
Orc-X: Combining Orchestrations and XQuery
(work in progress)

Kristi Morton David Kitchin William Cook
University of Texas at Austin

{kmorton, dkitchin, wcook}@cs.utexas.edu

Abstract
In designing a language for distributed computing, the handling
of data and distribution can be viewed as largely orthogonal con-
cerns, as long as the data model supports the communication re-
quirements of the distribution model. This view contrasts strongly
with approaches based on distributed objects, which typically en-
force a tight coupling of state and behavior. We have previously
presented Orc, a language that provides simple but powerful con-
structs to orchestrate distributed computations. Previous versions of
Orc included only simple data types, since these were sufficient to
demonstrate the concurrency primitives. However, Orc’s commu-
nication model is based on web services, which support complex
XML documents in addition to simple data types. Thus it is natural
to consider XML as an appropriate data model for Orc. We present
Orc-X, an extension of the Orc language with an XML data model
and XML-specific data management capabilities from XQuery. We
demonstrate that Orc-X is well-suited for the application domain
of distributed resource management protocols such as the Narada
mesh overlay protocol.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Distributed programming

General Terms Languages, Design

Keywords XQuery, Orc, orchestration, Narada

1. Introduction
Modern applications increasingly require support for concurrent
computation and management of complex, distributed data. For
example, the emerging area of grid computing has led to increasing
focus on applications that manage distributed resources to create
overlay networks or other network services. These applications
must be resilient to failure of nodes and communication. Such
applications operate in a dynamic environment, in which nodes
join and leave the network. They should also support evolution,
by allowing a single node to be upgraded without bringing down
the complete network. Current programming languages and models
do not facilitate building these kinds of distributed data-oriented
applications.

The Orc language is a domain-specific language that targets
applications with distributed and concurrent computations. Orc’s

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Technical Report TR-07-63
Copyright c© The University of Texas at Austin, Department of Computer Sciences,
2007. Research Scientists: Kristi Morton, David Kitchin and William Cook.

combinators aggregate invocations of services into orchestrated,
structured concurrent programs. Structured concurrency [14] disal-
lows arbitrary message passing and constrains communication and
synchronization, in the same way that structured programming [8]
disallows arbitrary jumps and constrains program control flow. Be-
cause of these restrictions, Orc’s combinators obey strong algebraic
laws, and Orc programs are easier to reason about locally.

The original design of the Orc language focused on concur-
rency constructs and included only basic scalar data types. The data
model was considered orthogonal to the main intent of Orc, which
is concurrency and communication. However, without a data model
it is difficult to write large applications or interface with complex
services. We have chosen to extend Orc by embedding support for
the XML [5] data model. XML has proven to be a robust data model
for communication in many wide-area systems by supporting com-
plex structured data models that can be extended as the system
evolves. Since Orc is a communication-centric language, the in-
ternal data model should fit well with the communication model.
Furthermore, Orc’s intended use is in orchestrating web services,
which rely on XML for messaging and representing data content.
Finally, XML is a natural fit for Orc because it is easy to serialize
and ship XML data across a network.

We present Orc-X, an extension of the Orc programming lan-
guage which enhances structured concurrency compositions from
Orc [18] with XML data and XQuery processing. XQuery [3] is a
declarative query language for XML-based applications. XQuery
leverages XML for representing semi-structured data as well as ef-
ficiently querying XML data.

We demonstrate Orc-X by showing an example implementa-
tion of the Narada overlay protocol. This distributed protocol en-
tails sending periodic, asynchronous messages around an overlay
network for managing its structure. The structure of the overlay
network is encoded in the node-local state, which includes neigh-
bor and group memberships as well as routing tables. This infor-
mation is naturally represented in XML and we leverage XQuery
to query and manage the semi-structured XML data at each node.
Furthermore, since the Narada protocol sends concurrent messages
that probe for changes to the overlay network, Orc-X is well-suited
to orchestrate the concurrent invocation of these messages, while
managing time-outs and communication failures that inevitably
arise in distributed environments. Finally, the Narada implemen-
tation demonstrates the potential of Orc’s combinators, which con-
cisely and elegantly express distributed computations.

Organization The rest of this proposal is organized as follows.
Section 2 presents an introduction to Orc, XQuery and Narada.
Section 3 presents an introduction to the language concepts of Orc-
X and section 4 discusses our Narada implementation. Section 5
presents related work and section 6 discusses the challenges in
combining Orc with XQuery as well as the interesting future chal-
lenges of Orc-X in other application domains.

2. Background
2.1 Orc
Orc is an executable process calculus that expresses structured con-
currency. There are three main operators for composing expres-
sions: parallelizing, sequencing and selective pruning. In Orc, sites
are responsible for performing data operations such as computa-
tion and communication. A site call can represent a function call or
web service invocation, for example, and may return at most one
result. If it never returns a result, we say it is silent. In the follow-
ing examples we use the site call Weather(ac) as a web service
that provides weather forecasts for the given airport code ac, and
the site call Email(a,m) as a function that sends a message m to
address a.

The sequential composition defines an ordering between two
expressions, written as: f >x> g or simply f >> g. The x in the
first sequential composition is bound to the value published by f,
while the second sequential composition has no variable binding.
The following example invokes the Weather web service, binds
the result to a message m and e-mails the message to address a.

Weather("AUS") >m> Email(a,m)

The parallel composition allows two expressions f and g to be
composed as: f | g. Here f and g are treated as independent com-
putations and executed asynchronously in parallel. Upon termina-
tion of both expressions there may be up to two results published.
The results are published as soon as a computation terminates, and
no result is published if the computation never terminates. In the
following example there could be zero, one or two weather reports
published depending on the responsiveness of the Weather services
for Austin and Barcelona. Upon each publication Orc will create a
new thread for invoking Email with m bound to the published web
report within the scope of the new thread.

(Weather("AUS") | Weather("BCN")) >m> Email(a,m)

The asymmetric parallel composition is used for selective prun-
ing, which is written as f where x in g. This construct starts ex-
ecuting f and g in parallel. Any subexpression within f that is de-
pendent upon x will suspend executing until x has a value bound.
When g has published a value, x is bound to the result and any
subexpressions within g that are still executing are terminated. In
the following example we approximate the weather in Texas by se-
lecting the first response from any of the major cities.

Email(a,m) where m in
(Weather("IAH") | Weather("DFW") | Weather("SAT"))

Orc defines several fundamental sites for key programming
constructs. The site let(x,y,· · ·) will explicitly publish a tuple
of values. In contrast, the site Signal causes the publication of a
signal with no data value. As with any publication this can be used
to trigger a sequence of operations. The site Rtimer(t) publishes
a signal after t time units. The site if(b) publishes a signal when
b is true, but remains silent otherwise. The following example
demonstrates the use of signaling in a sequence.

if(Weather.isHumid("IAH")) >> Email(a, "Dress lightly")

Additionally Orc allows expressions to be defined with a name
and optionally with parameters using def. An expression can be
invoked much like a site, however it may publish any number
of values. The following example defines a Metronome expres-
sion that will publish a signal every unit of time, indefinitely. The
Metronome invocation is sequenced into a request for a weather
report, causing the recipient to receive regularly timed updates.

def Metronome =
Rtimer(1) >> Signal | Metronome

def WeatherUpdates(ac) =
Metronome >> Weather(ac) >m> Email(a,m)

The Orc operators are arranged in increasing order of prece-
dence as: def, where, |, >x>. The operator >x> is right-
associative, the operator where is left-associative, and the operator
| is fully associative and commutative.

2.2 Examples
Fork-join Parallelism
In concurrent programming, one often needs to spawn two indepen-
dent threads at a point in the computation, and resume the compu-
tation after both threads complete. Such an execution style is called
fork-join parallelism. There is no special construct for fork-join in
Orc, but it is easy to code such computations. The following code
fragment calls sites M and N in parallel and publishes their values as
a tuple after they both complete their executions.

(let(u,v) where u in M) where v in N

Time-out
Distributed resource management protocols interact in environ-
ments that exhibit dynamic behavior. For example, a ping request
to a remote peer may not return a result if the peer’s communica-
tion link is down. We show in section 4 how time-outs are used to
mitigate this problem. Because Orc has time built into its seman-
tics [20], it is easy to express time-outs. The expression

let(z) where z in (f | Rtimer(t) >> let(3))

either publishes the first publication of f, or times out after t
units and publishes 3. A typical programming paradigm is to call
site M and publish a pair (x,b) as the value, where b is true if M
publishes x before the time-out, and false if there is a time-out. In
the latter case, x is irrelevant. Below, z is the pair (x,b).

let(z) where z in
(M >x> let(x,true) | Rtimer(t) >x> let(x,false))

Non-strict Evaluation; Parallel-or
Parallel-or is a classic problem in non-strict evaluation: computa-
tion of x∨ y over booleans x and y publishes true if either variable
value is true; therefore, the evaluation may terminate even when
one of the variable values is unknown. Here, we state the problem
in Orc terms, and give a simple solution.

Suppose sites M and N publish booleans. Compute the parallel-
or of the two booleans, i.e., (in a non-strict fashion) publish true as
soon as either site returns true and false only if both sites return
false. In the following solution, site or(x,y) returns x ∨ y. Site
if(b) returns true if b is true; it does not respond otherwise.

let(z) where z in
(if(x) | if(y) | or(x,y)

where x in M
where y in N)

Sequences
Orc does not have a primitive notion of structured data. However,
it is easy to use sites to simulate many structured data needs. For
example, consider a site that represents a set of items; each call to
the site publishes one value from that set that it has not previously
published. When there are no more items left in the set, calls to the
site remain silent. We call such a site a sequence.

We can define a recursive expression forall that will publish
all of the values in the sequence:

def forall(S) = S >v> (let(v) | forall(S))

Notice that this definition of sequence allows us to easily inter-
face with unbounded data streams. For example, we can take a site
listener, which listens for incoming network traffic, treat it as a
sequence, and stream its publications to some other expression as
they arrive.

forall(listener) >packet> Process(packet)

Sometimes, we will need to iterate over a sequence, perform an
operation on each item, and wait for all such operations to complete
before proceeding. This is a generalization of the fork-join example
shown earlier. This operation only makes sense for finite sequences,
so we assume the existence of an additional site more?(S) which
returns true if the sequence S has more items, or false otherwise.
Note that sites and expressions are first-class values in Orc, so we
can take the operation oper as a parameter and then invoke it on a
data item.

def foreach(S, oper) =
if (more) >>

S >item>
(let(this, rest) >> Signal

where this in oper(item)
where rest in foreach(S, oper))

| if (!more) >>
Signal

where more in more?(S)

2.3 XQuery
XQuery is a declarative query language that provides full lan-
guage support for manipulating and querying XML data. It lever-
ages XPath 2.0 expressions to efficiently navigate XML’s tree-
structured data. In our implementation, we use XQuery 1.0 with
update semantics [6] to support mutable XML data. Although we
have support for the complete XQuery 1.0 specification, we inten-
tionally avoid using FLWOR expressions in our implementation of
the Narada protocol. FLWOR is traditionally used for iterating over
XML data. In our Narada example in section 4, iterators are con-
structed with sequence sites.

2.4 Narada
Narada is a distributed, asynchronous, self-organizing protocol for
managing the structure of an overlay network. This infrastructure is
used for routing and end-system multicast purposes [7]. The over-
lay network contains small groups of participants (i.e. end systems)
which adapt to changes to the group structure. In the protocol, net-
work latencies determine the immediate connections to neighbor
nodes. In order to ensure that neighbor latency information is cur-
rent, each peer in the overlay network periodically pings its imme-
diate neighbors. For example, if a node sends a ping message to
a new neighbor then the address of the new neighbor is added to
the calling node’s local neighbor table. Additionally, routing mes-
sages are sent to peers in the member group to ensure current laten-
cies and to determine shortest paths. The routing algorithm ensures
that relatively long latency paths are replaced by shorter more di-
rect paths, which is essential to maintaining fast network multicast
and unicast. Finally, the Narada protocol requires a peer to period-
ically send refresh messages to its neighbors, which ensures that
all neighbors have the latest information about the peer’s status in
the overlay network. By sending remote messages and sharing the
local member table with each node’s neighbors, each peer gets a
greater view of the network.

3. Orc-X Overview
The Orc-X language combines Orc with XML and XQuery. Orc
is the master language, which manages all control flow and data
flow. XQuery expressions are embedded inside of Orc expressions
to manage the data in our XML data model using queries and up-
date operations. In this section, we discuss the syntax and semantics
of Orc-X as an extension of Orc. Orc-X is a prototype for a gen-
eral approach to embedding both application-specific and general-
purpose languages within Orc.

3.1 Syntax and semantics
As demonstrated in the examples that follow, Orc and XQuery dif-
fer syntactically. Rather than add the syntactic elements of XQuery
directly into the Orc grammar, which would complicate parsing and
would not represent a general solution to embedding languages in
Orc, we instead isolate XQuery syntax from Orc syntax. Orc-X in-
troduces a new base expression {e} into Orc, where e is an XQuery
expression. e is open; it may contain free variables that are not de-
fined within the expression itself. Those free variables correspond
to Orc variables in the scope surrounding the expression.

An embedded XQuery expression may run when all of its free
variables have been bound. It executes the corresponding XQuery
code, substituting the values of the bound variables into the query.
An XQuery evaluation completes by publishing a sequence, as
defined in the XPath data model [11]. We use the techniques shown
in Section 2.2 to manipulate sequences in Orc.

3.2 Encoding of Orc-X into Orc
Rather than extending the core semantics of Orc to handle XQuery
evaluation, we instead express executions of XQuery expressions
by encoding them as site calls.

For each embedded expression {e}, we define a new site call
M(x). The site M executes the operations corresponding to the
query. The arguments to M are the values which will be substituted
for each free variable in that expression. For sake of consistency,
the variable names x used in Orc are the same names that appear in
the XQuery code.

For example, suppose we are writing an Orc program to exam-
ine a bug database written in XML, referenced by the Orc variable
tracker. We want to query that XML data for any bug records
whose priority exceeds n, another Orc variable. We write the Orc-
X expression:

{ $tracker/bugs/[@priority > $n] } >S> Report(S)

This encodes into Orc as an invocation of a site M, where M(v,w)
evaluates the XQuery expression v/bugs/[@priority > w].
This encoding results in the Orc expression:

M(tracker, n) >S> Report(S)

This encoding strategy gives Orc-X the full expressive power of
XQuery with no changes to the original semantics of Orc.

4. Implementing Narada with Orc-X
In this section, we summarize our implementation of the Narada
protocol in Orc-X. This is by no means an exhaustive study of
Orc-X’s complete capabilities; it should be viewed as a work in
progress.

4.1 Network primitives
Currently, in order to build distributed Orc applications, Orc ex-
pressions execute locally at each network node and communicate
with each other via a network model based on site calls. We assume
the existence of a small set of sites for managing network capabili-
ties. This allows us to abstract away particular network details, and

makes simulations easier. Each node on a network has a string de-
scribing its address; these addresses are used as parameters to the
network sites. The three network sites we assume are as follows:

ping(addr) publishes the network round-trip time from the
current machine to the machine with address addr; if that machine
is down or unavailable, this site remains silent.

send(addr,data) serializes the data item data and sends it
to the machine with address addr. The data can be of any type; in
practice, our implementation example uses XML messages. send
is asynchronous, so it publishes a signal as soon as the data is sent,
regardless of when or whether it is received.

receive() publishes any one waiting data item that has been
sent to this machine.

Extending Orc with XML data makes network applications
easier to write, since it is easier to construct, serialize, and examine
complex messages. These simple network capabilities, together
with the XML handling capabilities of Orc-X, are all that we
need in order to implement complex network applications, such
as the Narada protocol. Throughout the implementation of the
Narada protocol, nodes send information in their local tables to
other nodes; they do so by sending XML messages containing
this information using these network operations, and listening for
incoming XML messages from other machines.

4.2 Implementing the Narada protocol
We implement the Narada protocol as an Orc expression definition

def Narada(data, self, neighborSet) = ...

data is a reference to a fresh XML document for this node’s
state. self is the machine address for this node. neighborSet is
the sequence of addresses for the immediate neighbors of this node.

Core protocol
The core expression defining the entire protocol is simply

initialization >>
(listen_for_messages
| refresh_metronome
| latency_metronome
| neighbor_metronome
| routing_metronome)

The initialization expression prepares the local data
for use in the protocol, and publishes a signal only when this
preparation is complete. Then, in parallel, the node begins to
listen for messages from other nodes, and also begins to send
four different types of protocol messages at regular intervals.

Initialization
We initiate the algorithm by installing initial values in the empty
XML document given by data. The initial member and routing
tables are empty except for a self entry for this node’s own address.
An iteration over the neighborSet populates the initial neighbors
table, using a helper function addNeighbor. Notice that we use
the fork-join idiom to represent the fact that neighbor and member
initializations are independent of each other and may occur in
parallel. The power of inlined XML is immediately apparent here;
we can use Orc’s combinators to manage iteration, dataflow, and
joins, while writing XML that has Orc variables embedded directly
into it.

def initialization =
let(init-routes) >>

let(init-neighbors, init-members) >>
Signal

where init-routes in
{insert <routes>

<route address="{$self}"
distance="0"
latency="0"/>

</routes>
into $data}

where init-neighbors in
{insert <neighbors> </neighbors>
into $data} >>
foreach(neighborSet, addNeighbor)

where init-members in
{insert <local_members>

<member address={$self}>
<sequence> "0" </sequence>
<live>"1"</live>

</member>
</local_members>

into $data}

Metronomes
The core of the Narada protocol is a small set of periodic, asyn-
chronous probes of immediate neighbors. There are four such probe
actions:

1. A routing probe sends updated routing information to a neigh-
bor.

2. A refresh probe broadcasts the contents of this node’s member
table to each of its neighbors, ensuring that those neighbors
have up-to-date information about the overlay.

3. A latency probe recalculates the expected round-trip time to
contact a randomly chosen member of the overlay network (not
necessarily a neighbor).

4. A neighbor probe checks the timestamp of our last contact with
a neighbor. If the elapsed time since our last contact exceeds a
threshold, that neighbor is marked inactive.

We use Metronome to initiate these probes at regular time
intervals. The expression Neighbors uses an XQuery to find the
address of each neighbor in the local neighbor table, so that we can
probe each neighbor individually.

def Metronome(t) = Rtimer(t) >> (Signal | Metronome(t))

def Neighbors =
forall({$data/neighbors/neighbor/@address})

def routing_metronome =
Metronome(5) >>

Neighbors >n> routing_probe(n)

def refresh_metronome =
Metronome(3) >>

Neighbors >n> refresh_probe(n)

def latency_metronome =
Metronome(2) >>

random({$data/local_members/member}) >m>
latency_probe(m)

def neighbor_metronome =
Metronome(5) >>

Neighbors >n> neighbor_probe(n)

We show implementation details for all four probes.

Routing probe: broadcasting local routing data
We implement routing probe by using the send site mentioned
earlier to send messages to peers on the network. Embedded

XQuery expressions allow us to concisely construct structured
XML messages to send across the network, shipping our local
routing data to each neighbor.

def send_message(addr, content) =
send(addr, msg)

where msg in
{return <message origin="{$self}">

{ $content }
</message>}

def routing_probe(n) =
send_message(n, content)

where content in
{return <routing>

{$data/routes}
</routing>})

Refresh probe: broadcasting local member data
refresh probe is implemented very similarly to routing probe,
in which a message containing local data is sent to all neighbors.
The only difference is in the content of the data; we instead ship
member data instead of routing data.

def refresh_probe =
send_message(n, content)

where content in
{return <refresh>

{$data/local_members}
</refresh>})

Latency probe: checking response times
The latency probe refreshes our local data about the round-trip
time to another member of the network. Notice that the compu-
tation of latency takes advantage of Orc’s simple encoding of a
time-out strategy. Using a where clause, we establish a time limit
on the call to ping, and remove that member from our member set
if the ping does not respond by the time limit.

def latency_probe(m) =
if(latency < limit) >>

setLatency(m, latency)
| if(latency >= limit) >>

removeMember(m)
where latency in (ping(addr) | Rtimer(limit))
where limit in let(1000)
where addr in {$m/@address}

Neighbor probe: checking neighbor liveness
The neighbor probe decides if a neighbor is still alive by check-
ing its local record of the last time its neighbor had sent out a refresh
message. If the timestamp, i.e. the amount of time that has elapsed
since the node received a refresh message from its neighbor, is
greater than some arbitrarily-specified threshhold then the neigh-
bor is removed from the node’s local neighbor table and marked
inactive in the local member table.

def neighbor_probe(n) =
forall({$data/local_members/member[@address=$addr]}) >m>

if(dt > thold) >> removeNeighbor(addr)
where dt in gettime() - t
where t in {$m/time}
where addr in {$n/@address}
where thold in let(60)

Message listeners
In addition to sending messages to neighboring nodes, a node
participating in the protocol must also listen for updates from its
neighbors and incorporate those updates into its own state. Here, we

use the receive site as if it were a sequence, to continuously listen
for network traffic. Embedded XQuery expressions examine the
content of XML messages sent by neighbors, and call our defined
handlers to update the local state at this node. Thus, with XML
as a data model, we can quickly implement RPC-like functionality
with very few assumptions about the capabilities of the underlying
network.

def listen_for_messages =
forall(receive) >msg>
({$msg/message/@origin} >orig>

({$msg/message/refresh} >r>
refresh_handler(orig, r)

| {$msg/message/routing} >r>
routing_handler(orig, r)

| addNeighbor(orig)))

There is a synchronization issue here: since we continue listen-
ing for further messages to handle in parallel with the receipt of
any message, it is possible for multiple message handlers to be up-
dating the local state in parallel. We do not write explicit locking
in the Orc or XQuery code; instead we assume that the implemen-
tation will serialize embedded XQuery executions so as to prevent
corruption of data. This is a strong assumption; we discuss the rea-
soning behind this assumption, and proposals to weaken it, in Sec-
tion 6.

5. Related Work
Orc-X is related to recent work on languages that have been used
to implement distributed resource management protocols, and in
general to languages that combine XML processing and general-
purpose computation. Distributed resource management systems
are traditionally implemented in imperative languages like C or
Java. The languages described below have the potential to signifi-
cantly reduce the code size and improve the ease of implementation
of such systems. For example, the comparison of two implementa-
tions of the Domain Name Server protocol (in DXQ and C) given
in [9] indicates that the relative code size is an order of magnitude
larger in the C language.

OverLog [15] and NDlog [16] are logic programming languages
that have been extended to support distributed computation. Over-
Log enables succinct implementation of distributed protocols such
as Narada [15]. We believe that the usability of the language is
open to debate – and this is not a question that can be settled by
simple experiments. As in Prolog, the control flow of the system is
encoded in the dependencies between clauses – whether this is an
advantage or not is debatable. Our subjective evaluation is that the
language does a good job of hiding the communication aspect of
distributed protocols. This has the potential disadvantage of mak-
ing it more difficult to specify communication patterns explicitly.
Instead, it is assumed that the language compiler can automatically
optimize communication. For example, the Narada implementation
in the paper [15] specifies that individual tuples are sent from one
machine to another. This can lead to an n-squared number of mes-
sages, where n is the number of machines. While it might be possi-
ble to optimize this communication, this compilation capability is
not described in the paper. Concurrency is also implicit in the lan-
guage. As a result, OverLog abstracts away what may be consid-
ered essential aspects of the distribution problem: concurrency and
communication. Very powerful compilation techniques are needed
to make this work. Orc, on the other hand, provides constructs for
managing concurrency in an explicit, structured way. By adding
XQuery to Orc, Orc-X also gives the programmer control over the
granularity of communication.

There has also been work on extending XQuery to support dis-
tributed computation. The language DXQ [10, 9] extends XQuery

to support distributed computing and concurrency. DXQ allows ar-
bitrary queries to be sent to remote serves for remote execution.
Unlike Orc-X, which only allows shipping XML data, DXQ al-
lows both XML (extensional values) and arbitrary query plans with
closures (intensional values) to be communicated around the net-
work. However, DXQ has unsatisfying aspects with regard to con-
currency. Unlike Orc-X, DXQ doesn’t have explicit concurrency
operators, which greatly limits code readability with regard to visu-
alizing and understanding the parallelism in the Narada algorithm.
In addition, DXQ requires explicit locks for synchronization which
can lead to deadlock, race conditions, and other problems typical of
lock-based synchronization. This concern has not yet been fully ad-
dressed by Orc-X, however software transaction support is a work-
in-progress and, coupled with the structured concurrency opera-
tors, they may help address or avoid the lock-based synchroniza-
tion challenges. Furthermore, the current implementation of DXQ
doesn’t provide a way of expressing time-out tolerance in the case
of a network failure, as Orc-X does.

The Cω [2] research language included some significant ad-
vances around integration of XML/queries and novel concurrency
models within a traditional object-oriented programming language.
The query and XML capabilities have been modified and extended
for inclusion in the current C# standard. The new features, called
Linq, allow type-safe queries over XML [17] and relational data
source [4]. It is also possible to write XML literals. The concur-
rency features, which are based on the Join calculus [1], have not
yet been applied to the C# language. Currency in Cω is based on
asynchronous messages and chords. Asynchronous messages intro-
duce concurrency, because the caller can continue after invoking a
concurrent service. Chords allow synchronization of multiple asyn-
chronous calls. We do not know of an implementation of Narada in
Cω. Cω’s concurrency primitives are higher-level than threads and
locks, but the higher-level patterns of communication in Narada
would have to be encoded as patterns of asynchronous messages.

6. Evaluation
Since the full implementation of Orc-X is still a work in progress,
we propose methods to ensure the progress of our language. Our
implementation of Orc-X will be tested by simulating the Narada
protocol. We do so by examining the behavior of our implementa-
tion of the Narada protocol relative to DXQ’s implementation. We
know our language is on the right track if it yields the same network
configuration as the DXQ implementation.

We chose to compare ourselves against DXQ for several rea-
sons. First, DXQ has a publicly-available, full implementation of
Narada. Also, Orc-X and DXQ leverage the same underlying query
engine infrastructure (Galax [12]). This allows us to not only test
the correctness of our algorithm but also gives us a chance to do a
performance comparison.

6.1 Open research problems
The development of Orc-X has touched upon some open research
problems in Orc; solutions to these problems would substantially
enhance the expressiveness of Orc-X.

Distribution. As currently written, the Narada protocol in Orc-
X runs as separate copies of the same workflow on different nodes
in the network, using explicit send/receive calls and XML messages
to ship data between these nodes. However, Orc would ideally
express the entire protocol in a single orchestration, rather than
in many localized program instances. Distributed execution is an
active area of study in Orc: how does one write a single program
and then parcel its execution out across many machines, moving
code and data as necessary? If the Narada protocol were written in
this way, there would be no explicit sends or receives; operations

which used references to data located on different machines would
either move code to that machine or automatically retrieve the data.

Synchronization and atomicity. DXQ uses explicit locks
throughout the Narada implementation to ensure mutual exclusion
of node-local state. As shown in research [13] explict locking in
concurrent programming is difficult to write correctly and is often
subject to well-known issues such as deadlock, livelock and prior-
ity inversion. As stated in the implementation description, Orc-X
currently assumes that XQuery expressions will execute in such a
way as to avoid data corruption (the naive strategy is, of course,
serialization of all embedded executions). However, this is unsat-
isfactory as it creates an obvious synchronization bottleneck. We
are currently investigating the addition of optimistic concurrency,
i.e. transactions, to the Orc semantics, in the form of a combinator
atomic f, which runs the expression f atomically using a vari-
ant of software transactions. In Orc-X, we could concisely ensure
atomic updates to node-local state in the Narada protocol by using
atomic to enclose handler invocations such as refresh handler.

6.2 Future work
Orc-X has great potential as a language and so far has proven to
be quite powerful in its ability to express distributed protocols such
as the Narada protocol. Because it is not a traditional sequential
language and provides language facilities for concise expression
of parallel and sequential computations, it has potential to be a
useful language for many other distributed resource management
protocols, such as Chord [15] or Willow [19].

A. Appendix: Narada Implementation in Orc-X
All of the example Narada code described in Section 4.2 and the
full implementation of the protocol is accessible at:

http://www.cs.utexas.edu/~kmorton/orc-x.html

Acknowledgments
We would like to thank the following people for their helpful
comments on our paper: Mary Fernandez, Trevor Jim, Jayadev
Misra and Robert Morton.

References
[1] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency

abstractions for c. In Proceedings of ECOOP02, pages 415–440,
2002.

[2] G. Bierman, E. Meijer, and W. Schulte. The essence of data access in
comega. In In Proc. of ECOOP, 2005.

[3] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and
J. Simeon. XQuery 1.0: An XML query language. Technical report,
World Wide Web Consortium, 2007. http://www.w3.org/TR/xquery.

[4] D. Box and A. Hejlsberg. Linq project overview, 2007. http://msdn.
microsoft.com/netframework/future/linq.

[5] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible markup language (xml) 1.0. Technical report, World Wide
Web Consortium World Wide Web Consortium, September 2006.
http://www.w3.org/TR/xml/.

[6] D. Chamberlin, D. Florescu, J. Melton, J. Robie, and J. Simeon.
XQuery update facility. Technical report, World Wide Web
Consortium, 2007. http://www.w3.org/TR/xquery-update-10/.

[7] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system multicast.
IEEE Journal on Selected Areas in Communication (JSAC), 20(8),
2002.

[8] O. Dahl, E. Dijkstra, and T. Hoare. Structured programming. ACM
Classic Books Series, 1972.

[9] M. Fernàndez, T. Jim, K. Morton, N. Onose, and J. Siméon. Dxq:
A distributed xquery scripting language. In In Proceedings of the
SIGMOD Workshop on XQuery Implementation and Practice (XIME-
P), 2007.

[10] M. Fernández, T. Jim, K. Morton, N. Onose, and J. Siméon. Highly
distributed XQuery with DXQ. In Proceedings of ACM Conference
on Management of Data (SIGMOD), Demonstration Program., June
2007.

[11] M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh.
XQuery 1.0 and XPath 2.0 Data Model (XDM), W3C recom-
mendation. Technical report, 2007. http://www.w3.org/TR/xpath-
datamodel/.

[12] Galax: The XQuery implementation for discriminating hackers.

[13] M. Herlihy and J. E. B. Moss”. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of theTwenti-
ethAnnual International Symposium on Computer Architecture, 1993.

[14] T. Hoare. Structured concurrent programming. October 2007.

[15] B. Loo, T.Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and
I. Stoica. Implementing declarative overlays. In SIGOPS Oper. Syst.
Rev, 2005.

[16] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative
networking: language, execution and optimization. In SIGMOD,
pages 97–108, New York, NY, USA, 2006. ACM Press.

[17] E. Meijer and B. Beckman. Xlinq: Xml programming refactored (the
return of the monoids). In Proceedings of XML, 2005.

[18] J. Misra and W. R. Cook. Computation orchestration: A basis for
wide-area computing. In Journal of Software and Systems Modeling,
2006.

[19] R. van Renesse and A. Bozdog. Willow: Dht, aggregation, and
publish/subscribe in one protocol. In 3rd International Workshop on
Peer-to-Peer Systems (IPTPS ’04), Feb. 2004.

[20] I. Wehrman, D. Kitchin, W. R. Cook, and J. Misra. A timed semantics
of orc. Submitted for publication to Theoretical Computer Science,
2007.

