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Abstract

Recently, Aguilar-Ruiz [2005] considers a data matrix containing both scaling and shifting
factors and shows that the mean squared residue [Cheng and Church, 2000], called RESIDUE(II)
in this paper, is useful to discover shifting patterns, but not appropriate to find scaling pat-
terns. This finding draws our attention on the weakness of RESIDUE(II) measure and the
need of new approaches to discover both scaling and shifting patterns in the considered ma-
trix. To resolve the weakness of RESIDUE(II) in finding scaling patterns, we propose a simple
remedy that still uses the same residue measure. The main idea is to remove hidden scaling
factors in the considered data matrix by taking a specific data transformation. We investigate
various data transformations including no transformation, double centering, mean centering,
standard deviation normalization, and Z-score transformation. Further, we apply these data
transformations to row/column dimension of data matrix models with different global/local
scaling and global/local shifting factors. First, we characterize the properties of the data trans-
formations on different data matrix models, including six Euclidean co-clustering schemes in
Bregman co-clustering algorithms [Banerjee et al., 2007] and other existing data models in
the literature. In particular, we formally analyze the effect of each data transformation on
the two residues [Cho et al., 2004], here called RESIDUE(I) and RESIDUE(II), respectively.
Then, we apply all the data transformations to publicly available human cancer gene expres-
sion datasets and empirically validate the analysis results by using the minimum sum squared
residue co-clustering (MSSRCC) algorithms [Cho et al., 2004]. In conclusion, through column
standard deviation normalization or column Z-score transformation, we are able to overcome
the shortcoming of RESIDUE(II) in finding scaling patterns and discover both scaling and
shifting patterns.

1 Introduction

Hartigan [1972]’s pioneering work, named direct clustering, stimulated a vast amount of research
on co-clustering algorithms. Co-clustering aims at identifying homogeneous local patterns, each of
which consists of a subset of rows and a subset of of columns in a given two dimensional matrix.
In particular, co-clustering has attracted genomic researchers, because its idea is compatible with
our understanding of cellular processes, where a subset of genes are coregulated under a certain
experimental conditions, but to behave almost independently under other conditions [Ben-Dor



et al., 2003]. For a survey on the application of co-clustering to biological data analysis see the
recent paper by Madeira and Oliveira [2004].

Cheng and Church [2000] are considered to be the first to apply co-clustering, called also
biclustering, to gene expression data. They proposed a greedy search heuristic that generates
biclusters, one at a time, which satisfy a certain homogeneity constraint, called mean squared
residue. Since then, several similar approaches that make use of the residue have been proposed
to enhance the work of Cheng and Church [2000]. Recently, Cho et al. [2004] developed two
minimum sum squared co-clustering (MSSRCC) algorithms: one objective function is based on
the partitioning model proposed by Hartigan [1972] and the other one is based on the squared
residue formulated by Cheng and Church [2000]. The residues are defined in equations (2.1)
and (2.2) in the next chapter.

The mean squared residue measure, which utilizes RESIDUE(II), has been popularly used,
however little research on its detail properties has been done. Recently, Aguilar-Ruiz [2005] models
a data matrix containing both scaling and shifting factors and formally proves that the mean
squared residue measure depends on the scaling variance in the considered data matrix. This
finding issues the weakness of the residue measure and the need of new approaches to discover
both scaling and shifting patterns. Motivated by the data model and the approach in Aguilar-
Ruiz [2005], we propose a simple remedy to address its weakness in finding scaling patterns,
still using the same residue measure. We suggest to take a specific data transformation before
computing the residue in order to handle hidden scaling factors. We consider no transformation,
double centering, column/row mean centering, column/row standard deviation normalization, and
column/row Z-score transformation. The details of these data transformations are explained in
Section 3. Then, we apply each data transformation to rows or columns of data matrix models
derived from different combinations of global/local scaling and global/local shifting factors. We
analyze and compare the effect of data transformations of several data matrix models on the two
residues [Cho et al., 2004], called RESIDUE(I) and RESIDUE(II). Furthermore, using MSSRCC,
we empirically demonstrate the advantage of the data transformations with publicly available
human cancer microarrays, including Colon cancer, Leukemia, Lung Cancer, and Mixed-Lineage
Leukemia (MLL). Both analysis and experimental results reveal that column standard deviation
normalization and column Z-score transformation are the effective for both RESIDUE(I) and
RESIDUE(II).

The rest of this paper is organized as follows: In Section 2 we introduce some definitions and
facts used in this paper. We describe the considered data transformations in Section 3. Then,
we formally analyze the effects of data transformations and summarize the analysis results in
Section 4. We discuss the experimental results with human cancer gene expression datasets in
Section 5. Finally, the paper is concluded with some remark.

2 Formulation

We adapt the following definitions in Aguilar-Ruiz [2005], Cheng and Church [2000], and Cho et al.
[2004] to fit for our context.



2.1 Co-cluster

DEFINITION 1 (data matrix). A data matrix A € R™*", whose (i, j)-th element is denoted
by a;;, is defined as follows:

a1 a12 A1n

a21 a22 Tt G2p
A =

am1 Am2 - Omn

For example, a microarray can be defined with two finite sets, the set of genes and the set of exper-
imental conditions. Note that Aguilar-Ruiz [2005] describes the microarray whose rows represent
experimental condition and columns represent genes. However, in this paper, we will consider a
microarray which consists of examples of genes in rows and attributes as experimental conditions
in columns.

DEFINITION 2 (co-cluster). Let I C {1,2,...,m} denote the set of indices of the rows
in a row cluster and J C {1,2,...,n} denote the set of indices of the columns in a column
cluster. A submatrix of A induced by the index sets I and J is called a co-cluster and denoted as
Ary € RIXII where |I| and | J| denote the cardinality of index set I and index set .J, respectively.

2.2 Sum squared residue

In order to evaluate the coherence of such a co-cluster, we define the two residues, RESIDUE(T)
and RESIDUE(II), of an element a;; in the co-cluster determined by index sets I and J as below.
DEFINITION 3 (residues). RESIDUE(I) is defined as

hij = aij —arg (2.1)
and RESIDUE(II) is defined as
hij = aij — ais —ar; +arJ, (2.2)

where the mean of the entries in row i whose column indices are in J is computed by a;; =
|17|Zj€J ai;j, the mean of the entries in column j whose row indices are in I by ar; = ‘—}‘Ziel aij,
and the mean of all the entries in the co-cluster whose row and column indices are in I and J by
_ 1

ary = \I\\J\Ziel,jeJ Q-

DEFINITION 4 (sum squared residue (SSR)). Let H;; € RIIXIJI be the residue ma-
trix whose entries are described by one of the two residues, RESIDUE(I) in equation (2.1) and
RESIDUE(II) in equation (2.2). Then, the sum squared residue of Hp; is defined as

SSR=|Hy|*= > hi, (2.3)
ieljet
where the norm || X|| denotes the Frobenius norm of matrix X, i.e., | X||* = D 3.

2.3 Patterns

We generalize the definition of data patterns in Aguilar-Ruiz [2005] so that data patterns contain
all possible scaling and shifting factors.



DEFINITION 5 (global/local scaling (gsc/lsc) and global/local shifting (gsh/Ish) pat-
tern). A bicluster shows both a shifting and a scaling pattern when it follows the expression

Qij = T X Qj + ﬁj, (24)

where m; is the base value for row (e.g., gene) i, o; is the scaling factor for column (e.g., experimental
condition) j, and 3; is the shifting factor for column (e.g., experimental condition) j. Combining
scaling and shifting patterns results in the following four patterns: global scaling (gsc) and global
shifting pattern (gsh) when a;; = m; x o+ [3; global scaling (gsc) and local shifting pattern (Ish)
when a;; = m; X a+ [3;; local scaling (Isc) and global shifting pattern (gsh) when a;; = m; X a; + (3;
and local scaling (Isc) and local shifting pattern (Ish) when a;; = m; x o + (5.

We borrow the concepts of “local” and “global” scaling and shifting from Cheng and Church
[2000], Cho et al. [2004], and Aguilar-Ruiz [2005]. Notice that the pattern defined in equation (2.4)
is in the form of the linear (or affine) transformation. The shifting factor, a; corresponds to the
multiplicative component (or slope) and 3; corresponds to the additive component (or intercept) of
the linear transformation. Madeira and Oliveira [2004] introduced other specific patterns to model
a perfect co-cluster with constant rows, columns, and coherent values as follows: a;; = 7 + 73,
a;; = 7+ B, and a;; = m+y; + B;, where 7 is the typical value within the co-cluster Ay, 7; is the
adjustment for row ¢ € I, and (; is the adjustment of column j € J. However, in this paper, we
consider the data matrix that includes both shifting and scaling patterns denoted in equation (2.4).

2.4 Facts in data matrix A

We use the following facts in a data matrix A, throughout the paper.
Means. The mean of the base values of A is defined by u, = % S, ™, the mean of the

scaling factors by po = %Z?:l aj for Isc and po = a for gsc, and the mean of the shifting
factors by pug = %E?Zl B; for Ish and pg = [ for gsh. Also, the mean of row 7 is computed
by a;. = %Z?Zl ai; = ma + [ for gsc and Ish, a;. = mjoe + pg for gsc and Ish, a;. = mipe + B
for lsc and gsh, and a;. = mue + pg for Isc and Ish. The mean of column j is obtained by
a.; = % S aij = pra+ B for gsc and gsh, a.; = pra + B; for gsc and Ish, a.; = pra; + 3 for
Isc and gsh, and a.; = pro; + B; for Isc and Ish. The mean of all the elements is computed by
a. = # Dy Z?:l ai; = pxa+ B for gsc and gsh, a.. = pra+ pg for gsc and Ish, a.. = prpa + 5
for Isc and gsh, and a.. = pirptq + pg for Isc and Ish.

Variance. The variance of the base values is defined as o2 = L 5" (m; — fiz)°, the variance
m 1=
of the scaling factors as o2 = %E?Zl (o — fia)?, and the variance of the shifting factors as

o == (B — p15)°. Let a and b be real constants and X and Y be discrete random variables,
n 1=
then the variances of X and Y, denoted as 0% and 0%, respectively, satisfy the properties:

2 _ 2 _n.
1. o =05 =0

2 _ 2.2,
2. Olaxtb) = O 0%;

2 _ 2 2 2 2
3. Olaxtby) = @ ox +b%oy.

Therefore, the variance of row i is computed as o2 = 0 for gsc and gsh, 07 = U% for gsc and Ish,

o7 = mjop, for Isc and gsh, and o} = w02 + o for Isc and Ish. The variance of column j is

2
computed as U?j = 02a? for gsc and a?j = 02a? for Isc.
Note that neither global nor local shifting factor affects the column variance, o.;, since variance

of a constant shifting factor added to each column is 0. For the same reason, neither row mean



centering nor column mean centering affects the row variance, o;. and the column variance, o.;,
respectively.

3 Data Transformations

Raw data values have a limitation that raw values do not disclose how they vary from the cen-
tral tendency of the distribution. Therefore, transformation of the raw data is considered one of
the most important steps for various data mining processes since the variance of a variable will
determine its importance in a given model [Sdnchez et al., 1994]. Recently, Wouters et al. [2003]
emphasize the importance of appropriate weighting in the analysis of microarray data, where they
compare different transformation methods as the building blocks of three multivariate projection
methods. In addition, Kluger et al. [2003] incorporate different normalizations of genes and con-
ditions in the hope of discarding the irrelevant constant background noise. An early study on
preprocessing can be found in Harshman and Lundy [1984]. Recently, Bro and Smilde [2003]
and Smilde et al. [2004] discuss a number of important features of the common preprocessing steps
of centering and scaling, focussing on two-way bilinear data analysis and generalizing the results
to multiway data analysis.

In this study we investigate the following data transformations and the details are explained in
the sequel. Further, we summarize in Table 1 the data transformations of the data matrix whose
entry a;; is defined in equation (2.4).

No transformation (NT). No centering or scaling is taken. In other words, agj = a;j, i.e., the
raw matrix is directly input to MSSRCC.
Double centering (DC.) Double centering is defined as

ajj = Qij — Qi — . + a..
fori=1,--- ,mand j =1,--- ,n. Through DC, each entry of a data matrix A becomes a;j =
(mi — pir) (@j — f1a). Note that we have aj. = a’; = 0 and consequently a/. = 0, since DC transforms
the data matrix to have both row means and column means to be 0. DC has become a classic
technique for background correction. After this centering, the data matrix is projected on a
hyperplane that runs through the origin and is orthogonal to the all-ones vector. It leads to a
reduction by one of the rank of the original matrix [Wouters et al., 2003].
Column/row mean centering (MC). Column mean centering is defined as

CL;]- = Qi5 — Q.5

fori=1,---,mand j = 1,--- ,n. Row mean centering is defined similarly with w;.. Through
column MC, each entry becomes a’ij = mo; + B — p.;. Therefore, row mean, column mean, and
whole mean become a;. = mijio+ps—a.., a’; = praj+Bj—a.j, and a’. = i fia+is—a.., respectively.
Through row MC, each entry becomes agj = w0 + B — a;.. Similarly, row mean, column mean,
and whole mean become a;. = Tifio + pg — @i, a’; = piraj + B — a., and a’. = pinfia + pg — a..,
respectively.
Column/row standard deviation normalization (SDN). Column standard deviation nor-
malization is defined as

Qg
fori=1,--- ,mand j=1,--- ,n. Row standard deviation normalization is defined similarly with

a;. and o2. Through column SDN each column has a unit variance and through row SDN each
row has a unit variance..



Table 1: Data transformation

Type Target Transformed data matrix
mor + 81 mas+ B T10n + Bn
NT y moa + 31 maaa + B2 To0n + Bn
n/a . ) )
Tm Q1 + 61 Tim Q02 + 62 Tm Qn, + Bn
a1 —a1. —a.q+a. a2 —ai. —a.g+a. a1p —a1. — Q.p, + a..
DO / a1 — 2. —a.1 +a.. a2 — Q2. — a.9 + a.. a2y — Ag. — ., + a..
n/a
Um1 — Q. — @1+ a.. A2 — Q. — Q.2 + a.. Amn — Am. — Q. + Q..
mor + 61 —a1. mag + B2 —ar. m10n + By — a1
R moa1 + B1 —az.  maan + B2 — ao. o0y + By — aa.
ow
Tm 01 + 61 — Qm. T, Q2 + 62 — Qm. Tim Olp, + 511 — Qm.
MC
mor + B —a1  mas+ G2 —as T10n + Bp — a.n
ol moay + 1 — a1 mean+ B2 —asg M0, + Bn — G
o
Tm01 + 1 — a1 Tpmoo + P2 —ag TmQn + Bn — Gn
- (mar+41) = (maz+f2) — (mam + fn)
R o (mar+ 51) - (maz+ B2) o (mean + )
OW . . .
ﬁ (Wmal + 61) ﬁ (Trma2 + 62) ﬁ (ﬂ-man + 671)
SDN
o (mai +61) 55 (mag + Ba) o (man +f,)
o= (man + 01) S5 (man + fa) L (Moo + Bn)
Col ' . ‘ . - .
U% (Wmal + 61) (%2 (TrmOZQ + 62) %ﬂ (ﬂ-man + 671)
%f,(ﬁlal-i-ﬁl—ar) — (mag + 2 —a1.) #(ﬂ'lan_Fﬁn_al-)
R 7 (mon + B —az) - (M2 + f2 —az) o (mean + Bn — az.)
ow . )
7 (Wmal + ﬁl - am-) %m_ (7TmOC2 + 62 - am») a’Lm. (T‘—man + ﬁn - am»)
7T
= (man + 61 —aq) o (moas+fo—as) - = (man+ Gy —a.,)
ol o= (man + 61 —aq)  Jo(mas+fe—az) - = (man+ B, —a.y)
o ) . .

= (mmon + 61 — aa)

g.2

L (s + B2 —az)

L (Wman + ﬁn - a»n)

O

Abbreviations: DC — Double Centering; MC — Mean Centering; NT — No Transformation; SDN — Standard
Deviation Normalization; and ZT — Z-score Transformation.



Column /row Z-score transformation (ZT). Column standardization is defined as

’ Aij — Q.

0.

fori=1,---,mand j = 1,--- ,n. Row standardization is defined similarly with a; and o?. It
is also called “autoscaling”, where the measurements are scaled so that each column/row has a
zero mean and a unit variance [Kowalski and Bender, 1972]. Through ZT, the relative variation
in intensity is emphasized, since ZT is a linear transformation, which keeps the relative positions
of observations and the shape of the original distribution. In fact, column ZT is the combination
of column MC and column SDN. Similarly, row ZT is the combination of row MC and row SDN.

4 Analysis

In this section, we analyze the effect of the data transformations on the residues defined in equa-
tions (2.1) and (2.2). In reality, rows and columns in a co-cluster are not necessary to be consecu-
tive. However, for brevity we consider the following co-cluster, Aj;, whose entries consist of first
|I| rows and first |J| columns in A as

mar+ /1 maz+ P - mayy + Gy

moa1 + 1 Moz + P2 - Mg+ By
Ay = . . . :

mor+ B mpaz+ B2 o mpapg + B

Because of space limitation, we focus on analyzing RESIDUE(II) for the three data trans-
formations including NT, column SDN, and column ZT, which clearly demonstrate the effect of
the specific data transformation. However, for comparison purpose, we provide the results of
RESIDUE(I) and RESIDUE(II) for all the data transformations in Tables 5 and 9, respectively,
each of which is classified based on target dimension, scaling type, and shifting type. The residues
summarized in Tables 5 and 9 for the other remaining data transformations can be easily obtained,
following the similar steps in this section (see Appendix).

4.1 No transformation (NT)

(i,7)-th entry of row i € I and column j € J of co-cluster Ay is described as a;; = m;a;+/3;. Then,
the mean of the base values of Ay is computed by pir, = ‘—}‘ Ziel m;. and the mean of the scaling
factors by i, = ‘—1]‘ Zje] o, and the mean of the shifting factors by ug, = ﬁ ZjeJ B;. Also,
the mean of row 7 is obtained by a;; = m;fta; + 3,, the mean of column j by ar; = pro;+ 55, and
the mean of all the elements by ar; = prpta, + p13,. Using these values, we obtain RESIDUE(II),
hij = (m; — pr,)(@j — pia, ). Consequently, the sum squared residue (SSR) can be computed as

SSR = |Hp,|*

> My

iel,jed
2 2
= Z (ﬂ-i - :uﬂ’l) (aj - :uOtJ)
i€l,jed
|I]|J|o2 o2 (4.1)

T Qg?



Table 2: Transformed data matrix

Type Target Transformed data matrix
ﬁ(”lal + 1) U—Z(maz—f—ﬁﬂ i(man—i—ﬁn)
ﬁ (m2a1 + B1) 0—12 (moag + B2) - a?n (T20tn + Bn)
SDN Col
7T1—|-§—1 7T1—|—§—z 771—1—2—’;
B B Bn
_ 1 T2t Mty o Mt gn
o . .
T+ 2 A2 o, D
ﬁ (mion + 1 — a1) ULZ (mag + P2 —az) - U'~1n (man + Bn — a.n)
UL_I (maa1 + 01 —a.q) %2 (Mo + o — a.g) -+ U.ln (20 + B — )
T Col ‘%1 (7Tm041 + ﬁl - a'l) G’L-z (TFmOéQ + 62 - a"2) e % (ﬂ—man + ﬁn - (l.n)
T — Urx T — Urx T — Ur
1 T2 — Ux T2 — Ux Ty — Ug
= o .
Tm — g Tm — MUr cee T — Mg

Abbreviations: SDN — Standard Deviation Normalization; ZT — Z-score Transformation.



1 2

2
: T Zie] (m; — pr,)” and O'i] =7 Zje,] (aj — fia,)?.

where o7, = 7]

In fact, SSR shown in equation (4.1) is a revisit of Theorems in Aguilar-Ruiz [2005], where
mean squared residue was used with no data transformation. Equation (4.1) shows that SSR is
dependent on both the variance of base values and the variance of scaling factors, but independent
from shifting factors. Accordingly, any shifting operations such as DC and MC to the given data
matrix should not contribute to RESIDUE(II) (see RESIDUE(II) values for NT, DC, and MC in
Table 9).

4.2 Column standard deviation normalization (SDN)

Originally, data matrix A contains both local scaling and local shifting factors. Through col-
umn SDN;, it is transformed to have the constant global scaling factor, ie., 1, and the local
shifting factors, i.e., 2_, (see Table 2). To be more specific, (4,j)-th entry is transformed as

a;; = % (miaj + B;) = i (m— + g—;) Then, row mean, column mean, and whole mean of co-

cluster Ay are computed by a;; = ﬁ djed % (mic; + B5), arj = ‘—}‘ Dier % (mia; + B5), and
ary = ﬁ Y icr Zjej % (miae; + 0B;), respectively. Therefore, using RESIDUE(II), we can cap-
ture the perfect co-cluster, i.e., zero RESIDUE(II), for all the possible combinations of global/local
scaling and global/local shifting patterns of a data matrix. Furthermore, RESIDUE(II) captures
the coherent patterns noted in Cho et al. [2004] as ze” +ey”, where e = [11---1]T, and x and y are
arbitrary column vectors. However, using RESIDUE(I), we may not capture the perfect co-cluster
as summarized in Table 5.

4.3 Column Z-score transformation (ZT)

As illustrated in Table 2, through column ZT, data matrix A is transformed data matrix to have
the constant global scaling factor, i.e., 1, and the constant global shifting factor, i.e., —pu,. To be
more specific, (i,7)-th entry is transformed as a;; = % (mioaj + B —a.j) = i (m; — pr). Then,
row mean of co-cluster Ay is obtained by a;; = i (tr; — pr) = a5, and column mean and whole
mean by ar; = == (x, — pix) = ary. Like column SDN, we obtain zero REDIDUE(II) for all the
possible combinations of scaling and shifting patterns (see Table 9). However, using MSSRCC
with RESIDUE(I), we may not capture the perfect co-clusters because SSR is still dependent on
the variance of base values.

5 Experimental results

In this section, we empirically show the effect of data transformations on the four publicly available
human cancer microarray datasets including Colon cancer [Alon et al., 1999], Leukemia [Golub
et al., 1999], Lung cancer [Armstrong et al., 2002], and MLL [Armstrong et al., 2002]. For MSSRCC,
we fix 7 = 1073||A||? for batch updates and 7 = 107°|| A||? for local search steps. With spectral
initialization and local search strategy, MSSRCC generates 100 x 2 or 100 x 3 co-clusters within
20 seconds for all the datasets.

Data preprocessing. Since we use publicly available gene expression matrices, they have already
been preprocessed in various ways using image analysis, expression quantization, normalization,
and screening out. Therefore, the numerical values in each dataset are very different; the number
of genes are thousands, while the number of samples are relatively small, often less than a hundred;



Table 3: Description of microarray datasets used in our experiments.

Colon Leukemia Lung MLL

# original genes 2000 7129 12533 12582
# samples 62 72 181 72
# sample classes 2 2 2 3
Normal(20)  ALL(47) ADCA(150) ALL(24)

Sample class names  Tumor(42) AML(25) MPM(31) AML(25)
MLL(23)

[max/min| 15 5 5 5
|max — min| 500 500 600 5500
# remaining genes 1096 3571 2401 2474

Abbreviations: ALL — Acute Lymphoblastic Leukemia; AML — Acute Myeloid
Leukemia; ADCA — Adenocarcinoma; MPM — Malignant Pleural Mesothelioma; and
MLL — Mixed-Lineage Leukemia. The number after each sample class name denotes
the number of samples in the sample class.

and many of the genes are noisy and redundant. These make feature selection an important issue.
However, instead of utilizing sophisticated feature selection algorithms, we apply the following
simple preprocessing steps usually adopted in microarray experiments (Bg and Jonassen [2002],
Dettling and Biithlmann [2002], Dudoit and Fridlyand [2002]) to detect differential expression: we
filter out genes whose relative deviation (|max/min|) or absolute deviation (|max — min|) is less
than predefined values, where max and min refer respectively to the maximum and minimum
expression levels for a particular gene across all samples. Further, the gene expression values
in Colon dataset were transformed by taking the base-10 logarithm. Details of each dataset are
summarized in Table 3.

Tissue sample clustering evaluation measure. To evaluate the performance of sample clus-
terings, we quantify tissue sample clustering performance using the following clustering accuracy

measure:
!
1
Accuracy(%) = T (Zl ti> x 100,

where T denotes the total number of samples, [ denotes the number of sample clusters, and t;
denotes the numbers of the samples correctly clustered into a sample class . We first form a
confusion matrix where (i, j)-th entry gives the number of samples in cluster ¢ that belong to the
true class j. Each t; is a diagonal element of the corresponding confusion matrix whose cluster
labels are permuted so that sum of diagonal elements is maximized.

Performance comparison. Figure 1 illustrates the average performance of tissue sample ac-
curacy using MSSRCC with RESIDUE(I). The accuracy values are varied with different data
transformations, because RESIDUE(I) is affected by different factors as summarized in Table 5.
For example, through column ZT, RESIDUE(]) is independent from both scaling and shifting fac-
tors and hence generates the best accuracy values ((a), (b), and (d)). Through DC or column MC,
RESIDUE(I) is not affected by shifting factors, but still affected by scaling factors. DC generates
the second best accuracy values ((a), (¢), and (d)) and both DC and column MC gives similar
performance ((a) and (d)). Furthermore, there are three interesting cases in Figure 1: (1) column
SDN and column ZT for Leukemia dataset ((b)); (2) column SDN and DC for both Leukemia and
MLL datasets ((b) and (d)); and (3) ZT and column MC for Leukemia, Lung, and MLL datasets

10
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Figure 1: Average tissue sample clustering accuracy using MSSRCC with RESIDUE(I). The accuracy values are averaged over 1
to 100 gene clusters. (a)-(d) are averaged over 10 random runs and (e)-(h) are obtained with deterministic spectral initialization.
Abbreviations: RI — Random Initialization; SI — Spectral Initialization; NT — No Transformation; DC — Double Centering; MC —

(column) Mean Centering; SDN — (column) Standard Deviation Normalization; ZT — (column) Z-score Transformation; and LS —
Local Search.
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Figure 2: Average tissue sample clustering accuracy using MSSRCC with RESIDUE(II). The accuracy values are averaged over 1
to 100 gene clusters. (a)-(d) are averaged over 10 random runs and (e)-(h) are obtained with deterministic spectral initialization.
Abbreviations: RI — Random Initialization; SI — Spectral Initialization; NT — No Transformation; DC — Double Centering; MC —

(column) Mean Centering; SDN — (column) Standard Deviation Normalization; ZT — (column) Z-score Transformation; and LS —
Local Search.
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((f), (g), and (h)). We interpret these experimental results based on RESIDUE(I) in Table 5 as
follows: (1) and (2) may satisfy that the variance of g—j (with column SDN) is negligible, i.e.,

g—j ~ ‘—‘1” D ey g—j for each of the two datasets; (3) may be the case that both 5; ~ ug, (with ZT)
and a; & o, (With column MC).

Figure 2 elucidates that the experimental results with RESIDUE(II) are consistent with the
analytic results in Table 9. For example, NT, DC, and MC with RI ((a)-(d)) and NT and MC
with SI ((e)-(h)) result in almost identical accuracy performance, since RESIDUE(II) with NT,
DC, or MC is (m; — fr;) (®j — pia, ) as shown in Table 9. Furthermore, as analyzed in the previous
section, both column SDN and column ZT help MSSRCC with RESIDUE(II) to capture perfect
co-clusters. Therefore, they are supposed to generate similar performance and Figure 2 clearly
verifies the consistency of the experimental results.

Overall performance of NT with RESIDUE(I) is not better than that of other data transforma-
tions ((a)-(d) in Figure 1). DC has been widely used in many applications. For example, Torgerson
[1952] used the double-centering formula in metric multi-dimensional scaling (MDS), Gower [1966]
required this data transformation step in principal coordinate analysis (PCoA), and Lewi [1976]
also utilized the same transformation in spectral map analysis (SMA). Other applications of DC
can be found in Kluger et al. [2003], Lewi [1989], Sdnchez et al. [1994]. The experimental results
show that DC is effective with RESIDUE(I) ((a)-(d) in Figure 1), but relatively less effective with
RESIDUE(II) (Figure 2) because RESIDUE(II) with NT, DC, and MC are same. Seasholtz and
Kowalski [1992] showed that MC may not be an optimal preprocessing method under certain con-
ditions and also Sdnchez et al. [1994] reported that the results from MC was worse than those from
NT. The performance of MC with RESIDUE(I) is almost identical to or a little bit better than
that of NT, but not better than that of either SDN or ZT for most cases.

It is worthy mentioning that spectral initialization plays a significant role in improving initial as
well as final accuracy values for all the cases. In addition, the standard deviation lines clearly show
the trend that spectral initialization results in more stable accuracy than random initialization.
Furthermore, local search strategy takes important part in further improvement of quality of co-
clustering.

6 Conclusion and remark

Aguilar-Ruiz [2005] issues the need of a new metric to discover both scaling and shifting patterns,
showing that RESIDUE(II) can discover any shifted patterns but may not capture some scaled
patterns. To answer this need, we propose a simple remedy that helps RESIDUE(II) to resolve its
dependency on scaling variances. We suggest to take a specific data transformation through which
the hidden scaling factors are implicitly removed. We analyze the effect of various data transfor-
mation on the two residues [Cho et al., 2004], RESIDUE(I) and RESIDUE(II), for row/column
dimension of data matrix having global/local scaling and global/shifting factors.

Both analysis and experimental results reveal that column standard deviation normalization
and column Z-score transformation are effective data transformations for both RESIDUE(I) and
RESIDUE(II). Especially through MSSRCC with RESIDUE(II) and the two data transformations,
we are able to discover coherent patterns with both scaling and shifting factors. The transformed
matrix contains the constant global scaling factor 1 and local shifting factors and gives the perfect
residue score, i.e., zero RESIDUE(II).

Additionally, we formally aharacterize effect of data traformations on some other existing data
models in the literature as well as six Euclidean co-clustering schemes in Bregman co-clustering
algorithms [Banerjee et al., 2007]. Note that RESIDUE(I) and RESIDUE(II) are two special
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cases (scheme 2 and scheme 6, respectively) of six Euclidean co-clustering schemes in Bregman
co-clustering algorithms.

Supplementary Information

Software and the supplementary information are available at
http://www.cs.utexas.edu/users/dml/Software/cocluster.html.
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A Other data models

In this section, we analyze the characteristics of the two residues for some of other data models
in the literature and their variants. Unless otherwise specified, the models consider local scaling
and/or local shifting factors. For brevity, we provide the case with no data transformation.

A.l aij:ﬂ"l"}/i“‘ﬁj

aij = T+ +pg;,
arj = T+ [y, +ﬁju
ary = 7T+M71 +MBJ.

Therefore, we have RESIDUE(T),
hij = aij —ary = (% = par) + (85 — 1)
and RESIDUE(II),

hij = aij —aig —ar; +ary =0.

A2 aij :7T2+72+ﬁ]

Qig = T+t U,
ar; =  Hrg +/L’)'1 +6ja
arg = fap + ly +ug;-

Therefore, we have RESIDUE(I),
hij = aij — a1y = (T = pin;) + (i = by ) + (85 — 1185)
and RESIDUE(II),

hij = Qjj — Q35 — ajj +ar; =0.
A.3 Qjj :W(Oéz_'_(sj)—i_(fyl_'_ﬂj)

a;y = T (ai + /’L6J) Yi + Nﬁ]) )
arpjg = T (/LOLI + 5]) Hryr T+ 6]) )
= 7 (/LOLI + /LJJ) + (:u”)’l + :uﬁJ) .

+
+
arg
Therefore, we have RESIDUE(I),
hij = aij —ary = 7 (@i = pay) + (65 = ps,)) + (Vi = pyr) + (85 — 13,)

and RESIDUE(II),

hij :aij—aiJ—a[j—l—a[J:O.
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A4 Qij = Ty (052‘ + 5)) + (71' + ﬂ])

a;j = T (O‘i + /1'51) + (% + MBJ) )
ar; = (:uﬂ’lﬂq +:uﬂ'15j)+ (:LL’YI +6j)7
ary = (,uﬂ'zaq + ,LLWI,LL5.7) + (:u”YI + /LﬁJ) )

where fir,q, = ﬁ > ic1 Tic. Therefore, we have RESIDUE(T),
hij = aij — ary = (T = prjar) + (Ti05 = pmgts,) + (Vi = par) + (85 = 1)
and RESIDUE(II),

hij = aij — aig —arj +arg = (Ti = piny) (05 — ps,) -

B Euclidean co-clustering schemes in Bregman co-clustering
algorithms

Here, we summarize the results for six Euclidean co-clustering schemes in Bregman co-clustering
algorithms [Banerjee et al., 2007]. Note that we are referred to the results in Tables 5 and 9,

when analyzing effect of data transformations on Scheme 2 (i.e., MSSRCC(I)) and Scheme 6 (i.e.,
MSSRCC(II)).
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Table 4: Residue values along with different data transformation.

Transformation Metric
Type Target Scaling Shifting Scheme 1
n/a G G (M — por — pmy) 0 — 8
NT  n/a G L (i = pr — ) @+ (B — pp — pig,)
n/a L G (Ticj = pfhay = fims ) =
n/a L L (miqtj — prpray — pmyfo) + (85 — g — 118,)
n/a G G 0
DC n/a G L 0
n/a L G (i = pir) (00 — phar)
n/a L L (i — pr) (05 — par)
Row G G 0
Row G L Bi — s,
Row L G mi (0 = pra) + pim (o — fhary)
MC  Row L L i (aj = pa) + pire (o — pray) + (B — ps;)
Col G G (i — pomey ) @
Col G L (T3 — porry )
Col L G (i = pr) 05 + (b — iy ) phex
Col L L (i — pr) 05 + (P — pimy) Por
Row G G n/a
Row G L é((ﬂ'i_ﬂﬂr_uﬂ'j)a—"_(ﬂj_uﬁ_MﬁJ))
Row L G % (aj—/la :u‘O‘J)+ﬂ(__7_}L ;nl T \I\ Z'LGI 7\'1))
SDN  Row L L W%lz — (mic; + B5)
i%atog
— i m (Tittary + 15,)
_ﬁ iel 7"2‘7134"7% (ﬂ—i,u‘a + /"Lﬁ)
Col G ¢l L ((mi = pn = pimy) = 3)
Col G L = ((mi = pr = pmy) + = (B —Mﬁ_NBJ))
Col L G é (ﬂ—"i_/vtfr_/VLWI)‘Fﬂ(O%_l ;L 1a] \J\ ZJE‘I%))
5 5
Col L L L (=g =)+ (22, 2 -y, )
Row G G 0
Row G L 7 (0~ pa)
Row L G oo (a5 — pray)
1
ZT Row L L \/m (mi (Ol‘j = pa) + (B — 1))
+W Ziel 252 1 o2 (i (o — pay) + (ps — Nﬁ]))
Col G G é (mi — pomy)
Col G L é (73 — porry)
Col L G % (i — porry)
Col L L % (mi — pmy)

Abbreviations: NT — No Transformation; DC — Double Centering; MC — Mean Centering; SDN —
Standard Deviation Normalization; ZT — Z-score Transformation; Col — Column; G — Global; and
L — Local.
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Table 5: Residue values along with different data transformation.

Transformation Metric
Type Target Scaling Shifting Scheme 2 (i.e., MSSRCC(I))
n/a G G (i — pomy) @
NT  nfa G L (7 — s ) 0+ (85 — 13,)
n/a L G (micu; — pomy phory)
n/a L L (micty = poryphay) + (B = p1,)
n/a G G 0
DC n/a G L 0
n/a L G (mi = pim) @ + (e — pomy ) oy — (T = fhmy) Pl
n/a L L (mi — pr) @5 + (o — fomy) ooy — (Ti — fny) fa
Row G G 0
Row G L 8; — s,
Row L G mi (0 — pa) + pir; (fa = pary)
MC  Row L L i (0 = pa) + piry (fa = pary) + (B — p18;)
Col G G (5 — pomy) @
Col G L (T — pomy) @
Col L G (mi = pim) @ + (e — pomy ) Py
Col L L (mi — pm) 0 + (o — I“WI) Koy
Row G G n/a
Row G L L (i~ )+ (B — s,)
Row L G % ((aj —ua,,)+1ﬂ(%_ - T}‘Zm ﬂi))
SDN  Row L L o (Mo + 85) — 171 Xier 5 (Tiktay — 113,)
Col G G Ui (5 — pomy)
Col G L o= ((mi = ) + £ (85 — ps,))
Col L G (=) 48 (2 - 5 Sy )
B 8
Col L L i (m—um)—&—(i—‘—}‘zje] a;))
Row G G n/a
Row G L % (B85 = psy)
Row L G = (a5 — fhay)
ZT  Row L L 7 (i (05— pa) + (8 — 1))
117 Sier 7 (i (0 = pcy) + (5 = 1))
Col G G L (75 — py )1
Col G L Ji (5 — fomy)
Col L G L (i — i)
Col L L i (i — prry)

Abbreviations: NT — No Transformation; DC — Double Centering; MC — Mean Centering; SDN —
Standard Deviation Normalization; ZT — Z-score Transformation; Col — Column; G — Global; and
L — Local.

19



Table 6: Residue values along with different data transformation.

Transformation Metric
Type Target Scaling Shifting Scheme 3
na G @ ~(ima + )
NT  n/a G L —Hrra+ (85 — s — pp,)
nfa L G (7305 — Tift — fimghic) — B
n/a L L (miqtj — Mifta — Py oy ) + (B — g — 1)
n/a G G 0
DC n/a G L 0
nfa L G (71— pn) (@5 — p)
n/a L L (mi = pr) (05 = o) = (o — pimy) (o — o)
Row G G 0
Row G L Bi — s,
Row L G ﬂ'i( '—/la)+/lﬂ1( o HaJ)
MC  Row L L i (@ — pa) + piry (o — oy ) + (85 — pis,)
Col G G (tbr — )
Col G L (tr — prp) €@
Col L G (mi = pir) (05 = pa) + (b — pomy ) fhors
Col L L (mi = pr) (005 = pra) + (pox — pomy) Py
Row G G n a
Row G L o'_ (—pmpo+ (B — - Nﬁ]))
Row L G e ((1% — [ — P @ ) — 1g,)
SDN  Row L L \/ﬁ (mi (@ — pa) + (85 — ps))
m (Zzel \/?)Ulgﬁ (Titta; — 1i8,)
Col G G —J— Loy + 8
Col G L é (_Nm + é (Bi — ws — 1py) )
Col L G + —um+ﬂ(o%— i T ZJEJ%))
1 Bj 1 By 1
Col L L o —Mm+(a—§—z i=1 oy T T jefaj))
Row G G 0
Row G L % (Bj — ms,)
Row L G oo (a5 — pray)
ZT Row L L —L (mi(ay )+ (B85 — 1p))
Toatel — Ha j — HB
—117 Lier m (mi (Hoy = i) + (ps, — p18))
ol G G L (ttr = pimy)
Col G L o (pr — pixy)
Col L G T (i — o)
Col L L L (1x — iy

Abbreviations: NT — No Transformation; DC — Double Centering; MC — Mean Centering; SDN —
Standard Deviation Normalization; ZT — Z-score Transformation; Col — Column; G — Global; and
L — Local.



Table 7: Residue values along with different data transformation.

Transformation Metric
Type Target Scaling Shifting Scheme 4
wfa G a (= fir — )@= B
NT  n/a G L (i = pr — p) @ — g,
n/a L G (T = pr @ty — pimy fray) — B
n/a L L (micy — pr 0ty — Py flary) — 113,
n/a G G 0
DC n/a G L 0
n/a L G (i — ) (@5 — ptar)
na L L (71— pn) (@5 — i) — (st — pimy) (i — )
Row G G 0
Row G L — (kg — s)
Row L G (mi = pr) (@ = ppa) + pory (P = By
MC  Row L L (s = ) (@5 = pra) + by (He = pery) + (18 — 1)
Col G G (ms — py) @
Col G L (s — pomey ) @
Col L G (Tri _:u“")aj —|—(/J‘7r _,L"WI)HOU
Col L L (Tri _:u“")aj —|—(/J‘7r _,L"WI)HOU
Row G G n/a
Row G L o5 (i = pr — pimy) @ — 1)
Row L ¢ o _Ma.r+5(%—%2?;1%—ﬁ2m%))
SDN  Row L L Jﬁ (msc; + ;)
_% Z:Ln;l ﬂ_20_12 +o2 (ﬂ-Laj + ﬁJ)
ey B
_ﬁ iel 7r2012Jr % (ﬂ-"'p‘a.l +Mﬁ])
Col G G = ((m = pr — piry) — 2)
Col G L (= i = any) = 222
Col L G % (ﬂ-’i_uﬂ'_uﬂ'l)_ﬁﬁ Zje] al_])
Col L L % (i = e — pimy) — ﬁ 2jes i_j)
Row G G 0
Row G L —$ (s, = 1)
Row L G ——a(/JQJ —,“a)
ZT  Row L L e (mi (g~ ta) + (55 — )
~ i i1 m (i (@ — pa) + (B — 1))
T Sier ezgrag (7 (s = ta) + (s, = 1)
Col G G % (73 — porry)
Col G L % (mi — pomy)
Col L G é (i — pomy)
Col L L é (73 — porry)

Abbreviations: NT — No Transformation; DC — Double Centering; MC — Mean Centering; SDN —
Standard Deviation Normalization; ZT — Z-score Transformation; Col — Column; G — Global; and
L — Local.



Table 8: Sum squared residue (SSR) values along with different data transformation.

Transformation Metric
Type Target Scaling Shifting Scheme 5
n/a G G = (i + p) 0 = 28
NT  n/a G L — (i + p ) o — (g + ;)
n/a L G (Tiaj — Tifta — P @ — fmyp fhay) — 208
n/a L L (mic; — Mifta — Py — fhmy Py ) — (8 + 118,)
n/a G G 0
DC n/a G L 0
n/a L G (mi = pir) (0 — prar)
n/a L L (mi — pir) (05 = pa) = (P — pimy) (Pa — Plory)
Row G G 0
Row G L He = s,y
Row L G (mi = pim) (@5 = pa) + py (Pa = pars)
MC  Row L L (mi = pir) (05 = pa) + py (Bo = pary) + (8 — 15)
Col G G Mo — rg
Col G L o — Py
Col L G (mi = pim) (05 — pa) + (pox — pomy ) Py
Col L L (mi — pir) (05 — pa) + (pox — pimy) Pory
Row G G n/a
Row G L o5 (mpm = pimy) & = (15 + p13,)
Row L G (- atna) B (AT L+ T )
SDN  Row L L Nz (mi (aj = pa) + (Bj — ps))
—m i #&'é (miaj + B35)
—T Lier 7ﬂgigog (Tittary + p1p;)
Col G G o (= (b + pey))
Col G L o= (= (e + pmy) = 5 (g + p1s,))
Col L G (= G+ 1) = B (R + hroses )
Col L L & (bt = (G + provesst))
Row G G 0
Row G L — = (s, — 1)
Row L G L (e, — 1)
ZI'  Row L L m (mi (0 — pa) + (B — pg))
— it m (mi (@ = pa) + (Bj — )
1o Dier \/ﬁ (i (o — Bay) + (18 — 15,))
Col G G o= (b — pimy)
Col G L UL (NW - MWI)
Col L G L (i — pimy)
Col L L o (b — pimy)

Abbreviations: NT — No Transformation; DC — Double Centering; MC — Mean Centering; SDN —
Standard Deviation Normalization; ZT — Z-score Transformation; Col — Column; G — Global; and
L — Local.



Table 9: Residue values along with different data transformation.

Transformation Metric
Type Target Scaling Shifting Scheme 6 (i.e., MSSRCC(II))
n/a G G 0
NT n/a G L 0
n/a L G (mi = pirr) (@ — phary)
n/a L L (mi — pmp) (@5 = flay)
n/a G G 0
DC n/a G L 0
nfa L G (mi = finp) (05 — o)
nfa_ L L (mi — piny) (0 — pia)
Row G G 0
Row G L 0
Row L G (Tri _Nﬂr)(aj _,“&J)
MC Row L L (s — porey ) (@5 — poay)
Col G G 0
Col G L 0
Col L G (7Ti - MWI) (aj - /1'@.7)
Col L L (7Ti - MWI) (aj - /1'@.7)
Row G G nja
Row G L 0
Row L G 0
SDN  Row L L L (i (@5 — pray) + (B — p8,))
_ﬁ Zie] ﬁ ((aj = pray) — (B — Nﬁ]))
Col G G 0
Col G L 0
Col L G 0
Col L L 0
Row G G nja
Row G L 0
Row L G 0
ZT  Row L L U;, (mi (aj — pa) + (85 — 1))
1t Sier 7 (i (@5 = pay) + (B — s, )
Col G G 0 '
Col G L 0
Col L G 0
Col L L 0

Abbreviations: NT — No Transformation; DC — Double Centering; MC — Mean Centering; SDN —
Standard Deviation Normalization; ZT — Z-score Transformation; Col — Column; G — Global; and
L — Local.
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