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Abstract

In a breakthrough result, Razborov (2003) gave optimal lower bounds
on the communication complexity of every function f of the form f (x, y) =
D(|x ∧ y|) for some D : {0, 1, . . . , n} → {0, 1}, in the bounded-error quan-
tum model with and without prior entanglement. This was proved by the
multidimensional discrepancy method. We give an entirely different proof of
Razborov’s result, using the original, one-dimensional discrepancy method.
This refutes the commonly held intuition (Razborov 2003) that the original
discrepancy method fails for functions such as DISJOINTNESS.

More importantly, our communication lower bounds hold for a much
broader class of functions for which no methods were available. Namely,
fix an arbitrary function f : {0, 1}n/2 → {0, 1} and let A be the Boolean matrix
whose rows are each an application of f to some subset of the variables
x1,¬x1, . . . , xn,¬xn. We prove that the communication complexity of A in
the bounded-error quantum model with and without entanglement is Ω(d),
where d is the 1

3 -approximate degree of f . From this result, Razborov’s lower
bounds follow easily.

Our proof technique is novel and has two ingredients. The first is
a certain equivalence of approximation and orthogonality in Euclidean n-
space, which we establish using linear-programming duality. The second is
a new construction of suitably structured matrices with low spectral norm,
which we realize using matrix analysis and the Fourier transform over Zn

2.



1 Introduction

Let D : {0, 1, . . . , n} → {0, 1} be an arbitrary predicate. Consider the communica-
tion problem f : {0, 1}n × {0, 1}n → {0, 1} given by

f (x, y) def
= D(|x ∧ y|),

where |x ∧ y| stands for the number of positions where x and y both have a 1. As
usual, the objective is for Alice and Bob to evaluate f (x, y), where Alice holds x
and Bob holds y.

As we will see shortly, the hardness of this communication problem depends on
whether D changes value close to the middle of the range {0, 1, . . . , n}. Specifically,
define

`0(D) ∈ {0, 1, . . . , bn/2c},

`1(D) ∈ {0, 1, . . . , dn/2e}

to be the smallest integers such that D is constant in the range [`0(D), n − `1(D)].
The figure below illustrates this definition for a typical predicate D:
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Let Q∗1/3( f ) denote the quantum communication complexity of f with error 1/3
in the model with prior entanglement. Define Q1/3( f ) analogously for the model
without prior entanglement. In a breakthrough result, Razborov [18] established
optimal lower bounds on the quantum communication complexity of every function
of the above form:

Theorem 1.1 (Razborov [18]). Let D : {0, 1, . . . , n} → {0, 1} be an arbitrary
predicate. Put f (x, y) def

= D(|x ∧ y|). Then

Q1/3( f ) > Q∗1/3( f ) > Ω
(√

n`0(D) + `1(D)
)
.
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We give an entirely different proof of this theorem. In fact, we give communi-
cation lower bounds for a substantially broader class of functions that were beyond
the reach of the current techniques. The setting for our work is as follows. Let n
and t be integers with t | n. Fix an arbitrary function f : {0, 1}t → {0, 1}. Consider
the communication problem of computing

f
(
x|V ⊕ w

)
,

where:

• the bit string x ∈ {0, 1}n is Alice’s input;

• the bit string w ∈ {0, 1}t and the set V ⊂ {1, 2, . . . , n} with |V | = t are Bob’s
inputs;

• and x|V denotes the projection of x onto the indices in V. Formally, x|V
def
=

(xi1 , xi2 , . . . , xit ) ∈ {0, 1}
t, where i1 < i2 < · · · < it are the elements of V.

We prove communication lower bounds for this problem in the bounded-error
quantum model with and without prior entanglement. Our lower bound is in terms
of the approximate degree deg1/3( f ) of f , which is the least degree of a multivariate
polynomial p with

| f (z) − p(z)| 6
1
3

for each z ∈ {0, 1}t.

We prove:

Theorem 1.2 (Main Theorem). Any quantum protocol, with or without prior
entanglement, that solves the above problem with error probability at most 1/5
on each input must exchange at least

1
4

deg1/3( f ) · log
(n

t

)
− 2

qubits.

The lower bound of Theorem 1.2 continues to hold when the sets V are restricted
to have a particularly simple form; see Section 4 for details.

The value of Theorem 1.2 is that the notion of approximate degree plays an
important role in complexity theory and has been studied in countless works.
In particular, tight estimates of the approximate degree are available for many
functions, including all symmetric functions (Paturi 1992) and some DNF formulas
(Aaronson & Shi, 2004). As a result, our work gives strong lower bounds on
communication for any of these base functions f with high approximate degree. To
illustrate the applicability of Theorem 1.2, we use it to give a short and elementary
proof of Razborov’s celebrated result, Theorem 1.1.
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Motivation. Our work is of interest for several reasons. First, the bounded-
error quantum model with prior entanglement is the most powerful model of
bounded-error communication. Despite encouraging recent progress [2, 3, 15, 18],
proving lower bounds in this model remains difficult, and few general methods
are available. We address this state of affairs by establishing, in Theorem 1.2,
communication lower bounds for a rather broad class of functions for which
no methods were previously known. In particular, Razborov’s proof technique
depends crucially on the high symmetry of the functions D(|x ∧ y|), in addition to
their high approximate degree. Our Theorem 1.2, on the other hand, completely
removes the symmetry requirement: the symmetry or nonsymmetry of the base
function f is irrelevant.

Second, our proof of Theorem 1.2 contributes considerable technical novelty.
One of its ingredients is a new construction of matrices with low spectral norm, the
pattern matrices, which correspond to hard communication problems. Matrix anal-
ysis and the Fourier transform over Zn

2 are critical to this construction. The pattern
matrices reduce our task to finding, in the vicinity of the base function f , a real-
valued function that is orthogonal to the low-degree parity functions. This is where
the other major ingredient of our proof is needed, the Approximation/Orthogonality
Principle. It asserts a certain equivalence between approximation and orthogonal-
ity, and we prove it using linear-programming duality. We are able to carry out
this development in the general setting of Euclidean n-space, making for a cleaner
and simpler proof. We describe the technical content of this paper in greater detail
under “Techniques” below.

It is noteworthy that our proof of Theorem 1.2 fits in the framework of the
original, one-dimensional discrepancy method (described in detail in Section 2.4),
as opposed to Razborov’s approach known as the multidimensional discrepancy
method. This refutes the commonly held intuition that the original discrepancy
method could not have yielded Theorem 1.1. For example, Razborov writes, “even
this generalized form of the discrepancy method does not work for the disjointness
predicate” [18, p. 155]. In view of our results, that statement was in error [19].
We emphasize that it does not affect the remainder of Razborov’s article, which is
correct.

Finally, we find it already valuable to offer a new proof of Razborov’s re-
sult. This result is one of the strongest in communication complexity and, as
such, deserves more than one proof. Despite sustained efforts by various au-
thors [2,3,8–10,15], no such alternate proof exists. As a matter of fact, the next-best
lower bounds for general predicates are nowhere close to Theorem 1.1. To illus-
trate, consider the familiar disjointness predicate D, given by D(t) = 1 ⇔ t = 0.
Theorem 1.1 shows its communication complexity to beΩ(

√
n),while the next-best

lower bound [2, 3] is only Ω(log n).
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Razborov’s proof technique has seen several applications, including direct-
product theorems [11], separations for small-bias communication [4], and learning
theory [12]. We hope that the ideas in this paper will also find uses beyond quantum
communication.

Our Techniques. Razborov’s proof proceeds by the multidimensional discrep-
ancy method, a powerful extension of the original discrepancy method. Central
to that technique are the so-called combinatorial matrices, which have rare and
useful spectral properties. By contrast, we use the simpler, original discrepancy
method. Roughly speaking, this original method works as follows. Let F(x, y) be
the Boolean function whose communication complexity is of interest. The method
says: find a “hard” function H(x, y) in the vicinity of F, thereby proving that F
itself must be “somewhat hard.” More precisely, the discrepancy method asks for a
function H(x, y) and a distribution µ on (x, y)-pairs such that:

• F and H are highly correlated under µ; and

• all low-cost quantum protocols have negligible advantage in computing H
under µ.

If such H indeed exists, it follows that no low-cost protocol can compute F to high
accuracy (or else it would be a good predictor for the hard function H as well!).

The discrepancy method thus reduces our task to finding the hard function H.
It is here that we contribute a new technique. A key ingredient of this technique
is a new construction of matrices with low spectral norm and suitable structure,
the pattern matrices. The idea of a pattern matrix originated in a recent article by
the author [22], where we introduced a somewhat different family of matrices and
placed an upper bound on their spectral norm (with the end result of separating AC0

from depth-2 majority circuits). This paper gives an exact, closed-form expression
for the singular values of a pattern matrix and their multiplicities, substantially
improving on the estimates from [22]. These exact calculations are in fact crucial to
our main result: the earlier estimates would not be strong enough. As an additional
benefit, our exact analysis here improves the main results of [22]; we discuss this
in the concluding part of this work, Section 7.

The pattern matrices further reduce our challenge to proving the existence of a
function ψ : {0, 1}t → R with two properties. First, ψ must be well-correlated with
the base function f . Second, ψ must be orthogonal to all low-degree parity func-
tions. To infer the existence of such ψ, we prove the Approximation/Orthogonality
Principle, which states that the notions of approximation and orthogonality in
Euclidean n-space are equivalent in a certain precise sense. Our proof here exploits
linear-programming duality.
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Once Theorem 1.2 is established, Razborov’s lower bounds follow readily as a
special case.

Organization. We start with a thorough review of technical preliminaries in
Section 2. The two sections that follow are concerned with the two principal ingre-
dients of our technique, the pattern matrices and the Approximation/Orthogonality
Principle. Section 5 integrates them into the discrepancy method and establishes
our main result, Theorem 1.2. Section 6 deduces from it Razborov’s lower bounds.
Section 7 uses our exact spectral calculations to strengthen the author’s earlier
result [22] on classical discrepancy and its applications to AC0.

2 Preliminaries

This section provides relevant technical background. We describe our notation
(Section 2.1) and then briefly review matrix analysis (Section 2.2), the quantum
communication model (Section 2.3), and the discrepancy method for communi-
cation lower bounds (Section 2.4). Finally, we recall fundamental results on the
approximation of Boolean functions by polynomials (Section 2.5).

2.1 General

A Boolean function is a mapping X → {0, 1}, where X is a finite set. Typically, X =
{0, 1}n or X = {0, 1}n × {0, 1}n. A predicate is a mapping D : {0, 1, . . . , n} → {0, 1}.
The notation [n] stands for the set {1, 2, . . . , n}. For a set S ⊆ [n], its characteristic
vector 1S ∈ {0, 1}n is defined by

(1S )i =

1 i ∈ S ,
0 otherwise.

For b ∈ {0, 1}, we put ¬b def
= 1 − b. For x ∈ {0, 1}n, we write |x| def

= |{i : xi = 1}|. For
x, y ∈ {0, 1}n, the notation x ∧ y refers as usual to the component-wise AND of x
and y. In particular, |x ∧ y| stands for the number of positions where x and y both
have a 1.

Throughout this manuscript, “log” refers to the logarithm to base 2.
Finally, we recall the Fourier transform over Zn

2. Consider the vector space of
functions {0, 1}n → R, equipped with the inner product

〈 f , g〉 def
=

1
2n

∑
x∈{0,1}n

f (x)g(x).
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For S ⊆ [n], define χS : {0, 1}n → {−1,+1} by χS (x) def
= (−1)

∑
i∈S xi . Then {χS }S⊆[n]

is an orthonormal basis for the inner product space in question. As a result, every
function f : {0, 1}n → R has a unique representation of the form

f (x) =
∑

S⊆[n]

f̂ (S ) χS (x),

where f̂ (S ) def
= 〈 f , χS 〉. The reals f̂ (S ) are called the Fourier coefficients of f . The

following fact is immediate from the definition of f̂ (S ):

Proposition 2.1. Let f : {0, 1}n → R be given. Then

max
S⊆[n]
| f̂ (S )| 6

1
2n

∑
x∈{0,1}n

| f (x)|.

2.2 Matrix Analysis

We draw freely on basic notions from matrix analysis. For example, we assume
familiarity with the singular value decomposition; positive semidefinite matrices;
matrix similarity; matrix trace and its properties; the Kronecker product and its
spectral properties; the relation between singular values and eigenvalues; and
eigenvalue computation for matrices of simple form. An excellent reference on
the subject is [7]. The review below is limited to notation and the more substantial
results.

The symbol Rm×n refers to the family of all m × n matrices with real entries.
The (i, j)th entry of a matrix A is denoted by Ai j.We frequently use “generic-entry”
notation to specify a matrix succinctly: we write A = [F(i, j)]i, j to mean that that
the (i, j)th entry of A is given by the expression F(i, j). In most matrices that arise
in this work, the exact ordering of the columns (and rows) is irrelevant. In such
cases we describe a matrix by the notation [F(i, j)]i∈I, j∈J , where I and J are some
index sets.

Let A ∈ Rm×n. We use the following standard notation:

‖A‖∞
def
= max

i, j
{|Ai j|}, ‖A‖1

def
=

∑
i, j

|Ai j|.

We denote the singular values of A by σ1(A) > σ2(A) > . . . > σmin{m,n}(A) > 0.
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Recall that the spectral norm, trace norm, and Frobenius norm of A are given by

‖A‖ = max
x∈Rn, ‖x‖=1

‖Ax‖ = σ1(A),

‖A‖Σ =
∑

σi(A),

‖A‖F =
√∑

A2
i j =

√∑
σi(A)2.

Recall that every matrix A ∈ Rm×n has a singular value decomposition A =
UΣVT, where U and V are both orthogonal matrices and Σ is diagonal with entries
σ1(A), σ2(A), . . . , σmin{m,n}(A). For A, B ∈ Rm×n, we write 〈A, B〉 def

=
∑

i, j Ai jBi j.

A useful consequence of the singular value decomposition is:

〈A, B〉 6 ‖A‖ ‖B‖Σ (A, B ∈ Rm×n). (2.1)

We will need the following well-known bound on the trace norm of a matrix
product, which we state with a proof for the reader’s convenience.

Proposition 2.2 (Trace norm of the product). ‖AB‖Σ 6 ‖A‖F ‖B‖F.

Proof. Write the singular value decomposition AB = UΣVT. Let u1, u2, . . . and
v1, v2, . . . stand for the columns of U and V, respectively. By definition, ‖AB‖Σ is
the sum of the diagonal entries of Σ. We have:

‖AB‖Σ =
∑

(UTABV)ii =
∑

(uT
i A)(Bvi) 6

∑
‖ATui‖ ‖Bvi‖

6
√∑

‖ATui‖
2
√∑

‖Bvi‖
2 = ‖UTA‖F ‖BV‖F = ‖A‖F ‖B‖F. �

2.3 Quantum Communication

This section reviews the bounded-error model of quantum communication. We
include this review mainly for completeness; our proofs rely solely on a standard
lower-bound technique for such protocols and on no other aspect of quantum
communication.

There are several equivalent ways to describe a quantum communication pro-
tocol. Our description closely follows Razborov [18]. Let A and B be complex
finite-dimensional Hilbert spaces. Let C be a Hilbert space of dimension 2, whose
orthonormal basis we denote by |0〉, |1〉. Consider the tensor product A ⊗ C ⊗ B,
which is itself a Hilbert space with an inner product inherited from A, B, and C.
The state of a quantum system is a unit vector inA⊗C⊗B, and conversely any such
unit vector corresponds to a distinct quantum state. The quantum system starts in a
given state and traverses a sequence of states, each obtained from the previous one
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via a unitary transformation chosen according to the protocol. Formally, a quantum
communication protocol is a finite sequence of unitary transformations

U1 ⊗ IB, IA ⊗ U2, U3 ⊗ IB, IA ⊗ U4, . . . , U2k−1 ⊗ IB, IA ⊗ U2k,

where: IA and IB are the identity transformations in A and B, respectively;
U1,U3, . . . ,U2k−1 are unitary transformations in A ⊗ C; and U2,U4, . . . ,U2k are
unitary transformations in C ⊗ B. The cost of the protocol is the length of this
sequence, namely, 2k. On Alice’s input x ∈ X and Bob’s input y ∈ Y (where X,Y
are given finite sets), the computation proceeds as follows.

1. The quantum system starts out in an initial state Initial(x, y).

2. Through successive applications of the above unitary transformations, the
system reaches the state

Final(x, y) def
= (IA ⊗ U2k)(U2k−1 ⊗ IB) · · · (IA ⊗ U2)(U1 ⊗ IB) Initial(x, y).

3. Let v denote the projection of Final(x, y) ontoA⊗ span(|1〉) ⊗B. The output
of the protocol is 1 with probability 〈v, v〉, and 0 with probability 1 − 〈v, v〉.

All that remains is to specify how the initial state Initial(x, y) ∈ A ⊗ C ⊗ B is
constructed from x, y. It is here that the model with prior entanglement differs from
the model without prior entanglement.

In the model without prior entanglement, A and B have orthonormal bases
{|x, w〉 : x ∈ X, w ∈ W} and {|y, w〉 : y ∈ Y, w ∈ W}, respectively, where W is a
finite set corresponding to the private workspace of each of the parties. The initial
state is the pure state

Initial(x, y) = |x, 0〉 |0〉 |y, 0〉,

where 0 ∈ W is a certain fixed element. In the model with prior entanglement,
the spaces A and B have orthonormal bases {|x, w, e〉 : x ∈ X, w ∈ W, e ∈ E} and
{|y, w, e〉 : y ∈ Y, w ∈ W, e ∈ E}, respectively, where W is as before and E is a finite
set corresponding to the prior entanglement. The initial state is now the entangled
state

Initial(x, y) =
1
√
|E|

∑
e∈E

|x, 0, e〉 |0〉 |y, 0, e〉.

Apart from finite size, no assumptions are made about W or E. In particular, the
model with prior entanglement allows for an unlimited supply of entangled qubits.
This mirrors the unlimited supply of shared random bits in the classical public-coin
randomized model.
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Let f : X × Y → {0, 1} be a given function. A quantum protocol P is said to
compute f with error ε if

Pr[P(x, y) , f (x, y)] 6 ε for all x, y,

where the random variable P(x, y) ∈ {0, 1} is the output of the protocol on
input (x, y). Let Qε( f ) denote the least cost of a quantum protocol without prior
entanglement that computes f with error ε. Define Q∗ε ( f ) analogously for protocols
with prior entanglement. The precise choice of a constant ε ∈ (0, 1) affects Qε( f )
and Q∗ε ( f ) by at most a constant factor, and thus the setting ε = 1/3 entails no loss
of generality.

Let D : {0, 1, . . . , n} → {0, 1} be a predicate. We associate with D the function
f : {0, 1}n × {0, 1}n → {0, 1} defined by

f (x, y) def
= D(|x ∧ y|).

We let Qε(D) def
= Qε( f ) and Q∗ε (D) def

= Q∗ε ( f ). More generally, by computing D
in the quantum model we mean computing the associated function f . As one last
convention, by the communication complexity of a Boolean matrix F = [Fi j]i∈I, j∈J

is meant the communication complexity of the associated function f : I × J →
{0, 1}, given by

f (i, j) = Fi j.

2.4 The Discrepancy Method

The discrepancy method is an intuitive and elegant technique for proving lower
bounds on quantum communication. A starting point in our discussion is the
following fact.

Theorem 2.3 (Razborov [18, Thm. 5.5], Linial & Shraibman [15, Lem. 10]).
Let X,Y be finite sets. Let P be a quantum protocol (with or without prior
entanglement) with cost C qubits and input sets X and Y. Then[

E[P(x, y)]
]

x,y
= AB

for some real matrices A, B with ‖A‖F 6 2C √|X| and ‖B‖F 6 2C √|Y |.

Theorem 2.3 states that the matrix of acceptance probabilities, [E[P(x, y)]]x,y, of
every low-cost protocol P has some nontrivial factorization. This transition from
quantum protocols to matrix factorization is a standard technique and has been
applied by various authors in various contexts [6, 9, 13, 15]. We now state the
discrepancy method as adapted to the quantum model by Razborov [18]. This
is not to be confused with the multidimensional discrepancy method, also due to
Razborov [18], which we will have no occasion to use or describe.
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Theorem 2.4 (Discrepancy method, Razborov [18, Sec. 5.2], implicit). Let X,Y
be finite sets and f : X × Y → {0, 1} a given function. Let K = [Kxy]x∈X, y∈Y be any
real matrix with ‖K‖1 = 1. Then for each ε > 0,

4Qε ( f ) > 4Q∗ε ( f ) >
〈K,M〉 − 2ε

3 ‖K‖
√
|X| |Y |

,

where M def
=

[
(−1) f (x,y)

]
x∈X, y∈Y

.

Proof. Let P be a quantum protocol with prior entanglement that computes f with
error ε and cost C. Put

Π
def
=

[
E[P(x, y)]

]
x∈X, y∈Y

.

Then we can write M = (J − 2Π) + 2E, where J is the all-ones matrix and E is
some matrix with ‖E‖∞ 6 ε. As a result,

〈K, J − 2Π〉 = 〈K,M〉 − 2 〈K, E〉

> 〈K,M〉 − 2ε ‖K‖1
= 〈K,M〉 − 2ε. (2.2)

On the other hand, Theorem 2.3 guarantees the existence of matrices A and B with
AB = Π and ‖A‖F ‖B‖F 6 4C √|X| |Y |. Therefore,

〈K, J − 2Π〉 6 ‖K‖ ‖J − 2Π‖Σ by (2.1)

6 ‖K‖
(√
|X| |Y | + 2 ‖Π‖Σ

)
since ‖J‖Σ =

√
|X| |Y |

6 ‖K‖
(√
|X| |Y | + 2 ‖A‖F ‖B‖F

)
by Prop. 2.2

6 ‖K‖
(
2 · 4C + 1

) √
|X| |Y |. (2.3)

The theorem follows by comparing (2.2) and (2.3). �

Remark 2.5. A quick glance at the proof reveals that Theorem 2.4 is valid with
M = [ f (x, y)]x,y. In fact, this choice of M would slightly simplify the proof of
this theorem as well as its primary use in the paper, Theorem 5.1. Nevertheless,
we prefer the definition of M as a sign matrix because, as we shall see shortly,
this makes it possible to view the above proof in terms of correlation and relate
Theorem 2.4 to the classical discrepancy method.

We now reinterpret Theorem 2.4 and its proof in a different terminology, which
will clarify it and show that it is simply an extension of the classical discrepancy
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method to the quantum model. Let f : X × Y → {0, 1} be a given function whose
communication complexity we wish to estimate. The underlying communication
model is irrelevant at this point. Suppose we can find a function h : X × Y → {0, 1}
and a distribution µ on X × Y that satisfy the following two properties:

1. Correlation of f and h. The functions f and h are well correlated under µ:

E
(x,y)∼µ

[
(−1) f (x,y)+h(x,y)

]
> ε, (2.4)

where ε > 0 is a given constant.

2. Hardness of h.No low-cost protocol P in the given model of communication
can compute h to a substantial advantage under µ. Formally, if P is a protocol
in the given model with cost C bits, then

E
(x,y)∼µ

[
(−1)h(x,y) E

[
(−1)P(x,y)

]]
6 2O(C)γ, (2.5)

where γ = o(1). The inner expectation in (2.5) is over the internal operation
of the protocol on the fixed input (x, y).

If the above two conditions hold, we claim that any protocol in the given model that
computes f with error at most ε/3 on each input must have cost Ω

(
log ε

γ

)
. Indeed,

let P be a protocol with Pr[P(x, y) , f (x, y)] 6 ε/3 for all x, y. Then standard
manipulations reveal:

E
(x,y)∼µ

[
(−1)h(x,y) E

[
(−1)P(x,y)

]]
> E

(x,y)∼µ

[
(−1) f (x,y)+h(x,y)

]
− 2 ·

ε

3

(2.4)
>

ε

3
.

In view of (2.5), this shows that P must have cost Ω
(
log ε

γ

)
.

We call the described lower-bound technique the discrepancy method, follow-
ing the terminology of Razborov [18]. Some authors, including Kushilevitz and
Nisan [14], restrict the term “discrepancy method” to the case when f = h and
the communication takes place in the classical randomized model. This restriction
apparently reflects the fact that the method originated in the classical setting, before
the need to study quantum models arose. Our broad usage of the term is meant to
highlight the fundamental mathematical technique in question, which is clearly
independent of the communication model.

Indeed, the communication model enters the picture only in the proof of
(2.5). It is here that the analysis must exploit the particularities of the model.
To place an upper bound on the advantage under µ in the quantum model with
entanglement, as we see from (2.3), one considers the quantity ‖K‖

√
|X| |Y |, where
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K = [h(x, y)µ(x, y)]x,y. In the classical randomized model, the quantity to estimate
happens to be

max
S⊆X,
T⊆Y

∣∣∣∣∣∣∣∣
∑
x∈S

∑
y∈T

µ(x, y)h(x, y)

∣∣∣∣∣∣∣∣ ,
which is actually known as the discrepancy of h under µ.

2.5 Approximation by Polynomials

Let f : {0, 1}n → R be given. As we saw in Section 2.1, any such function f has an
exact representation as a linear combination of χS , where S ⊆ [n]. A fundamental
question to ask is how closely f can be approximated by a linear combination of
functions χS with |S | small.

Definition 2.6 (Approximate degree of functions). Let f : {0, 1}n → R and ε > 0.
The ε-approximate degree degε( f ) of f is the minimum integer d ∈ {0, 1, . . . , n} for
which there exists φ ∈ span

(
{χS }|S |6d

)
with

max
x∈{0,1}n

| f (x) − φ(x)| 6 ε.

We will be primarily interested in the approximate degree of Boolean functions.
As a first observation, degε( f ) = degε(¬ f ) for all such functions and all ε > 0.
Second, the exact choice of constant ε ∈ (0, 1/2) affects degε( f ) only by a multi-
plicative constant. This fact is well-known and follows from basic approximation
theory. It is therefore standard practice to work with deg1/3( f ) by default. Finally,
the approximate degree does not change much as one switches from the {0, 1}
representation of Boolean functions to the {−1,+1} representation. More precisely,
fix f : {0, 1}n → {0, 1} and define f ∗(x) = (−1) f (x). Then

degε( f ∗) = degε/2( f ) for all ε > 0, (2.6)

as one can verify from the equation f ∗ = 1 − 2 f .
We will take a special interest in symmetric Boolean functions, i.e., functions

f : {0, 1}n → {0, 1} whose value is uniquely determined by x1 + · · · + xn.
Equivalently, a Boolean function f is symmetric if and only if

f (x1, x2, . . . , xn) = f (xσ(1), xσ(2), . . . , xσ(n))

for all inputs x ∈ {0, 1}n and all permutations σ : [n] → [n]. Note that there is a
one-to-one correspondence between predicates and symmetric Boolean functions.
Namely, one associates a predicate D with the symmetric function

f (x) def
= D(x1 + · · · + xn).

12



Asymptotically tight estimates of the 1
3 -approximate degree are available for every

symmetric Boolean function (Paturi 1992). These estimates are in terms of the
quantities `0( f ) and `1( f ), defined next.

Definition 2.7. Let D : {0, 1, . . . , n} → {0, 1}. Define

`0(D) ∈ {0, 1, . . . , bn/2c},

`1(D) ∈ {0, 1, . . . , dn/2e}

to be the smallest integers such that D is constant in the range [`0(D), n−`1(D)]. For
a symmetric function f : {0, 1}n → {0, 1}, define `0( f ) = `0(D) and `1( f ) = `1(D),
where D is the predicate for which f (x) ≡ D(x1 + · · · + xn).

See Section 1 for a pictorial illustration of this definition. We are now ready to
state Paturi’s fundamental theorem.

Theorem 2.8 (Paturi [17]). Let f : {0, 1}n → {0, 1} be a symmetric function. Then

deg1/3( f ) = Θ
(√

n(`0( f ) + `1( f ))
)
.

3 The Approximation/Orthogonality Principle

This section marks the beginning of our proof. Here we consider the notions
of approximation and orthogonality in Euclidean space and establish a certain
equivalence between them. We will later reinterpret this result in terms of protocols
rather than points in Euclidean space.

Let X be a finite set. Consider RX , the linear space of all functions X → R. For
φ ∈ RX , let

‖φ‖∞
def
= max

x∈X
|φ(x)|.

Then (RX , ‖ · ‖∞) is a real normed linear space.

Definition 3.1 (Best error). For f : X → R and Φ ⊆ RX , let

ε∗( f ,Φ) def
= min

φ∈span(Φ)
‖ f − φ‖∞.

In words, ε∗( f ,Φ) is the best error in an approximation of f by a linear combination
of functions in Φ. Since span(Φ) has finite dimension, a best approximation to f
out of span(Φ) always exists [20, Thm. I.1], justifying our use of “min” instead of
“inf” in the above definition.

We now introduce a closely related quantity, γ∗( f ,Φ), that measures how well
f correlates with a real function that is orthogonal to all of Φ.

13



Definition 3.2 (Modulus of orthogonality). Let X be a finite set, f : X → R, and
Φ ⊆ RX . The modulus of orthogonality of f with respect to Φ is:

γ∗( f ,Φ) def
= max

ψ

∑
x∈X

f (x)ψ(x)

 , (3.1)

where the maximum is taken over all ψ : X → R such that
∑

x∈X |ψ(x)| 6 1 and∑
x∈X φ(x)ψ(x) = 0 for all φ ∈ Φ.

The maximization in (3.1) is over a nonempty compact set that contains ψ = 0.
Also, the use of “max” instead of “sup” is legitimate because (3.1) maximizes a
continuous function over a compact set. To summarize, the modulus of orthogo-
nality is a well-defined nonnegative real number for every function f : X → R.

A key result, which we now prove, is that the best error and the modulus
of orthogonality are always equal. We call this the Approximation/Orthogonality
Principle.

Theorem 3.3 (Approximation/Orthogonality Principle). Let X be a finite set,
Φ ⊆ RX , and f : X → R. Then

ε∗( f ,Φ) = γ∗( f ,Φ).

Proof. The theorem holds trivially when span(Φ) = {0}. In the contrary case,
let φ1, . . . , φk be a basis for span(Φ). Our first observation is that ε∗( f ,Φ) is the
optimum of the following linear program in the variables ε, α1, . . . , αk:

minimize: ε

subject to: ∣∣∣∣∣∣∣ f (x) −
k∑

i=1

αiφi(x)

∣∣∣∣∣∣∣ 6 ε for each x ∈ X,

αi ∈ R for each i,

ε > 0.
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Standard manipulations reveal the dual:

maximize:
∑
x∈X

βx f (x)

subject to: ∑
x∈X

|βx| 6 1,∑
x∈X

βxφi(x) = 0 for each i,

βx ∈ R for each x ∈ X.

Both programs are clearly feasible and thus have the same finite optimum. We have
already observed that the optimum of first program is ε∗( f ,Φ). Since φ1, . . . , φk

form a basis for span(Φ), the optimum of the second program is by definition
γ∗( f ,Φ). �

A useful consequence of the Approximation/Orthogonality Principle for our
purposes is the following result.

Corollary 3.3.1. Fix ε > 0. Let f : {0, 1}t → R be given with d def
= degε( f ) > 1.

Then there is a function ψ : {0, 1}t → R such that:

ψ̂(S ) = 0 for |S | < d,∑
z∈{0,1}t

|ψ(z)| = 1,∑
z∈{0,1}t

ψ(z) f (z) > ε.

Proof. Set X = {0, 1}t and Φ = {χS : |S | < d} ⊂ RX . Since degε( f ) = d, we
immediately have that ε∗( f ,Φ) > ε. But then γ∗( f ,Φ) > ε by the Approxima-
tion/Orthogonality Principle (Theorem 3.3). Clearly, we can take ψ to be any
function for which the maximum is achieved in (3.1). �

4 Pattern Matrices

We now turn to the second ingredient of our proof, a certain family of real matrices
that we call pattern matrices. Our goal here is to explicitly calculate their spectral
norm. As we shall see later, this provides a convenient means to generate hard
communication problems.
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Let t and n be positive integers with t | n. Split [n] into t contiguous blocks,
each with n/t elements:

[n] =
{
1, 2, . . . ,

n
t

}
∪

{
n
t
+ 1, . . . ,

2n
t

}
∪ · · · ∪

{
(t − 1)n

t
+ 1, . . . , n

}
.

Let V(n, t) denote the family of subsets V ⊆ [n] that have exactly one element in
each of these blocks (in particular, |V | = t). Clearly, |V(n, t)| = (n/t)t. For a bit
string x ∈ {0, 1}n and a set V ∈ V(n, t), define the projection of x onto V by

x|V
def
= (xi1 , xi2 , . . . , xit ) ∈ {0, 1}

t,

where i1 < i2 < · · · < it are the elements of V.

Definition 4.1 (Pattern matrix). For φ : {0, 1}t → R, the (n, t, φ)-pattern matrix is
the real matrix A given by

A =
[
φ(x|V ⊕ w)

]
x∈{0,1}n, (V,w)∈V(n,t)×{0,1}t

.

In words, A is the matrix of size 2n by 2t(n/t)t whose rows are indexed by strings
x ∈ {0, 1}n,whose columns are indexed by pairs (V, w) ∈ V(n, t)×{0, 1}t, and whose
entries are given by Ax,(V,w) = φ(x|V ⊕ w).

The logic behind the term “pattern matrix” is as follows: a mosaic arises from
repetitions of a pattern in the same way that A arises from applications of φ to
various subsets of the variables.

Our approach to analyzing the singular values of a pattern matrix A will be to
represent it as the sum of simpler matrices and analyze them instead. For this to
work, we should be able to reconstruct the singular values of A from those of the
simpler matrices. Just when this can be done is the subject of the following lemma.

Lemma 4.2 (Singular values of a matrix sum). Let A, B be real matrices with
ABT = 0 and ATB = 0. Then the nonzero singular values of A + B, counting
multiplicities, are σ1(A), . . . , σrank A(A), σ1(B), . . . , σrank B(B).

Proof. The claim is trivial when A = 0 or B = 0, so assume otherwise. Since
the singular values of A + B are precisely the square roots of the eigenvalues of
(A + B)(A + B)T, it suffices to compute the spectrum of the latter matrix. Now,

(A + B)(A + B)T = AAT + BBT + ABT︸︷︷︸
=0

+ BAT︸︷︷︸
=0

= AAT + BBT. (4.1)
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Fix spectral decompositions

AAT =

rank A∑
i=1

σi(A)2uiuT
i , BBT =

rank B∑
j=1

σ j(B)2v jv
T
j .

Then

rank A∑
i=1

rank B∑
j=1

σi(A)2σ j(B)2〈ui, v j〉
2 =

〈rank A∑
i=1

σi(A)2uiuT
i ,

rank B∑
j=1

σ j(B)2v jv
T
j

〉
= 〈AAT, BBT〉

= trace(AATBBT)

= trace(A · 0 · BT)

= 0. (4.2)

Since σi(A)σ j(B) > 0 for all i, j, it follows from (4.2) that 〈ui, v j〉 = 0 for all i, j.
Put differently, the vectors u1, . . . , urank A, v1, . . . , vrank B form an orthonormal set.
Recalling (4.1), we conclude that the spectral decomposition of (A + B)(A + B)T is

rank A∑
i=1

σi(A)2uiuT
i +

rank B∑
j=1

σ j(B)2v jv
T
j ,

and thus the nonzero eigenvalues of (A + B)(A + B)T are as claimed. �

We are ready to analyze the spectral norm of a pattern matrix.

Theorem 4.3 (Singular values of a pattern matrix). Let φ : {0, 1}t → R be
given. Let A be the (n, t, φ)-pattern matrix. Then the nonzero singular values of A,
counting multiplicities, are:

⋃
S :φ̂(S ),0


√

2n+t
(n

t

)t
· |φ̂(S )|

( t
n

)|S |/2
, repeated

(n
t

)|S |
times

 .
In particular,

‖A‖ =

√
2n+t

(n
t

)t
max
S⊆[t]

{
|φ̂(S )|

( t
n

)|S |/2}
.

Proof. For each S ⊆ [t], let AS be the (n, t, χS )-pattern matrix. Thus,

A =
∑
S⊆[t]

φ̂(S )AS . (4.3)
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Fix arbitrary S ,T ⊆ [t] with S , T. Then

AS AT
T =

 ∑
V∈V(n,t)

∑
w∈{0,1}t

χS (x|V ⊕ w) χT (y|V ⊕ w)


x,y

=

 ∑
V∈V(n,t)

χS (x|V ) χT (y|V )
∑

w∈{0,1}t
χS (w) χT (w)︸                  ︷︷                  ︸
=0


x,y

= 0. (4.4)

Similarly,

AT
S AT =

 χS (w) χT (w′)
∑

x∈{0,1}n
χS (x|V ) χT (x|V′)︸                       ︷︷                       ︸

=0


(V,w),(V′,w′)

= 0. (4.5)

By (4.3)–(4.5) and Lemma 4.2, the nonzero singular values of A are the union of
the nonzero singular values of all φ̂(S )AS , counting multiplicities. Therefore, the
proof will be complete once we show that the only nonzero singular value of AT

S AS

is 2n+t(n/t)t−|S |, with multiplicity (n/t)|S |.
We proceed to analyze the spectrum of AT

S AS . It is convenient to write this
matrix as the Kronecker product

AT
S AS = [χS (w)χS (w′)]w,w′ ⊗

 ∑
x∈{0,1}n

χS (x|V ) χS (x|V′)


V,V′

.

The first matrix in this factorization has rank 1 and entries ±1, which means that its
only nonzero singular value is 2t with multiplicity 1. The other matrix, call it M, is
permutation-similar to

2n


J

J
. . .

J

 ,
where J is the all-ones square matrix of order (n/t)t−|S |. This means that the only
nonzero singular value of M is 2n(n/t)t−|S | with multiplicity (n/t)|S |. It follows from
elementary properties of the Kronecker product that the spectrum of AT

S AS is as
desired. �
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5 The Pattern Matrix Method

The previous two sections studied the spectrum of pattern matrices and the relation-
ship between approximation and orthogonality. Having examined these notions in
their pure and basic form, we now apply our findings to communication complex-
ity. Specifically, we establish the pattern matrix method for communication lower
bounds, which gives strong lower bounds for every pattern matrix generated by
a Boolean function with high approximate degree. The theorem we are about to
prove is the main result of this paper, stated in the Introduction as Theorem 1.2.

Theorem 5.1 (The Pattern Matrix Method). Let F be the (n, t, f )-pattern matrix,
where f : {0, 1}t → {0, 1} is given. Put d def

= deg1/3( f ). Then

Q1/5(F) > Q∗1/5(F) >
1
4

d log
(n

t

)
− 2.

Proof. Define f ∗ : {0, 1}t → {−1,+1} by f ∗(z) = (−1) f (z). Then (2.6) shows that
deg2/3( f ∗) = d. By Corollary 3.3.1, there is a function ψ : {0, 1}t → R such that:

ψ̂(S ) = 0 for |S | < d, (5.1)∑
z∈{0,1}t

|ψ(z)| = 1, (5.2)

∑
z∈{0,1}t

ψ(z) f ∗(z) >
2
3
. (5.3)

Let M be the (n, t, f ∗)-pattern matrix. Let K be the (n, t, 2−n(n/t)−tψ)-pattern
matrix. Immediate consequences of (5.2) and (5.3) are:

‖K‖1 = 1, 〈K,M〉 >
2
3
. (5.4)

Our last task is to calculate ‖K‖. By (5.2) and Proposition 2.1,

max
S⊆[t]
|ψ̂(S )| 6

1
2t . (5.5)

Theorem 4.3 yields, in view of (5.1) and (5.5):

‖K‖ 6
( t
n

)d/2
(
2n+t

(n
t

)t
)−1/2

. (5.6)

The desired lower bounds on quantum communication now follow directly from
(5.4) and (5.6) by the Discrepancy Method (Theorem 2.4). �
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6 Optimal Lower Bounds for Every Symmetric Function

As an illustrative application of the pattern matrix method, we now give a short
and elementary proof of Razborov’s optimal lower bounds for every predicate D :
{0, 1, . . . , n} → {0, 1} (Theorem 1.1).

As a first step, we show that a pattern matrix occurs as a submatrix of
[D(|x ∧ y|)]x,y, the communication matrix of D. This will immediately put the
pattern matrix machinery at our disposal.

Lemma 6.1. Let D : {0, 1, . . . , n} → {0, 1} be a given predicate. Let F be the
(2bn/4c, bn/4c, f )-pattern matrix, where f (z) def

= D(|z|). Then F is a submatrix of[
D(|x ∧ y|)

]
x∈{0,1}n, y∈{0,1}n

. (6.1)

Proof. Put m def
= bn/4c. By definition,

F =
[
D(| x|V ⊕ w |)

]
x∈{0,1}2m, (V,w)∈V(2m,m)×{0,1}m

.

We will define one-to-one maps

α : {0, 1}2m → {0, 1}n,

β : V(2m,m) × {0, 1}m → {0, 1}n

such that
| x|V ⊕ w | = | α(x) ∧ β(V, w) | for all x,V, w. (6.2)

Obviously, this will mean that F is a submatrix of (6.1).
As usual, let juxtaposition of bit strings stand for their concatenation, e.g.,

(0, 1)(1, 0, 1) = (0, 1, 1, 0, 1). With this convention, define α by

α(x1, x2, . . . , x2m) def
= (x1,¬x1, x2,¬x2, . . . , x2m,¬x2m) 0n−4m.

Define β by

β(V, w) def
= γ(i1, w1) γ(i2, w2) · · · γ(im, wm) 0n−4m,

where i1 < i2 < · · · < im are the elements of V, and γ : Z × Z→ {0, 1}4 is given by

γ(a, b) def
=


(1, 0, 0, 0) if a is odd, b is even,
(0, 1, 0, 0) if a is odd, b is odd,
(0, 0, 1, 0) if a is even, b is even,
(0, 0, 0, 1) if a is even, b is odd.

It is now straightforward to verify (6.2). �
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Using the previous lemma, we can now easily solve the problem for all
predicates D : {0, 1, . . . , n} → {0, 1} that change value reasonably close to 0.
Extension to the general case will require an additional step.

Theorem 6.2. Let D : {0, 1, . . . , n} → {0, 1}. Suppose that D(`) , D(` − 1) for
some ` 6 1

8 n. Then
Q∗1/3(D) > Ω

(√
n`

)
.

Proof. It suffices to show that Q∗1/5(D) > Ω
(√

n`
)
. Define f : {0, 1}bn/4c → {0, 1}

by f (z) = D(|z|). Then `0( f ) > ` since ` 6 1
8 n. As a result,

deg1/3( f ) > Ω
(√

n`
)

by Paturi’s lower bound (Theorem 2.8). Now Theorem 5.1 implies that

Q∗1/5(F) > Ω
(√

n`
)
,

where F is the (2bn/4c, bn/4c, f )-pattern matrix. But Lemma 6.1 states that F is
a submatrix of the communication matrix of D, namely, [D(|x ∧ y|)]x,y. It follows
that Q∗1/5(D) > Ω

(√
n`

)
. �

We have proved the desired lower bounds for all predicates D that change value
close to 0. What remains is to extend the result to arbitrary predicates, which is
going to be a simple if tedious exercise in shifting and padding. We note that
Razborov’s proof concludes in a similar way (see [18], beginning of Section 5).

Theorem 6.3. Let D : {0, 1, . . . , n} → {0, 1}. Suppose that D(`) , D(` − 1) for
some ` > 1

8 n. Then
Q∗1/3(D) > c(n − `) (6.3)

for some absolute constant c > 0.

Proof. Consider the communication problem of computing D(|x ∧ y|) when the
last k bits in x and y are fixed to 1. In other words, the new problem is to compute
Dk(|x′∧y′|), where x′, y′ ∈ {0, 1}n−k and the predicate Dk : {0, 1, . . . , n−k} → {0, 1}
is given by

Dk(i) ≡ D(k + i).

Since the new problem is a restricted version of the original, we have

Q∗1/3(D) > Q∗1/3(Dk) for all k. (6.4)
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We complete the proof by placing a lower bound on Q∗1/3(Dk) for some k.

Put α def
= 1

8 . The quantity

k0
def
= ` −

⌊
α

1 − α
· (n − `)

⌋
is an integer between 1 and ` (because ` > αn). The equality k0 = ` occurs if
and only if

⌊
α

1−α (n − `)
⌋
= 0, in which case the claimed conclusion (6.3) holds

trivially for c suitably small, such as c = α/(1 − α). Thus, we can assume that
1 6 k0 6 ` − 1, in which case Dk0(` − k0) , Dk0(` − k0 − 1) and ` − k0 6 α(n − k0).
Therefore, Theorem 6.2 is applicable to Dk0 and yields:

Q∗1/3(Dk0) > C
√

(n − k0)(` − k0), (6.5)

where C > 0 is an absolute constant. Calculations reveal:

n − k0 =

⌊
1

1 − α
· (n − `)

⌋
, ` − k0 =

⌊
α

1 − α
· (n − `)

⌋
. (6.6)

The theorem is now immediate from (6.4)–(6.6). �

Together, Theorems 6.2 and 6.3 give the main result of this section:

Theorem 1.1 (Restated from p. 2). Let D : {0, 1, . . . , n} → {0, 1}. Then

Q1/3(D) > Q∗1/3(D) > Ω
(√

n`0(D) + `1(D)
)
.

Proof. If `0(D) , 0, set ` def
= `0(D) and note that D(`) , D(` − 1) by definition.

One of Theorems 6.2 and 6.3 must be applicable, and therefore Q∗1/3(D) >

min
{
Ω(
√

n`), Ω(n − `)
}
. Since ` 6 n/2, this simplifies to

Q∗1/3(D) > Ω
(√

n`0(D)
)
. (6.7)

If `1(D) , 0, set ` def
= n − `1(D) + 1 > n/2 and note that D(`) , D(` − 1) as

before. By Theorem 6.3,
Q∗1/3(D) > Ω (`1(D)) . (6.8)

The theorem follows from (6.7) and (6.8). �
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7 Additional Results

As we have already stated, the concept of a pattern matrix originates in the author’s
earlier article [22], where a somewhat different family of matrices is introduced
and its spectral norm studied. As a result of that study, we constructed the first AC0

circuit with discrepancy 2−Ω(n1/5) and thereby separated AC0 from depth-2 majority
circuits [22, Thms. 1.1–1.3]. The spectral norm calculation in that work is not
exact; only a suitable upper bound is obtained. This manuscript, on the other hand,
derives an exact, closed-form expression for the singular values of a pattern matrix.
As a consequence, we are able to considerably improve the results in [22].

Namely, we improve the discrepancy upper bound for AC0 from 2−Ω(n1/5) to
2−Ω(n1/3), with corresponding circuit implications. This is currently the best upper
bound on the discrepancy of a function in AC0. It matches the result of Buhrman et
al. [4] who, independently and simultaneously with the author’s work [22], proved
a 2−Ω(n1/3) upper bound with different techniques and for a different function. In
addition, we strengthen the Degree/Discrepancy Theorem from [22], needed to
arrive at the discrepancy result and independently interesting.

7.1 Background and Definitions

We start with a few definitions. Throughout this section, it will be convenient to
view Boolean functions as mappings into {−1,+1}, as opposed to the usual range
{0, 1}. Fix finite sets X,Y and let f : X × Y → {−1,+1} be given. Let λ be a
probability distribution over X × Y. The discrepancy of f under λ is defined by

discλ( f ) def
= max

S⊆X,
T⊆Y

∣∣∣∣∣∣∣∣
∑
x∈S

∑
y∈T

λ(x, y) f (x, y)

∣∣∣∣∣∣∣∣ .
Define

disc( f ) def
= min

λ
{discλ( f )}.

We identify a function f : X × Y → {−1,+1} with its communication matrix F =
[ f (x, y)]x,y. In particular, we follow the conventions discλ(F) = discλ( f ) and
disc(F) = disc( f ).

The above definition of discrepancy is not convenient to work with, and we
will use the following well-known matrix-analytic reformulation; cf. Kushilevitz
& Nisan [14, Example 3.29]. For matrices A = [Axy] and B = [Bxy], recall that

A ◦ B def
= [AxyBxy] is their Hadamard product.

Proposition 7.1. Let X,Y be finite sets, f : X × Y → {−1,+1}. Then

disc( f ) 6
√
|X| |Y | min

K
‖K ◦ F‖,
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where F def
= [ f (x, y)]x∈X, y∈Y and the minimum is over matrices K whose entries are

nonnegative and sum to 1.

Proof. Fix K and define a distribution λ on X × Y by λ(x, y) = Kxy. Then

discλ( f ) = max
S ,T

∣∣∣1T
S (K ◦ F) 1T

∣∣∣ 6 max
S ,T

{
‖1S ‖ · ‖K ◦ F‖ · ‖1T ‖

}
= ‖K ◦ F‖

√
|X| |Y |. �

For a function f : {0, 1}n → {−1,+1}, its threshold degree deg( f ) is the least
degree of a multivariate polynomial p(x1, . . . , xn) with

p(x) f (x) > 0 for all x ∈ {0, 1}n.

The following well-known result follows from Gordan’s Transposition Theorem
[21, Sec. 7.8]; for a detailed proof, see [22].

Theorem 7.2 (Criterion for high threshold degree). Let f : {0, 1}n → {−1,+1}
be given. Then deg( f ) > d if and only if there is a distribution µ over {0, 1}n with

E
x∼µ

[ f (x) χS (x)] = 0 whenever |S | < d.

7.2 New Results

We are prepared to state the first improvement on [22].

Theorem 7.3 (Degree/Discrepancy Theorem; cf. Sherstov [22, Thm. 1.2]). Let
F be the (n, t, f )-pattern matrix, where f : {0, 1}t → {−1,+1} has deg( f ) = d. Then

disc(F) 6
( t
n

)d/2
.

Proof. By Theorem 7.2, there is a probability distribution µ over {0, 1}t such that
Ez∼µ[ f (z) χS (z)] = 0 for |S | < d. Putting φ(z) def

= µ(z) f (z), we obtain:

φ̂(S ) = 0 for |S | < d. (7.1)

Furthermore, Proposition 2.1 reveals that

max
S⊆[t]
|φ̂(S )| 6

1
2t . (7.2)
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In view (7.1) and (7.2), Theorem 4.3 implies that

‖A‖ 6
( t
n

)d/2
(
2n+t

(n
t

)t
)−1/2

,

where A is the (n, t, 2−n(n/t)−tφ)-pattern matrix. But A = K ◦ F, where K is the
(n, t, 2−n(n/t)−tµ)-pattern matrix. Since the entries of K are nonnegative and sum
to 1, Proposition 7.1 implies that

disc(F) 6 ‖A‖

√
2n+t

(n
t

)t
6

( t
n

)d/2
. �

Theorem 7.3 states that pattern matrices generated by functions with high
threshold degree have low discrepancy. A well-known function in AC0 with high
threshold degree is the Minsky-Papert function, given by

MP(x) def
=

m∨
i=1

4m2∧
j=1

xi, j.

(This is the same function we used in [22].) We have:

Theorem 7.4 (Minsky-Papert [16]). The function MP on 4m3 variables has
deg(MP) = m.

As an application of our strengthened Degree/Discrepancy Theorem, we obtain
an improved upper bound on the discrepancy of AC0.

Theorem 7.5 (Discrepancy of AC0,3; cf. Sherstov [22, Thm. 1.3]). There is an
(explicitly given) AND/OR/NOT circuit f : {0, 1}n × {0, 1}n → {−1,+1} of depth 3
and size 2n such that

discλ( f ) 6 2−Ω(n1/3)

for an explicitly given distribution λ.

Proof. Put n = 16m3 and define

f (x, y) def
=

m∨
i=1

4m2∧
j=1

(
(yi, j,1∨ xi, j,1)∧ (yi, j,2∨¬xi, j,1)∧ (yi, j,3∨ xi, j,2)∧ (yi, j,4∨¬xi, j,2)

)
.

It is straightforward to verify that the (8m3, 4m3,MP)-pattern matrix is a submatrix
of [ f (x, y)]x,y. The discrepancy result now follows by Theorems 7.3 and 7.4.

To specify the corresponding distribution explicitly, it suffices to specify the
distribution µ on {0, 1}4m3

with Ez∼µ[MP(z) χS (z)] = 0 for |S | < m. This is because
once µ is known, the distribution over the entries of F = [ f (x, y)] can be easily
reconstructed from the proof of Theorem 7.3. The author has already constructed
just such a distribution µ in earlier work [22, Thm. 4.2]. �
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This discrepancy upper bound has the following circuit implications.

Theorem 7.6 (cf. Sherstov [22, Thm. 1.3]). There is an (explicitly given)
AND/OR/NOT circuit f : {0, 1}n × {0, 1}n → {−1,+1} of depth 3 and size 2n such
that any majority vote of threshold gates that computes f has size 2Ω(n1/3).

Proof. Identical to the proof given in [22]. �

As a final remark, we note that our improved Degree/Discrepancy Theorem can
be used to strengthen the results of Chattopadhyay [5], who extended the author’s
original work [22] to the multi-party model. However, the necessary manipulations
would not offer much technical novelty, and we omit them.
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