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Abstract
We design a new suite of protocols for a set of nodes in

d-dimension (d > 1) to construct and maintain adistributed
Delaunay triangulation (DT) in a dynamic environment. The
suite includes join, leave, failure, and maintenance protocols.
The join, leave, and failure protocols are proved to be correct
for a single join, leave, and failure, respectively. In practice,
protocol processing of events may be concurrent. For a system
under churn, it is impossible to maintain a correct distributed
DT continually. We define an accuracy metric such that ac-
curacy is 100% if and only if the distributed DT is correct.
The maintenance protocol is designed to recover from incor-
rect system states and to improve accuracy. In designing the
protocols in this paper, we made use of two new observations
to substantially improve their efficiency. First, in the neigh-
bor discovery process of a node, many replies to the node’s
queries contain redundant information. Second, the use of a
new failure protocol that employs aproactiveapproach to re-
covery is better than the reactive approach used in [1, 2]. Ex-
perimental results show that our new suite of protocols main-
tains high accuracy for systems under churn and each system
converges to 100% accuracy after churning stopped. They are
much more efficient than protocols in prior work [1, 2].

1. Introduction

Delaunay triangulation [3] and Voronoi diagram [4] have
a long history and many applications in different fields of sci-
ence and engineering including networking applications, such
as greedy routing [5], finding the closest node to a given point,
broadcast, multicast, etc.[1]. A triangulation for a givensetS
of nodes in a 2D space is a subdivision of the convex hull of
nodes inS into non-overlapping triangles such that the ver-
texes of each triangle are nodes inS. A Delaunay triangula-
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tion in 2D is usually defined as a triangulation such that the
circumcircle of each triangle does not include any node other
than the vertexes of the triangle. Delaunay triangulation can
be similarly generalized to ad-dimensional space1 (d > 1)
using simplexes instead of triangles [6].

We will use DT as abbreviation for “Delaunay triangula-
tion.” Our objective is a suite of protocols for a set of nodes
in a d-dimensional space (d > 1) to construct and maintain a
distributed DT. In designing these protocols, we allow the set
of nodes to change with time. New nodes join the set (sys-
tem) and existing nodes leave (gracefully) or fail2 over time.
The system is said to beunder churnand the rate at which
changes occur said to be thechurn rate. We present in this
paper a suite of four protocols forjoin, leave, failure, and
maintenance.

In a distributed DT, each node maintains a set of its neigh-
bors. By definition, a distributed DT of a set of nodesS is
correct if and only if, for every nodeu ∈ S on the distributed
DT, u’s neighbor set is the same as the set ofu’s neighbors on
the (centralized) DT ofS [1]. For convenience, we will some-
times say “the system state is correct” to mean “the distributed
DT is correct.” In a previous paper [1], we discovered and
proved anecessary and sufficient conditionfor a distributed
DT to be correct.

In designing the suite of protocols in this paper, we aim
to achieve three properties:correctness, accuracy, andeffi-
ciency:
• Correctness – We prove the join, leave, and failure pro-

tocols to be correct for a single, join, leave, and failure,
respectively. For the join protocol, we prove that if the
system state is correct before a new node joins, and no
other node joins, leaves, or fails during the join protocol
execution, then the system state is correct after join pro-

1Delaunay triangulation is defined in a Euclidean space. Whenwe say a
d-dimensional space in this paper, we mean ad-dimensional Euclidean space.

2When a node fails, it becomes silent. We do not consider Byzantine
failures.



tocol execution. A similar correctness property is proved
for the leave and failure protocols. Note that these three
protocols are adequate for a system whose churn rate is
so low that joins, leaves, and failures occurserially, i.e.,
protocol execution finishes for each event (join, leave, or
failure) before another event occurs. In general, for sys-
tems with a higher churn rate, we also provide a mainte-
nance protocol, which is run periodically by each node.

• Accuracy – It is impossible to maintain a correct dis-
tributed DT continually for a system under churn. Note
that correctness of a distributed DT is broken as soon
as a join/leave/failure occurs and is recovered only after
the join/leave/failure protocol finishes execution. For-
tunately, some applications, such as greedy routing, can
work well on a reasonably “accurate” distributed DT. We
previously presented an accuracy metric for a distributed
DT [1]; we will show that the accuracy of a distributed
DT is 1 if and only if the distributed DT is correct. The
maintenance protocol is designed to recover from incor-
rect system states due to concurrent protocol process-
ing and to improve accuracy. We found that in all of
our experiments conducted to date with the maintenance
protocol, each system that had been under churn would
converge to 100% accuracy some time after churning
stopped.

• Efficiency – We use the total number of messages sent
during protocol execution as the measure of efficiency.
Protocols are said to be more efficient when their execu-
tion requires the use of fewer messages.

In a previous paper[1], we presented examples of network-
ing applications to run on top of a distributed DT, namely:
greedy routing, finding the closest existing node to a given
point, clustering of network nodes, as well as broadcast and
multicast withing a given radius without session states. Three
DT protocols were presented: join and leave protocols that
were proved correct and a maintenance protocol that was
shown to converge to 100% accuracy after system churn.
However, the join and maintenance protocols in this suite (the
old protocols) were designed with correctness as the main
goal and their execution requires the use of a large number
of messages.

To make thenew join and maintenance protocols in this
paper much more efficient, we make two novel observations.
First, the objective of the join protocols is for a new node
n to identify its neighbors (on the global DT), and forn’s
neighbors to detectn’s join. n sends a request to an existing
nodeu for n’s neighbors inu’s local information. Whenn
receives a reply, it learns new neighbors and sends requeststo
those newly-learned neighbors. This process is recursively re-
peated untilu does not find any more new neighbor. Whereas
it is necessary to send messages to all neighbors, since the
neighbors need to be notified thatn has joined, we discovered

thatn only needs to hear back from just one neighbor in each
simplex that includesn rather than from all neighbors. Fur-
thermore, queries as well as replies for some simplexes can
be combined so that just one query-reply betweenn and one
neighbor is needed for multiple simplexes. Based on this ob-
servation, we designed a new join protocol. We found that
the new join protocol is much more efficient than our old join
protocol. We have proved the new join protocol to be correct
for a single join.

We also apply the above observation to substantially re-
duce the number of messages used by the new maintenance
protocol. Furthermore, we make the following second obser-
vation to greatly reduce the total number of all protocol mes-
sages per unit time by reducing the frequency at which the
new maintenance protocol runs.

We keep the leave protocol in [1] unchanged in this paper
because it can efficiently address graceful node leaves. How-
ever, with the old suite of protocols, it is the old maintenance
protocol’s job to detect node failures and repair the resulting
distributed DT. To detect a node failure, the node was probed
by all of its neighbors. Furthermore, the distributed DT was
repaired in a reactive fashion. The process of reactively re-
pairing a distributed DT after a failure is inevitably costly, be-
cause the information needed for the repair was at the failed
node and lost after failure.

To improve overall efficiency, we designed a new failure
protocol to handle node failures. The failure protocol em-
ploys a proactive approach. Each node designates one of
its neighbors as itsmonitor node. In the failure protocol, a
node is probed only by its monitor node, eliminating dupli-
cate probes. In addition, each node prepares acontingency
plan and gives the contingency plan to its monitor node. The
contingency plan includes all information to correctly update
the distributed DT after its failure. Once the failure of a node
is detected by its monitor node, the monitor node initiates fail-
ure recovery. That is, each neighbor of the failed node is noti-
fied of the failure as well as any new neighbor(s) that it should
have after the failure. In this way, node failures are handled
almost as efficiently as graceful node leaves in the leave pro-
tocol. We have proved the new failure protocol to be correct
for a single failure.

Each node runs the maintenance protocol (new or old) pe-
riodically. The communication cost of the maintenance proto-
col increases as the period decreases (or frequency increases).
Generally, as the churn rate increases, the maintenance proto-
col needs to be run more frequently. In the old protocol suite,
moreover, the old maintenance protocol needs to be run at
the probing frequency because one of its functions is to re-
cover from node failures. With the inclusion of an efficient
failure protocol in the new protocol suite to handle failures
separately, the new maintenance protocol can be run less of-
ten. We found that the overall efficiency of the protocols as a
whole is greatly improved as a result.
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To the best of our knowledge, the only previous work for a
dynamic distributed DT in ad-dimensional space is by Simon
et al. [2]. They proposed two sets of distributed algorithms:
basic generalized algorithms and improved generalized algo-
rithms. Each set consists of an entity insertion (node join)al-
gorithm and an entity deletion (node failure) algorithm. Their
basic entity insertion algorithm is similar to our old join pro-
tocol. Their improved entity insertion algorithm is based on
a centralized flip algorithm [7] whereas our join protocols are
based on a “candidate-set approach” and our correctness con-
dition for a distributed DT. The two approaches are funda-
mentally different. Their entity deletion algorithm and our
failure protocols are also different. Our failure protocolis
substantially more efficient than their improved entity dele-
tion algorithm, which uses a reactive approach and allows
duplicate probes. The centralized flip algorithm is known to
be correct [8]. However, correctness of their distributed al-
gorithms is not explicitly proved. Lastly, they do not have
any algorithm, like our maintenance protocols, for recovery
from concurrent processing of joins and failures due to sys-
tem churn. As a result, their algorithms failed to converge to
100% accuracy after system churn in our simulation experi-
ments.

A quick comparison of the four sets of proto-
cols/algorithms is shown in Table 1. More detailed experi-
mental results are presented in Section 7 of this paper.

efficiency convergence to
100% accuracy
after system churn

Simonet al.’s basic
algorithms

medium No

Simon et al.’s im-
proved algorithms

high No

Our old protocols low Yes
Our new protocols high Yes

Table 1. A comparison of the old and new pro-
tocols with Simon et al.’s basic and improved
algorithms.

The organization of this paper is as follows. In Section 2,
we introduce the concepts and definitions of a distributed DT,
present our system model, and a correctness condition for a
distributed DT. We present the new join protocol in Section
3, the new failure protocol in Section 4, and the new mainte-
nance protocol in Section 5. The accuracy metric is defined
in Section 6 and experimental results are presented in Section
7. We conclude in Section 8.

u

v

Figure 1. A Voronoi diagram (dashed lines)
and the corresponding DT (solid lines) in a 2-
dimensional space.

2. Distributed Delaunay triangulation

2.1. Concepts and definitions

Definition 1. Consider a set of nodesS in a Euclidean space.
TheVoronoi diagram of S is a partitioning of the space into
cells such that a nodeu ∈ S is the closest node to all points
within its Voronoi cellV CS(u).

That is,V CS(u) = {p | D(p, u) ≤ D(p, w), for anyw ∈
S} whereD(x, y) denotes the distance betweenx andy. Note
that a Voronoi cell in ad-dimensional space is a convexd-
dimensional polytope enclosed by(d−1)-dimensional facets.

Definition 2. Consider a set of nodesS in a Euclidean
space.V CS(u) andV CS(v) are neighboring Voronoi cells,
or neighbors of each other, if and only ifV CS(u) and
V CS(v) share a facet, which is denoted byV FS(u, v).

Definition 3. Consider a set of nodesS in a Euclidean space.
TheDelaunay triangulation of S is a graph onS where two
nodesu andv in S have an edge between them if and only if
V CS(u) andV CS(v) are neighbors of each other.

Figure 1 shows a Voronoi diagram (dashed lines) for a set
of nodes in a 2D space and a DT (solid lines) for the same set
of nodes.V CS(u) andV CS(v) are neighbors of each other.
We also say thatu andv are neighbors of each other when
V CS(u) andV CS(v) are neighbors of each other. Note that
facets of a Voronoi cell perpendicularly bisect edges of a DT.
Therefore, a DT is the dual of a Voronoi diagram.3 Let us
denote the DT ofS asDT (S).

Definition 4. A distributed Delaunay triangulation of a set
of nodesS is specified by{< u, Nu >| u ∈ S}, whereNu

represents the set ofu’s neighbor nodes, which is locally de-
termined byu.

3In geometry, polyhedra are associated into pairs called duals, where the
vertices of one correspond to the faces of the other.
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Definition 5. A distributed Delaunay triangulation of a set of
nodesS is correct if and only if both of the following condi-
tions hold for every pair of nodesu, v ∈ S: i) if there exists
an edge betweenu andv on the global DT ofS, thenv ∈ Nu

andu ∈ Nv, and ii) if there does not exist an edge betweenu

andv on the global DT ofS, thenv 6∈ Nu andu 6∈ Nv.

That is, a distributed DT is correct when for every node
u, Nu is the same as the neighbors ofu on DT (S). Sinceu

does not have global knowledge, it is not straightforward to
achieve correctness.

2.2. System model

Our approach to construct a distributed DT is as follows.
We assume that each node is associated with its coordinates in
ad-dimensional Euclidean space. Each node has prior knowl-
edge of its own coordinates, as is assumed in previous work
[9, 10, 2, 11, 12]. The mechanism to obtain coordinates is
beyond the scope of this study. Coordinates may be given by
an application, a GPS device[13], or topology-aware virtual
coordinates[14].4 Also when we say a nodeu knowsanother
nodev, we assume thatu knowsv’s coordinates as well.

Let S be a set of nodes to construct a distributed DT from.
We will present protocols to enable each nodeu ∈ S to get to
know a set of its nearby nodes includingu itself, denoted as
Cu, to be referred to asu’s candidate set. Thenu determines
the set of its neighbor nodesNu by calculating a local DT of
Cu, denoted byDT (Cu). That is,v ∈ Nu if and only if there
exists an edge betweenu andv onDT (Cu).

To simply protocol descriptions, we assume that message
delivery is reliable. In a real implementation, additional
mechanisms such as ARQ may be used to ensure reliable mes-
sage delivery.

2.3. Correctness condition for a distributed
Delaunay triangulation

Recall that a distributed DT is correct when for every
nodeu, Nu is the same as the neighbors ofu on DT (S).
SinceNu is the set ofu’s neighbor nodes onDT (Cu) in our
model, to achieve a correct distributed DT, the neighbors of
u on DT (Cu) must be the same as the neighbors ofu on
DT (S). Note thatCu is local information ofu while S is
global knowledge. Therefore in designing our protocols, we
need to ensure thatCu has enough information foru to cor-
rectly identify its global neighbors. IfCu is too limited,u
cannot identify its global neighbors. For the extreme case
of Cu = S, u can identify its neighbors on the global DT
sinceDT (Cu) = DT (S); however, the communication over-
head for each node to acquire global knowledge would be ex-
tremely high.

4Application performance on a DT may be affected by the accuracy of
virtual coordinates.

Theorem 1(Correctness Condition). LetS be a set of nodes
and for each nodeu ∈ S, u knowsCu, such thatu ∈ Cu ⊂ S.
The distributed DT ofS is correct if and only if, for every
u ∈ S, Cu includes all the neighbor nodes ofu onDT (S).

Theorem 1, which was presented in our previous paper [1],
identifies anecessary and sufficient conditionfor a distributed
DT to be correct, namely: the candidate set of each node con-
tains all of its global neighbors. In the following subsections,
we use the above correctness condition as a guide to design
our protocols. A proof of Theorem 1 is presented in [15].

3. Join protocols

3.1. Flip algorithm in a d-dimensional space

Flipping is a well-known and often-used technique to in-
crementally construct DT in 2D and 3D spaces. A central-
ized flip algorithm was also proposed to be used for ad-
dimensional space [7] and was proved to be correct [8].

Note that two triangles in a 2D space are flipped into
two other triangles, and two tetrahedra in a 3D space are
flipped into three tetrahedra. In general, two simplexes in a
d-dimensional space are flipped intod simplexes. This trans-
formation is called 2-d flipping.

Incremental construction of DT based on flipping is as fol-
lows. When a new node is inserted, the simplex that encloses
the new node is divided into(d + 1) new simplexes. Recall
that the circum-hypersphere of a simplex on a DT should not
include any other node except for the vertexes of the simplex.
Each new simplex is checked whether its circum-hypersphere
includes any other node. In case a simplex does include an-
other node, it is flipped to generate new simplexes. The new
simplexes are checked, and flipped if necessary. This process
continues recursively. The flip algorithm requires ageneral
position assumption, namely: nod + 1 nodes are on the same
hyperplane and nod + 2 nodes are on the same hypersphere
[6].

Figure 2 shows an example of flipping in a 2D space.
A noden is inserted to a distributed DT. First, the simplex
△uvw that enclosesn is divided into three new simplexes
(top figure). Then each new simplex is checked whether its
circum-hypersphere includes any other node. In this exam-
ple, the circum-hypersphere of△unv includes another node
e. Therefore△unv and△uev are flipped into△une and
△vne (bottom figure).

Distributed flip algorithms for joining were proposed for
2D[9], 3D[10], and ad-dimensional space [2]. The central-
ized flip algorithm is known to be correct (for a single join
or serial joins). Since a simplex ind-dimension hasd + 1
nodes, operations at thed + 1 nodes must be consistent in
a distributed algorithm. Correctness has not been explicitly
proved for any of the distributed algorithms.
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Figure 2. An example of flipping in 2D.

3.2. Candidate-set approach

In a previous paper [1], we proposed a join protocol based
on the distributed system model using candidate sets and the
correctness condition for a distributed DT introduced in Sec-
tion 2. When a new noden joins a distributed DT, it is first
led to the closest existing nodez.5 Thenn sends a request to
z for mutual neighbors ofn andz on DT (Cz). Whenn re-
ceives the reply,n puts the mutual neighbors in its candidate
set (Cn) and re-calculates its neighbor set (Nn). If n finds any
new neighbors,n sends requests to the new neighbors. This
process is repeated recursively. We proved correctness of this
protocol [15].

The flip algorithm and candidate-set approach are funda-
mentally different. However, it is interesting to note thatthere
is a correspondence between the two. Table 2 shows how
steps of the two different approaches correspond to each other.

Whereas the two approaches have corresponding steps, the
steps are not exactly the same. For example, in step (b),n

initially learns (d + 1) neighbors in the flip algorithm. In
step (b) of the candidate-set approach,n may be informed
of any nodes thatz knows. In step (c) of the candidate-set
approach, multiple neighbors may send duplicate messages to
n to informn of the same new neighbor. In step (c) of the flip
algorithm, only one node may reply that a simplex is flipped.
This observation gave us an idea to substantially improve the
efficiency of our join protocol.

5This can be done using the protocol for finding a closest existing node in
[1].

Candidate-set approachFlip algorithm

(a) A joining node n is
led to a closest existing
nodez.

A joining node n is
led to a closest existing
node.

(b) z calculates local DT
using Cz and n, and
sendsn’s neighbors on
DT (Cz) to n.

The simplex that en-
closesn is divided into
(d + 1) simplexes.

(c) n contacts each of its
new neighbors to see
whether there are other
potential neighbors.

The new simplexes are
checked and flipped if
necessary.

(d) n recursively contacts
new neighbors.

New (flipped) sim-
plexes are recursively
checked.

Table 2. Correspondence between join proto-
col in the candidate-set approach and flip al-
gorithm.

3.3. New join protocol

Using the observation described above, we designed a
new join protocol that is substantially more efficient than
our old one. In addition toCn and Nn, a joining noden
keepsN queried

n , which includes the neighbors that are already
queried during its join process. Instead of querying all new
neighbors,n queries only one neighbor for each simplex that
does not include any node inN queried

n . Note that only one
neighbor in each simplex needs to be queried. If a simplex
includes a nodev ∈ N queried

n , it means that the simplex has
already been checked byv. Furthermore, queries as well as
replies for multiple simplexes may be combined. The new
join protocol requires the general position assumption, which
was not required for the old join protocol.

Our new join protocol is still based on our candidate-set
model and its correctness for a single join is proved using the
correctness condition Theorem 1.

The new join protocol still has some duplicate computa-
tion. Even though there is only one query-reply interactionfor
each simplex, DT is calculated independently at each node.

Pseudocode of the new join protocol at a node is given in
Figure 3. The protocol execution loop at a joining node, say
n, and the response actions at an existing node, sayv, are
presented below.6

Protocol execution loop at a joining noden

At a joining noden, the join protocol runs as follows with
a loop over steps 3-6:

6For clarity of presentation, the new join protocol is presented such that
the joining node processes each NEIGHBORSET REPLY message one at a
time. We note that if the joining node can process multiple reply messages
in step 3 of the loop, the number of query messages may be reduced; this
change would not affect the correctness proof for the join protocol in the next
section.
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1. A joining noden is first led to a closest existing nodez.

2. n sends a NEIGHBORSET REQUEST message toz.
Cn is set to{n, z} andN queried

n is set to{z}.

Repeat steps 3-6 below until a reply has been received for
every NEIGHBORSET REQUEST message sent:

3. n receives a NEIGHBORSET REPLY message from a
node, sayv. The message includes mutual neighbors of
n andv onDT (Cv).

4. n adds the newly learned neighbors (if any) toCn, and
calculatesDT (Cn).

5. Among simplexes that includen onDT (Cn), simplexes
that do not include any node inN queried

n are identified
as unchecked simplexes.n selects some of its neighbors
such that each unchecked simplex includes at least one
selected neighbor.

6. n sends NEIGHBORSET REQUEST messages to the
selected neighbors.N queried

n is updated to include the
selected neighbors. For the non-selected new neighbors,
NEIGHBOR NOTIFICATION messages are sent.

Response actions at an existing nodev

• Whenv receives NEIGHBORSET REQUEST fromn,
v puts n into Cv and re-calculatesDT (Cv). Then v

sends ton NEIGHBOR SET REPLY that includes mu-
tual neighbors ofv andn onDT (Cv).

• Whenv receives NEIGHBORNOTIFICATION fromn,
v includesn into Cv and re-calculatesDT (Cv). But v

does not reply ton.

3.4. Correctness of the new join protocol

Lemma 1. LetS be a set of nodes. For any subsetC of S, let
u ∈ C andv ∈ C, if v is a neighbor ofu onDT (S), v is also
a neighbor ofu onDT (C).

Lemma 1 is proved in [15] (Lemma 3 in [15]).

Lemma 2. Let n denote a new joining node,S be a set of
existing nodes, andS′ = S

⋃
{n}. Suppose that the exist-

ing distributed DT ofS is correct and no other node joins,
leaves, or fails. LetT be a simplex that exists onDT (Cn)
at some time during protocol execution and does not exists
on DT (S′). Let x 6= n be a node inT . Suppose that
n sends a NEIGHBORSETREQUEST tox. Whenn re-
ceives a NEIGHBORSETREPLY fromx, T is removed from
DT (Cn).

Proof. Since the existing distributed DT ofS is correct,Cx

includes all the neighbors ofx on DT (S). After x receives
NEIGHBOR SET REQUEST,Cx will include n, and thus
Cx will include all the neighbors ofx onDT (S′).

Consider the space thatT occupies onDT (Cn). SinceT

does not exist onDT (S′), the space is occupied by two or
more different simplexes onDT (S′). Let T ∗ be one of those

Join(z) of nodeu

; Input: u is the joining node, ifu is the only node in the
system,z = NULL; otherwisez is the closest existing node
to u.
if z 6= NULL then

Send(z, NEIGHBOR SET REQUEST)
Cu ← {u, z}, Nu ← ∅, Nqueried

u ← {z}
else

Cu ← {u}, Nu ← ∅, Nqueried
u ← ∅

end if

Onu’s receiving NEIGHBORSET REQUEST fromw

if w 6∈ Cu then
Cu ← Cu ∪ {w}
Nu ← neighbor nodes ofu onDT (Cu)

end if
Nu

w ← {x | x is a neighbor ofw onDT (Cu)}
Send(w, NEIGHBOR SET REPLY(Nu

w))

Onu’s receiving NEIGHBORSET REPLY(Nw
u ) from w

Cu ← Cu ∪Nw
u

UpdateNeighbors(Cu, Nu)

Onu’s receiving NEIGHBORNOTIFICATION from w

if w 6∈ Cu then
Cu ← Cu ∪ {w}
Nu ← neighbor nodes ofu onDT (Cu)

end if

UpdateNeighbors(Cu, Nu) of nodeu

Nold
u ← Nu

Nu ← neighbor nodes ofu onDT (Cu)
Nnew

u ← Nu −Nold
u

T new
u ← simplexes that containu onDT (Cu) and do not

contain any node inNqueried
u

Ncheck
u ← Get Neighbors To Check(T new

u )
for all v ∈ Ncheck

u do
Send(v, NEIGHBOR SET REQUEST)

end for
Nqueried

u ← Nqueried
u ∪Ncheck

u

Nnotify
u ← Nnew

u −Ncheck
u

for all v ∈ Nnotify
u do

Send(v, NEIGHBOR NOTIFICATION)
end for

Get NeighborsTo Check(T new
u ) of nodeu

N ′

u ← ∅
while T new

u 6= ∅ do
n← a node inT new

u

N ′

u ← N ′

u ∪ n

remove each simplex that containsn from T new
u

end while
ReturnN ′u

Figure 3. New join protocol at a node u.

simplexes that includes bothn andx. Note that there ared−1
other nodes inT ∗, which are mutual neighbors ofn andx on
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DT (S′), and, by Lemma 1, onDT (Cx) as well. Thesed− 1
nodes are included in the NEIGHBORSET REPLY message
from x to n. Whenn receives the NEIGHBORSET REPLY
message, thed−1 nodes are included inCn and, by Lemma 1,
become neighbors ofn on DT (Cn). As a result,T ∗ is cre-
ated onDT (Cn). That meansT , which overlaps withT ∗, is
removed fromDT (Cn).

Lemma 3. Let n denote a new joining node,S be a set of
existing nodes, andS′ = S

⋃
{n}. Suppose that the exist-

ing distributed DT ofS is correct and no other node joins,
leaves, or fails. Then when the new join protocol finishes,Cn

includes all the neighbor nodes ofn onDT (S′).

Proof. Consider a neighborv of n onDT (S′). We show that
v will be included inCn when the join protocol finishes. At
step 4 of the protocol execution loop,n has some nodes inCn

and calculatesDT (Cn).
Suppose thatv is not yet included inCn. Consider a

straight linel from n to v. Let T be the first simplex on
DT (Cn) that l crosses. Such a simplex exists becausev is
not yet a neighbor ofn on DT (Cn). Note thatT includesn.
Let the other nodes ofT bex1, x2, ..., xd. Sincel is an edge
onDT (S′), T does not exist onDT (S′).

We show by contradiction thatn has not received a
NEIGHBOR SET REPLY message from any node inT .
Suppose thatn has received a NEIGHBORSET REPLY
from a node inT . Then by Lemma 2,T cannot exist on
DT (Cn), which contradicts the earlier assumption thatT ex-
ists becausev is not included inCn yet.

Next we show that n will receive a NEIGH-
BOR SET REPLY message from a node inT . Either
T includes a nodexa in N queried

n or T does not include
any node inN queried

n . In the former case,n has sent a
NEIGHBOR SET REQUEST to xa and will receive a
NEIGHBOR SET REPLY message fromxa. In the latter
case, by step 5 of the protocol execution loop,n will send
a NEIGHBORSET REQUEST to a nodexb in T and then
receive a NEIGHBORSET REPLY message fromxb. In
each case, whenn receives the NEIGHBORSET REPLY
message,T is removed fromDT (Cn) by Lemma 2.

Afterwards, ifv is not a neighbor ofn and l crosses an-
other simplex onDT (Cn), protocol execution continues and
the above process repeats. This process finishes in a finite
number of iterations since the number of nodes inS is finite
and the number of possible simplexes inS is also finite. When
there is no simplex thatl crosses onDT (Cn), l is an edge on
DT (Cn). Thereforev is included inCn.

The following theorem shows that our new join protocol is
correct for a single join.

Theorem 2. Let n denote a new joining node,S be a set of
existing nodes, andS′ = S

⋃
{n}. Suppose that the existing

distributed DT ofS is correct and no other node joins, leaves,

or fails. Then when the new join protocol finishes, the updated
distributed DT is correct.

Proof. By Lemma 3, when the join process finishes,Cn

will include all of its neighbor nodes onDT (S′). In ad-
dition, whenevern discovers a neighbor nodev during
the process,n sends either NEIGHBORSET REQUEST or
NEIGHBOR NOTIFICATION message tov so thatv in-
cludesn intoCv. Since the candidate sets of all existing nodes
as well as the joining node are correctly updated, the updated
distributed DT is correct by Theorem 1.

4. Leave and failure protocols

In [1], we designed a leave protocol for nodes that leave
gracefully. In the leave protocol, a leaving nodeu sends to
each of its neighborsv a notification informingv of v’s new
neighbors afteru leaves, as well as the fact thatu is leaving.
The leave protocol is very efficient. We keep it in our new
protocol suite.

In this section, we propose a proactive approach to address
node failures. Our failure protocol is almost as efficient as
the leave protocol. It is proved to be correct for a single fail-
ure. The main idea is that every nodeu prepares a contin-
gency plan in case it fails. That is,u calculates a local DT
of only u’s neighbors, not including itself. The contingency
plan includes, for each neighborv of u, new neighbor nodes
of v after deletingu. u selects one of its neighbors, saym,
and gives the contingency plan tom. m is called themonitor
nodeof u. Thenm periodically probesu to check whetheru
is alive. Whenm detects failure ofu, m sends to each ofu’s
former neighbors its portion of the the contingency plan. The
protocol pseudocode is given in Figure 4.

The failure protocol takes over one of the functions of the
old maintenance protocol. As a result, the new maintenance
protocol may be run much less frequently, reducing overall
cost of the system. As will be demonstrated by experiments
for a system of nodes under churn, the new maintenance pro-
tocol is still necessary to recover from incorrect system states
resulting from concurrent event occurrences.

Unlike the old maintenance protocol, probes are not du-
plicated in the failure protocol, sinceu is probed only by its
monitor node. Furthermore, each former neighbor ofu re-
ceives exactly 1 message uponu’s failure. On the other hand,
the failure protocol has the overhead of updating a contin-
gency plan whenever a neighbor is added or deleted.

4.1. Correctness of the failure protocol

The following lemmas are proved in [15] (they correspond
to Lemmas 4 and 10 in [15]).

Lemma 4. Let S be a set of nodes. Consideru ∈ S and a
subsetCu of S that includes all the neighbor nodes ofu on

7



On change inNu

mu ← the neighbor inNu with the least ID
CalculateDT (Nu) ; Note:u 6∈ Nu

for all v ∈ Nu do
Nu

v ← {w | w is a neighbor ofv onDT (Nu)}
end for
Send(mu, CONTINGENCY PLAN({< v, Nu

v >| v ∈ Nu})

Onu’s receiving CONTINGENCYPLAN(CPv) from v

SetFAILURE TIMERv to T + F

; T is current time,F is the period of failure probe.

Onu’s expiration ofFAILURE TIMERv

Send(v, PING)
SetPING TIMEOUT TIMERv to T + TO

; T is current time,TO is the timeout value.

Onu’s receiving PING fromv

if v = mu then
Send(v, PONG(true))

else
Send(v, PONG(false))

end if

Onu’s receiving PONG(flag) from v

if flag = true then
SetFAILURE TIMERv to T + F

; T is current time,F is the period of failure probe.
else

CancelFAILURE TIMERv

end if

Onu’s expiration ofPING TIMEOUT TIMERv

for all w thatCPv contains< w, Nv
w > do

Send(w, FAILURE NOTIFICATION(v, Nv
w)

end for
Cu ← Cu − {v} ∪Nv

u

Nu ← neighbor nodes ofu onDT (Cu)
CancelFAILURE TIMERv

Onu’s receiving FAILURENOTIFICATION(v, Nv
u ) from v

Cu ← Cu − {v} ∪Nv
u

Nu ← neighbor nodes ofu onDT (Cu)

Figure 4. Failure protocol at a node u.

DT (S). If v ∈ Cu is a neighbor ofu on DT (Cu), thenv is
also a neighbor ofu onDT (S).

Lemma 5. LetS be a set of nodes andS′ = S − {u}. Letv
be a neighbor node ofu on DT (S). If w is a neighbor node
of v onDT (S′), thenw is a neighbor node ofv onDT (S) or
w is a neighbor node ofu onDT (S).

The following theorem shows that the failure protocol is
correct for a single failure.

Theorem 3. LetS be a set of nodes with a correct distributed
DT. Suppose that a nodeu ∈ S fails and its failure is detected

by its monitor nodem ∈ S, which then executes the failure
protocol. Assume that there is no other join, leave, or failure.
After the failure protocol finishes, the updated distributed DT
is correct.

Proof. Let S′ = S − {u}. Consider a nodev ∈ S′. The
following case A shows that ifv is not a neighbor ofu, then
v is not affected by the failure ofu. Case B shows that ifv is
a neighbor ofu, v will receive enough information fromm to
correctly update its candidate set.

Case A) Suppose thatv is not a neighbor ofu onDT (S).
Consider a nodew ∈ S′, w 6= v. If w is a neighbor ofv on
DT (S′), w is also a neighbor ofv on DT (S) by Lemma 1.
If w is a neighbor ofv on DT (S), w is also a neighbor of
v on DT (S′) by Lemma 4. Therefore the neighbors ofv on
DT (S) are the same as the neighbors ofv on DT (S′) andv

is not affected by failure ofu.
Case B) Suppose thatv is a neighbor ofu onDT (S). Con-

sider a nodew ∈ S′, w 6= v. If w is a neighbor ofv on
DT (S′), by Lemma 5, eitherw is already inCv or w was a
neighbor ofu on DT(S). In the latter case,u’s monitor node
will notify v thatw is its neighbor. ThereforeCv will include
all the neighbor nodes ofv onDT (S′).

From cases A and B, for each nodev ∈ S′, Cv includes all
the neighbor nodes ofv onDT (S′). Therefore by Theorem 1,
the updated distributed DT is correct.

5. New maintenance protocol

The last member of our DT protocol suite is a new main-
tenance protocol. Even though the other protocols in the suite
– the new join protocol, the (old) leave protocol, the new fail-
ure protocol – are proved to be correct for a single join, leave,
and failure, respectively, nodes may join, leave, and fail con-
currently for a system under churn. As to be shown by ex-
perimental results in Figure 9, neither our protocols (with-
out a maintenance protocol) nor Simonet al.’s algorithms can
recover a correct distributed DT after system churn. In that
sense, our protocol suite is incomplete without a maintenance
protocol, and so is Simonet al.’s set of insertion and deletion
algorithms.

By Theorem 1, for a distributed DT to be correct, each
nodeu must include in its neighbor setCu all of its neighbor
nodes on the global DT. This was one goal that our old main-
tenance protocol [1, 15] was designed to achieve. To that end,
each nodeu periodically queries each of its neighbors to find
any new neighbor ofu thatu is not aware of.

We found that running the maintenance protocol fre-
quently requires a large communication cost. Note that the
goal of a maintenance protocol is similar to that of a join pro-
tocol, namely, finding new neighbors. Therefore, we use the
same technique as in the case of our new join protocol. That
is, we reduce communication cost of our maintenance pro-
tocol by eliminating messages with redundant information.
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Instead of querying all neighbors, a nodeu queries only one
node for each simplex that includesu. Since a neighbor node
may be included in multiple simplexes, the number of queried
neighbors is much less than that of all neighbors.

Another goal of the old maintenance protocol was fail-
ure detection and recovery. In the old maintenance protocol,
probing a nodeu was carried out by all neighbors ofu. In our
new set of protocols, the new failure protocol takes over the
task of failure detection and recovery, where a node is probed
by only one of its neighbor nodes. Thus the overall cost of
our new maintenance and failure protocols is much less than
the cost of the old maintenance protocol.

Although failure recovery is not a major goal of the new
maintenance protocol, if a failure is detected by a mes-
sage timeout, this information is propagated via DELETE
messages. This may be necessary in case of concur-
rent failures. DELETE messages are propagated using
the GRPB (greedy reverse-path broadcast) protocol in [1].
The maintenance protocol pseudocode (including GRPB)
is given in Figure 5. Actions for receiving a NEIGH-
BOR SET REQUEST message and the functions of Up-
dateNeighbors and GetNeighborsTo Check are the same as
in Figure 3.

6. Accuracy metric for a system under churn

We define an accuracy metric as in [1], which we will use
for experiments for a system of nodes under churn. We con-
sider a node to bein-systemfrom when it finishes joining to
when it starts leaving. LetDDTS be a distributed DT of a
set of in-system nodesS. (Note that some nodes may be
in the process of joining or leaving and not included.) Let
Ncorrect(DDTS) be the number of correct neighbor entries
of all nodes andNwrong(DDTS) be the number of wrong
neighbor entries of all nodes onDDTS . A neighbor entryv of
a nodeu is correct whenv is a neighbor ofu on the global DT
(namely,DT (S)), and wrong whenu andv are not neighbors
on the global DT. LetN(DT (S)) be the number of edges on
DT (S). Note that edges on a global DT are undirectional and
thus are counted twice when compared with neighbor entries.
The accuracy ofDDTS is defined as follows:

accuracy(DDTS) =
Ncorrect(DDTS) − Nwrong(DDTS)

2×N(DT (S))
.

Observation 1. The accuracy of a distributed DT is 1 if and
only if the distributed DT is correct.

Proof. (if) If the distributed DT is correct,
Ncorrect(DDTS) = 2×N(DT (S)) andNwrong(DDTS) =
0, resulting in accuracy of 1.

(only if) When accuracy is 1, we have
Ncorrect(DDTS) − Nwrong(DDTS) = 2×N(DT (S)).
SinceNwrong(DDTS) ≥ 0, we getNcorrect(DDTS) ≥

Onu’s expiration ofPERIOD TIMER

Nqueried
u ← ∅

Tu ← simplexes that containu onDT (Nu ∪ {u})
Ncheck

u ← Get Neighbors To Check(Tu)
for all v ∈ Ncheck

u do
Send(v, NEIGHBOR SET REQUEST)
SetNS TIMEOUT TIMERv to T + TO

; T is current time,TO is the timeout value.
end for
SetPERIOD TIMER to T + P

; T is current time,P is the period of failure probe.

Onu’s receiving NEIGHBORSET REPLY(Nv
u) from v

Cu ← Cu ∪Nv
u

UpdateNeighbors(Cu, Nu)
CancelNS TIMEOUT TIMERv

Onu’s expiration ofNS TIMEOUT TIMERv

Cu ← Cu − {v}
UpdateNeighbors(Cu, Nu)
for all w ∈ Nu do

Send(w, DELETE(v, u))
end for

Onu’s receiving DELETE(v, w) from x

if v ∈ Cu then
Cu ← Cu − {v}
UpdateNeighbors(Cu, Nu)
for all y ∈ Nu, Dist(y,w) > Dist(u, w) do

Nuy ← nodes that share a simplex with bothu andy

onDT (Cu)
if u is the closest node tow in Nuy then

Send(y, DELETE(v, w))
end if

end for
end if

Figure 5. New maintenance protocol at a node
u.

2×N(DT (S)). Also, Ncorrect(DDTS) ≤ 2×N(DT (S)).
It then follows thatNcorrect(DDTS) = 2×N(DT (S)) and
Nwrong(DDTS) = 0. That means the distributed DT is
correct.

To demonstrate effectiveness of the new maintenance pro-
tocol, we designed an experiment for a system with an ini-
tial ring configuration. The system begins with a barely con-
nected graph of 100 nodes, in which each node initially knows
only one other node. That is, nodepi, 1 ≤ i ≤ 99, ini-
tially has onlypi−1 in its candidate set and its neighbor set;
nodep0 knowsp99. Figure 6 shows change in accuracy of the
distributed DT as the new maintenance protocol runs. The
new maintenance protocol achieved a correct distributed DT
within a few rounds of protocol execution.
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7. Experimental results

7.1. Join protocols

Figure 7 shows communication costs of join protocols.
Each curve shows the number of messages for 100 serial
joins, increasing the system size from 200 nodes to 300 nodes,
for different dimensionalities. Our new join protocol has
much less cost than our old join protocol, and is slightly better
than Simonet al.’s distributed algorithm.

7.2. Failure protocol

Figure 8 compares communication costs of our failure pro-
tocol and Simonet al.’s entity deletion algorithm. The num-
ber of messages used to recover from 100 serial failures from
300 initial nodes is measured. Both our failure protocol and
Simonet al.’s deletion algorithm use the same probing period
of 10 seconds. Our failure protocol is much more efficient
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Figure 8. Costs of failure protocols for 100 se-
rial failures.
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Figure 9. Accuracy without a maintenance pro-
tocol under system churn (join and fail).

than Simonet al.’s entity deletion algorithm.

7.3. Maintenance protocols

Figure 9 shows accuracy of our protocols without a main-
tenance protocol and Simonet al.’s algorithms under system
churn. From a correct distributed DT of 400 initial nodes in
3D, 100 concurrent joins and 100 concurrent failures occur
from time 10 to 110 second, with an average inter-arrival time
of 1 second, respectively.7 In both our failure protocol and Si-
monet al.’s entity deletion algorithm, nodes are probed every
10 seconds. The accuracy of the distributed DT is measured
every 10 seconds. Both our new join and failure protocols and
Simonet al.’s entity insertion and deletion algorithms cannot
fully recover after system churn, resulting in an incorrectdis-
tributed DT.

7By Little’s Law, for a system size of 400 nodes, the average lifetime of a
node is 400 seconds. For P2P file sharing systems, this is a very high churn
rate [16].
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Figure 11. Costs of the old and new mainte-
nance protocols under system churn (join and
fail).

Figure 10 compares the accuracy of our protocols includ-
ing the maintenance protocols in the same scenario as in Fig-
ure 9. The old maintenance protocol is run every 10 seconds.
The new maintenance protocol is run every 10 seconds when
it was run alone, and every 30 seconds when it was run along
with the failure protocol which uses a probing period of 10
seconds. After system churn stops at time 110 second, accu-
racy converges to 100% by the maintenance protocols. The
new maintenance protocol alone shows slightly lower accu-
racy than the old maintenance protocol. However, together
with the failure protocol, the new maintenance protocol shows
similar accuracy to that of the old maintenance protocol alone.
The new maintenance protocol also took a longer time to con-
verge to a correct distributed DT.

Figure 11 shows the communication costs in the above ex-
periment. As expected, the new maintenance protocol has
several times less communication cost compared to the old
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Figure 12. Accuracy of the old and new proto-
col suites under system churn (join, leave, and
fail).

maintenance protocol. Efficiency is further improved when
the new maintenance protocol is combined with the failure
protocol, since the new maintenance protocol is run less fre-
quently.

Figure 12 compares the accuracy of our old and new pro-
tocol suites under system churn, where nodes join, leave, and
fail concurrently. The scenario is similar to that of the pre-
vious experiment, except that nodes either gracefully leave or
fail instead of all failing. From a correct distributed DT of400
initial nodes, 100 joins, 50 leaves, and 50 failures occur from
time 10 to 110. The average inter-arrival time of joins is 1
second and those of leaves and failures are 2 seconds, respec-
tively. The old maintenance protocol is run every 10 seconds.
The new maintenance protocol is run every 30 seconds along
with the failure protocol which uses a probing period of 10
seconds. The new protocol suite maintains about the same
accuracy as the old protocol suite. In the end, the new proto-
col suite took a slightly longer time to converge to a correct
distributed DT, because it uses a longer period (30 seconds
instead of 10 seconds).

Figure 13 shows the communication costs of our old and
new protocol suites in the same churn experiment. The new
protocol suite has many times less communication cost com-
pared to the old protocol suite.

8. Conclusions

While DT has been known and used for a long time in
different fields of science and engineering, the design of
protocols for constructing and maintaining a distributed DT
for a dynamic system has not received much attention. In
a previous paper [1], we investigated the design of several
application-level protocols to support DT applications onnet-
works, as well as join, leave, and maintenance protocols to
construct and maintain a distributed DT. Our focus therein
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was to ensure the correctness of a distributed DT. Towards
that goal, we defined a correct distributed DT, discovered a
necessary and sufficient condition for a distributed DT to be
correct, and defined an accuracy metric. Our old join and
leave protocols were proved to be correct for a single join and
leave, respectively. Our old maintenance protocol was found
to converge to a correct distributed DT with 100% accuracy
after system churn had stopped.

Efficiency, however, was not our primary protocol design
goal in [1]. In this paper, we design a new suite of DT proto-
cols that are correct, accurate, and efficient. The new proto-
cols in this paper are vastly more efficient as a result of two
new ideas in this paper. First, in the neighbor discovery pro-
cess of a node, sayn, it needs to hear back from just one
neighbor in each simplex that includesn rather than from all
neighbors. Furthermore, queries as well as replies for some
simplexes can be combined in a single query-reply. We made
use of this idea to greatly improve the efficiency of the new
join and maintenance protocols. Second, we have added an
efficient failure protocol that employs a proactive approach to
failure recovery, instead of relying on the maintenance pro-
tocol which recovers from failures reactively. With addition
of the failure protocol, the maintenance protocol can be run
less often and the overall system efficiency improves. Both
the new join and failure protocols are proved to be correct for
a single join and failure, respectively. The old leave protocol
was highly efficient and it is kept in the new protocol suite.
Experimental results show that our new suite of protocols
maintains high accuracy for systems under churn and each
system converges to 100% accuracy after churning stopped.
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