
Efficient and Accurate Protocols

for Distributed Delaunay Triangulation under Churn

Dong-Young Lee and Simon S. Lam

Department of Computer Sciences

The University of Texas at Austin

{dylee, lam}@cs.utexas.edu

TR-07-59 November 9, 2007

Revised, September 1, 2008

Abstract—We design a new suite of protocols for a set of nodes
in d-dimension (d > 1) to construct and maintain a distributed
Delaunay triangulation (DT) in a dynamic environment. The join,
leave, and failure protocols in the suite are proved to be correct
for a single join, leave, and failure, respectively. For a system
under churn, it is impossible to maintain a correct distributed
DT continually. We define an accuracy metric such that accuracy
is 100% if and only if the distributed DT is correct. The suite
also includes a maintenance protocol designed to recover from
incorrect system states and to improve accuracy. In designing the
protocols, we make use of two novel observations to substantially
improve protocol efficiency. First, in the neighbor discovery
process of a node, many replies to the node’s queries contain
redundant information. Second, the use of a new failure protocol
that employs a proactive approach to recovery is better than the
reactive approaches used in prior work. Experimental results
show that our new suite of protocols maintains high accuracy
for systems under churn and each system converges to 100%
accuracy after churning stopped. They are much more efficient
than protocols in prior work.

I. INTRODUCTION

Delaunay triangulation [2] and Voronoi diagram [14] have

a long history and many applications in different fields of

science and engineering including networking applications,

such as greedy routing, finding the closest node to a given

point, broadcast, geocast, etc. [1], [5], [7], [8]. A triangulation

for a given set S of nodes in a 2D space is a subdivision of the

convex hull of nodes in S into non-overlapping triangles such

that the vertexes of each triangle are nodes in S. A Delaunay

triangulation in 2D is usually defined as a triangulation such

that the circumcircle of each triangle does not include any

other node inside the circumcircle. Delaunay triangulation can

be similarly generalized to a d-dimensional space1 (d > 1)

using simplexes instead of triangles [4].

Research sponsored by National Science Foundation grants CNS-0434515
and CNS-0830939.

1Delaunay triangulation is defined in a Euclidean space. When we say a
d-dimensional space in this paper, we mean a d-dimensional Euclidean space.

We will use DT as abbreviation for “Delaunay triangula-

tion.” An important property of DT in the networking context

is that greedy routing always succeeds on a DT [1]. In greedy

routing, a node forwards a message to one of its neighbors that

is closest to a given destination node. Note that greedy routing

on an arbitrary graph is prone to the risk of being trapped at a

local optimum, i.e., routing stops at a non-destination node that

is closer to the destination than any of its neighbors. However,

on a DT it is guaranteed that greedy routing always succeeds

to find the destination node.

Our objective in this paper is a suite of protocols for a set

of nodes in a d-dimensional space (d > 1) to construct and

maintain a distributed DT. In designing these protocols, we

allow the set of nodes to change with time. New nodes join

the set (system) and existing nodes leave (gracefully) or fail2

over time. The system is said to be under churn and the rate

at which changes occur said to be the churn rate. We present

in this paper a suite of four protocols for join, leave, failure,

and maintenance.

In a distributed DT, each node maintains a set of its

neighbors. By definition, a distributed DT of a set of nodes S

is correct if and only if, for every node u∈ S on the distributed

DT, u’s neighbor set is the same as the set of u’s neighbors on

the (centralized) DT of S. For convenience, we will sometimes

say “the system state is correct” to mean “the distributed DT

is correct.”

In designing the suite of protocols in this paper, we aim to

achieve three properties: accuracy, correctness, and efficiency.

The protocol suite is named ACE.

• Correctness – We prove the join, leave, and failure

protocols to be correct for a single join, leave, and

failure, respectively. For the join protocol, we prove that

if the system state is correct before a new node joins,

and no other node joins, leaves, or fails during the join

2When a node fails, it becomes silent. We do not consider Byzantine
failures.

protocol execution, then the system state is correct after

join protocol execution. A similar correctness property

is proved for the leave and failure protocols. Note that

these three protocols are adequate for a system whose

churn rate is so low that joins, leaves, and failures occur

serially, i.e., protocol execution finishes for each event

(join, leave, or failure) before another event occurs. In

general, for systems with a higher churn rate, we also

provide a maintenance protocol, which is run periodically

by each node.

• Accuracy – It is impossible to maintain a correct dis-

tributed DT continually for a system under churn. Note

that correctness of a distributed DT is broken as soon as

a join/leave/failure occurs and is recovered only after the

join/leave/failure protocol finishes execution. Fortunately,

some applications, such as greedy routing, can work well

on a reasonably “accurate” distributed DT. We define an

accuracy metric such that accuracy is 1 if and only if

the distributed DT is correct. The maintenance protocol

is designed to recover from incorrect system states due to

concurrent protocol processing and to improve accuracy.

We found that in all of our experiments conducted to date

with the maintenance protocol, each system that had been

under churn would converge to 100% accuracy some time

after churning stopped.

• Efficiency – We use the total number of messages sent

during protocol execution as the measure of efficiency.

Protocols are said to be more efficient when their execu-

tion requires the use of fewer messages.

In previous papers [5], [7], we presented examples of net-

working applications to run on top of a distributed DT, namely:

greedy routing, finding the closest existing node to a given

point, clustering of network nodes, as well as broadcast and

geocast without explicit maintenance of a broadcast/multicast

tree. Three DT protocols were presented in [7]: join and leave

protocols that were proved correct and a maintenance protocol

that was shown to converge to 100% accuracy after system

churn. However, these protocols (to be referred to as our old

protocols) were designed with correctness as the main goal and

their execution requires the use of a large number of messages.

To make the join and maintenance protocols in ACE much

more efficient than our old ones, we have two novel obser-

vations. First, the objective of any join protocol is for a new

node n to identify its neighbors (on the global DT), and for n’s

neighbors to detect n’s join. In our old join protocol, n sends

a request to an existing node u for n’s neighbors in u’s local

information. When n receives a reply, it learns new neighbors

and sends requests to those newly-learned neighbors. This

process is recursively repeated until n does not find any more

new neighbor. Whereas it is necessary to send messages to all

neighbors, since the neighbors need to be notified that n has

joined, we discovered that to ensure correctness it is sufficient

for n to hear back from just one neighbor in each simplex

that includes3 n rather than from all neighbors. Furthermore,

queries as well as replies for some simplexes can be combined

so that just one query-reply between n and one neighbor is

enough for multiple simplexes. Based on this observation, we

designed a new join protocol for ACE. We found that the

ACE join protocol is much more efficient than our old join

protocol. We have proved the ACE join protocol to be correct

for a single join.

We also apply the above observation to substantially reduce

the number of messages used by the ACE maintenance proto-

col. Furthermore, we make a second observation (described

below) to greatly reduce the total number of all protocol

messages per unit time by reducing the frequency at which

the ACE maintenance protocol runs.

In the old suite of protocols, it is the old maintenance

protocol’s job to detect node failures and repair the resulting

distributed DT. To detect a node failure, the node was probed

by all of its neighbors. Furthermore, the distributed DT was

repaired in a reactive fashion. The process of reactively

repairing a distributed DT after a failure is inevitably costly,

because the information needed for the repair was at the failed

node and lost after failure.

To improve overall efficiency, we added a new failure

protocol to ACE specifically to handle node failures. The

ACE failure protocol employs a proactive approach. Each

node designates one of its neighbors as its monitor node.

In the ACE failure protocol, a node is probed only by its

monitor node, eliminating duplicate probes. In addition, each

node prepares a contingency plan and gives the contingency

plan to its monitor node. The contingency plan includes all

information to correctly update the distributed DT after its

failure. Once the failure of a node is detected by its monitor

node, the monitor node initiates failure recovery. That is, each

neighbor of the failed node is notified of the failure as well

as any new neighbor(s) that it should have after the failure.

In this way, node failures are handled almost as efficiently as

graceful node leaves in the ACE leave protocol (which is the

same as our old leave protocol). We have proved the ACE

failure protocol to be correct for a single failure.

Each node runs the maintenance protocol (ACE or old) peri-

odically. The communication cost of the maintenance protocol

increases as the period decreases (or frequency increases).

Generally, as the churn rate increases, the maintenance pro-

tocol needs to be run more frequently. In the old protocol

suite, moreover, the old maintenance protocol needs to be

run at the probing frequency because one of its functions

is to recover from node failures. With the inclusion of an

efficient failure protocol in the ACE protocol suite to handle

failures separately, the ACE maintenance protocol can be run

less often. We found that the overall efficiency of the ACE

protocols is greatly improved as a result.

To the best of our knowledge, the only other previous work

for a dynamic distributed DT in a d-dimensional space is

3When we say a simplex includes a node, we mean that the set of vertexes
of the simplex includes the node. Also, when we say a node is in a simplex,
we mean that the node is a vertex of the simplex.

TABLE I
A COMPARISON OF OUR OLD AND ACE PROTOCOLS WITH SIMON et al.’S

BASIC AND IMPROVED ALGORITHMS.

efficiency convergence to 100%
accuracy after system
churn

Simon et al.’s basic al-
gorithms

medium No

Simon et al.’s improved
algorithms

high No

Our old protocols low Yes

ACE protocols very high Yes

by Simon et al. [12]. They proposed two sets of distributed

algorithms: basic generalized algorithms and improved gener-

alized algorithms. Each set consists of an entity insertion (node

join) algorithm and an entity deletion (node failure) algorithm.

Their basic entity insertion algorithm is similar to our old join

protocol. Their improved entity insertion algorithm is based

on a centralized flip algorithm [15] whereas our join protocols

are based on a “candidate-set approach” and our correctness

condition for a distributed DT. The two approaches are fun-

damentally different. Their entity deletion algorithm and our

ACE failure protocols are also different. Our ACE failure

protocol is substantially more efficient than their improved

entity deletion algorithm, which uses a reactive approach

and allows duplicate probes. The centralized flip algorithm

is known to be correct [3]. However, correctness of their

distributed algorithms is not explicitly proved. Lastly, they

do not have any algorithm, like our maintenance protocols,

for recovery from concurrent processing of joins and failures

due to system churn. As a result, their algorithms consistently

failed to converge to 100% accuracy after system churn in

simulation experiments.

A quick comparison of the four sets of protocols/algorithms

is shown in Table I. More detailed experimental results,

presented in Section 7, show that ACE protocols are an order

of magnitude more efficient than our old protocols. There is a

tradeoff, however. During a churn period, the average accuracy

of ACE protocols is slightly (a fraction of 1%) lower than the

average accuracy of our old protocols.

The organization of this paper is as follows. In Section II,

we introduce the concepts and definitions of a distributed

DT, present our system model, and a correctness condition

for a distributed DT. We present the ACE join protocol in

Section III, the ACE failure and leave protocols in Section IV,

and the ACE maintenance protocol in Section V. The accuracy

metric is defined in Section VI and experimental results are

presented in Section VII. We conclude in Section VIII.

II. DISTRIBUTED DELAUNAY TRIANGULATION

A. Concepts and definitions

Definition 1. Consider a set of nodes S in a Euclidean space.

The Voronoi diagram of S is a partitioning of the space into

u

v

Fig. 1. A Voronoi diagram (dashed lines) and the corresponding DT (solid
lines) in a 2-dimensional space.

cells such that a node u ∈ S is the closest node to all points

within its Voronoi cell VCS(u).

That is, VCS(u) = {p | D(p,u) ≤ D(p,w), for any w ∈ S}
where D(x,y) denotes the distance between x and y. Note

that a Voronoi cell in a d-dimensional space is a convex d-

dimensional polytope enclosed by (d−1)-dimensional facets.

Definition 2. Consider a set of nodes S in a Euclidean

space. VCS(u) and VCS(v) are neighboring Voronoi cells, or

neighbors of each other, if and only if VCS(u) and VCS(v)
share a facet, which is denoted by VFS(u,v).

Definition 3. Consider a set of nodes S in a Euclidean space.

The Delaunay triangulation of S is a graph on S where two

nodes u and v in S have an edge between them if and only if

VCS(u) and VCS(v) are neighbors of each other.

Figure 1 shows a Voronoi diagram (dashed lines) for a set

of nodes in a 2D space and a DT (solid lines) for the same set

of nodes. VCS(u) and VCS(v) are neighbors of each other. We

also say that u and v are neighbors of each other when VCS(u)
and VCS(v) are neighbors of each other. Note that facets of a

Voronoi cell perpendicularly bisect edges of a DT. Therefore,

a DT is the dual of a Voronoi diagram.4 Let us denote the DT

of S as DT (S).

Definition 4. A distributed Delaunay triangulation of a

set of nodes S is specified by {< u,Nu >| u ∈ S}, where Nu

represents the set of u’s neighbor nodes, which is locally

determined by u.

Definition 5. A distributed Delaunay triangulation of a set

of nodes S is correct if and only if both of the following

conditions hold for every pair of nodes u,v ∈ S: i) if there

exists an edge between u and v on the global DT of S, then

v ∈ Nu and u ∈ Nv, and ii) if there does not exist an edge

between u and v on the global DT of S, then v 6∈ Nu and

u 6∈ Nv.

That is, a distributed DT is correct when for every node u,

4In geometry, polyhedra are associated into pairs called duals, where the
vertexes of one correspond to the faces of the other.

Nu is the same as the neighbors of u on DT (S). Since u does

not have global knowledge, it is not straightforward to achieve

correctness.

B. System model

Our approach to construct a distributed DT is as follows. We

assume that each node is associated with its coordinates in a d-

dimensional Euclidean space. Each node has prior knowledge

of its own coordinates, as is assumed in previous work [8],

[10], [12], [13]. The mechanism to obtain coordinates is

beyond the scope of this study. Coordinates may be given

by an application, a GPS device, or topology-aware virtual

coordinates [9].5 Also when we say a node u knows another

node v, we assume that u knows v’s coordinates as well.

Let S be a set of nodes to construct a distributed DT from.

We will present protocols to enable each node u ∈ S to get to

know a set of its nearby nodes including u itself, denoted as

Cu, to be referred to as u’s candidate set. Then u determines

the set of its neighbor nodes Nu by calculating a local DT of

Cu, denoted by DT (Cu). That is, v ∈ Nu if and only if there

exists an edge between u and v on DT (Cu).

To simplify protocol descriptions, we assume that message

delivery is reliable. In a real implementation, additional mech-

anisms such as ARQ may be used to ensure reliable message

delivery.

C. Correctness condition for a distributed Delaunay triangu-

lation

Recall that a distributed DT is correct when for every node

u, Nu is the same as the neighbors of u on DT (S). Since Nu

is the set of u’s neighbor nodes on DT (Cu) in our model, to

achieve a correct distributed DT, the neighbors of u on DT (Cu)
must be the same as the neighbors of u on DT (S). Note that

Cu is local information of u while S is global knowledge.

Therefore in designing our protocols, we need to ensure that Cu

has enough information for u to correctly identify its global

neighbors. If Cu is too limited, u cannot identify its global

neighbors. For the extreme case of Cu = S, u can identify its

neighbors on the global DT since DT (Cu) = DT (S); however,

the communication overhead for each node to acquire global

knowledge would be extremely high.

Theorem 1 (Correctness Condition). Let S be a set of nodes

and for each node u ∈ S, u knows Cu, such that u ∈ Cu ⊂ S.

The distributed DT of S is correct if and only if, for every

u ∈ S, Cu includes all neighbor nodes of u on DT (S).

Theorem 1, previously presented in [6], [7], identifies a

necessary and sufficient condition for a distributed DT to be

correct, namely: the candidate set of each node contains all of

its global neighbors. We use the above correctness condition

as a guide to design our protocols. A proof of Theorem 1,

which has not been published, is presented in the appendix.

5Application performance on a DT may be affected by the accuracy of
virtual coordinates.

e

n

u

v

w

e

n

u

v

w

Fig. 2. An example of flipping in 2D.

III. JOIN PROTOCOLS

A. Flip algorithm in a d-dimensional space

Flipping is a well-known and often-used technique to incre-

mentally construct DT in 2D and 3D spaces. A centralized flip

algorithm was also proposed to be used for a d-dimensional

space [15] and was proved to be correct [3].

Note that two triangles in a 2D space are flipped into

two other triangles, and two tetrahedra in a 3D space are

flipped into three tetrahedra. In general, two simplexes in

a d-dimensional space are flipped into d simplexes. This

transformation is called 2-d flipping.

Incremental construction of DT based on flipping is as

follows. When a new node is inserted, the simplex that

encloses the new node is divided into (d +1) new simplexes.

Recall that the circum-hypersphere of a simplex on a DT

should not include any other node except for the vertexes of

the simplex. Each new simplex is checked whether its circum-

hypersphere includes any other node. In case a simplex does

include another node, it is flipped to generate new simplexes.

The new simplexes are checked, and flipped if necessary. This

process continues recursively. The flip algorithm requires a

general position assumption, namely: no d + 1 nodes are on

the same hyperplane and no d + 2 nodes are on the same

hypersphere [4].

Figure 2 shows an example of flipping in a 2D space. A

node n is inserted to a distributed DT. First, the simplex

△uvw that encloses n is divided into three new simplexes

(left figure). Then each new simplex is checked whether its

circum-hypersphere includes any other node. In this example,

the circum-hypersphere of △unv includes another node e.

Therefore △unv and △uev are flipped into △une and △vne

(right figure).

Distributed flip algorithms for joining were proposed for 2D

[8], 3D [13], and a d-dimensional space [12]. The centralized

flip algorithm is known to be correct (for a single join or

serial joins). Since a simplex in d-dimension has d +1 nodes,

operations at the d +1 nodes must be consistent in a distributed

algorithm. Correctness has not been explicitly proved for any

of the distributed algorithms.

B. Candidate-set approach

In a previous paper [7], we proposed a join protocol based

on the distributed system model using candidate sets and

the correctness condition for a distributed DT introduced in

TABLE II
CORRESPONDENCE BETWEEN JOIN PROTOCOL IN THE CANDIDATE-SET

APPROACH AND FLIP ALGORITHM.

Candidate-set approach Flip algorithm

(a) A joining node n is led to a
closest existing node z.

A joining node n is led to a
closest existing node.

(b) z calculates local DT us-
ing Cz and n, and sends n’s
neighbors on DT (Cz) to n.

The simplex that encloses n
is divided into (d + 1) sim-
plexes.

(c) n contacts each of its new
neighbors to see whether
there are other potential
neighbors.

The new simplexes are
checked and flipped if
necessary.

(d) n recursively contacts new
neighbors.

New (flipped) simplexes are
recursively checked.

Section 2. When a new node n joins a distributed DT, it is first

led to the closest existing node z.6 Then n sends a request to z

for mutual neighbors of n and z on DT (Cz). When n receives

the reply, n puts the mutual neighbors in its candidate set

(Cn) and re-calculates its neighbor set (Nn). If n finds any new

neighbors, n sends requests to the new neighbors. This process

is repeated recursively. We proved correctness of this protocol

for a single join [6].

C. Novel observation

The flip algorithm and candidate-set approach are funda-

mentally different. However, it is interesting to note that there

is a correspondence between the two. Table II shows how steps

of the two different approaches correspond to each other.

Whereas the two approaches have corresponding steps, the

steps are not exactly the same. For example, in step (b), n

initially learns (d + 1) neighbors in the flip algorithm. In

step (b) of the candidate-set approach, n may be informed

of any nodes that z knows. In step (c) of the candidate-set

approach, multiple neighbors may send duplicate messages to

n to inform n of the same new neighbor. In step (c) of the flip

algorithm, only one node may reply that a simplex is flipped.

This last observation gave us an idea to substantially improve

the efficiency of the ACE join protocol.

D. ACE join protocol

Using the observation described above, we designed the

ACE join protocol that is substantially more efficient than our

old one. In addition to Cn and Nn, a joining node n maintains

a set N
queried
n , which includes the neighbors that are already

queried during its join process. Instead of querying all new

neighbors, n queries only one neighbor for each simplex on

DT (Cn) that does not include any node in N
queried
n . Note that

only one neighbor in each simplex needs to be queried. If a

simplex includes a node v∈N
queried
n , it means that the simplex

has already been checked by v. Furthermore, queries as well

as replies for multiple simplexes may be combined. The ACE

6This can be done using the protocol for finding a closest existing node in
[7].

join protocol requires the general position assumption, which

was not required for the old join protocol.

The ACE join protocol is still based on the candidate-set

model and its correctness for a single join is proved using the

correctness condition in Theorem 1.

Pseudocode of the ACE join protocol at a node is given

in Figure 3. The protocol execution loop at a joining node,

say n, and the response actions at an existing node, say v, are

presented below.7

Protocol execution loop at a joining node n

At a joining node n, the ACE join protocol runs as follows

with a loop over steps 3-6:

1) A joining node n is first led to a closest existing node

z.

2) n sends a NEIGHBOR SET REQUEST message to z.

Cn is set to {n,z} and N
queried
n is set to {z}.

Repeat steps 3-6 below until a reply has been received for

every NEIGHBOR SET REQUEST message sent:

3) n receives a NEIGHBOR SET REPLY message from a

node, say v. The message includes mutual neighbors of

n and v on DT (Cv).
4) n adds the newly learned neighbors (if any) to Cn, and

calculates DT (Cn).
5) Among simplexes that include n on DT (Cn), simplexes

that do not include any node in N
queried
n are identified

as unchecked simplexes. n selects some of its neighbors

such that each unchecked simplex includes at least one

selected neighbor.

6) n sends NEIGHBOR SET REQUEST messages to the

selected neighbors. N
queried
n is updated to include the

selected neighbors. For the non-selected new neighbors,

NEIGHBOR NOTIFICATION messages are sent.

Response actions at an existing node v

• When v receives NEIGHBOR SET REQUEST from n,

v puts n into Cv and re-calculates DT (Cv). Then v sends

to n NEIGHBOR SET REPLY that includes a set of all

nodes e such that e, v, and n are in the same simplex on

DT (Cv).
• When v receives NEIGHBOR NOTIFICATION from n,

v includes n into Cv and re-calculates DT (Cv). But v does

not reply to n.

E. Correctness of the ACE join protocol

Lemma 1. Let n denote a new joining node, S be a set of

existing nodes, and S′ = S
⋃
{n}. Suppose that the existing

distributed DT of S is correct and no other node joins, leaves,

or fails. Let T be a simplex that includes n on DT (Cn) at

some time during the ACE join protocol execution and does

not exists on DT (S′). Let x 6= n be a node in T . Suppose that n

7In our current implementation, the joining node processes one NEIGH-
BOR SET REPLY message at a time. We note that if the joining node can
process multiple reply messages in step 3 of the loop, the number of query
messages may be reduced; this change does not affect the correctness proof
for the join protocol in the appendix.

Join(z) of node u
; Input: u is the joining node, if u is the only node in the
system, z = NULL; otherwise z is the closest existing node
to u.
if z 6= NULL then

Send(z, NEIGHBOR SET REQUEST)

Cu←{u,z}, Nu← /0, N
queried
u ←{z}

else
Cu←{u}, Nu← /0, N

queried
u ← /0

end if

On u’s receiving NEIGHBOR SET REQUEST from w
if w 6∈Cu then

Cu←Cu∪{w}
Nu← neighbor nodes of u on DT (Cu)

end if
Nu

w←{e | e,w, and u are in the same simplex on DT (Cu)}
Send(w, NEIGHBOR SET REPLY(Nu

w))

On u’s receiving NEIGHBOR SET REPLY(Nw
u) from w

Cu←Cu∪Nw
u

Update Neighbors(Cu, Nu)

On u’s receiving NEIGHBOR NOTIFICATION from w
if w 6∈Cu then

Cu←Cu∪{w}
Nu← neighbor nodes of u on DT (Cu)

end if

Update Neighbors(Cu, Nu) of node u

Nold
u ← Nu

Nu← neighbor nodes of u on DT (Cu)
Nnew

u ← Nu−Nold
u

T new
u ← set of simplexes that include u on DT (Cu) and

do not include any node in N
queried
u

Ncheck
u ← Get Neighbors To Check(T new

u)
for all v ∈ Ncheck

u do
Send(v, NEIGHBOR SET REQUEST)

end for
N

queried
u ← N

queried
u ∪Ncheck

u

N
noti f y
u ← Nnew

u −Ncheck
u

for all v ∈ N
noti f y
u do

Send(v, NEIGHBOR NOTIFICATION)
end for

Get Neighbors To Check(T new
u) of node u

N′u← /0

while T new
u 6= /0 do

n← a vertex of a simplex in T new
u

N′u← N′u∪n
remove all simplexes that include n from T new

u

end while
Return N′u

Fig. 3. ACE join protocol at a node u.

sends a NEIGHBOR SET REQUEST to x. After n receives a

NEIGHBOR SET REPLY from x, T is removed from DT (Cn).

Lemma 2. Let n denote a new joining node, S be a set of

existing nodes, and S′ = S
⋃
{n}. Suppose that the existing

distributed DT of S is correct, no other node joins, leaves, or

fails, and n joins using the ACE join protocol. Then the ACE

join protocol finishes, and Cn includes all neighbor nodes of

n on DT (S′).

The following theorem states that the ACE join protocol is

correct for a single join. Our proofs of Lemma 1, Lemma 2,

and Theorem 2 are presented in the appendix.

Theorem 2. Let n denote a new joining node, S be a set

of existing nodes, and S′ = S
⋃
{n}. Suppose that the existing

distributed DT of S is correct, no other node joins, leaves,

or fails, and n joins using the ACE join protocol. Then the

ACE join protocol finishes, and the updated distributed DT is

correct.

IV. LEAVE AND FAILURE PROTOCOLS

A. ACE leave protocol

Consider a node u that leaves gracefully. It notifies a

neighbor node v which then removes u from Cv and updates

Nv. Such notifications and actions for all neighbors of u are not

enough to maintain a distributed DT. This is because after u’s

leave, v may have a new neighbor w that was not a neighbor

of v before u’s leave and w may not be in Cv. To design

a correct leave protocol, we prove that such w is always a

neighbor of u prior to u’s leave. Therefore it is possible for u

to notify v that u is leaving and also introduce w to v, resulting

in a correct distributed DT. More specifically, when a node u

leaves, u calculates a local DT of its neighbor set Nu (which

does not include u). Then u notifies each of its neighbors,

say v, that u is leaving as well as a list of the neighbors

of v on DT (Nu). Upon receiving such notification, v updates

its candidate set and neighbor set. In addition, a DELETE(u)

message is propagated using the GRPB (greedy reverse-path

broadcast) protocol [7].

The protocol pseudocode is presented in Figure 4. It is

essentially the same as our old leave protocol [7] which is

very efficient.

B. ACE failure protocol

We propose a proactive approach to address node failures

instead of the reactive approaches used in previous work. The

ACE failure protocol is almost as efficient as the ACE leave

protocol. It is proved to be correct for a single failure. The

main idea is that every node u prepares a contingency plan in

case it fails. That is, u calculates a local DT of u’s neighbor

set Nu. The contingency plan includes, for each neighbor v of

u, new neighbor nodes of v after deleting u. Node u selects

one of its neighbors, say m, and sends the contingency plan to

m, which is called the monitor node of u. Then m periodically

probes u to check whether u is alive. When m detects failure

of u, m sends to each of u’s former neighbors its portion of

the contingency plan. The protocol pseudocode is given in

Figure 5. The pseudocode for receiving a DELETE message

and pseudocode for GRPB are given in Figure 4.

The ACE failure protocol takes over one of the functions

of the old maintenance protocol. As a result, the ACE main-

tenance protocol may be run much less frequently, reducing

overall cost of the system. As will be demonstrated by

Leave() of node u
Calculate DT (Nu) ; Note: u 6∈ Nu

for all v ∈ Nu do
Nu

v ←{w | w is a neighbor of v on DT (Nu)}
Send(v, LEAVE(Nu

v))
end for

On u’s receiving LEAVE(Nv
u) from v

Cu← (Cu∪Nv
u)−{v}

Nu← neighbor nodes of u on DT (Cu)
GRPB(DELETE(v), v)

On u’s receiving DELETE(w) from v
; w is a deleted node
Cu←Cu−{w}
GRPB(DELETE(w), w)

GRPB(m, s) of node u
; m is a message, s is the source node of broadcast
for all x ∈ Nu, D(x,s) > D(u,s) do

Nux← {z ∈ Nu | z,u,x are in the same simplex
on DT (Cu)}

if D(u,s)≤ D(z,s) for all z ∈ Nux then
Send(x, m)

end if
end for

Fig. 4. ACE leave protocol at a node u

experiments for a system of nodes under churn, the ACE main-

tenance protocol is still necessary to recover from incorrect

system states resulting from concurrent event occurrences.

Unlike the old maintenance protocol, probes are not du-

plicated in the ACE failure protocol, since u is probed only

by its monitor node. Furthermore, each former neighbor of

u receives exactly 1 message upon u’s failure. On the other

hand, the ACE failure protocol has the overhead of updating

a contingency plan whenever a neighbor is added or deleted.

C. Correctness of the ACE leave and failure protocols

Lemma 3. Let S be a set of nodes and S′ = S−{u}. Let v be

a neighbor node of u on DT (S). If w is a neighbor node of v

on DT (S′), then w is a neighbor node of v on DT (S) or w is

a neighbor node of u on DT (S).

Theorem 3 and Theorem 4 below state that the ACE leave

and failure protocols are correct for a single leave and a single

failure, respectively. Our proofs of Lemma 3 and Theorem 4

are presented in the appendix. A proof of Theorem 3 is

provided in [6]. We omit proof of Theorem 3 herein because

it is very similar to that of Theorem 4.

Theorem 3. Let S be a set of nodes with a correct distributed

DT. Suppose that a node u ∈ S leaves using the ACE leave

protocol. Assume that there is no other join, leave, or fail-

ure. Then the ACE leave protocol finishes, and the updated

distributed DT is correct.

Theorem 4. Let S be a set of nodes with a correct distributed

DT. Suppose that a node u∈ S fails and its failure is detected

by its monitor node mu ∈ S, which then executes the ACE

failure protocol. Assume that there is no other join, leave, or

On change in Nu

mu← the neighbor in Nu with the least ID
; mu is the monitor node of u
Calculate DT (Nu) ; Note: u 6∈ Nu

for all v ∈ Nu do
Nu

v ← {w | w is a neighbor of v on DT (Nu)}
end for
Send(mu, CONTINGENCY PLAN({<v, Nu

v >| v ∈ Nu})

On u’s receiving CONTINGENCY PLAN(CPv) from v
Set FAILURE T IMERv to T +F
; T is current time, F is the period of failure probe.

On u’s expiration of FAILURE T IMERv

Send(v, PING)
Set PING T IMEOUT T IMERv to T +TO
; T is current time, TO is the timeout value.

On u’s receiving PING from v
if v = mu then

Send(v, PONG(true))
else

Send(v, PONG(f alse))
end if

On u’s receiving PONG(f lag) from v
Cancel PING T IMEOUT T IMERv

if f lag = true then
Set FAILURE T IMERv to T +F
; T is current time, F is the period of failure probe.

else
Cancel FAILURE T IMERv

end if

On u’s expiration of PING T IMEOUT T IMERv

Cancel FAILURE T IMERv

for all w that CPv contains < w,Nv
w > do

Send(w, FAILURE(v, Nv
w))

end for
Cu← (Cu∪Nv

u)−{v}
Nu← neighbor nodes of u on DT (Cu)
GRPB(DELETE(v), v)

On u’s receiving FAILURE(v, Nv
u) from w

Cu← (Cu∪Nv
u)−{v}

Nu← neighbor nodes of u on DT (Cu)
GRPB(DELETE(v), v)

Fig. 5. ACE failure protocol at a node u.

failure. Then the ACE failure protocol finishes, and the updated

distributed DT is correct.

V. ACE MAINTENANCE PROTOCOL

The last member of our protocol suite is the ACE mainte-

nance protocol. Even though the other protocols in the suite

– the ACE join protocol, the ACE leave protocol, the ACE

failure protocol – are proved to be correct for a single join,

leave, and failure, respectively, nodes may join, leave, and

fail concurrently for a system under churn. As to be shown

by experimental results in Figure 10, neither our protocols

without a maintenance protocol nor Simon et al.’s algorithms

can recover a correct distributed DT after system churn. In that

sense, our protocol suite is incomplete without a maintenance

protocol, and so is Simon et al.’s set of insertion and deletion

algorithms.

By Theorem 1, for a distributed DT to be correct, each node

u must include in its neighbor set Cu all of its neighbor nodes

on the global DT. This was one goal that our old maintenance

protocol was designed to achieve. To that end, each node u

periodically queries each of its neighbors to find any new

neighbor of u that u is not aware of.

We found that running the maintenance protocol frequently

requires a large communication cost. Note that the goal of

a maintenance protocol is similar to that of a join protocol,

namely, finding new neighbors. Therefore, we use the same

technique as in the design of our ACE join protocol. That is,

we reduce communication cost of the maintenance protocol

by eliminating messages with redundant information. Instead

of querying all neighbors, a node u queries only one node

for each simplex that includes u. Since a neighbor node may

be included in multiple simplexes, the number of queried

neighbors is much less than the number of all neighbors.

Another goal of the old maintenance protocol was failure

detection and recovery. In the old maintenance protocol,

probing a node u was carried out by all neighbors of u. In

the ACE suite, the ACE failure protocol takes over the task

of failure detection and recovery, where a node is probed by

only one of its neighbor nodes. Thus the overall cost of the

ACE maintenance and failure protocols is much less than the

cost of the old maintenance protocol.

Although failure recovery is not a primary goal of the ACE

maintenance protocol, if a failure is detected by a message

timeout, this information is propagated via REMOVE mes-

sages. This may be necessary in case of concurrent failures.

REMOVE messages are propagated using the GRPB (greedy

reverse-path broadcast) protocol [7]. The ACE maintenance

protocol pseudocode is given in Figure 6. The pseudocode

for GRPB is given in Figure 4. The pseudocode for re-

ceiving NEIGHBOR SET REPLY and pseudocode for Up-

date Neighbors and Get Neighbors To Check are the same

as given in Figure 3, with the addition of one line of code to

set NS TIMEOUT T IMERv when node u sends a NEIGH-

BOR SET REQUEST message to node v and one line of

code to cancel NS T IMEOUT T IMERv when u receives a

NEIGHBOR SET REPLY message from v.

Note that NEIGHBOR SET REQUEST and NEIGH-

BOR SET REPLY messages are used in both ACE join and

maintenance protocols. The timeout mechanism to detect node

failures may also be utilized in the ACE join protocol, but

we did not enable it in the join protocol when we ran the

experiments presented in the next section.

In our current implementation of the ACE leave and failure

protocols, we have one modification to their pseudocode

in Figure 4 that greatly reduces communication cost. More

specifically, when a node u receives a DELETE(v), u forwards

it by GRPB only if v is in Cu. We found that if v is not in

Cu, it is very rare for v to be present in the candidate sets of

nodes one or more hops further away from the source node

On u’s expiration of PERIOD T IMER

N
queried
u ← /0

Tu← set of simplexes that include u on DT (Nu∪{u})
Ncheck

u ← Get Neighbors To Check(Tu)
for all v ∈ Ncheck

u do
Send(v, NEIGHBOR SET REQUEST)
Set NS T IMEOUT T IMERv to T +TO
; T is current time, TO is the timeout value.

end for
Set PERIOD T IMER to T +P
; P is the period of maintenance protocol.

On u’s receiving NEIGHBOR SET REQUEST from w
if w 6∈Cu then

Cu←Cu∪{w}
Nu← neighbor nodes of u on DT (Cu)

end if
if w ∈ Nu then

Nu
w←{e | e,w, and u are in the same simplex on DT (Cu)}

else
Nu

w←{e | e is a neighbor of w on DT (Cu)}
end if
Send(w, NEIGHBOR SET REPLY(Nu

w))

On u’s expiration of NS T IMEOUT T IMERv

Cu←Cu−{v}
Update Neighbors(Cu , Nu)
for all w ∈ Nu do

Send(w, REMOVE(v, u))
end for

On u’s receiving REMOVE(v, s) from x
; v is a removed node, s is the source node of broadcast
if v ∈Cu then

Cu←Cu−{v}
Update Neighbors(Cu , Nu)
GRPB(REMOVE(v, s), s)
; s in the REMOVE message is passed to next-hop nodes
; s is also given to GRPB function to be used at this hop

end if

Fig. 6. ACE maintenance protocol at u.

than u. For a system under churn and running the maintenance

protocol, these rare cases can be repaired by the maintenance

protocol.

VI. ACCURACY METRIC FOR A SYSTEM UNDER CHURN

We define an accuracy metric as in [7], which we will use

to evaluate experiments for a system of nodes under churn. We

consider a node to be in-system from when it finishes joining

to when it starts leaving. Let DDTS be a distributed DT of

a set of in-system nodes S. (Note that some nodes may be

in the process of joining or leaving and not included.) Let

Ncorrect (DDTS) be the total number of correct neighbor entries

of all nodes and Nwrong(DDTS) be the total number of wrong

neighbor entries of all nodes on DDTS. A neighbor entry v of

a node u is correct when v is a neighbor of u on the global DT

(namely, DT (S)), and wrong when u and v are not neighbors

on the global DT. Let N(DT (S)) be the number of edges on

DT (S). Note that edges on a global DT are undirected and are

thus counted twice when compared to neighbor entries. The

accuracy of DDTS is defined as follows:

accuracy(DDTS) =
Ncorrect (DDTS)−Nwrong(DDTS)

2×N(DT (S))
.

Observation 1. The accuracy of a distributed DT is 1 if and

only if the distributed DT is correct.

Proof: (if) If the distributed DT is correct,

Ncorrect (DDTS) = 2 × N(DT (S)) and Nwrong(DDTS) = 0,

resulting in accuracy of 1.

(only if) When accuracy is 1, we have

Ncorrect (DDTS) − Nwrong(DDTS) = 2×N(DT (S)). Since

Nwrong(DDTS) ≥ 0, we get Ncorrect (DDTS) ≥ 2×N(DT (S)).
Also, Ncorrect (DDTS) ≤ 2×N(DT (S)). It then follows that

Ncorrect (DDTS) = 2×N(DT (S)) and Nwrong(DDTS) = 0. That

means the distributed DT is correct.

VII. EXPERIMENTAL RESULTS

In all experiments presented in this section, each node

has randomly generated coordinates. First, to demonstrate

effectiveness of the ACE maintenance protocol, we designed

an experiment for a system with an initial unidirectional ring

configuration. The system begins with a barely connected

graph of 100 nodes, in which each node initially knows only

one other node. That is, node pi, 1≤ i≤ 99, initially has only

pi−1 in its candidate set and its neighbor set; node p0 knows

p99. Figure 7 shows change in accuracy of the distributed DT

as the ACE maintenance protocol runs. Each curve represents

the average accuracy from 100 runs of simulation. Each

vertical bar represents the range of accuracy values from 10th

percentile to 90th percentile. Note that the ACE maintenance

protocol achieved a correct distributed DT within a few rounds

of protocol execution except in 2D.8 In 2D, eight out of 100

runs of simulation resulted in network partitioning, decreasing

the average accuracy value. To see why network partitioning

occurs, consider an initial configuration where the 100 nodes

exist as two clusters on the left and right sides of a space.

Suppose that nodes a and b are the leftmost nodes, nodes x

and y are the rightmost nodes, and the left and right clusters

are connected by only two directed edges; namely, initially a

knows x and y knows b. After the maintenance protocol runs

and a knows some nearby nodes, x is no longer a neighbor

of a on DT (Ca). Similarly, b is no longer a neighbor of y on

DT (Cy). Although x is still in Ca and b still in Cy, x and b

are not used any longer. Thus the network is partitioned into

the left and right clusters. Network partitioning did not occur

in 3D or higher dimensions, in which nodes are more densely

connected after the first round than in 2D.

Figure 8 shows communication costs of join protocols. Each

curve shows the number of messages for 100 serial joins,

increasing the system size from 200 nodes to 300 nodes, for

different dimensionalities. The ACE join protocol has much

less cost than our old join protocol, and is slightly better than

Simon et al.’s improved entity insertion algorithm.

8Each round corresponds to a 10-second period during which each node
executes the maintenance protocol once.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

A
c
c
u

ra
c
y

Round

2D
3D
4D
5D

Fig. 7. Accuracy of the ACE maintenance protocol for a system with an
initial unidirectional ring configuration.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 2 3 4 5

N
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s

Dimensionality

old join protocol
Simon et al. insertion algorithm

ACE join protocol

Fig. 8. Costs of join protocols for 100 serial joins.

Figure 9 compares communication costs of the ACE failure

protocol and Simon et al.’s improved entity deletion algorithm.

The number of messages used to recover from 100 serial

failures from 300 initial nodes is measured. Both the ACE

failure protocol and Simon et al.’s deletion algorithm use the

same probing period of 10 seconds. The ACE failure protocol

is much more efficient than Simon et al.’s improved entity

deletion algorithm.

Figure 10 shows accuracy of ACE protocols without a

maintenance protocol and Simon et al.’s improved algorithms

under system churn. (Our old protocol suite is not shown

because it does not have a failure protocol and is not usable

without a maintenance protocol.) Each curve represents the av-

erage accuracy from 100 runs of simulation. Each vertical bar

represents the range of accuracy values from 10th percentile

to 90th percentile. From a correct distributed DT of 400 initial

nodes in 3D, 100 concurrent joins and 100 concurrent failures

occur from time 10 to 110 seconds, with an average inter-

arrival time of 1 second for both joins and failures.9 In the

9By Little’s Law, for a system size of 400 nodes, the average lifetime of
a node is 400 seconds. For P2P file sharing systems, for example, this is
considered a very high churn rate [11].

 0

 50000

 100000

 150000

 200000

 250000

 2 3 4 5

N
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s

Dimensionality

Simon et al. deletion algorithm (10)
ACE failure protocol (10)

Fig. 9. Costs of failure protocols for 100 serial failures.

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 50 100 150 200

A
c
c
u

ra
c
y

Time (seconds)

Simon et al. algorithms (10)
ACE join and failure protocols (10)

Fig. 10. Accuracy without a maintenance protocol under system churn (join
and fail).

ACE failure protocol as well as Simon et al.’s entity deletion

algorithm, nodes are probed every 10 seconds. The accuracy

of the distributed DT is measured every 10 seconds. Both

the ACE join and failure protocols and Simon et al.’s entity

insertion and deletion algorithms cannot fully recover after

system churn, resulting in an incorrect distributed DT. The

results in Figure 10 demonstrate that a maintenance protocol

is really needed for a system under churn.

Figure 11 compares the accuracy of our old and ACE

protocol suites including a maintenance protocol under system

churn, where nodes join, leave, and fail concurrently. (Simon

et al.’s algorithms are not shown because they do not have a

maintenance protocol to recover from incorrect system states

during churn.) Each curve represents the average accuracy

from 100 runs of simulation. Each vertical bar represents

the range of accuracy values from 10th percentile to 90th

percentile. The scenario is similar to that of the previous

experiments except that nodes either gracefully leave or fail

 0.96

 0.97

 0.98

 0.99

 1

 0 50 100 150 200 250 300

A
c
c
u

ra
c
y

Time (seconds)

old protocol suite
ACE protocol suite

Fig. 11. Accuracy of the old and ACE protocol suites under system churn
(join, leave, and fail).

10000

100000

1000000

10000000

2 3 4 5

N
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s

Dimensionality

old protocol suite
ACE protocol suite

Fig. 12. Costs of the old and ACE protocol suites under system churn (join,
leave, and fail).

instead of all failing.10 From a correct distributed DT of 400

initial nodes in 3D, 100 joins, 50 leaves, and 50 failures occur

from time 10 to 110. The average inter-arrival time is 1 second

for joins, 2 seconds for leaves, and 2 seconds for failures.

The old maintenance protocol is run every 10 seconds. The

ACE maintenance protocol is run every 30 seconds. The ACE

failure protocol uses a probing period of 10 seconds. After

system churn stops at time 110 seconds, accuracy converges

to 100% in every experiment for both protocol suites. The

average accuracy of the ACE protocols is slightly lower than

the average accuracy of our old protocols. The ACE protocols

also take a longer time to converge to a correct distributed DT,

in part due to the use of a longer period for the maintenance

protocol (30 seconds instead of 10 seconds).

Figure 12 shows the communication costs of our old and

ACE protocol suites in the same churn experiments. Each

curve represents the average cost from 10 runs of simulation.

Each vertical bar represents the range of all values from the

10We have experimental results for the same scenario as the previous
experiments showing accuracy and cost performance of our old and ACE
protocol suites under system churn. The results are similar to those presented
in Figure 11 and Figure 12.

10 runs; the variance of these simulation results is small. The

vertical scale for number of messages is logarithmic. Note

that the ACE protocol suite provides an order of magnitude

improvement in efficiency compared to the old protocol suite.

Furthermore, the two curves diverge slightly indicating that ef-

ficiency improvement increases as the dimensionality increases

(from 2 to 5).

VIII. CONCLUSIONS

We define a distributed system model for a set S of nodes, in

which each node u maintains a set Cu of nodes it knows. Node

u determines its neighbor set Nu by calculating DT (Cu). We

prove the following basic result (Theorem 1): The distributed

DT of S is correct if and only if, for every u ∈ S, Cu includes

all neighbor nodes of u on DT (S). Theorem 1 is proved in the

appendix. Note that Cu is local information while S is global

knowledge.

We use the above correctness condition as a guide to design

a suite of protocols, named ACE, for a dynamic set of nodes

in d-dimension (d > 1) to construct and maintain a distributed

DT. The join, leave, and failure protocols in the suite are

proved to be correct for a single join, leave, and failure,

respectively. We define an accuracy metric such that accuracy

is 100% if and only if the distributed DT is correct. The ACE

suite also includes a maintenance protocol designed to recover

from incorrect system states due to concurrent event process-

ing and to improve accuracy. Experimental results show that

the ACE protocol suite is highly efficient, it maintains high

accuracy for systems under churn, and each system converges

to 100% accuracy after churning stopped.

Our experimental results show that ACE protocols are an

order of magnitude more efficient than our old protocols in [7],

which are the only other protocols that have been demonstrated

to converge to 100% accuracy after churn. There is a tradeoff,

however. During churn periods, the average accuracy of ACE

protocols is slightly (a fraction of 1%) lower than the average

accuracy of our old protocols. Also, ACE protocols provide

slower convergence due in part to the use of a longer period

for running the maintenance protocol.

APPENDIX

PROOFS OF THEOREMS AND LEMMAS

To prove Theorem 1, we first prove Lemmas A.1 – A.4.

Lemma A.1. Let S be a set of nodes. Let v∈ S be a neighbor

node of u∈ S on DT (S). Then there exists a point p in VCS(u)
such that D(p,u) < D(p,v) < D(p,w) for all w∈ S,w 6= u,w 6=
v.

Proof:

(1) Consider a point p′ on the shared facet of VCS(u) and

VCS(v).
(2) D(p′,u) = D(p′,v) < D(p′,w) for all w∈ S,w 6= u,w 6= v.

(3) Let w1 be the third closest node from p′ in S and let

∆ = D(p′,w1)−D(p′,v). Let p be the point that is ∆

4

away from p′ toward u.

(4) D(p,u) < D(p,v) < D(p,w) for all w ∈ S,w 6= u,w 6= v.

Lemma A.2. Let S be a set of nodes. If there exists a point

p in VCS(u) such that D(p,u) < D(p,v) ≤ D(p,w) for all

w ∈ S,w 6= u,w 6= v, then u,v ∈ S are neighbors of each other

on DT (S).

Proof:

(1) Consider a point p′ that moves from p toward v.

(2) D(p′,v) decreases faster than, or as fast as, D(p′,w) for

all w ∈ S,w 6= u,w 6= v.

(3) In case D(p′,v) decreases faster than D(p′,w),
D(p′,v) < D(p′,w) after p′ moves from p toward v.

(4) In the other case where D(p′,w) decreases as fast as

D(p′,v), w must be in the same direction as v from

p. In that case, D(p,v) < D(p,w). (For p, v, and w

that are on the same line, D(p,v) = D(p,w) implies

v = w.) Subsequently, D(p′,v) < D(p′,w) holds as p′

moves toward v.

(5) From (3) and (4), D(p′,v) < D(p′,w) after p′ moves

from p toward v.

(6) As p′ moves from p toward v, D(p′,v) will decrease

toward 0 while D(p′,u)≥ 0.

(7) There must be a point where D(p′,u) = D(p′,v).
(8) From (5) and (7), D(p′,u) = D(p′,v) < D(p′,w) for all

w ∈ S,w 6= u,w 6= v.

(9) Let w1 be the third closest node from p′ in S and let

∆ = D(p′,w1)−D(p′,v). Consider the hyperplane F that

includes p′ and is perpendicular to the edge uv. For all

p′′ that is on F and D(p′, p′′) <
∆

4
, D(p′′,u) = D(p′′,v)<

D(p′′,w) for all w ∈ S,w 6= u,w 6= v.

(10) VCS(u) and VCS(v) share a facet that includes p′ in (8)

and p′′ in (9).

(11) From (10), u and v are neighbors on DT (S).

Lemma A.3. Let S be a set of nodes. Let C ⊂ S, u ∈C, and

v ∈C. If v is a neighbor of u on DT (S), v is also a neighbor

of u on DT (C).

Proof:

(1) Since v is a neighbor of u on DT (S), by Lemma A.1,

there exists a point p where D(p,u) < D(p,v) < D(p,w)
for all w ∈ S,w 6= u,w 6= v.

(2) Since C ⊂ S, D(p,u) < D(p,v) < D(p,w) for all w ∈
C,w 6= u,w 6= v.

(3) By Lemma A.2, v is a neighbor of u on DT (C).

Lemma A.4. Let S be a set of nodes, u ∈ S and u ∈Cu ⊂ S.

Assume that Cu includes all neighbor nodes of u on DT (S). If

v∈Cu is a neighbor of u on DT (Cu), then v is also a neighbor

of u on DT (S).

Proof: Our proof is by contradiction.

(1) v ∈Cu is a neighbor of u on DT (Cu).
(2) Suppose that v is not a neighbor of u on DT (S).
(3) From (1) and Lemma A.1, there exists a point p in

VCCu(u) such that D(p,u) < D(p,v) < D(p,w) for all

w ∈Cu,w 6= u,w 6= v.

(4) From (2), (3), and Lemma A.2, there exists at least one

node x ∈ S,x 6∈ Cu,x 6= u,x 6= v that satisfies D(p,x) <

D(p,v).
(5) Let x1, ...,xk,k ≥ 1 be the nodes each of which satisfies

the condition in (4). Without loss of generality, let

D(p,x1)≤ D(p,x2)≤ ...≤ D(p,xk).
(6) From (3) – (5), we have D(p,x1) ≤ D(p,x2) ≤ ... ≤

D(p,xk) < D(p,v) ≤ D(p,w) for all w ∈ S,w 6= u,w 6=
v,w 6= xi,1≤ i≤ k.

(7) Consider a node w ∈ S,w 6= u,w 6= v,w 6= xi,1 ≤ i ≤
k. From (6), D(p,v) ≤ D(p,w). From (3), D(p,u) <

D(p,v). Thus, for all w ∈ S,w 6= u,w 6= xi,1 ≤ i ≤ k,

D(p,u) < D(p,w).
(8) We show below that in all possible cases, there exists a

node xi,1≤ i≤ k that is a neighbor of u on DT (S).
(9) Since xi 6∈Cu, it is contradictory to the assumption that

Cu includes all neighbor nodes of u on DT (S). Therefore

v is a neighbor of u on DT (S).

Justification of step (8) in above proof: Recall that, from

(6) and (7), for all w ∈ S,w 6= u,w 6= xi,1 ≤ i ≤ k, D(p,u) <

D(p,w), and D(p,xi) < D(p,w) for 1≤ i≤ k.

Comparing D(p,u) and D(p,x1), there can be three cases:

D(p,u) < D(p,x1) (case A), D(p,u) = D(p,x1) (case B), and

D(p,x1) < D(p,u) (case C).

Case A. D(p,u) < D(p,x1).
From (6) above, we have D(p,u) < D(p,x1) ≤ D(p,w) for

all w ∈ S,w 6= u,w 6= x1. By Lemma A.2, x1 is a neighbor of

u on DT (S).
Case B. D(p,u) = D(p,x1).
Let h be the largest integer such that D(p,x1) = D(p,xi),1≤

i ≤ h ≤ k. Let w1 be a node such that w1 ∈ S,w1 6= u,w1 6=
xi,1 ≤ i ≤ h, D(p,w1) ≤ D(p,w) for all w ∈ S,w 6= u,w 6=
w1,w 6= xi,1 ≤ i≤ h.

From (6), we have D(p,u) = D(p,x1) = ... = D(p,xh) <

D(p,w1) ≤ D(p,w) for all w ∈ S,w 6= u,w 6= w1,w 6= xi,1 ≤
i≤ h.

(1) Let ∆ = D(p,w1)−D(p,x1). Consider a point p′ that is
∆

4
away from p toward u.

(2) Then D(p′,u) < D(p′,xi) < D(p′,w),1 ≤ i ≤ h, for all

w ∈ S,w 6= u,w 6= xi,1 ≤ i≤ h.

(3) Let x′ be xi with smallest D(p′,xi),1 ≤ i≤ h. Then we

have D(p′,u) < D(p′,x′) ≤ D(p′,w) for all w ∈ S,w 6=
u,w 6= x′. This is case A with p′ replacing p and x′

replacing x1, which has been proved.

Case C. D(p,u) < D(p,x1).
Let h be the largest integer such that D(p,xi) < D(p,u),1≤

i≤ h≤ k. From (6), we have D(p,xi) < D(p,u)≤D(p,w) for

all w ∈ S,w 6= u,w 6= xi,1 ≤ i≤ h.

(1) Consider a point p′ that moves from p toward u.

(2) D(p′,u) decreases toward 0 faster than or as fast as

D(p′,w) for all w ∈ S,w 6= u.

(3) We still have D(p′,u)≤D(p′,w) for all w∈ S,w 6= u,w 6=
xi,1≤ i≤ h.

(4) D(p′,xi) > 0 for all xi,1 ≤ i≤ h.

(5) There must be a point where for some x′ = xi,1≤ i≤ h,

D(p′,u) = D(p′,x′)≤ D(p′,w) for all w ∈ S,w 6= u,w 6=
x′. This is case B with p′ replacing p and x′ replacing

x1, which has been proved.

Theorem 1 (Correctness Condition). Let S be a set of nodes

and for each node u ∈ S, u knows Cu, such that u ∈Cu ⊂ S.

The distributed DT of S is correct if and only if, for every

u ∈ S, Cu includes all neighbor nodes of u on DT (S).

Proof: Let Nu, u ∈ S be the set of u’s neighbor nodes on

DT (Cu).
(only if) Suppose that Cu does not include a node v that is

a neighbor node of u on DT (S). Clearly, Nu cannot include v

and the distributed DT is not correct.

(if) Suppose that for every u ∈ S, Cu includes all neighbor

nodes of u on DT (S). We show that v ∈ S is a neighbor of u

on DT (Cu) if and only if v is a neighbor of u on DT (S).

(1) (if) Consider a neighbor v of u on DT (S). Since Cu ⊂ S,

by Lemma A.3, v is a neighbor of u on DT (Cu).
(2) (only if) Consider a neighbor v of u on DT (Cu). By

Lemma A.4, v is a neighbor of u on DT (S).

To prove Lemma 1, we first prove Lemmas A.5 and A.6.

Lemma A.5. Let S′ = S
⋃
{n} and u be a closest node to n in

S. Then u is a neighbor of n on DT (S′).

Proof:

(1) n is in VCS(u), since u is a closest node to n (by

Definition 1).

(2) D(n,n) = 0 < D(n,u) ≤ D(n,w), for all w ∈ S′,w 6=
n,w 6= u.

(3) By Lemma A.2, u is a neighbor of n on DT (S′).

Lemma A.6. Let n denote a new joining node, S be a

set of existing nodes, and S′ = S
⋃
{n}. Suppose that the

existing distributed DT of S is correct and no other node

joins, leaves, or fails. Let x be a node to which n sends a

NEIGHBOR SET REQUEST. Then x is a neighbor of n on

DT (S′).

Proof:

(1) In the ACE join protocol, x can be either a node in S

that is closest to n (in step 1 of join protocol execution

loop) or a neighbor of n on DT (Cn) (in step 6 of the

loop).

(2) In the former case, by Lemma A.5, x is a neighbor of n

on DT (S′).
(3) In the latter case, a node in DT (Cn) may be n, a

closest node to n, or a node received in a NEIGH-

BOR SET REPLY from an existing node. Since n does

not send a NEIGHBOR SET REQUEST to itself and

given Lemma A.5, we only need to consider the last case

where node x is received in a NEIGHBOR SET REPLY

from an existing node, say w.

(4) At the beginning of the join process, since the existing

distributed DT of S is correct, Cw includes all neighbors

of w on DT (S).
(5) After w receives a NEIGHBOR SET REQUEST from

n, Cw will include n, and thus Cw will include all

neighbors of w on DT (S′).
(6) w includes x in a NEIGHBOR SET REPLY only when

x, n, and w are in the same simplex, denoted by T , on

DT (Cw).
(7) We next show that T exists on DT (S′). Our proof is by

contradiction. Suppose T does not exist on DT (S′).
(8) Then the space of T on DT (S′) is occupied by different

simplexes. Let T ∗ be such a simplex that includes w.

Let y1, ...,yd be the other nodes in T ∗, where d denotes

dimensionality of the space. That is, w,y1, ...,yd are

neighbors of one another on DT (S′).
(9) From (5), Cw includes y1, ...,yd . From (8) and

Lemma A.3, w,y1, ...,yd are neighbors of one another

on DT (Cw). Thus T ∗ also exists on DT (Cw), which

contradicts (6) because T and T ∗ overlap and cannot

co-exist on DT (Cw).
(10) From (9), T exists on DT (S′), which means that x is a

neighbor of n on DT (S′).
(11) From (2) and (10), x is a neighbor of n on DT (S′) in

all cases.

Lemma 1. Let n denote a new joining node, S be a set of

existing nodes, and S′ = S
⋃
{n}. Suppose that the existing

distributed DT of S is correct and no other node joins, leaves,

or fails. Let T be a simplex that includes n on DT (Cn) at

some time during the ACE join protocol execution and does

not exists on DT (S′). Let x 6= n be a node in T . Suppose that n

sends a NEIGHBOR SET REQUEST to x. After n receives a

NEIGHBOR SET REPLY from x, T is removed from DT (Cn).

Proof:

(1) Since the existing distributed DT of S is correct, Cx

includes all neighbors of x on DT (S).
(2) After x receives a NEIGHBOR SET REQUEST from n,

Cx will include n, and thus Cx will include all neighbors

of x on DT (S′).
(3) Consider the space that T occupies on DT (Cn).
(4) Since T does not exist on DT (S′), the space is occupied

by two or more different simplexes on DT (S′). Let T ∗

be one of these simplexes that includes both n and x.

Such T ∗ exists because, from Lemma A.6, n and x are

neighbors on DT (S′).
(5) Let d denote dimensionality of the space. There are d−1

other nodes in T ∗, which are mutual neighbors of n and

x on DT (S′), and, by Lemma A.3, on DT (Cx) as well.

(6) These d − 1 nodes are included in the NEIGH-

BOR SET REPLY message from x to n.

(7) When n receives the NEIGHBOR SET REPLY mes-

sage, the d−1 nodes are included in Cn and, by (5) and

Lemma A.3, become neighbors of n on DT (Cn).
(8) As a result, T ∗ is created on DT (Cn). This means T ,

which overlaps with T ∗, is removed from DT (Cn).

Lemma 2. Let n denote a new joining node, S be a set of

existing nodes, and S′ = S
⋃
{n}. Suppose that the existing

distributed DT of S is correct, no other node joins, leaves, or

fails, and n joins using the ACE join protocol. Then the ACE

join protocol finishes, and Cn includes all neighbor nodes of

n on DT (S′).

Proof:

(1) Consider a neighbor v of n on DT (S′). We show that

v will be included in Cn when the ACE join protocol

finishes.

(2) At step 4 of the protocol execution loop, n has some

nodes in Cn and calculates DT (Cn).
(3) Suppose that at this time of protocol execution, v is not

yet included in Cn. Consider the straight line l from n

to v.

(4) Let T be the first simplex on DT (Cn) that l crosses.

Such a simplex exists because v is not yet a neighbor of

n on DT (Cn). Note that T includes n.

(5) Let the other nodes of T be x1,x2, ...,xd , where d denotes

dimensionality of the space.

(6) By Lemma 1, the existence of T at this time implies

that n has not yet received a NEIGHBOR SET REPLY

message from any node in T .

(7) Either T includes a node xi,1 ≤ i ≤ d in N
queried
n or T

does not include any node in N
queried
n . In the former case,

n has sent a NEIGHBOR SET REQUEST to xi and will

receive a NEIGHBOR SET REPLY message from xi.

In the latter case, at step 5 of the protocol execution

loop, n will send a NEIGHBOR SET REQUEST to a

node x j,1 ≤ j ≤ d in T and will receive a NEIGH-

BOR SET REPLY message from x j. In each case, when

n receives the NEIGHBOR SET REPLY message, by

Lemma 1, T is removed from DT (Cn) in step 4 of the

protocol execution loop.

(8) Afterwards, if v is still not a neighbor of n on DT (Cn)
and l crosses another simplex on DT (Cn), protocol

execution continues and the above process described in

(3) – (7) repeats.

(9) This process finishes in a finite number of iterations

since the number of nodes in S is finite and the number

of simplexes in S is also finite.

(10) When there is no simplex that l crosses on DT (Cn), l is

an edge on DT (Cn), and v is included in Cn.

Theorem 2. Let n denote a new joining node, S be a set

of existing nodes, and S′ = S
⋃
{n}. Suppose that the existing

distributed DT of S is correct, no other node joins, leaves,

or fails, and n joins using the ACE join protocol. Then the

ACE join protocol finishes, and the updated distributed DT is

correct.

Proof: By Lemma 2, the join process finishes, and

Cn will include all of its neighbor nodes on DT (S′). In

addition, whenever n discovers a neighbor node v during

the process, n sends either NEIGHBOR SET REQUEST or

NEIGHBOR NOTIFICATION message to v so that v adds n

to Cv. Since the candidate sets of all existing nodes as well as

the joining node are correctly updated, the updated distributed

DT is correct by Theorem 1.

Lemma 3. Let S be a set of nodes and S′ = S−{u}. Let v be

a neighbor node of u on DT (S). If w is a neighbor node of v

on DT (S′), then w is a neighbor node of v on DT (S) or w is

a neighbor node of u on DT (S).

Proof: Since w is a neighbor of v on DT (S′), by

Lemma A.1, there exists a point p such that D(p,v) <

D(p,w) < D(p,x), for all x ∈ S′,x 6= v,x 6= w.

Case A) D(p,w) < D(p,u).

(1) Since S = S′∪{u}, we have D(p,v) < D(p,w) < D(p,x)
for all x ∈ S,x 6= v,x 6= w.

(2) By Lemma A.2, v and w are neighbors on DT (S).

Case B) D(p,u)≤ D(p,w).

(1) Consider a point p′ that moves from p toward w.

(2) D(p′,w) decreases toward 0 faster than or as fast as

D(p′,x), for all x ∈ S,x 6= w, as p′ moves toward w.

(3) D(p′,u)≥ 0 and D(p′,v)≥ 0.

(4) There must be a point where D(p′,w) becomes smaller

than either D(p′,u) or D(p′,v). That is, D(p′,v) <

D(p′,w) < D(p′,u) < D(p′,x) or D(p′,u) < D(p′,w) <

D(p′,v) < D(p′,x), for all x ∈ S,x 6= u,x 6= v,x 6= w.

(5) From (4) and Lemma A.2, v and w are neighbors on

DT (S) or u and w are neighbors on DT (S).

Theorem 4. Let S be a set of nodes with a correct distributed

DT. Suppose that a node u∈ S fails and its failure is detected

by its monitor node mu ∈ S, which then executes the ACE

failure protocol. Assume that there is no other join, leave, or

failure. Then the ACE failure protocol finishes, and the updated

distributed DT is correct.

Proof: The ACE failure protocol finishes since it does

not contain any loop after detection of a failure. In the

monitor node, PING T IMEOUT TIMERu has expired and

FAILURE TIMERu is canceled. The monitor node sends

out a FAILURE message only once to each node in the

contingency plan of u. The DELETE(u) message is forwarded

by a node x to another node y only if distance D(y,u) is larger

than distance D(x,u). Thus the DELETE(u) message is not

forwarded in a cycle, and its propagation finishes.

We next show that the updated distributed DT is correct.

Let S′ = S−{u}. Consider a node v ∈ S′ and its candidate set

Cv. The following case A shows that if v is not a neighbor of

u on DT (S), then v is not affected by the failure of u. Case

B shows that if v is a neighbor of u on DT (S), v will receive

enough information from mu to correctly update its candidate

set.

Case A) v is not a neighbor of u on DT (S). Consider a node

w ∈ S′,w 6= v. Since S′ = S−{u} and u is not a neighbor of v,

S′ includes all neighbors of v on DT (S). If w is a neighbor of v

on DT (S′), w is also a neighbor of v on DT (S) by Lemma A.4.

If w is a neighbor of v on DT (S), w is also a neighbor of v

on DT (S′) by Lemma A.3. Therefore the neighbors of v on

DT (S) are the same as the neighbors of v on DT (S′). Since

only u is removed from Cv by the ACE failure protocol, Cv has

all neighbors of v on DT (S′), and v is not affected by failure

of u.

Case B) v is a neighbor of u on DT (S). Consider a node

w ∈ S′,w 6= v. If w is a neighbor of v on DT (S′), by Lemma 3,

either w is already in Cv or w was a neighbor of u on DT(S).

In the latter case, u’s monitor node will notify v that w is its

neighbor. In each case, Cv will include w. Therefore Cv will

include all neighbor nodes of v on DT (S′).
From cases A and B, for each node v ∈ S′, Cv includes all

neighbor nodes of v on DT (S′). In addition, Cv ⊂ S′ since u is

removed from Cv by propagation of FAILURE and DELETE

messages. Therefore by Theorem 1, the updated distributed

DT is correct.

REFERENCES

[1] P. Bose and P. Morin, “Online routing in triangulations,” SIAM Journal

on Computing, vol. 33, no. 4, pp. 937–951, 2004.
[2] B. Delaunay, “Sur la sphère vide,” Izv. Akad. Nauk SSSR, Otdelenie

Matematicheskii i Estestvennyka Nauk, vol. 7, pp. 793–800, 1934.
[3] H. Edelsbrunner, “Incremental topological flipping works for regular

triangulations,” Algorithmica, vol. 15, no. 3, pp. 223–241, 1996.
[4] P. M. Gruber and J. M. Wills, Handbook of convex geometry. North-

Holland, 1993.
[5] D.-Y. Lee, E. K. Chung, and S. S. Lam, “A radius geocast routing pro-

tocol,” in Proc. of IEEE International Conference on High Performance

Computing and Communications, Dalian, China, September 2008.
[6] D.-Y. Lee and S. S. Lam, “Protocol design for dynamic Delaunay tri-

angulation,” The Univ. of Texas at Austin, Dept. of Computer Sciences,
Tech. Rep. TR-06-48, October 2006.

[7] ——, “Protocol design for dynamic Delaunay triangulation,” in Proc.

of IEEE International Conference on Distributed Computing Systems,
Toronto, Ontario, Canada, June 2007.

[8] J. N. Liebeherr, M. Nahas, and W. Si, “Application-layer multicasting
with Delaunay triangulation overlays,” IEEE Journal on Selected Areas

in Communications, vol. 20, no. 8, pp. 1472–1488, 2002.
[9] T. S. E. Ng and H. Zhang, “Predicting Internet network distance with

coordinates-based approaches,” in Proceedings of IEEE Infocom, New
York City, New York, USA, June 2002.

[10] M. Ohnishi, R. Nishide, and S. Ueshima, “Incremental construction of
Delaunay overlaid network for virtual collaborative space,” in Proc.
of the third International Conference on Creating, Connecting and

Collaborating through Computing, Kyoto, Japan, January 2005, pp. 75–
82.

[11] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A measurement study
of peer-to-peer file sharing systems,” in Proc. of Multimedia Computing

and Networking, San Jose, California, USA, January 2002.
[12] G. Simon, M. Steiner, and E. Biersack, “Distributed dynamic Delaunay

triangulation in d-dimensional spaces,” Institut Eurecom, Tech. Rep.,
August 2005.

[13] M. Steiner and E. Biersack, “A fully distributed peer to peer structure
based on 3D Delaunay Triangulation,” in Proc. of Septièmes rencontres
francopohones sur les aspects Algorithmiques des Télécommunications

(AlgoTel), Presqu’ı̂le de Giens, France, May 2005.
[14] G. Voronoı̈, “Nouvelles applications des paramètres continus à la théorie

des formes quadratiques,” J. Reine Angew. Math, vol. 134, pp. 198–287,
1908.

[15] D. F. Watson, “Computing the n-dimensional Delaunay tessellation with
application to Voronoi polytopes,” The Computer Journal, vol. 24, no. 2,
pp. 167–172, 1981.

Corrigenda

Dong-Young Lee and Simon S. Lam, “Efficient and Accurate Protocols for Distributed Delaunay
Triangulation under Churn,” in Proceedings of IEEE ICNP, October 2008.

1. The pseudocode of node u when it has received a NEIGHBOR_SET REQUEST from w is the

following instead of the pseudocode shown in Figure 3 for the join protocol and in Figure 6 for the
maintenance protocol.

On u’s receiving NEIGHBOR_SET REQUEST from w
 if wCu then
 Cu ← Cu {w}
 Nu ← neighbor nodes of u in DT(Cu)
 end if
 Nw

u ← {e | e is a neighbor of w in DT(Cu)}
 Send(w, NEIGHBOR_SET_REPLY(Nw

u))

2. The proof of Theorem 2 requires the following unstated assumption: The joining node n is inside the

convex hull of the set S of existing nodes. If this assumption is not satisfied, then the joining node
should send neighbor-set requests to all new neighbors it discovers instead of just one neighbor in
each simplex including n in DT(Cn). That is, the join protocol in technical report TR-06-48
(Department of Computer Science, The University of Texas at Austin, October 2006) should be used.

