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Abstract tion in 2D is usually defined as a triangulation such that the
We design a new suite of protocols for a set of nodes incircumcircle of each triangle does not include any noderothe
d-dimension { > 1) to construct and maintain distributed than the vertexes of the triangle. Delaunay triangulatam c
Delaunay triangulation (DT) in a dynamic environment. The be similarly generalized to é&dimensional space(d > 1)

suite includes join, leave, failure, and maintenance pots. using simplexes instead of triangles [6].
The join, leave, and failure protocols are proved to be coire We will use DT as abbreviation for “Delaunay triangula-
for a single join, leave, and failure, respectively. In ptiae, tion.” Our objective is a suite of protocols for a set of nodes

protocol processing of events may be concurrent. For asyste in ad-dimensional spacel(> 1) to construct and maintain a
under churn, it is impossible to maintain a correct distiibd distributed DT. In designing these protocols, we allow thie s
DT continually. We define an accuracy metric such that ac- of nodes to change with time. New nodes join the sgi{
curacy is 100% if and only if the distributed DT is correct. ten) and existing nodes leave (gracefully) or failver time.
The maintenance protocol is designed to recover from incor- The system is said to bender churnand the rate at which
rect system states and to improve accuracy. In designing thechanges occur said to be toburn rate We present in this
protocols in this paper, we made use of two new observationspaper a suite of four protocols fgoin, leave failure, and
to substantially improve their efficiency. First, in the giei maintenance
bor discovery process of a node, many replies to the node’s In a distributed DT, each node maintains a set of its neigh-
gueries contain redundant information. Second, the use of abors. By definition, a distributed DT of a set of nodess
new failure protocol that employs@roactiveapproachto re-  correctif and only if, for every node: € .S on the distributed
covery is better than the reactive approach used in [1, 2} Ex DT, u’s neighbor set is the same as the set'sfneighbors on
perimental results show that our new suite of protocols main the (centralized) DT of [1]. For convenience, we will some-
tains high accuracy for systems under churn and each systentimes say “the system state is correct” to mean “the disteithu
converges to 100% accuracy after churning stopped. They areDT is correct.” In a previous paper [1], we discovered and
much more efficient than protocols in prior work [1, 2]. proved anecessary and sufficient conditiéor a distributed
DT to be correct.
In designing the suite of protocols in this paper, we aim
1. Introduction to achieve three propertiesorrectnessaccuracy and effi-
ciency
e Correctness — We prove the join, leave, and failure pro-
tocols to be correct for a single, join, leave, and failure,
respectively. For the join protocol, we prove that if the
system state is correct before a new node joins, and no
other node joins, leaves, or fails during the join protocol
execution, then the system state is correct after join pro-

Delaunay triangulation [3] and Voronoi diagram [4] have
a long history and many applications in different fields o sc
ence and engineering including networking applicationshs
as greedy routing [5], finding the closest node to a giventpoin
broadcast, multicast, etc.[1]. A triangulation for a gianS
of nodes in a 2D space is a subdivision of the convex hull of
nodes inS into non-overlapping triangles such that the ver-

texes of each triangle are nodesdn A Delaunay triangula- 1Delaunay triangulation is defined in a Euclidean space. Wiesay a
d-dimensional space in this paper, we meakhdimensional Euclidean space.
*Research sponsored by National Science Foundation grar$- CN 2When a node fails, it becomes silent. We do not consider Biman

0434515. failures.



tocol execution. A similar correctness property is proved thatn only needs to hear back from just one neighbor in each
for the leave and failure protocols. Note that these three simplex that includes rather than from all neighbors. Fur-
protocols are adequate for a system whose churn rate ishermore, queries as well as replies for some simplexes can
so low that joins, leaves, and failures ocserially, i.e., be combined so that just one query-reply betweemnd one
protocol execution finishes for each event (join, leave, or neighbor is needed for multiple simplexes. Based on this ob-
failure) before another event occurs. In general, for sys- servation, we designed a new join protocol. We found that
tems with a higher churn rate, we also provide a mainte- the new join protocol is much more efficient than our old join
nance protocol, which is run periodically by each node. protocol. We have proved the new join protocol to be correct
for a single join.

e Accuracy — It is impossible to maintain a correct dis- We also apply the above observation to substantially re-
tributed DT continually for a system under churn. Note duce the number of messages used by the new maintenance
that correctness of a distributed DT is broken as soonprotocol. Furthermore, we make the following second obser-
as a join/leave/failure occurs and is recovered only after vation to greatly reduce the total number of all protocol mes
the join/leave/failure protocol finishes execution. For- sages per unit time by reducing the frequency at which the
tunately, some applications, such as greedy routing, cannew maintenance protocol runs.
work well on areasonably “accurate” distributed DT. We We keep the leave protocol in [1] unchanged in this paper
previously presented an accuracy metric for a distributed because it can efficiently address graceful node leaves- How
DT [1]; we will show that the accuracy of a distributed ever, with the old suite of protocols, it is the old maintecean
DT is 1 if and only if the distributed DT is correct. The protocol’s job to detect node failures and repair the rasyilt
maintenance protocol is designed to recover from incor- distributed DT. To detect a node failure, the node was probed
rect system states due to concurrent protocol processhy all of its neighbors. Furthermore, the distributed DT was
ing and to improve accuracy. We found that in all of repaired in a reactive fashion. The process of reactively re
our experiments conducted to date with the maintenancepairing a distributed DT after a failure is inevitably cgsthe-

protocol, each system that had been under churn wouldcause the information needed for the repair was at the failed
converge to 100% accuracy some time after churning node and lost after failure.

stopped. To improve overall efficiency, we designed a new failure
o Efficiency — We use the total number of messages sentprotocol to handle node failures. The failure protocol em-
during protocol execution as the measure of efficiency. ploys aproactive approach. Each node designates one of
Protocols are said to be more efficient when their execu-its neighbors as itsnonitor node In the failure protocol, a
tion requires the use of fewer messages. node is probed only by its monitor node, eliminating dupli-

In a previous paper[1], we presented examples of network-cate probes. In addition, each node preparesrdingency
ing applications to run on top of a distributed DT, namely: planand gives the contingency plan to its monitor node. The
greedy routing, finding the closest existing node to a given contingency plan includes all information to correctly apel
point, clustering of network nodes, as well as broadcast andthe distributed DT after its failure. Once the failure of alro
multicast withing a given radius without session statese®h  is detected by its monitor node, the monitor node initiagls f
DT protocols were presented: join and leave protocols thature recovery. That is, each neighbor of the failed node is not
were proved correct and a maintenance protocol that wagfied of the failure as well as any new neighbor(s) that it stoul
shown to converge to 100% accuracy after system churn.have after the failure. In this way, node failures are hasdle
However, the join and maintenance protocols in this suite (t  @lmost as efficiently as graceful node leaves in the leave pro
old protocols) were designed with correctness as the maintocol. We have proved the new failure protocol to be correct
goal and their execution requires the use of a large numbeifor a single failure.
of messages. Each node runs the maintenance protocol (new or old) pe-

To make thenewjoin and maintenance protocols in this riodically. The communication cost of the maintenanceg@rot
paper much more efficient, we make two novel observations.col increases as the period decreases (or frequency ieseas
First, the objective of the join protocols is for a new node Generally, as the churn rate increases, the maintenant® pro
n to identify its neighbors (on the global DT), and fais col needs to be run more frequently. In the old protocol suite
neighbors to deteat’s join. n sends a request to an existing moreover, the old maintenance protocol needs to be run at
nodew for n’s neighbors inu’s local information. Whem the probing frequency because one of its functions is to re-
receives a reply, it learns new neighbors and sends redoests cover from node failures. With the inclusion of an efficient
those newly-learned neighbors. This processis recuysigel  failure protocol in the new protocol suite to handle faikire
peated untik: does not find any more new neighbor. Whereas separately, the new maintenance protocol can be run less of-
it is necessary to send messages to all neighbors, since theen. We found that the overall efficiency of the protocols as a
neighbors need to be notified thahas joined, we discovered whole is greatly improved as a result.



To the best of our knowledge, the only previous work for a [ N
dynamic distributed DT in d-dimensional space is by Simon
et al. [2]. They proposed two sets of distributed algorithms:
basic generalized algorithms and improved generalizeat alg
rithms. Each set consists of an entity insertion (node jain)
gorithm and an entity deletion (node failure) algorithmeirh
basic entity insertion algorithm is similar to our old joirop
tocol. Their improved entity insertion algorithm is based o
a centralized flip algorithm [7] whereas our join protocals a
based on a “candidate-set approach” and our correctness con

1
dition for a distributed DT. The two approaches are funda- 2 \Y \
mentally different. Their entity deletion algorithm androu \
failure protocols are also different. Our failure protoél Figure 1. A Voronoi diagram (dashed lines)
substantially more efficient than their improved entityedel and the corresponding DT (solid lines) in a 2-

tion algorithm, which uses a reactive approach and allows  gimensional space.

duplicate probes. The centralized flip algorithm is known to

be correct [8]. However, correctness of their distributed a

gorithms is not explicitly proved. Lastly, they do not have 2. Distributed Delaunay triangulation
any algorithm, like our maintenance protocols, for recgver
from concurrent processing of joins and failures due to sys-

tem churn. As a result, their algorithms failed to conveme t pefinition 1. Consider a set of nodein a Euclidean space.
ments. cells such that a node € S is the closest node to all points

within its Voronoi cellV Cg (u).
A quick comparison of the four sets of proto-

cols/algorithms is shown in Table 1. More detailed experi-  Thatis,VCs(u) = {p | D(p,u) < D(p,w),foranyw €

mental results are presented in Section 7 of this paper. S} whereD(z, y) denotes the distance betweeandy. Note
that a Voronoi cell in ai-dimensional space is a convex

dimensional polytope enclosed fy— 1)-dimensional facets.

2.1. Concepts and definitions

Definition 2. Consider a set of node§ in a Euclidean
space.VCs(u) andVCg(v) are neighboring Voronoi cells,
or neighbors of each other, if and only iVCgs(u) and

VCs(v) share a facet, which is denoted Bys (u, v).

efficiency | convergence td
100% accuracy
after system churn
Simonet al’s basic | medium | No

algorithms Definition 3. Consider a set of nodesin a Euclidean space.
Simon et al’s im- | high No TheDelaunay triangulation of S is a graph onS where two
proved algorithms nodesu andwv in S have an edge between them if and only if
Our old protocols | low Yes VCs(u) andV Cg(v) are neighbors of each other.

Our new protocols | high ves Figure 1 shows a Voronoi diagram (dashed lines) for a set
Table 1. A comparison of the old and new pro- of nodes in a 2D space and a DT (solid lines) for the same set
tocols with Simon et al’s basic and improved of nodes.VCs(u) andV Cs(v) are neighbors of each other.
algorithms. We also say that. andv are neighbors of each other when

VCs(u) andV Cg(v) are neighbors of each other. Note that
facets of a Voronoi cell perpendicularly bisect edges of a DT
Therefore, a DT is the dual of a Voronoi diagrdmi.et us
The organization of this paper is as follows. In Section 2, denote the DT of asDT'(S).

we introduce the concepts and definitions of a distributed DT - - . .

present our system mor()jel and a correctness condition for aDefmmOn 4 Ad'SFerUted Delaunay triangulation of a set

distributed DT. We present the new join protocol in Section of nodess s specified by{< u, Ny >| u € _S},.whereNu

3, the new failure protocol in Section 4, and the new mainte- represents the set afs neighbor nodes, which is locally de-

’ . . ' g .~ termined byu.
nance protocol in Section 5. The accuracy metric is defined

in Section 6 and experimental results are presented indecti 3In geometry, polyhedra are associated into pairs calletsdwdiere the
7. We conclude in Section 8. vertices of one correspond to the faces of the other.




Definition 5. A distributed Delaunay triangulation of a set of Theorem 1(Correctness Condition)Let.S be a set of nodes
nodesS is correct if and only if both of the following condi- and for each node € S, u knowsC,,, such that, € C,, C S.
tions hold for every pair of nodes v € S: i) if there exists The distributed DT of5 is correct if and only if, for every
an edge betweemandwv on the global DT of5, thenv € N, u € S, C, includes all the neighbor nodes ofon DT'(S).
andu € N,, and ii) if there does not exist an edge betwaen

andv on the global DT of5, thenv ¢ N,, andu & N,.. Theorem 1, which was presented in our previous paper [1],
identifies anecessary and sufficient conditifor a distributed

That is, a distributed DT is correct when for every node pT to be correct, namely: the candidate set of each node con-
u, N, is the same as the neighborswobn DT'(S). Sinceu  tajns all of its global neighbors. In the following subseas,
does not have global knowledge, it is not straightforward to \ye yse the above correctness condition as a guide to design
achieve correctness. our protocols. A proof of Theorem 1 is presented in [15].

2.2. System model 3. Join protocols
Our approach to construct a distributed DT is as follows.
We assume that each node is associated with its coordimates i3.1. Flip algorithm in a d-dimensional space
ad-dimensional Euclidean space. Each node has prior knowl-
edge of its own coordinates, as is assumed in previous work Flipping is a well-known and often-used technique to in-
[9, 10, 2, 11, 12]. The mechanism to obtain coordinates is crementally construct DT in 2D and 3D spaces. A central-
beyond the scope of this study. Coordinates may be given byized flip algorithm was also proposed to be used faf-a
an application, a GPS device[13], or topology-aware virtua dimensional space [7] and was proved to be correct [8].
coordinates[14}. Also when we say a node knowsanother Note that two triangles in a 2D space are flipped into
nodev, we assume that knowsv’s coordinates as well. two other triangles, and two tetrahedra in a 3D space are
Let .S be a set of nodes to construct a distributed DT from. flipped into three tetrahedra. In general, two simplexes in a
We will present protocols to enable each nade Stogetto  J-dimensional space are flipped infsimplexes. This trans-
know a set of its nearby nodes includingtself, denoted as  formation is called 24 flipping.
Cu, to be referred to ag’s candidate setThenu determines Incremental construction of DT based on flipping is as fol-
the set of its neighbor node$, by calculating a local DT of  lows. When a new node is inserted, the simplex that encloses
Cy, denoted byDT'(C,,). Thatis,v € N, ifand onlyifthere  the new node is divided int@l + 1) new simplexes. Recall
exists an edge betweenandv on DT'(C.,). that the circum-hypersphere of a simplex on a DT should not
To simply protocol descriptions, we assume that messageinclude any other node except for the vertexes of the simplex
delivery is reliable. In a real implementation, additional Each new simplex is checked whether its circum-hypersphere
mechanisms such as ARQ may be used to ensure reliable mesncludes any other node. In case a simplex does include an-

sage delivery. other node, it is flipped to generate new simplexes. The new
simplexes are checked, and flipped if necessary. This pgoces
2.3. Correctness condition for a distributed continues recursively. The flip algorithm requiregeneral
Delaunay triangulation position assumptigmamely: nad + 1 nodes are on the same

hyperplane and nd + 2 nodes are on the same hypersphere
Recall that a distributed DT is correct when for every [g].

nodeu, N, is the same as the neighbors wfon DT'(S5). Figure 2 shows an example of flipping in a 2D space.
SinceN,, is the set ofu’s neighbor nodes oWT(C,,) inour A noden is inserted to a distributed DT. First, the simplex
model, to achieve a correct distributed DT, the neighbors of Ay that encloses: is divided into three new simplexes
u on DT(C,) must be the same as the neighborsuobn  (top figure). Then each new simplex is checked whether its
DT(S). Note thatC, is local information ofu while S'is  circum-hypersphere includes any other node. In this exam-
global knowledge. Therefore in designing our protocols, we ple, the circum-hypersphere dfunv includes another node
need to ensure that, has enough information far to cor- ¢ ThereforeAunv and Auev are flipped intoAune and
rectly identify its global neighbors. I, is too limited, u Avne (bottom figure).
cannot identify its global neighbors. For the extreme case Distributed flip algorithms for joining were proposed for
of C, = S, u can identify its neighbors on the global DT  2p[9], 3D[10], and ad-dimensional space [2]. The central-

sinceDT(C,) = DT'(S); however, the communication over- jzed flip algorithm is known to be correct (for a single join
head for each node to acquire global knowledge would be ex-or serial joins). Since a simplex i#dimension has! + 1

tremely high. nodes, operations at the+ 1 nodes must be consistent in
4ppplication performance on a DT may be affected by the aayucd a distributed algorithm_. C;orrectness_has not been explicit
virtual coordinates. proved for any of the distributed algorithms.



Candidate-set approagdhFlip algorithm |

A joining node n is
led to a closest existing
nodez.

A joining node n is
) led to a closest existing
node.

(b)

z calculates local DT
using C, and n, and
sendsn’s neighbors on

The simplex that en;
closesn is divided into
(d + 1) simplexes.

w
Figure 2. An example of flipping in 2D.

3.2. Candidate-set approach

DT (C,) ton.
n contacts each of its The new simplexes arg
new neighbors to seg checked and flipped i
whether there are othernecessary.

potential neighbors.

n recursively contacts
new neighbors.

(©)

(d) New (flipped) sim-
plexes are recursively

checked.

Table 2. Correspondence between join proto-
col in the candidate-set approach and flip al-
gorithm.

3.3. New join protocol

Using the observation described above, we designed a
new join protocol that is substantially more efficient than
our old one. In addition ta”,, and N,,, a joining noden

In a previous paper [1], we proposed a join protocol basedkeepsvauricd, which includes the neighbors that are already
on the distributed system model using candidate sets and thgueried during its join process. Instead of querying all new

correctness condition for a distributed DT introduced io-Se
tion 2. When a new node joins a distributed DT, it is first
led to the closest existing node® Thenn sends a request to
z for mutual neighbors of andz on DT'(C,). Whenn re-
ceives the replyp puts the mutual neighbors in its candidate
set (C,,) and re-calculates its neighbor sat.(). If n finds any

neighborsy queries only one neighbor for each simplex that
does not include any node iN?“"¢d, Note that only one
neighbor in each simplex needs to be queried. If a simplex
includes a node € N2“eried it means that the simplex has
already been checked hy Furthermore, queries as well as
replies for multiple simplexes may be combined. The new

new neighborsp sends requests to the new neighbors. This join protocol requires the general position assumptioricivh

process is repeated recursively. We proved correctnebgsof t
protocol [15].

was not required for the old join protocol.
Our new join protocol is still based on our candidate-set

The flip algorithm and candidate-set approach are funda-model and its correctness for a single join is proved usieg th

mentally different. However, it is interesting to note thare

correctness condition Theorem 1.

is a correspondence between the two. Table 2 shows how The new join protocol still has some duplicate computa-

steps of the two different approaches correspond to eaein oth

tion. Eventhough there is only one query-reply interactan

Whereas the two approaches have corresponding steps, theach simplex, DT is calculated independently at each node.

steps are not exactly the same. For example, in stepu(b),
initially learns (d + 1) neighbors in the flip algorithm. In
step (b) of the candidate-set approaghmay be informed
of any nodes that knows. In step (c) of the candidate-set

Pseudocode of the new join protocol at a node is given in
Figure 3. The protocol execution loop at a joining node, say
n, and the response actions at an existing node,vsaye
presented belof.

approach, multiple neighbors may send duplicate messages tProtocol execution loop at a joining noden

n to informn of the same new neighbor. In step (c) of the flip

algorithm, only one node may reply that a simplex is flipped.
This observation gave us an idea to substantially improge th

efficiency of our join protocol.

5This can be done using the protocol for finding a closestiegistode in

[

At a joining noden, the join protocol runs as follows with
a loop over steps 3-6:

8For clarity of presentation, the new join protocol is prasdnsuch that
the joining node processes each NEIGHBSRT_REPLY message one at a
time. We note that if the joining node can process multipf@yrenessages
in step 3 of the loop, the number of query messages may beaédtits
change would not affect the correctness proof for the joatqmol in the next
section.




1. Ajoining noden is first led to a closest existing node

2. n sends a NEIGHBOESET_-REQUEST message te
C, is setto{n, z} and Ndueried js set to{ 2 }.
Repeat steps 3-6 below until a reply has been received for
every NEIGHBORSET REQUEST message sent:

3. n receives a NEIGHBOESET_REPLY message from a
node, saw. The message includes mutual neighbors of
n andv on DT (C,).

4. n adds the newly learned neighbors (if any)dgp, and
calculatesDT'(C,,).

5. Among simplexes that includeon DT'(C,,), simplexes
that do not include any node iN“ 4 are identified
as unchecked simplexes selects some of its neighbors
such that each unchecked simplex includes at least one
selected neighbor.

6. n sends NEIGHBORSET REQUEST messages to the
selected neighborsN?“¢r¢d is updated to include the
selected neighbors. For the non-selected new neighbors
NEIGHBORNOTIFICATION messages are sent.

Response actions at an existing node

e Whenv receives NEIGHBORSET.REQUEST fromn,
v putsn into C,, and re-calculateDT(C,). Thenwv
sends tan NEIGHBOR SET_REPLY that includes mu-
tual neighbors ot andn on DT'(C,).

e Whenv receives NEIGHBORNOTIFICATION fromn,
v includesn into C,, and re-calculate®7'(C,). Butwv
does not reply tau.

3.4. Correctness of the new join protocol

Lemma 1. LetS be a set of nodes. For any subgeof S, let
u € Candv € C, if v is a neighbor oz on DT'(S), v is also
a neighbor ofu on DT'(C).

Lemma 1 is proved in [15] (Lemma 3 in [15]).

Lemma 2. Letn denote a new joining node; be a set of
existing nodes, and’ = S|J{n}. Suppose that the exist-
ing distributed DT ofS is correct and no other node joins,
leaves, or fails. Lefl” be a simplex that exists aR7T'(C,,)

at some time during protocol execution and does not exists
on DT(S’). Letz # n be a node inT. Suppose that

n sends a NEIGHBORBSETREQUEST tax. Whenn re-
ceives a NEIGHBORSETREPLY frome, T is removed from
DT(Cy).

Proof. Since the existing distributed DT &f is correct,C,,
includes all the neighbors af on DT'(S). After x receives

Join(z) of nodeu
; Input: w is the joining node, ifu is the only node in the
systemz = NU LL; otherwisez is the closest existing nod
to u.
if z# NULL then

Send¢, NEIGHBOR SET.REQUEST)

Cy «— {u,z}, Ny — 0, Ngueried {z}
else

Cu - {u}’ N'u, - (Z), Ngueried — (Z)
end if

Onu's receiving NEIGHBORSET.REQUEST fromw
if we¢C, then

Cy — Cy U{w}

N, < neighbor nodes of on DT'(C.,)
end if
N «— {z | z is a neighbor oiv on DT'(C4)}
Send{v, NEIGHBORSETREPLY(NV,;))

Onu's receiving NEIGHBORSET.REPLY(N.) from w
Cu — Cu UNy
UpdateNeighborsC.., NV..)

Onu's receiving NEIGHBORNOTIFICATION from w
if we¢C, then

Cy — Cy U{w}

N, < neighbor nodes of on DT'(C%,)
end if

UpdateNeighbors(C.,, N,,) of nodeu
N — Ny
N, < neighbor nodes af on DT'(C,)
N:ew — Nu _ Ngld
T, < simplexes that contain on DT'(C,) and do not
contain any node igvaveried
Ngheek « Get_Neighbors To Check(Ty")
forall v e Ncheek do
Sendf, NEIGHBOR SET.REQUEST)
end for
Nguer'ied - Nguer'ied U N’iheck
N:}otify - N’:rbzew _ Nsheck
forall v e N?°*f¥ do
Sendg, NEIGHBORNOTIFICATION)
end for

GetNeighborsTo_Check(l’;“") of nodeu
N, «—0
while T2 # () do
n < anode inl,}°v
N}, «— N/ Un
remove each simplex that containgrom 7, °*
end while
ReturnN’«

NEIGHBORSET_REQUEST,C, will include n, and thus
C,, will include all the neighbors of on DT'(S").

Consider the space th@toccupies onDT'(C,,). SinceT
does not exist orDT(S’), the space is occupied by two or
more different simplexes oPT'(S’). Let T* be one of those

Figure 3. New join protocol at a node .

simplexes that includes bothandz. Note that there aré— 1
other nodes ifT*, which are mutual neighbors aefandzx on



DT(S"), and, by Lemma 1, oWT(C,) as well. These — 1
nodes are included in the NEIGHBOBET_.REPLY message
from x to n. Whenn receives the NEIGHBOESET_REPLY
message, thé— 1 nodes are included iy, and, by Lemma 1,
become neighbors of on DT(C,,). As a resultT* is cre-
ated onDT'(C,,). That mean§’, which overlaps with™, is
removed fromDT'(C,,). O

Lemma 3. Letn denote a new joining nodé; be a set of
existing nodes, and’ = S|J{n}. Suppose that the exist-
ing distributed DT ofS is correct and no other node joins,
leaves, or fails. Then when the new join protocol finisligs,
includes all the neighbor nodes ofon DT'(S’).

Proof. Consider a neighbarof n on DT'(S"). We show that
v will be included inC,, when the join protocol finishes. At
step 4 of the protocol execution loaphas some nodes i,
and calculate®T(C,,).

Suppose that is not yet included inC,,. Consider a
straight linel from n to v. Let T be the first simplex on
DT(C,,) thatl crosses. Such a simplex exists because
not yet a neighbor of. on DT'(C,,). Note thatT" includesn.
Let the other nodes d&f bexy, xs, ..., 4. Sincel is an edge
onDT'(S"), T does not exist oT'(S").

We show by contradiction that has not received a
NEIGHBOR SET_.REPLY message from any node if.
Suppose that: has received a NEIGHBOQRET.REPLY
from a node inT. Then by Lemma 27" cannot exist on
DT(C,,), which contradicts the earlier assumption thagx-
ists because is not included inC,, yet.

Next we show thatn will receive a NEIGH-
BOR.SET_.REPLY message from a node i. Either
T includes a noder, in Ng“e”ed or T' does not include
any node inNJueried In the former casep has sent a
NEIGHBOR SET.REQUEST to z, and will receive a
NEIGHBOR SET_REPLY message from,. In the latter
case, by step 5 of the protocol execution loapwill send
a NEIGHBORSET.REQUEST to a node; in T" and then
receive a NEIGHBORSET_REPLY message fromy. In
each case, when receives the NEIGHBORSET REPLY
messagel is removed fromDT'(C,,) by Lemma 2.

Afterwards, ifv is not a neighbor of: and/ crosses an-
other simplex orDT'(C,,), protocol execution continues and

the above process repeats. This process finishes in a finit

number of iterations since the number of node$'iis finite
and the number of possible simplexesirs also finite. When
there is no simplex thdtcrosses o7 (C,,), [ is an edge on
DT(C,,). Thereforev is included inC,,. O

The following theorem shows that our new join protocol is
correct for a single join.

Theorem 2. Letn denote a new joining nodé, be a set of
existing nodes, and’ = S| J{n}. Suppose that the existing
distributed DT ofS is correct and no other node joins, leaves,

or fails. Then when the new join protocol finishes, the updiate
distributed DT is correct.

Proof. By Lemma 3, when the join process finishes,
will include all of its neighbor nodes o®T(S’). In ad-
dition, whenevern discovers a neighbor node during
the processy sends either NEIGHBORSET REQUEST or
NEIGHBOR NOTIFICATION message ta so thatv in-
cludesn into C,. Since the candidate sets of all existing nodes
as well as the joining node are correctly updated, the update
distributed DT is correct by Theorem 1. O

4. Leave and failure protocols

In [1], we designed a leave protocol for nodes that leave
gracefully. In the leave protocol, a leaving nodesends to
each of its neighbors a natification informingy of v's new
neighbors after, leaves, as well as the fact thais leaving.
The leave protocol is very efficient. We keep it in our new
protocol suite.

In this section, we propose a proactive approach to address
node failures. Our failure protocol is almost as efficient as
the leave protocol. It is proved to be correct for a singlé fai
ure. The main idea is that every nodegrepares a contin-
gency plan in case it fails. That is, calculates a local DT
of only u’s neighbors, not including itself. The contingency
plan includes, for each neighborf u, new neighbor nodes
of v after deletingu. u selects one of its neighbors, say,
and gives the contingency planite. m is called themonitor
nodeof u. Thenm periodically probes: to check whethet
is alive. Whenm detects failure ofi, m sends to each af’s
former neighbors its portion of the the contingency plane Th
protocol pseudocode is given in Figure 4.

The failure protocol takes over one of the functions of the
old maintenance protocol. As a result, the new maintenance
protocol may be run much less frequently, reducing overall
cost of the system. As will be demonstrated by experiments
for a system of nodes under churn, the new maintenance pro-
tocol is still necessary to recover from incorrect systesest
resulting from concurrent event occurrences.

Unlike the old maintenance protocol, probes are not du-
plicated in the failure protocol, sinageis probed only by its

&onitor node. Furthermore, each former neighbor.oe-

ceives exactly 1 message up@a failure. On the other hand,
the failure protocol has the overhead of updating a contin-
gency plan whenever a neighbor is added or deleted.

4.1. Correctness of the failure protocol

The following lemmas are proved in [15] (they correspond
to Lemmas 4 and 10 in [15]).

Lemma 4. Let S be a set of nodes. Considerc S and a
subsetC,, of S that includes all the neighbor nodes ofon



On change inv,,
m., < the neighbor inV,, with the least ID
CalculateDT(N,) ; Note:u ¢ N,
forall v e N, do
Ny «— {w | wis aneighbor ob on DT'(N,)}
end for
Sendfn.., CONTINGENCY.PLAN({< v, N* >| v € N, })

Onu’s receiving CONTINGENCYPLAN(CP,) from v
SetFAILURE TIMER,t0T + F
; T is current time F' is the period of failure probe.

Onw's expiration of FAILURE TIMER,
Send¢, PING)

SetPING.TIMEOUT TIMER,t0T +TO
;T'is current timeI"O is the timeout value.

Onu's receiving PING fromu
if v =m, then

Send¢, PONG{rue))
else

Sendf, PONG(false))
end if

Onu's receiving PONGflag) from v
if flag = true then
SetFAILURE TIMER,t0T + F
; T'is current time F' is the period of failure probe.
else
CancelFAILURE TIMER,
end if

Onw's expiration of PING . TIMEOUT _TIMER,,
for all w thatC'P, contains< w, N, > do

Send{v, FAILURE_NOTIFICATION(v, N,;)
end for
Cy— Cy —{v}UN?
N, < neighbor nodes af on DT'(C',)
CancelFAILURETIMER,

Onu's receiving FAILURENOTIFICATION(v, N,;) from v
Cy— Cy —{v}UN?
N, < neighbor nodes of on DT'(C.,)

Figure 4. Failure protocol at a node .

DT(S). Ifv € C, is a neighbor ofu on DT (C,,), thenuv is
also a neighbor of. on DT'(S).

Lemma 5. Let S be a set of nodes anfl = S — {u}. Letw
be a neighbor node af on DT'(S). If w is a neighbor node
of v on DT'(S"), thenw is a neighbor node af on DT'(S) or
w is a neighbor node of on DT'(S).

The following theorem shows that the failure protocol is
correct for a single failure.

Theorem 3. LetS be a set of nodes with a correct distributed
DT. Suppose that a nodec S fails and its failure is detected

by its monitor noden € S, which then executes the failure
protocol. Assume that there is no other join, leave, or failu
After the failure protocol finishes, the updated distrilwlE2T

is correct.

Proof. Let S’ = S — {u}. Consider a node € S’. The
following case A shows that i is not a neighbor ofi, then
v is not affected by the failure af. Case B shows that if is
a neighbor of:, v will receive enough information fromn to
correctly update its candidate set.

Case A) Suppose thatis not a neighbor of: on DT'(.5).
Consider a node € S, w # v. If wis a neighbor oy on
DT(S"), w is also a neighbor of on DT'(S) by Lemma 1.
If w is a neighbor ofv on DT'(S), w is also a neighbor of
v on DT (S’) by Lemma 4. Therefore the neighborswbn
DT(S) are the same as the neighbors)afn DT'(S’) andv
is not affected by failure ofi.

Case B) Suppose thais a neighbor of, on DT'(.S). Con-
sider a nodew € S’,w # v. If wis a neighbor ofv on
DT(S5"), by Lemma 5, eithew is already inC, or w was a
neighbor ofu on DT(S). In the latter case,s monitor node
will notify v thatw is its neighbor. Therefor€, will include
all the neighbor nodes afon DT'(S").

From cases A and B, for each node S/, C, includes all
the neighbor nodes afon DT'(S”). Therefore by Theorem 1,
the updated distributed DT is correct. O

5. New maintenance protocol

The last member of our DT protocol suite is a new main-
tenance protocol. Even though the other protocols in the sui
—the new join protocol, the (old) leave protocol, the newfai
ure protocol — are proved to be correct for a single join,deav
and failure, respectively, nodes may join, leave, and fail-c
currently for a system under churn. As to be shown by ex-
perimental results in Figure 9, neither our protocols (with
out a maintenance protocol) nor Simetral’s algorithms can
recover a correct distributed DT after system churn. In that
sense, our protocol suite is incomplete without a mainteean
protocol, and so is Simoet al’s set of insertion and deletion
algorithms.

By Theorem 1, for a distributed DT to be correct, each
nodeu must include in its neighbor sét, all of its neighbor
nodes on the global DT. This was one goal that our old main-
tenance protocol [1, 15] was designed to achieve. To that end
each node: periodically queries each of its neighbors to find
any new neighbor of; thatu is not aware of.

We found that running the maintenance protocol fre-
quently requires a large communication cost. Note that the
goal of a maintenance protocol is similar to that of a join-pro
tocol, namely, finding new neighbors. Therefore, we use the
same technique as in the case of our new join protocol. That
is, we reduce communication cost of our maintenance pro-
tocol by eliminating messages with redundant information.



Instead of querying all neighbors, a nodgueries only one
node for each simplex that includesSince a neighbor node
may be included in multiple simplexes, the number of queried
neighbors is much less than that of all neighbors.

Another goal of the old maintenance protocol was fail-
ure detection and recovery. In the old maintenance protocol
probing a node; was carried out by all neighbors of In our
new set of protocols, the new failure protocol takes over the
task of failure detection and recovery, where a node is grobe
by only one of its neighbor nodes. Thus the overall cost of
our new maintenance and failure protocols is much less than
the cost of the old maintenance protocol.

Although failure recovery is not a major goal of the new
maintenance protocol, if a failure is detected by a mes-
sage timeout, this information is propagated via DELETE
messages.
rent failures. DELETE messages are propagated using
the GRPB (greedy reverse-path broadcast) protocol in [1].
The maintenance protocol pseudocode (including GRPB)
is given in Figure 5. Actions for receiving a NEIGH-
BOR SET.REQUEST message and the functions of Up-
dateNeighbors and GelleighborsTo_Check are the same as
in Figure 3.

6. Accuracy metric for a system under churn

We define an accuracy metric as in [1], which we will use
for experiments for a system of nodes under churn. We con-
sider a node to ba-systenfrom when it finishes joining to
when it starts leaving. LeDDTs be a distributed DT of a
set of in-system nodeS. (Note that some nodes may be
in the process of joining or leaving and not included.) Let

This may be necessary in case of concury

Neorrect(DDTg) be the number of correct neighbor entries

Onu's expiration of PERIOD_TIMER
Nguer'ied P 0
T. < simplexes that contaia on DT (N, U {u})
Ngheek  Get_Neighbors To_Check(T,)
forall v e Ncheek do
Send¢, NEIGHBOR SET_REQUEST)
SetNS TIMEOUT_TIMER,t0oT +TO
; T'is current time 'O is the timeout value.
end for
SetPERIOD TIMERtT + P
; T is current time P is the period of failure probe.

Onu's receiving NEIGHBORSET.REPLY(NV,)) from v
Cy «— Cy UN,

UpdateNeighbors(C.,, N.)

CancelNS TIMEOUT_.TIMER,

Onw’s expiration of NS TIMEOUT TIMER,
Cy — Cy — {v}
UpdateNeighbors(C.,, N.)
forall we N, do
Send{v, DELETE(, w))
end for

Onu's receiving DELETE(, w) from x
if v e Cy then
Cy — Cy — {v}
UpdateNeighbors(C.., N.)
forall y € Ny, Dist(y,w) > Dist(u,w) do
N.y < nodes that share a simplex with battandy
on DT (Cy)
if w is the closest node to in N, then
Sendf;, DELETE(v, w))
end if
end for
end if

of all nodes andV.,,ong(DDTs) be the number of wrong
neighbor entries of all nodes dnDT’s. A neighbor entry of

a nodeu is correct when is a neighbor of: on the global DT
(namely,DT(S)), and wrong whem andv are not neighbors
on the global DT. LetV (DT (S)) be the number of edges on

DT(S). Note that edges on a global DT are undirectional and Nyong(DDTs)

Figure 5. New maintenance protocol at a node
u.

2xN(DT(S)). Also, Neorreet(DDTs) < 2xXN(DT(S)).
It then follows thatN .orect(DDTs) = 2xN(DT(S)) and
= 0. That means the distributed DT is

thus are counted twice when compared with neighbor entries.correct.

The accuracy oD DTy is defined as follows:

Ncorrect (DDTS) - Nw"‘ong (DDTs)

accuracy(DDTs) =

2xN(DT(S)) To demonstrate effectiveness of the new maintenance pro-

tocol, we designed an experiment for a system with an ini-
tial ring configuration. The system begins with a barely con-
nected graph of 100 nodes, in which each node initially knows
only one other node. That is, noge, 1 < i < 99, ini-
tially has onlyp;_; in its candidate set and its neighbor set;
nodep, knowspgg. Figure 6 shows change in accuracy of the
distributed DT as the new maintenance protocol runs. The
new maintenance protocol achieved a correct distributed DT
within a few rounds of protocol execution.

Observation 1. The accuracy of a distributed DT is 1 if and
only if the distributed DT is correct.

Proof. (iff If the distributed DT is correct,
Neorreet(DDTs) = 2 x N(DT(S)) andNyong(DDTs) =
0, resulting in accuracy of 1.

(only ify When accuracy is 1, we have
Neorrect(DDTs) — Nyrong(DDTg) = 2xN(DT(S)).
Since Nyrong(DDTs) > 0, we getNeorrect(DDTs) >
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col for a system with an initial ring configura-
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7. Experimental results
7.1. Join protocols

Figure 7 shows communication costs of join protocols.

Each curve shows the number of messages for 100 serial
joins, increasing the system size from 200 nodes to 300 nodes,

for different dimensionalities. Our new join protocol has
much less cost than our old join protocol, and is slightlydret
than Simoret al’s distributed algorithm.

7.2. Failure protocol
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Figure 8. Costs of failure protocols for 100 se-
rial failures.
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Figure 9. Accuracy without a maintenance pro-
tocol under system churn (join and fail).

than Simoret al’s entity deletion algorithm.
7.3. Maintenance protocols

Figure 9 shows accuracy of our protocols without a main-
}enance protocol and Simat al’s algorithms under system
churn. From a correct distributed DT of 400 initial nodes in
3D, 100 concurrent joins and 100 concurrent failures occur
from time 10 to 110 second, with an average inter-arrivagtim
of 1 second, respectivelyin both our failure protocol and Si-
monet al’s entity deletion algorithm, nodes are probed every
10 seconds. The accuracy of the distributed DT is measured
every 10 seconds. Both our new join and failure protocols and

Figure 8 compares communication costs of our failure pro- Simonet al.s en“ty insertion and deletion a|g0ritth cannot

tocol and Simoret al’s entity deletion algorithm. The num-

fully recover after system churn, resulting in an incoridist

ber of messages used to recover from 100 serial failures fromfributed DT.

300 initial nodes is measured. Both our failure protocol and
Simonet al.s deletion algorithm use the same probing period
of 10 seconds. Our failure protocol is much more efficient

10

By Little’s Law, for a system size of 400 nodes, the averafgtifhe of a
node is 400 seconds. For P2P file sharing systems, this is/anigdr churn
rate [16].
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1.8e+06 1d maintenance protocol (10) maintenance protocol. Efficiency is further improved when
166406 [ (i e (10) and now ramtoanaes (305 obsons /] the new maintenance protocol is combined with the failure
1.4e+06 | 4 protocol, since the new maintenance protocol is run less fre
S oewos | ] quently.
s Figure 12 compares the accuracy of our old and new pro-
ol le+06 B H e
E tocol suites under system churn, where nodes join, leaxk, an
o . . . . .
g 800000 F T fail concurrently. The scenario is similar to that of the-pre
E 600000 | g vious experiment, except that nodes either gracefullydeav
=z - age . .
400000 - i fail instead of all failing. From a correct distributed DT400
200000 initial nodes, 100 joins, 50 leaves, and 50 failures ocaumfr
//////////////////////// I time 10 to 110. The average inter-arrival time of joins is 1
0T 3 . s second and those of leaves and failures are 2 seconds, vespec
Dimensionality tively. The old maintenance protocol is run every 10 seconds
Figure 11. Costs of the old and new mainte- The new maintenance protocol is run every 30 seconds along
nance protocols under system churn (join and with the failure protocol which uses a probing period of 10
fail). seconds. The new protocol suite maintains about the same

accuracy as the old protocol suite. In the end, the new proto-
col suite took a slightly longer time to converge to a correct
Figure 10 compares the accuracy of our protocols inc|ud_Qistributed DT, because it uses a longer period (30 seconds
ing the maintenance protocols in the same scenario as in Figinstéad of 10 seconds). o
ure 9. The old maintenance protocol is run every 10 seconds. Figure 13 shows the communication costs of our old and
The new maintenance protocol is run every 10 seconds wherf!€W protocol suites in the same churn experiment. The new
it was run alone, and every 30 seconds when it was run abnd)rotocol suite has many times less communication cost com-
with the failure protocol which uses a probing period of 10 Pared to the old protocol suite.
seconds. After system churn stops at time 110 second, accu-
racy converges to 100% by the maintenance protocols. The8. Conclusions
new maintenance protocol alone shows slightly lower accu-
racy than the old maintenance protocol. However, together While DT has been known and used for a long time in
with the failure protocol, the new maintenance protocobeho  different fields of science and engineering, the design of
similar accuracy to that of the old maintenance protocai@lo  protocols for constructing and maintaining a distribute@ D
The new maintenance protocol also took a longer time to con-for a dynamic system has not received much attention. In
verge to a correct distributed DT. a previous paper [1], we investigated the design of several
Figure 11 shows the communication costs in the above ex-application-level protocols to support DT applicationet-
periment. As expected, the new maintenance protocol hasvorks, as well as join, leave, and maintenance protocols to
several times less communication cost compared to the oldconstruct and maintain a distributed DT. Our focus therein

11
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