactions with dynamic priority, e.g., in the Eestli
and relative deadline of a query so that it satisfies mutual Deadline scheduling [17, 4] of update transactions.
consistency. They then suggest ways of reducing the com-

plexity of the solution approach using harmonic periods in ACKNOWLEDGMENTS
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