
Dependence-Aware Transactional Memory

Hany E. Ramadan, Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel
Department of Computer Sciences, University of Texas at Austin

{ramadan,rossbach,osh,witchel}@cs.utexas.edu

ABSTRACT
Transactional memory is a promising programming model to en-
able high performance programs with reasonable programmer ef-
fort on the parallel architectures favored by modern processor man-
ufacturers. This paper introduces dependence-aware transactions, a
new method for maintaining the conflict serializability safety prop-
erty of memory transactions while allowing significant freedom for
an implementation’s version management and conflict detection.

The paper evaluates two implementations of dependence-aware
transactional memory: one all-software implementation and one
mostly-hardware implementation. The results of micro-benchmarks
indicate the promise of dependence-aware transactions to increase
the performance of a transactional memory system, with no change
in the transactional programming model.

1. INTRODUCTION
Transactions are a promising programming model to deal with

the parallel architectures favored by modern processor manufactur-
ers. Power and physical limitations are preventing manufacturers
from scaling the performance of individual processor cores, and
forcing them to put more cores on a die. Multicore hardware cre-
ates a challenge for software performance to scale with additional
cores, and transactions are proving to be a powerful model for par-
allel programming.

Transactional memory brings transactions out of the durable world
of databases and into the volatile world of program synchroniza-
tion. Memory transactions provide atomicity, which assures the
programmer that if a transaction fails for any reason the system
will revert to the pre-transaction state. Memory transactions also
provide isolation (also called serializability) which provides a con-
sistent, global order of all transactions. Strong isolation provides a
consistent order for transactions and non-transactional operations.

Most transactional memory system provideconflict serializabil-
ity, which order transactions according to their conflicting opera-
tions. A memory write from one transaction conflicts with a read
or write from another transaction to the same memory. The most
common way in current systems to order conflicting memory ac-
cesses is to restart one of the conflicting transactions.

To implement conflict serializability, transactional memory sys-
tems provide version management and conflict detection. Current
version management and conflict detection schemes can be clas-
sified aseageror lazy [18]. Eager version management updates
memory in place, using an auxiliary data structure to save previous
values. Lazy version management updates memory in an auxiliary
data structure and makes updates visible on transaction commit.
Eager conflict detection checks every write to make sure one trans-
action does not write memory read or written by another transac-
tion, and restarts one of the transactions if there is a conflict. Co-
herence hardware naturally enforces eager conflict detection. Lazy
conflict detection verifies a lack of conflict at transaction commit
time, and is common in software transactional memory systems.

This paper introduces dependence tracking as a new method for
providing serializable transactional memory. Tracking explicit de-
pendences among transactions allows version management and con-
flict detection that is neither eager nor lazy, but combines the best
of both to minimize transaction restarts. Dependence tracking pro-
vides greater concurrency for transactions without change to the
transactional programming model. The cost is some system com-
plexity to track dependences, restricting commit order to respect
dependences, the possibility that a transaction can read inconsis-
tent data, the possibility of transaction restart because forwarded
data is updated, and the need to detect circular dependences. We
believe that this system complexity is better than the programmer
complexity that comes with open nesting and other performance-
oriented changes to the transactional programming model.

For transactions to deliver the promise of the simplicity of coarse-
grained locking while providing the high performance of fine-grained
locking, a programmer should be able to use the most straightfor-
ward algorithms and data structures for his task. A plethora of
techniques have already emerged (e.g., privatization, early release)
which increase performance in transactional code at the cost of a
more complicated programming model. Dependence-aware trans-
actions attempt to bring transactions back to their original promise:
good system performance for programmers who write simple linked
list code without worrying about early release, or who add a shared
counter to all his transactions without worrying about making it
CPU-local. Our philosophy is to push the basic transactional pro-
gramming model towards increased performance without burden-
ing the programmer with additional concepts and techniques.

With dependence tracking, transactionT0 can write a piece of
memory andT1 can read it, receiving the value written byT0. Data
forwarding violates eager conflict detection, but maintains conflict
serializability so long asT0 commits beforeT1 andT0 does not
write the same memory with a different value. With lazy conflict
detection, ifT0 tries to commit first it would be allowed to commit,
causingT1 to retry when it tries to commit. With dependence track-
ing, T0 can commit, and thenT1 can commit. IfT1 tries to commit
first, the system detects the dependence onT0 and delaysT1’s com-
mit until T0 either commits or retries. Dependence tracking allows
concurrent execution of transactions, and then tries to preserve the
work done by all transactions by ordering dependences rather than
wasting the concurrency by causing a transaction restart.

We present a full example in Section 2, but explicit dependence
tracking among transactions provides serializability while provid-
ing better performance than either an eager or lazy system. Depen-
dence tracking is applicable to any transactional memory system,
and this paper provides data about prototype implementations of
both a software and a hardware transactional memory system that
use dependence tracking.

The paper starts with a detailed example in Section 2, which
leads to a discussion of the dependence-aware model in Section 3.
Then we describe the design of a software transactional memory

1 f i r s t = NULL;
2 l p r e v = NULL;
3 xbegin ;
4 f o r (l p t r = l head ; l p t r ;
5 l p t r = l p t r −>nex t) {
6 i f (l p t r −>v a l == t a r g e t){
7 / / A l ready head ? , b reak
8 i f (l p r e v == NULL) b reak;
9 / / Move c e l l t o head

10 l p rev−>nex t = l p t r−>nex t ;
11 l p t r −>nex t = l head ;
12 l head = l p t r ;
13 break;
14 }
15 l p r e v = l p t r ;
16 }
17 f i r s t = l head ;
18 xend ;
19 r e t u r n f i r s t ;

Figure 1: Code that uses transactions to search a linked list and
move the target entry to the front of the list. The head of the
list is returned.

system (Section 4) and a hardware transactional memory system
(Section 5) based on dependence tracking. Section 6 presents per-
formance numbers for the prototype implementations and com-
pares them to existing eager and lazy systems. Section 7 discusses
related work and Section 8 concludes.

2. EXAMPLE
This section presents an extended code example to introduce

many of the concepts and terminology of dependence-aware trans-
actions. We will assume a generic transactional memory system,
with a granularity equal to a single variable. The purpose of these
examples is to build intuition and terminology for the model de-
scribed in the next section.

2.1 Linked list pattern
Figure 1 shows code that starts a transaction to search a linked

list and move the target (if found) to the start of the list (to cut down
search time assuming temporal locality in accessing the list). The
code returns a pointer to the head of the list. To analyze this code,
assume two different threads on two different processors (P0 and
P1) execute this code in two different transactions (T0 andT1) such
that the executions overlap in time. To keep things a bit simpler,
assume thatT0 searches for a target value that is not found—T0

reads through the list searching for an element without finding it.
T1 searches for an element, finds it, and moves the element to the
front of list. Any serialized schedule of the transactions will en-
force the standard linked list invariants, in this case, the number of
entries in the list never changes, all entries are accessible, and the
list is NULL terminated.

We use standard notation for data dependences, e.g., W→R means
a memory cell was written by one transaction and then the same
cell was read by a different transaction. We use the generic term
“memory cell” to indicate that the discussion applies to many dif-
ferent kinds of systems, e.g., hardware systems where the cell is
usually a cache line and software systems where the cell is usually
a language-level object. We subscript dependences with transaction
numbers where that helps clarify the situation. We analyze several
interesting interleaved executions.

2.1.1 Linked list dependences

T1

/ / Move c e l l t o head
l p rev−>nex t = l p t r−>nex t ;

T0

/ / Reads l i s t
/ / i n c l u d i n g lp rev−>nex t from T1

l p t r −>nex t = l head ;
l head = l p t r ;
b reak;

Figure 2: An interleaving of the linked list search that produces
a cyclic dependence.

T1

/ / Move c e l l t o head
l p t r −>nex t = l head ;

T0

/ / Reads l i s t
/ / i n c l u d i n g l p t r−>nex t from T1

/ / and never t e r m i n a t e s
l p rev−>nex t = l p t r−>nex t ;
l head = l p t r ;
b reak;

Figure 3: An interleaving of the linked list search that produces
a cyclic dependence and causesT0 to enter an infinite loop.

R0 →W1. Assume that the reading transaction executes first, but
has not yet committed. ThenT1 executes, finds its target entry, and
swaps it to the head of the list.T0 will have readlprev->next,
lptr->next andlheadwhich are all pointers written byT1. As
reflected by the dependency,T0 must commit first, because it will
return the valuelhead held before either transaction executed.T1

can then commit and return the pointer to the newlhead element.
W1 →R0. Assume that the writing transaction executes first,

finds its target entry and swaps it to the head of the list. ThenT0

scans the list. The same pointers as above will have been written by
T1, and their values will be forwarded toT0. In this caseT1 must
commit first becauseT0 will return thelhead value set byT1.

W1 →R0 andR0 →W1. As shown in Figure 2, assume thatT1

writeslprev->next on line 10. ThenT0 reads the entire list, in-
cluding the value oflprev->next forwarded fromT1, skipping
the element pointed to bylptr because that element is temporar-
ily off the list. The W1 →R0 dependence fromlprev->next
constrainsT0 from committing untilT1 commits. In order to com-
plete,T1 must writelptr->next, which does not cause a de-
pendence becauseT0 did not read that pointer. However,T1 does
write lhead, which T0 read. The combination of W1 →R0 and
R0 →W1 causes a cycle in the transaction dependence graph. The
transactions will wait for each other to commit forever, so the sys-
tem breaks the deadlock by restarting one of the transactions. IfT1

is restarted, thenT0 must restart, because it read data generated by
T1.

W1 →R0 andR0 →W1. As shown in Figure 3, assume that lines
10 and 11 are switched, solptr->next is assignedlhead be-
fore the entry is unlinked from the list.T0 reads the entire list after
the assignment. IfT0 follows thelptr->next pointer after it has
been updated to point tolhead, its search will never terminate.
However, reading that pointer creates a W1 →R0 that constrains
T0 to commit afterT1 anyway. T1 will eventually writelhead
whichT0 read, causing a cycle and a transaction restart.

This example should provide a basis for understanding the me-
chanics of dependence-aware transactional memory, and an intu-

/ / a == 5 and b == 10
T0

xbegin ; T1

i f (a ==5) { xbegin ;
a = 6 ;
b = 12 ;
xend ;

b = 10 ;
}
xend ;

Figure 4: An interleaving of code that demonstrates the need to
order R→W dependences.

ition for its ability to provide serializability. However a formal
argument by which dependence-aware transactional memory can
achieve serializability is the subject of Section 3.

2.1.2 Ordering R→W
The need to order R→W dependences is best explained with an

example. Figure 4 shows an interleaving (time flowing down) of
two transactions that maintain the invariant:b = 2a. For the in-
terleaving shown, there is an R0 →W1 dependence ona. If T1 is
allowed to commit, then the dependence goes away,T0 can commit
and the values fora andb are inconsistent (6 and 10). WhenT1 is
delayed forT0 to commit first, there is a W0 ↔W1 dependence on
b that does not prevent either transaction from committing.

2.2 Best of eager and lazy
One thing the example should make clear is that dependence-

aware transactions are not eager or lazy when it comes to version
management or conflict detection. Version management can be
mostly lazy or mostly eager, depending on the needs of an im-
plementation. The forwarding of data values has an eager flavor,
because the the most recent value of the memory cell is forwarded.

Conflict detection is replaced by dependence tracking, though
the dependence creation has an eager bent. For dependences to
do the most good in avoiding transactional restarts, they should be
discovered before a transaction attempts to commit, but this is not
required by the model. The constraints on commit order imposed
by dependences have a lazy flavor, though most lazy version man-
agement systems have a first-to-commit arbitration policy.

3. DEPENDENCE-AWARE MODEL
This section introduces the theoretical model of dependence-

aware transactional memory. We present the model in full generality—
any particular implementation of the model can make simplifica-
tions that are appropriate for the implementation technology (e.g.,
software or hardware).

3.1 Dependences
Dependences arise between two transactions if at least one of

them is writing to a value that they have both accessed. In other
words, dependences only exist in the same cases where conflict
serializability would have detected a conflict.

3.1.1 Dependence types
Table 1 shows a summary of the dependence types and their

properties. We use the dependence notation W→R meaning a read
after write (RAW) dependence—one thread read a memory cell that
was written by another thread. Dependences are subscripted with
transaction numbers, so W0 →R1 means a write from transaction
T0 was read by transactionT1. W↔W dependences have a double

Dependence Forward Ordered Restart
W0 ↔W1 No No –
R0 →W1 No Yes If in cycle
W0 →R1 Yes Yes If in cycle, and

T1 must if either:
a) T0 does.
b) T0 overwrites
forwarded data with
new value.

Table 1: Summary of dependence types and their properties.

arrow because they are symmetric and never directional. The de-
pendences are listed in order of increasing restrictions, with W→R
dependences imposing more restrictions than W↔W dependences.

The system tracks all dependences at the level of memory cells
(which are implementation=dependent), and are tracked as they
arise during transaction execution. If a dependence has a “Yes”
in the Forward column in Table 1, then the system forwards the
data in the memory cell when the dependence is created. For ex-
ample, a W0 →R1 dependence requires the value of the memory
cell be forwarded fromT0 to T1. The system records that the cell
has been forwarded.

Commit ordering restrictions are noted in theOrdered column
of Table 1. W0 →R1 and R0 →W1 dependences always constrain
commit order, while W0 ↔W1 do not. The W→R dependence
is a producer/consumer relationship, which implies ordering (pro-
ducer before consumer). The need to order R→W dependences
is explained in Section 2.1.2. W↔W dependences do not restrict
commit order because the dependence is non-directional. A non-
directional dependence does not participate in the computation of
cyclic dependences (Section 3.2.3).

Finally, the conditions by which a dependence necessitates a
restart is also noted in the same Table. Cyclic dependences re-
quire restarts, as explained fully in Section 3.2.3, and only R→W
and W→R dependences participate in cycles. W→R dependences
can require additional restarts. For a W0 →R1 dependence we call
T0 the sourcetransaction andT1 the destination. The destination
transaction must restart if the source restarts, because it has read
data forwarded by the source. The destination transaction must
also restart if the source overwrites the data it forwarded to the des-
tination with a new value. The forwarded data value is now stale,
invalidating the destination transaction.

3.1.2 Dependence discussion
Dependences are created per memory cell on first access to the

cell. Subsequent accesses to the same object do not affect depen-
dence structure, with the single exception, as noted in Table 1 that
an overwrite of a forwarded cell does cause a restart. For example,
if T0 writes a cell thatT1 then writes, and thenT1 reads the object,
the resultant dependence is simply W0 ↔W1.

Dependences do not survive transaction restarts. A restart elim-
inates all dependences on the restarting transaction. Of course the
restarted transaction may create new dependences. Dependences
do not survive transaction commit.

Note that the actions and constraints noted in the table are min-
imal. A particular implementation can add constraints (but cannot
relax them). For instance, a particular implementation may restart
a destination transaction if forwarded data is overwritten with the
same value. An implementation may detect an overwrite eagerly
or lazily. Another example would be relaxing the restart rule, e.g.,
an implementation can restart a secondary transaction for a R→W

dependence when the source transaction restarts.
One attractive property of dependence-aware transactions is that

they are not all-or-nothing, they can exist with restart-based tech-
niques for ensuring conflict serializability. For instance, a system
can track R→W dependences, but simply restart one of the trans-
actions involved in W→R dependences.

3.2 Multiple dependences
The discussion so far has focused on a single dependence be-

tween two transactions. In any implementation of the model, how-
ever, multiple dependences will be created, and bring with them
their own set of issues.

3.2.1 Multiple dependence between two transactions
Multiple dependences may arise if two transactions conflict on

more than one memory cell. Conceptually, each memory cell on
which two transactions conflict will lead to a separate dependence,
which may or may not be of the same type or in the same direc-
tion. To manage multiple dependences between two transactions,
the model has the following rule.

Restrictive dependence rule:The relationship between two trans-
actions, in each direction, is governed by the most restrictive depen-
dence going in that direction.

If a transaction is the source for a R→W dependence, and later
on it writes and forwards a different memory cell to the same des-
tination transaction (thereby creating a W→R dependence), the
transactions are constrained by the more restrictive W→R depen-
dence. Both dependences are of course still tracked by the system.

3.2.2 Multiple transactions
More than two transactions can concurrently access the same

memory cell. The first two will create a dependence as described
above. The third transaction will create its dependence with the
last writer of the memory cell (with the system making an arbi-
trary choice for W↔W dependences). Every dependence involves
at least one writer.

Because dependences are binary, a single memory cell may have
a tree of dependences, the depth of which is one level per writ-
ing transaction. Readers will attach in the tree to the latest writer
(i.e. lowest in the tree). If all transactions are writing, the tree
is simply a chain. Actions and ordering constraints are pairwise
and independent from the larger structure of the dependence struc-
ture. The overall structure of dependences can create cyclic depen-
dences, which is the subject of the next section.

3.2.3 Cyclic Dependences
Dependences can restrict commit order and dependences can

form a cycle. If the system simply waits for dependences to re-
solve, then some cyclic dependence chains will cause deadlock.
The system must prevent or resolve these deadlocks.

While dependences arise from reads and writes of memory cells,
deadlock occurs from a cycle in the transaction dependence graph.
The transaction dependence graph contains a directed link between
two transactions if there is a directed dependence between them
on any memory cell. Note that W↔W dependences are not direc-
tional, so they do not participate in the dependence graph (concep-
tually, write dependences do not create an ordering the way R→W
and W→R dependences do). A cycle in the transaction dependence
graph can be of any length up to the total number of active transac-
tions in the system.

Cyclic dependences cause transactional restarts in dependence-
aware TM, so the system should detect them accurately and resolve
them efficiently. An implementation has wide latitude to deal with

cyclic dependences. Cycle avoidance is usually difficult to make
efficient, so we expect most implementations to resolve cyclic de-
pendences by restarting a transaction within the dependence chain
(restarting one transaction is all that is needed to break the chain).
Indeed, computing the dependence chain itself might be onerous,
so using a simple timeout will avoid deadlock. Implementations
may add restrictions to the model to minimize the occurrence of
deadlocks. For example, imposing restrictions on the size of any
memory cell’s dependence tree (chain), may help reduce the oc-
currence of cycles, although perhaps at a performance cost. If the
system computes the dependence chain (or part of it), it can pick
the victim transaction based on its position in the dependence graph
(i.e., it is probably advantageous to restart a transaction that has not
forwarded any data), transaction size, age, etc. Dependence-aware
transactions do not have a traditional “contention manager”, but the
cycle-resolution strategy plays a similar role in these systems.

3.3 Stale data and exceptions
Because the model forwards data between transactions, it is pos-

sible that a transaction can read invalid data. For instance, Figure 3
depicts an interleaving where one transaction reads a forwarded
pointer value causing it to infinite loop. The loop is benign, because
it serves to delay the transaction which is what the system would
do if the transaction proceeded. The loop will be terminated by the
system once the producing transactions completes. On reading in-
consistent data the destination transaction can throw an exception
that would not occur in a serial transactional schedule.

There are two ways to deal with non-serializable exceptions, de-
lay them or restart the transaction. A transaction that raises an ex-
ception can wait for the dependence involving that memory loca-
tion (or for all its dependences) to resolve, before raising an excep-
tion. This guarantees that all memory read by the transaction has
indeed been committed by previous transactions, so the exception
can by ordered after the committed transactions (and thus any ex-
ception is a “real” exception, not an artifact of the concurrency in
the system).

Another approach would be to attempt to immediately restart the
transaction when encountering an exception. Because program-
mers naturally do not generally leave data structures in inconsis-
tent states for long, it is unlikely for a transaction to read the same
inconsistent data after a restart. The choice of whether to delay
exceptions or cause a restart depends on the details of a particular
implementation. Hybrids are possible that allow some number of
restarts before waiting for dependences to resolve, or that wait for
dependences for a limited time duration.

3.4 Model safety
This section demonstrates how the presented model guarantees

conflict serializability. Transaction processing theory defines two
operations asin conflict if they access the same memory location
and at least one of them is a write. In theconflict relationof a
schedule,conf(S), p < q if operationsp andq are in conflict, and
p occurs beforeq in S. A scheduleS is conflict serializableif it has
the same set of operations and the same conflict relation as a serial
scheduleS′ [24].

To efficiently test for conflict serializability, the set of conflicts
between committed transactions is abstracted as theconflict graph
for a scheduleS, orG(S). Each node in the conflict graph is a com-
mitted transactiont. G(S) contains an edge from transactiont to t′

if there are operationsp ∈ t andq ∈ t′ and〈p, q〉 ∈ conf(S) [24].
In our model, dependences between active transactions represent
potential edges in the conflict graph.

A scheduleS is conflict serializable if and only ifG(S) is acyclic.

To ensure thatG(S) is acyclic, a transaction processing system
may enforce a more restrictivecommitment orderingrule, that trans-
actions commit in conflict order [24]. In order to account for the
effects of aborted transactions, TM systems must also enforcere-
coverability, the property that a transaction may commit only after
transactions from which it has read data have committed [24].

Our model differs from traditional TM systems in how the acyclic
property ofG(S) and recoverability is enforced. Eager and lazy
TM systems enforce commitment ordering by disallowing conflicts
between active transactions, either at commit time or when the con-
flicting operation takes place. Transactions do not read updates of
other active transactions. A transaction that commits will only have
conflicts with transactions that have already committed, and all of
these conflicts will represent incoming edges in the conflict graph.
Thus transactions always commit in conflict order, and a transac-
tion that commits will only have read updates from already com-
mitted transactions.

Our model allows conflicts between active transactions. To en-
force commitment ordering, a transaction will not commit until
all transactions on which it depends have committed, i.e. there
are no incoming edges in the conflict graph except for those from
committed transactions. Cycles prevent transactions from commit-
ting in conflict order, and so require at least one transaction to be
restarted. Recoverability is ensured by aborting readers in W→R
dependences when the writer aborts.

In our model W→W dependences are not tracked. We assume
that writes are speculatively buffered, so W→W dependences may
be inserted in transaction commit order. Our model enforces that all
other dependences occur in transaction commit order by ordering
transaction commits, thus a W→W dependence will not form a
cycle.

4. DEPENDENCE-AWARE STM
This section describes the implementation ofDASTM, a software-

based transactional memory system designed to use transaction de-
pendences.DASTM is a C++ object-based STM library.DASTM
provides an entirely new implementation of the Rochester STM
[10] API, a well-known, publicly available STM, allowing us to
leverage the same benchmarks across both systems. We present a
brief description of the API, followed by discussion of version man-
agement, object access, transaction completion, cycle-handling, how
dependences are observed inDASTMand some simplifications made
to ease implementation ofDASTM.

4.1 Public Object Model
The public object model of RSTM v2 is retained with only mi-

nor modifications forDASTM. The main public classes areObject,
which is the superclass of all transactional classes, andSharedOb-
ject, used to declare and use transactional object instances.

The primary change to theObjectclass is the addition of a vir-
tualequals method, to check equality of object instances, which
DASTMuses to verify that a forwarded object is indeed valid (as
described below). A default implementation ofequals performs
a byte-wise comparison of the object data, although transactional
classes can provide custom implementations. Managed environ-
ments, such as .NET and Java, already provide virtualequals
method at the top of their class hierarchy.

The primary change to theSharedObjectclass is the addition of
a openWO method which complements the existing openRO and
openRW methods. These methods are used to access instances of
a shared object within a transaction. The openWO method allows
transactions which do not intend to read a value to benefit from the
less restrictive W↔W dependences. While this method is not used

class ObjectWrapper {
bool Committed_Flag
bool Aborted_Flag
bool Snapshot_OK_Flag
int Readers_Count
Object* Active_or_Committed_Object
Object* Forwarded_Snapshot_Object
SharedObject* Owner_Shared_Object
ObjectWrapper* Next_Node

}

Figure 5: State in an ObjectWrapper node

Figure 6: Sample DASTM execution showing a single shared
object. Tx1 is reading the committed value of the object (Obj1),
Tx2 is actively writing a new value (Obj2), and Tx3 has issued
a read (serviced by the forwarded Obj3) and is writing a new
value (Obj4). The transactions must commit in the order Tx1,
Tx2, Tx3. If Tx2 restarts, Tx3 will restart due to the forward
property of its dependence on Tx2. If Obj3 is not equal to Obj2
when Tx2 commits, then Tx3 must abort as well. Any new
transactions that read would read a forwarded snapshot cre-
ated by cloning Obj4, attached to the most recent ObjectWrap-
per.

in existing benchmarks, we include it for future use.

4.2 Version management
In DASTMmultiple transactions may concurrently access (read

or write) the same shared object. Dependences allow the system
to preserve consistency in the presence of multiple active copies
of the object. Transactions may thus access an object modified by
another transaction which has yet to commit.

DASTM manages dependences by associating a set of objects
with each shared object (instance of SharedObject), maintaining at
least one committed instance in addition to one instance for each
active transaction which has opened that object for writing, as seen
in Figure 6. The different instances of the shared object are linked
together in a list. This restricts possible re-orderings but simpli-
fies implementation. Each shared-object holds a pointer to the
head of the list. The list is modified primarily when the object is
initially opened by a transaction, and when transactions complete
(commit/abort). To protect the list data structure from itself be-
ing corrupted by concurrent access a single lock is associated with
each shared-object. The lock is heldonly for the durationof the
list-modification operations - reading and writing to objects them-
selves does not lock the shared-object list. Because list modifica-
tions are more complex than simple insertion and deletion of nodes
(i.e. searching for specific nodes, cleaning up garbage nodes), it
was not deemed worth the extra complexity of trying to do away
with the lock; for large enough transactions we do not expect this
to limit overall concurrency.

Each node in the linked list is an ObjectWrapperrather than being

the actual object instances. There are two key reasons for this. First,
DASTMmaintains for each node up totwoobject instances associ-
ated with that node (a “live” instance and a “forwarded” snapshot
instance, described below). Second, various kinds of state asso-
ciated with the ObjectWrapper must be maintained. Such state is
modified, read, and used for notification (see below for polling)
by all the transactions accessing the shared-object. By keeping this
state separate from the actual object, we minimize interference with
other transactions using the object instances.

Figure 5 shows the fields contained in each ObjectWrapper node.
Figure 6 shows a snapshot of an execution ofDASTM, showing
the runtime relationships between the various objects. The follow-
ing sections elaborate how such runtime state is created and main-
tained.

4.3 Accessing Objects
In DASTMa transaction may access a shared-object in read-only,

read-write or write-only mode, with the mode specified by the pro-
grammer. The object may previously have been opened (in the
same or a different mode) or it may never have been opened be-
fore. This section outlines the operation of the system in each of
these scenarios.

4.3.1 Previously accessed object
If the object has been previously opened in an appropriate mode

in the transaction, the existing reference to that object is simply re-
turned. The Transaction c;ass tracks the read and write sets, which
consist of pointers to the ObjectWrappers of the objects accessed
during the transaction. These sets are inspected on an object-open
request. An object previously opened for RW mode will be returned
if subsequently opened in RO mode. An object previously opened
in RO mode will be “upgraded” if subsequently accessed in RW
mode (see below). Transaction objects are stack-allocated—they
contain only a status field and the read and write sets.

4.3.2 Initial read-only access
If the object was not previously opened as part of the same trans-

action then the shared-object is locked (using the mutex). For RO
access, the list of ObjectWrappers is traversed to find the last non-
aborted ObjectWrapper(which is either active or committed). If
the ObjectWrapper is committed (indicated by the CommittedFlag
field), a reference to the committed object is returned (held in the
Active or CommittedObject field).

If the ObjectWrapper is still active, this indicates an RO mode
access to a value that was (and still perhaps is) being written by an
active transaction. This “forwarded” value will be stored in the For-
wardedSnapshotObject field of the ObjectWrapper. If a snapshot
was previously made (the field is non-NULL) by a previous trans-
action, it will be used - sharing the snapshot is possible since all the
transactions are simply reading it. If no previous snapshot exists, a
snapshot will be made by use the clone() method to make a copy of
the active object (held in the Activeor CommittedObject field). It
is important to note that the object may be concurrently accessed
by the active transaction while the clone is occurring; the clone
implementation must handle such situations to produce a consis-
tent copy. Managed environments (Java, C#), can ameliorate this
issue, as the VM may be able to provide a consistent clone auto-
matically. Default implementations of clone in both environments
are also possible (e.g. byte-copying the object state), and would
suffice for simple objects.

Finally, the ReadersCount field is incremented, the ObjectWrap-
per is added to the Transaction’s read-set, and the shared-object is
unlocked. The actual object (either the Committed or Snapshot) is

returned as the result of the RO access request.

4.3.3 Initial read-write or write-only access
When a request is made for read-write access to an object not

previously opened, the procedure is a superset of the steps for an
initial read-only request (see section 4.3.2), including locking the
shared-object, finding the last non-aborted ObjectWrapper, deter-
mining which copy to read (committed or snapshot of active), in-
crementing the reader count, and adding the ObjectWrapper to the
read-set. For a read-write request a few more steps occur before
unlocking the shared-object, and a different object is returned as
the result of the access request.

The main difference is that a new ObjectWrapper node is allo-
cated, and inserted at the tail end of the shared-object’s list. All the
flags are initially false (indicating an Active wrapper), the readers-
count is 0, and the Snapshot pointer is NULL. The Activeor Com-
mitted Object however, is initialized with a pointer to a new object,
created by cloning the object obtained in the RO access request
(whether it is a committed or a snapshot object). The new Object-
Wrapper is inserted into the Transaction’s write-set, and the Active
object of this newly allocated node is the returned result of the RW
access request.

Access requests for write-only mode perform the same steps as
read-write access, without the initial work reading an existing Ob-
jectWrapper.

4.4 Dependence management
The W↔W dependence is strengthened by enforcing ordering.

Commit processing waits for each written object until all previ-
ously written objects (ObjectWrappers earlier on the SharedOb-
ject’s list) are non-active before allowing the transaction to commit.

The R→W dependence is maintained during the validation phase,
by ensuring that for each object in the write-set, there are no readers
for any previous ObjectWrappers.

The W→R dependence is maintained during the validation phase,
by ensuring that for each object in the read-set, the version read
must have committed, and if the value read was forwarded, it is
identical to the later committed value.

Cycles are detected using a timeout mechanism in the commit
validation phase, when waiting for objects in the read-set to be
complete or for the write-set to be ready for commit. The imple-
mentation simply retries these operations a fixed number of times:
if the object is still not in the desired state, a cycle is assumed and
the currently waiting transaction restarts. This approach is simple,
and requires no cross-processor or cross-transaction communica-
tion. More sophisticated approaches, including using timestamp
information, or deadlock avoidance are also possible, but are left
for future work.

4.5 Transaction Completion
Transactions may abort for three reasons (excluding explicit calls

to Abort, exceptions, etc.): first if a cycle in the dependence graph
arises, second if a source transaction of a W→R dependence aborts
(requiring the destination to abort as well), and third if a forwarded
value in W→R dependence is subsequently over-written by a dif-
ferent value.DASTMdetects these situations atcommit time. This
simplifies the implementation and respects the limitations of our
unmanaged STM environment (e.g. reads and writes to the ob-
ject in an active transaction are not intercepted). More sophisti-
cated STM environments (e.g. managed environments, or those
with APIs to read/write fields, such as RSTM v3), and certainly
HTM systems, admit designs in which such events are detected as
soon as they happen, potentially avoiding wasted work compared

For-each OW in Tx.Read-Set
Wait until OW is Committed or Aborted

If cycle detected, handle cycle
If OW is Aborted

Tx must Abort.
If OW.Snapshot_OK_Flag is not set

Tx must Abort

For-each OW in Tx.Write-Set
Wait until all previous OWs to become

non-active and without remaining
readers

If cycle detected, handle cycle

// At this point; guaranteed to commit
Tx.Status = Committed

For-each OW in Tx.Write-Set
OW.OwnerSO.Lock

If OW.Readers_Count == 0
OW.Snapshot_OK_Flag = true

Else
OW.Snapshot_OK_Flag =

Equals(A_Or_Cmt_Obj,
Fwd_Sshot_Obj)

OW.Committed_Flag = true
OW.OwnerSO.Unlock

For-each OW in Tx.Read-Set
OW.OwnerSO.Lock

OW.Reader_Count--
OW.OwnerSO.Unlock

Figure 7: Transaction commit pseudo-code.

Tx.Status = Aborted

For-each OW in Tx.Write-Set
OW.OwnerSO.Lock

OW.Aborted_Flag = true
OW.OwnerSO.Unlock

For-each OW in Tx.Read-Set
OW.OwnerSO.Lock

OW.Reader_Count--
OW.OwnerSO.Unlock

Figure 8: Transaction abort pseudo-code.

to DASTM.
Figure 7 presents pseudo-code for transaction commit process-

ing, which happens in two phases. Note that when waiting for the
read-set to commit the shared-object lock doesnotneed to be taken
(it is only taken by the transaction that will commit/abort the ob-
ject), and thus the flags are used as notification mechanisms (and
would be quite efficient with common cache coherence protocols).

Transaction abort processing may occur in reaction to an explicit
call to Abort or an exception thrown during transaction process-
ing, or in the validation phase of Commit processing, where one of
several events may cause a transaction to abort. The pseudo-code
for Abort processing is shown in 8. For clarity, cleanup of Object-
Wrappers from the list is omitted from the pseudo-code. Nodes
are removed from the shared-object list when they are no longer
needed by any transactions.

4.6 Implementation simplifications
DASTMis not highly optimized, does not leverage standard op-

timizations to speed up searches for previously opened objects.
As our evaluation focuses on increased concurrency, less attention
was paid to improving performance of each individual transaction.
Moreover, several design simplifications were undertaken to ease

the implementation.
The first simplification is that dependences created for any trans-

action are always created with respect to the most-recently written
(committed or active) value of the object, i.e. the dependences are
position at the “tail” of the dependence chain. By ruling out more
flexible placement of dependences, certain design simplifications
are enabled inDASTM. This simplification also entails that W↔W
dependences, which need not be ordered, are actually ordered in
DASTM.

The second simplification is that a given transaction will have
only a single value which is forwarded to other transactions, which
is the value at the time of the first forwarding operation. Even if the
writer is continuously changing the object only a single snapshot
will be used by the various readers. This may cause some readers
to abort in cases where a more flexible policy would have allowed
them to commit (e.g. a policy that always forwards the most recent
write reduces the probability that updates of the forwarded value
require readers to restart). However, since we do not yet know how
frequent these cases are, this restriction is not unreasonable. A fi-
nal simplification relates to infinite loops which may arise when
a transaction reads inconsistent forwarded data. TheDASTM im-
plementation delays the check of whether read data was consistent
to when the consuming transaction completes, instead of when the
producing transaction overwrites the data. Since our benchmarks
do not incur this problem, the current implementation does not han-
dle it, although it should not be difficult to address in this design,
or in alternative dependence-tracking designs.

5. DEPENDENCE-AWARE HTM
This section sketches the hardware support needed to implement

dependence-aware HTM: W→R data forwarding, restart when for-
warded data is invalidated, commit ordering, and deadlock preven-
tion/detection. Dependence tracking is done at the level of words,
not cache lines. IfT0 writes a variablea andT1 reads it, and then
T1 writes variableb andT0 reads it, then the system should record
both dependences W0 →R1 and W1 →R0, even ifa andb are on
the same cache line. The proposed hardware uses signatures [4],
which can efficiently track read and write sets at the level of bytes,
and the TM system is based on LogTM-SE [25]. We assume a
CMP with a shared bus, though all of our techniques would work
with a directory, albeit less efficiently.

5.1 W→R data forwarding
LogTM-SE forbids other L1 caches from holding data that is

in the write-set of a transaction on another core. It also forbids
the exclusive caching (no M or E) of any line in the read-set of
a transaction on another core. Dependence-aware HTM maintains
this invariant, though it tracks read and write sets at the level of
bytes. Therefore, other cores generate requests for writes to data
read-cached by another (source) transaction and for reads to data
write-cached by another (source) transaction.

W→R data forwarding happens naturally—write requests are
seen by the source transaction as coherence messages, and the source
node responds with data. However, the source node must restart
the destination node if it overwrites forwarded data. Therefore the
source node maintains aforwarded signaturein addition to the read
and write signatures of LogTM-SE. Before retiring a write the lo-
cal node must determine if the address written is contained in the
local forwarding signature. If it is, the write value is broadcast on
the bus. All transactions test the broadcast write address for mem-
bership in their their read set and if there is a match, they restart.
Overwrites of the same value will cause needless restarts. False
positive matches on the forwarded signature increase bus traffic,

but they do not cause transaction restarts.

5.2 Ordering and deadlock detection
Each processor maintains a list that is a topological sort of the

global transactional dependence graph. There are two types of bus
messages: the first indicates a dependence a→b, and the second
clears all dependences involving transaction a. All CPUs see all
messages in order on the CMP bus, so all of them build the same
dependence list. The cyclic dependency checking algorithm must
require constant time to check each new dependence broadcast on
the bus. Transaction commits and restarts broadcast the clear mes-
sage. These are rarer than transactional memory accesses, so they
can require a bit more work.

Each processor keeps an ordered list of processor identifiers that
is a topological sort of the dependence graph—each identifier ap-
pears before identifiers that depend on it (sources before destina-
tions). For every dependence the processor sees on the bus, it
checks to see if the dependence is incompatible with its current
topological sort. An incompatibility indicates a circular depen-
dence. If either or both of the dependents is not present in the
current sort they are added in the proper order. Each core tracks
the dependences of the current transaction in enough detail to de-
lay their own commit and to (conservatively) detect deadlock. At
commit time, the commit blocks until the dependence list is empty.
W→W dependences are not broadcast.

For instance, consider processor 3. It sees the dependence 0→5,
so it adds 0,5 to its topological sort. It then forwards data to 4,
making the sort 0,5,3,4. If it reads data from processor 5, that does
not change the sort. If it sees a dependence 4→5 on the bus, it has
detected a circular dependence. Because the sort is conservative, if
there is a circular dependence in the transaction graph, at least one
processor’s topological sort will detect it.

The topological sort can give false positives. With dependences
1→2 and 3→4, the sort will be 1,2,3,4. A 3→2 dependence will
be incorrectly flagged as circular.

The cache controller can implement the sorted list usingN +
1 counters, each withlog(N) + 1 bits, whereN is the number
of CPUs. TheN + 1th counter is thenextID counter, and it is
initialized to 1, while every other counter is initialized to 0. When
a dependence message is seen on the bus, if the source’s counter
is 0, set it tonextID++. If the destination counter is 0, set it to
nextID++. If the destination counter is smaller than the source
counter, signal a cycle. On a clear for processorc, the controller
gets the value ofc’s counter, call itC. It setsc’s counter to 0, then
it decrements all counters fromC + 1 . . . N , andnextID.

Once a circular dependence is detected there are many ways it
can be broken. Restart algorithms that require more communica-
tion can minimize the amount of lost work by choosing to restart a
particular transaction (or transactions).

5.3 Virtualization
Dependence-aware transactions do not add much more state than

what is contained in LogTM-SE. Each transaction requires a for-
warded signature, though it is likely that the forwarded signature
can be shorter than the read and write signatures because data for-
warding is rare relative to reads and writes. Collisions in the for-
warded signature create more bus traffic, but do not necessarily
falsely restart transactions. A transaction that is inactive needs to
have its forwarded signature stored, but the processor does not need
to access the signature until the transaction becomes active again.

Processor identifiers are insufficient for dependence and dead-
lock detection when transactions can become inactive. Instead of
processor identifiers, the system can use longer transaction iden-

Benchmark Description

counter Each thread repeatedly increments a shared global counter within
a transaction. The RSTM code was modified to add think time to
each thread.

llist Each thread manipulates a shared linked list within a transaction.
The linked list contains 512 nodes, and each transaction searches
for a random node. Once found, with a certain probability the
transaction will modify the list by moving the node to the head of
the list. Two variants of this benchmark are llist8020, where the
probability of update is 20%. llist5050 increase the probability
of updates to 50%.

LFUcache Web cache simulation benchmark, adapted unmodified from
RSTM suite. Uses an array-based index and a priority queue to
track the most frequently accessed pages.

Table 2: Benchmarks used to evaluate DASTM.

tifiers. To support e.g., 3 inactive transactions per-processor, the
transaction identifiers can have 2 extra bits. The low bits of the
transaction identifier equal the processor identifier. The depen-
dence list of transaction identifiers is per-transaction, and must be
stored but not accessed for inactive transactions. The topological
sort of transaction identifiers refers to active and inactive transac-
tions.

6. EVALUATION
This section presents experimental results of our software-based

implementation of dependence-aware transactional memory. The
results are compared with traditional STM approaches, represented
by RSTMv2 [10]1, a publicly available STM implementation.

6.1 Benchmarks
We selected three benchmarks to use in our evaluation. As both

TM implementations (dependence-aware and RSTM) expose the
same API, the benchmark code was identical. Two of the bench-
marks (counter, LFUcache) were adapted from the suite of bench-
marks provided with the RSTM distribution, while the third bench-
mark (llist) was developed by us. Table 2 provides a brief descrip-
tion of each benchmarks.

6.2 Experimental setup
RSTM can be configured to use eager or lazy object acquisi-

tion, and visible or invisible readers. We provide results for all
four configurations. All experiments were run on a Sun Fire T200
(Niagara) with 8 cores (32 thread contexts), running SunOS 5.10.
Experiments were run from 1 to 31 threads because RSTM’s visible
readers implementation doesn’t work with 32 threads.

6.3 Results
Figure 9 presents the performance of the counter benchmark.

Traditional STM techniques as represented by all four configura-
tions of RSTM do not scale at all due to the high-contention na-
ture of the benchmark. The two lazy-acquisition configurations of
RSTM before better than the eager-acquisition. The dependence-
aware STM implementation is able to scale with the increased num-
ber of processors, with performance at 31 threads being 25x that of
the lazy-acquisition configurations. Its performance also remains
superior or equal, at low thread counts. The results show that with
dependence-aware TM, programmers do not need to increase the
complexity of their code (e.g. with privatization, escape actions,
weaker semantics) to get higher performance.

1We began our work before the recent release of RSTMv3. While
RSTMv3 may perform better than RSTMv2, it has a different in-
terface, so we were not able to use it for this study.

Figures 10 and 11 present the linked list benchmark with differ-
ent mixes of read and update transactions. For RSTM, the two con-
figurations with visible readers provide higher performance than
the invisible readers. Visible readers, while providing better abso-
lute performance than dependence-aware TM, exhibit scaling only
up to 8 threads, after which overall performance actually degrades.
Dependence-aware TM continues to scale to 31 threads (the the
maximum used in the experiment). The actual cross-over point
where Dependence-aware TM provides higher absolute performance
than RSTM’s visible readers is around 16–20 threads, for the 20%
update mix. When updates are more frequent, as demonstrated by
the 50% update mix, RSTM performance is cut by half or more,
while Dependence-aware TM performance remains unchanged, even
in the presence of greater updates. The cross-over point at which
Dependence-aware provides higher overall performance, is reduced
to 12 threads. These results show that while at low parallelism
count, other TM designs may achieve higher absolute performance,
once the amount of concurrent work (threads) increases, dependence-
aware TM allows traditional data structures to scale their perfor-
mance, without adding extra complexity. (e.g. without having to
add early release, as is done in one of the linked list programs in
the RSTM benchmark suite)

Figure 12 presents the results for LFUcache, a benchmark where
conflicts are common but transaction sizes are small. Unlike the
counter benchmark, no think time is added, and this reduces the
ability of dependences to increase concurrency by interleaving what
would otherwise be conflicting transactions. The trend in trans-
actional memory has been towards longer and larger transactions,
which bodes well for the dependence-aware model. However, it
is important to also understand and evaluate the performance of
DASTM with shorter transactions, such as with LFUcache. In this
case, both RSTM configurations as well as dependence-aware TM
do not scale, and performance degrades with more threads. How-
ever, RSTM lazy-acquisition configurations as well as dependence-
aware TM perform 1.5x to 2x better than eager-acquisition. These
results show that for some workloads where transactions have not
been able to provide scalability, our current implementation of dep-
endence-aware TM has commensurate performance with the best
current STM models.

Even across this limited set of micro-benchmarks, it is clear that
as concerns existing models, the best performing one depends on
the application. In some cases visible readers is an important factor,
in others it is lazy-acquisition that is the key to better performance.
Our prototype of dependence-aware STM manages to perform sur-
prisingly well across all the benchmarks, and enables new impor-
tant. We speculate that several more sophisticated optimizations
of dependences (e.g. cycle detection not based on timeouts, more
sophisticated management of dependences, not ordering W↔W
dependences) may enable further performance improvements for
dependence-aware TM.

6.4 Dependence Aware HTM Results
We evaluate Dependence-aware HTM, orDAHTM using a single

micro-benchmark:pipebm. For comparison, we obtained a copy
of MetaTM [22] which is an HTM system using eager versioning
and eager conflict detection. Thepipebm micro-benchmark sim-
ulates a multi-threaded application that has long transactions and
high contention, and consists of multiple threads (4× the number
of processors) working through a set of 8 phases. If all threads are
working in the same phase, contention is very high, while execu-
tion can be overlapped with minimal data dependence for threads
in different phases.

For 2 CPUs,DAHTM was able to resolve 27,500 memory oper-

Figure 9: Comparative Performance for Counter benchmark.

Figure 10: Comparative Performance for Linked List bench-
mark, with 20% probability of updates.

Figure 11: Comparative Performance for Linked List bench-
mark, with 50% probability of updates.

ations that would have caused restarts in a traditional HTM system
by forwarding values and managing dependencies instead. Only 3
unique transactions restart (due to cycles in the dependence graph),
and the total number of restarts for the entire benchmark is 7 (sev-
eral transactions restart more than once). For the same benchmark
on MetaTM, all transactions restart: the total number of restarts is
on the order of 9 million:DAHTM reduces the number of restarts
by six orders of magnitude.

Figure 12: Comparative Performance for LFUcache bench-
mark.

7. RELATED WORK
Transactional memory has its roots in optimistic synchroniza-

tion [12] and optimistic database concurrency control [15]. Herlihy
and Moss [13] gave one of the earliest designs for hardware trans-
actional memory. Rajwar and Goodman explored transactional [20]
execution of critical sections, sparking a renewal of interest in HTM.
Current work on HTMs has focused on the architectural mecha-
nisms that provide transactional memory [1, 5, 11, 16, 18, 25], lan-
guage-level support for HTM [3,9], and transactional resource vir-
tualization [2,6,21,26].

Software transactional memory (STM) does not require hard-
ware support, and usually works at the language level. There has
been much recent work on making STM efficient [9], and integrated
with language features like garbage collection. There is also work
on hybrids [7,14] or hardware-accelerated STM [?] that attempt to
get the performance of hardware systems without the limitations of
hardware or the need to virtualize.

Transaction dependences, as with transactional memory, also has
roots in the field of databases in the concept of spheres of con-
trol [8]. Spheres of control are a powerful and general notion, pre-
sented in the context of a static hierarchy of abstract data types as
well as dynamic spheres created around actions accessing shared
data. Time-domain addressing systems [23] keep track of multiple
versions of each object, indexed by time. One of the recurring prob-
lems in such systems is that transactions which only read an object
require updating its history, adding to the problem of hotspots in
such systems. Transaction dependences may be viewed as refining
and formalizing the notion of dependences, and time-domain ad-
dressing, to an implementable realization, in the context of transac-
tional memory.

Much attention has been paid to enabling concurrency for shared
data structures, especially the canonical shared counter. Previous
transactional memory proposals have proposed a transactional pause
(xact pause) to eliminate contention on the shared counter. Not
only is programmer complexity significant for these techniques (must
register compensation actions, increment must be performed with
interlocked instructions), but the semantics are weaker (i.e. the
counter is no longer monotonically increasing). It is notable that
databases have had to deal with the high-contention counter prob-
lem as well, in the context of generating sequential, unique identi-
fiers. The concurrency control mechanisms (locking) of databases,
make it extremely difficult to have a scalable solution without spe-
cial support. Such support includes support in the data definition
language (e.g. marking a field as AUTOINCREMENT, so new

rows are assigned unique values), as well as extensions (such as
Sequence objects [19]) that operate outside the scope of the transac-
tion, and thus have weaker semantics as well (for instance, gaps). In
contrast, transaction dependences enable concurrency when shared
data is being modified by multiple transactions, in a way invisible
to the programmer, and is not tied to any specific data structure,
able to benefit a range of common programming patterns.

Dependence-aware transactions do for transaction restarts what
soft updates did for synchronous disk writes [17]. Dependence-
aware transactions keep ordering information that allow it to re-
duce the number of restarts while maintaining the safety property of
conflict serializability. Soft updates keep ordering information that
allows it to reduce the number of synchronous disk writes while
maintaining the safety property of the on-disk file system invari-
ants.

8. CONCLUSION
This paper presents the concept of dependence-aware transac-

tional memory. The different types of dependences and their prop-
erties are discussed, and issues such as multiple dependences, de-
pendences among multiple transactions, and cycles are explored.
We also present dependence-aware designs for both software and
hardware transactional memory systems. Experimental results from
our prototypes confirm the potential performance benefits of depend-
ence-aware transactional memory, as compared with traditional TM
implementations.

The increased throughput is due to increased concurrent execu-
tion by transactions that would otherwise conflict due to shared
data structures. This allows programmers to write straightforward
code and use familiar data structures, yet achieve good performance
without having to resort to esoteric programming patterns or ex-
tensions to the TM programming model. Dependence-aware TM
designs are thus an important step in the direction of fulfilling the
alluring promise of transactional memory.

9. REFERENCES
[1] C. Anaian, K. Asanovic, B. Kuszmaul, C. Leiserson, and S. Lie.

Unbounded transactional memory. InHPCA, 2005.
[2] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin.Making

the fast case common and the uncommon case simple in unbounded
transactional memory.SIGARCH Comput. Archit. News,
35(2):24–34, 2007.

[3] B. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. Cao Minh,
C. Kozyrakis, and K. Olukotun. The Atomos transactional
programming language. InPLDI, Jun 2006.

[4] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk disambiguation
of speculative threads in multiprocessors. InISCA, 2006.

[5] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson, M. V.
Biesbrouck, G. Pokam, B. Calder, and O. Colavin. Unbounded
page-based transactional memory. InASPLOS-XII, 2006.

[6] J. Chung, C. Cao Minh, A. McDonald, H. Chafi, B. D. Carlstrom,
T. Skare, C. Kozyrakis, and K. Olukotun. Tradeoffs in transactional
memory virtualization. InASPLOS. ACM Press, Oct 2006.

[7] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum. Hybrid transactional memory. InASPLOS-XI, 2006.

[8] C. Davies. Data processing spheres of control.IBM Systems Journal,
17(2), 1978.

[9] A.-R. A.-T. et al. Compiler and runtime support for efficient software
transactional memory. InPLDI, Jun 2006.

[10] M. S. et al.Rochester Software Transactional Memory.
http://www.cs.rochester.edu/research/
synchronization/rstm/.

[11] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and
K. Olukotun. Transactional memory coherence and consistency. In
ISCA, page 102. IEEE Computer Society, Jun 2004.

[12] M. Herlihy. Wait-free synchronization. InTOPLAS, January 1991.
[13] M. Herlihy and J. E. Moss. Transactional memory: Architectural

support for lock-free data structures. InISCA, May 1993.
[14] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid

transactional memory. InPPoPP, 2006.
[15] H. Kung and J. T. Robinson. On optimistic methods of concurrency

control. InACM Transactions on Database Systems 6(2), June 1981.
[16] A. McDonald, J. Chung, B. Carlstrom, C. C.M., H. Chafi,

C. Kozyrakis, and K. Olukotun. Architectural semantics for practical
transactional memory. InISCA, Jun 2006.

[17] M. K. McKusick and G. R. Ganger. Soft updates: A technique for
eliminating most synchronous writes in the fast filesystem. pages
1–17, 1999.

[18] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, , and D. A.Wood.
Logtm: Log-based transactional memory. InHPCA, 2006.

[19] Oracle Corp.Guide to using SQL Sequence Number Generator,
2003.http://www.oracle.com/technology/products/
rdb/pdf/0307_sequences.pdf.

[20] R. Rajwar and J. Goodman. Transactional lock-free execution of
lock-based programs. InASPLOS, October 2002.

[21] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional
memory. InISCA. Jun 2005.

[22] H. Ramadan, C. Rossbach, D. Porter, O. Hofmann, A. Bhandari, and
E. Witchel. Evaluating transactional memory tradeoffs with TxLinux.
In ISCA, 2007.

[23] D. Reed. Implementing atomic actions on decentralized data.ACM
TOCS, 1(1), 1981.

[24] G. Weikum and G. Vossum.Transactional Information Systems.
Morgan Kaufmann, 1st edition, 2002.

[25] L. Yen, J. Bobba, , M. Marty, K. E. Moore, H. Volos, M. D. Hill, ,
M. M. Swift, and D. A. Wood. Logtm-SE: Decoupling hardware
transactional memory from caches. InHPCA. 2007.

[26] C. Zilles and L. Baugh. Extending hardware transactional memory to
support non-busy waiting and non-transactional actions. In
TRANSACT, Jun 2006.

