
Properties of the Timed Operational and

Denotational Semantics of Orc

Ian Wehrman, David Kitchin, William R. Cook, Jayadev Misra
Department of Computer Sciences
The University of Texas at Austin

email: {iwehrman,dkitchin,wcook,misra}@cs.utexas.edu

December 14, 2007

i

Preface

Orc is a language for structured concurrent programming. Orc provides three
powerful combinators that define the structure of a concurrent computation.
These combinators support sequential and concurrent execution, and concurrent
execution with blocking and termination.

Orc is particularly well-suited for task orchestration, a form of concurrent
programming with applications in workflow, business process management, and
web service orchestration. Orc provides constructs to orchestrate the concur-
rent invocation of services while managing time-outs, priorities, and failures of
services or communication.

Previous work on the semantics of Orc has focused on its asynchronous be-
havior. In this report, we define a relative-time operational semantics of Orc that
allows reasoning about delays, which are introduced explicitly by time-based
constructs or implicitly by network delays. We develop a number of identities
among Orc expressions and define an equality relation that is a congruence.
We also develop a denotational semantics for Orc, in which the meaning of an
Orc expression is a set of traces. A number of properties about the seman-
tics are shown here, including equivalence of the operational and denotational
semantics.

ii

Contents

Preface ii

1 Introduction 1
1.1 Introduction . 1
1.2 Timed Operational Semantics . 2

1.2.1 Time-shifted Expressions 2
1.2.2 Transition Rules . 3
1.2.3 Executions and Traces . 4
1.2.4 Substitution Events . 5
1.2.5 Summary of Notation . 5

1.3 Basic Operators on Sequences . 5
1.3.1 Definitions of Operators 6
1.3.2 Coercion . 7
1.3.3 Some Simple Facts . 7

1.4 A Specific Set of Sequences . 9
1.5 Basic Theorems on Executions 9

1.5.1 Evolution . 10
1.5.2 Substitution Independence 15

1.6 Identities . 21

2 Combinators applied to Executions 32
2.1 Base Expressions . 32
2.2 Meanings of Execution Combinators 35

2.2.1 Meaning of Symmetric Composition 35
2.2.2 Meaning of Sequential Composition 36
2.2.3 Meaning of Asymmetric Composition 36
2.2.4 Monotonicity . 37
2.2.5 Distributivity . 39

2.3 Characterization of Symmetric Composition 42
2.3.1 [[f | g]] ⊆ [[f]] | [[g]] . 42
2.3.2 [[f]] | [[g]] ⊆ [[f | g]] . 43

2.4 Characterization of Sequential Composition 44
2.4.1 Preliminary Results . 44
2.4.2 [[f >x> g]] ⊆ [[f]] >x> [[g]] 46

iii

CONTENTS iv

2.4.3 [[f]] >x> [[g]] ⊆ [[f >x> g]] 48
2.5 Characterization of Asymmetric Composition 50

2.5.1 Preliminary Results . 50
2.5.2 [[f <x< g]] ⊆ [[f]] <x< [[g]] 56
2.5.3 [[f]] <x< [[g]] ⊆ [[f <x< g]] 62

3 Breadth and Trace Preservation 66
3.1 Additional Operators on Sequences 67

3.1.1 Breadth . 67
3.1.2 Visible sequences and Traces 71
3.1.3 Base Expressions are Broad 73

3.2 Symmetric Composition . 76
3.2.1 Preliminary Results . 76
3.2.2 Symmetric Composition Preserves Breadth 77
3.2.3 Symmetric Composition Preserves Traces 80

3.3 Sequential Composition . 84
3.3.1 Preliminary Results . 84
3.3.2 Sequential Composition Preserves Breadth 85
3.3.3 Sequential Composition Preserves Traces 89

3.4 Asymmetric Composition . 91
3.4.1 Preliminary Results on Constrained Partial Merge 91
3.4.2 Preliminary Results on Constrained Full Merge 100
3.4.3 Asymmetric Composition Preserves Breadth 103
3.4.4 Asymmetric Composition Preserves Traces 110

4 Traces are Denotations 113
4.1 The Denotation of an Orc Expression 114

Chapter 1

Introduction

1.1 Introduction

This monograph establishes a number of semantic properties of Orc expres-
sions. An operational semantics of Orc is given elsewhere and abbreviated in
Section 1.2. Executions and traces of Orc expressions are defined (see Sec-
tion 1.2.3) based on this operational semantics.

In Section 2.2, page 35, we define combinators, corresponding to each Orc
combinator, that can be applied to sets of executions (and traces). Then we can
write U | V , U >x> V and U <x< V , where U and V are sets of executions.
Denoting the set of executions of f by [[f]], we establish in Chapter 2 that
[[f ∗ g]] = [[f]] ∗ [[g]], where ∗ is any orc combinator, | , >x> or <x< .

The results of Chapter 2 are used in Chapter 3 to establish that the traces
of f ∗ g can be determined from the traces of f and g. Denoting the traces of
f by 〈〈f〉〉, we write f ∼= g to mean 〈〈f〉〉 = 〈〈g〉〉. We show that relation ∼= is an
equality relation; given f ∼= g, f and g can replace each other in all contexts. We
establish even finer results by defining a partial order over expressions; f ⊆ g
means that 〈〈f〉〉 ⊆ 〈〈g〉〉. Given f ⊆ g, we prove that f ∗h ⊆ g∗h and h∗f ⊆ h∗g;
i.e., replacing f by g in any context results in at least the same set of traces.

Finally, in Chapter 4 we present a meaning function µ for arbitrary Orc
expressions, including those with recursively defined expressions. The meaning
µ(f) of expression f is a set of traces. The final theorem establishes that 〈〈f〉〉 =
µ(f); i.e., that the operational and denotational semantics are equivalent.

The main theorems we establish are:

Theorem 1 〈〈f ∗ g〉〉 = 〈〈f〉〉 ∗ 〈〈g〉〉
See Theorem 26, page 113.

Theorem 2 Suppose U ⊆ U ′ and V ⊆ V ′. Then, U ∗ V ⊆ U ′ ∗ V ′.
See Theorem 9, page 37.

Theorem 3 For any U and V ,

1

CHAPTER 1. INTRODUCTION 2

1. (Left Distributivity) (∪i :: Pi ∗ V) = (∪i :: Pi) ∗ V , for a family of sets Pi.

2. (Right Distributivity) (∪i :: U ∗Qi) = U ∗ (∪i :: Qi), for a sequence of sets
Qi, where Q0 ⊆ Q1 ⊆ · · · .

See Theorem 10, page 40.

Theorem 4 〈〈f〉〉 = µ(f) See Theorem 27, page 119.

1.2 Timed Operational Semantics

1.2.1 Time-shifted Expressions

A time-shifted expression, written f t, is the expression that results from f after
t units have elapsed without occurrence of an event. When it is not possible for
t time units to elapse without f engaging in an event we write f t = ⊥, where
⊥ is an unreachable expression described later. The time-shifted expression f t,
for t ≥ 0, is defined in Figure 1.1 based on the structure of f .

(f | g)t ∆ f t | gt

(f >x> g)t ∆ f t >x> g

(f <x< g)t ∆ f t <x< gt

M(x)t ∆ M(x)

M(m)t ∆

{
M(m) if t = 0
⊥ otherwise.

?kt ∆ ?{(s,m) | (t+ s,m) ∈ k} ∪ {x ∈?k | x = ω}

Figure 1.1: Definition of Time-shifted Expressions

The first three cases, for each of the combinators, are easy to justify infor-
mally. Expression M(x)t, where x is a variable, is simply M(x) because the site
cannot be invoked until the parameter has a value. Expression M(m), where
m is a value, must be invoked at time 0; therefore, M(m)0 = M(m), whereas
M(m)t = ⊥ for t > 0. The time-shifted handle ?kt may publish m at time s iff
?k may publish m at t+ s; and ?kt includes ω iff ?k does.

The definitions for M(x)t and M(m)t in Figure 1.1 also encompass local sites
if (true)t, Signal t, let(m)t, etc. Of particular importance is Rtimer . Consider
the handle ?k that results from a call to Rtimer(3). It is easily seen that ?k2 =?j,
where ?j is a handle resulting from a call to Rtimer(1), i.e., Rtimer(3) behaves
like Rtimer(1) after 2 times units have elapsed.

CHAPTER 1. INTRODUCTION 3

[E(x) ∆ f] ∈ D

E(p)
0,τ→ [p/x].f

(Def)

k ∈ Σ(M, m)

M(m)
0,τ→ ?k

(Call)

(t, m) ∈ k

?k
t, !m→ 0

(Return)

f
t,a→ f ′

f | g
t,a→ f ′ | gt

(Sym1)

g
t,a→ g′

f | g
t,a→ f t | g′

(Sym2)

f
t,a→ f ′ a 6= !m

f >x> g
t,a→ f ′

>x> g
(Seq1N)

f
t, !m→ f ′

f >x> g
t,τ→ (f ′

>x> g) | [m/x].g
(Seq1V)

f
t,a→ f ′

f <x< g
t,a→ f ′

<x< gt
(Asym1)

g
t, !m→ g′

f <x< g
t,τ→ [m/x].f t

(Asym2V)

g
t,a→ g′ a 6= !m

f <x< g
t,a→ f t <x< g′

(Asym2N)

Figure 1.2: Timed Semantics of Orc

1.2.2 Transition Rules

We present a timed operational semantics of Orc based on a labeled transition
system. The labels of the transition system are time-event pairs (t, a). The
relation f

t,a→ f ′, defined in Figure 1.2, states that expression f may transition
exactly t time units after its evaluation starts with event a to expression f ′.

Events are either publication events, written !m, or internal events, written
τ . Publication events correspond to the communication of value m to the en-
vironment during a transition. Internal events correspond to state changes not
intended to be observable by the environment. We refer to both publication
and internal events as base events.

The times in the transition relation are relative to the start of evaluation
of the expression. Furthermore, f

t,a→ f ′ specifies that no other events have
occurred in the t units that have passed since the beginning of the evaluation of
f . Times are natural numbers (though we can use any totally-ordered set with
a least element, such as the non-negative reals).

Notation Henceforth, expressions are denoted by f, g, h; variables by x, y, z;
events by a, b; and times by t, s. Sets of objects are denoted by the upper-
case versions of their corresponding letters. We write [m/x].f for the expression
obtained from f by replacing every free occurrence of x by value m. Parameters,
which are either variables or values, are denoted by p.

CHAPTER 1. INTRODUCTION 4

1.2.3 Executions and Traces

In this section, we formalize the notions of executions and traces for expressions.
An execution of f is a sequence of timed events in which f may engage. A trace
is an execution with the τ events removed. We write f u⇒ g, where u is a
sequence of timed events of the form (t, a), to denote that f may engage in
event a exactly t units after the start of its evaluation, and transition to g
immediately after engaging in all the events in u.

Execution relation ⇒ is derived from the reflexive and transitive closure of
the transition relation → of Figure 1.2. However, we need to shift the times

in forming the transitive closure. Given f
(s,a)→ f ′ and f ′

(t,b)→ f ′′, we can

not claim that f
(s,a)(t,b)⇒ f ′′, because b occurs s+ t units after the evaluation

of f starts. We define ut as the sequence that results from increasing each
time component of u by t. The definition of ut is also lifted to sets pointwise:
Ut ∆ {ut | u ∈ U}.

Define relation ⇒ as the reflexive-transitive closure of relation → except
that the time components accumulate.

f
ε⇒ f (Ex-Refl)

f
(t,a)→ f ′′, f ′′

u⇒ f ′

f
(t,a)ut⇒ f ′

(Ex-Trans)

Call u an execution of f if f u⇒ f ′ for some f ′ 6= ⊥. Note that the empty
sequence ε is an execution of any expression by rule (Ex-Refl).

The definition of executions requires f ′ 6= ⊥ so that all intermediate expres-
sions in an execution (such as f ′′) are reachable—if any intermediate expression
is unreachable, the final expression, f ′, would be unreachable because ⊥ has no
transitions.

A trace u is obtained from execution u by removing each internal event (t, τ).
The definition is also lifted pointwise to sets: U ∆ {u | u ∈ U}.

Notation The execution set and trace set of f are written [[f]] and 〈〈f〉〉 re-
spectively:

[[f]] ∆ {u | f u⇒ f ′, for some f ′}, and 〈〈f〉〉 ∆ [[f]].

CHAPTER 1. INTRODUCTION 5

1.2.4 Substitution Events

Substitution Rules

[m/y].(?k) = ?k

[m/y].(M(p)) =

{
M(m) if p = y

M(p) otherwise

[m/y].(E(p)) =

{
E(m) if p = y

E(p) otherwise
[m/y].(f | g) = ([m/y].f) | ([m/y].g)

[m/y].(f >x> g) =

{
([m/y].f) >x> g if x = y

([m/y].f) >x> ([m/y].g) otherwise

[m/y].(f <x< g) =

{
f <x< ([m/y].g) if x = y

([m/y].f) <x< ([m/y].g) otherwise

We have the following rule with substitution event :

f
t,[m/x]→ [m/x].(f t) (Subst)

Henceforth, we write [m/x].f t to mean [m/x].(f t), i.e., the time-shift operator
binds more strongly than substitution.

1.2.5 Summary of Notation

A summary of notation used in the sequel is shown in Figure 1.3.

f
t,a→ g : f evaluates in one step to g with event a at time t

f
u⇒ g : f evaluates in multiple steps to g with execution u

f t : expression f shifted forward in time by t units
ut, Ut : execution or trace u (or set U) delayed by t units
u, U : trace of an execution u (or set U)
[[f]] : the set of executions of f
〈〈f〉〉 : [[f]], the set of traces of f
[m/x].f : replace all free occurrences of x by m in f
f ∼= g : 〈〈f〉〉 = 〈〈g〉〉

Figure 1.3: Summary of Notation

1.3 Basic Operators on Sequences

A sequence is a finite sequence of tuples of the form (t, b), where b is an event and
t is its associated time, t ≥ 0. The times of events in a sequence are monotone
non-decreasing. An event is either base or substitution event. There is a special
base event, τ . As is customary, the empty sequence is denoted by ε.

CHAPTER 1. INTRODUCTION 6

Notation For event a, a.time is its associated time; for sequence x, x.time
is the time of its last event if x is non-empty and 0 if x is empty. Note that

ε.time = 0,
pt.time = p.time+ t, for p 6= ε,
(ap).time = a.time, if p = ε, and p.time, if p 6= ε

We define a few basic operations on sequences (and sets of sequences) in this
section.

1.3.1 Definitions of Operators

Henceforth, u, v, p and q denote sequences. And, uppercase equivalents of these
symbols denote sets of sequences. Symbols a and b denote events.

The time-shift of u by t, where t ≥ 0, is written as ut; it is the same sequence
as u except that the associated time of each event is increased by t. Formally,
time-shift for an individual event is given by (s, b)t = (s + t, b). And, for a
sequence,

εt = ε
(au)t = atut

It is customary to write a non-empty sequence v as aut, where t is the time
associated with event a. Here, ut is the suffix of v containing all events except
a, and u is obtained from this suffix by decreasing associated times by t.

Observation 1 For sequence u, (us)t = us+t.

The prefix-closure of u, written as u
∗
, is the set of prefixes of u. Formally,

ε
∗

= {ε},
(au)

∗
= {ε} ∪ au∗

Note that {ε} ⊆ u
∗
, for all u. Therefore, (au)

∗
= {ε} ∪ au∗ holds (vacuously)

even when a = ε. Set U is prefix-closed if u
∗ ⊆ U , for every u in U .

The trace of u, u, is the subsequence obtained from u by dropping all τ
events from it. Formally,

ε = ε,
τ = ε,
a = a where a 6= τ ,
au = a u

Event Removal from front of a sequence Define u\a, where a is any
event, as follows:

u\a =
{
{v} if u = avt where t = a.time
φ otherwise

CHAPTER 1. INTRODUCTION 7

1.3.2 Coercion

We coerce time-shift, trace and removal operators, α, to sets of sequences:

α(U) = (∪u : u ∈ U : α(u))

Thus, for example,

U\a = (∪u : u ∈ U : u\a) = {v| avt ∈ U}, where t = a.time

We use the convention that if α(u) is a sequence (as in ut or u), it is treated
as the set {α(u)}. If U = φ, the empty set, α(U) = φ.

An operator α is coercive if it satisfies α(U) = (∪u : u ∈ U : α(u)). Op-
erators time-shift, trace and removal are, by definition, coercive. A coercive
operator distributes over set union.

Prefix-closure is coercive over non-empty sets. For empty set φ, φ
∗

= {ε},
not φ. Prefix-closure distributes over set union even when some of the sets are
empty.

Observation 2 A coercive operator α satisfies the monotonicity condition:

U ⊆ V ⇒ α(U) ⊆ α(V)

Observation 3 Composition of coercive operators is coercive.

Observation 4 For coercive α and γ, where u ranges over all elements of U ,

α(u) ⊆ γ(u) ⇒ α(U) ⊆ γ(U),
α(u) = γ(u) ⇒ α(U) = γ(U)

Idempotence Operator α is idempotent if α(α(u)) = α(u).

1.3.3 Some Simple Facts

Lemma 1(ut)
∗

= (u
∗
)t,

(ut) = (u)t,
u∗ = u

∗
.

Proof: Each of these may be proved by induction on the length of u. We give
a detailed proof for the last case, u∗ = u

∗
. If u = ε, the result follows easily.

Next, let u = av.

u∗

= {u = av}
(av)∗

= {definition of ∗}
{ε} ∪ av∗

= {distribute trace over union and concatenation}

CHAPTER 1. INTRODUCTION 8

{ε} ∪ av∗
= {induction}

{ε} ∪ a v
∗

= {definition of ∗}
(a v)

∗

= {distribute trace over concatenation}
(av)

∗

= {u = av}
(u)
∗

A number of results over sequences can be coerced to sets of sequences using
these observations. For example, we can derive (Ut)

∗
= (U

∗
)t, as follows. From

Lemma 1, page 7, (ut)
∗

= (u
∗
)t. The operator on each side of the identity is

coercive, since it is a composition of two coercive operators (see Observation 3,
page 7). Applying Observation 4, page 7, the result follows.

Henceforth, we will state results mostly over sequences, and derive the cor-
responding results over sets using coercion.

Observation 5 Operators prefix-closure and trace are idempotent, i.e.,

(u
∗
)
∗

= u
∗
,

u = u

Note that time-shift is not idempotent. Also note that for coercive and idem-
potent α, α(α(U)) = α(U), by applying Observation 4, page 7 to the definition
of idempotence.

Observation 6 Let f
a→ f ′ where a is a substitution at time t. Then,

[[f ′]] = [[f]]\a, and a[[f ′]]t ⊆ [[f]].

Proof: Given f
a→ f ′, for any u ∈ [[f ′]], i.e., f ′ u⇒ , aut ∈ [[f]]. Therefore,

a[[f ′]]t ⊆ [[f]]. We show [[f ′]] = [[f]]\a by mutual inclusion.

• [[f ′]] ⊆ [[f]]\a:

u ∈ [[f ′]]
⊆ {a[[f ′]]t ⊆ [[f]]}

aut ∈ [[f]]
⇒ {[[f]]\a = {v| avt ∈ [[f]]}}

u ∈ [[f]]\a

• [[f]]\a ⊆ [[f ′]]:

u ∈ [[f]]\a
⇒ {[[f]]\a = {v| avt ∈ [[f]]}}

aut ∈ [[f]]
⇒ {meaning of execution}

CHAPTER 1. INTRODUCTION 9

f
a→ f ′′

u⇒ , for some f ′′

⇒ {since a is a substitution and f
a→ f ′, we get f ′ = f ′′}

f
a→ f ′

u⇒
⇒ {obviously}

u ∈ [[f ′]]

1.4 A Specific Set of Sequences

We define set A(t), for any t, t ≥ 0, to contain sequences of substitutions, as
follows. For t ≥ 0,

A(t) = {ur| ur is a finite sequence of substitutions at time r, 0 ≤ r ≤ t}.

Similarly, we define set D(t), for any t ≥ 0 to contain sequences of substitutions
as follows:

D(t) = {p | p is a finite sequence of substitutions with nondecreasing time ≤ t}

For sets of times T , A(T) and D(T) are defined coercively. Observe that in any
sequence of A(t), all events occur at the same time. Also, A(t) and D(t) contain
the empty sequence.

For sets of sequences U and V , their concatenation and partial concatenation,
written UV and U · V respectively, are defined by

UV = {uv | u ∈ U, v ∈ V }, and U · V = U ∪ UV.

Partial concatenation is right-associative: U · V ·W = U · (V ·W).

Observation 7 1. A(t)
∗

= A(t) and D(t)
∗

= D(t).

2. A(t) = A(t) and D(t) = D(t).

3. A(s+ t) = A(s) ∪A(t)s and D(s+ t) = D(s) ·D(t)s.

4. For s ≤ t, A(s) ⊆ A(t) and D(s) ⊆ D(t).

5. A(s) ⊆ D(t)

6. A(0)\[m/x] = A(0) and D(0)\[m/x] = D(0)

The sets A(t) and D(t) are first used in Sections 3.1.1 and 2.1, respectively.

1.5 Basic Theorems on Executions

We derive two basic theorems on executions in this section.

CHAPTER 1. INTRODUCTION 10

1.5.1 Evolution

Theorem 5 (Evolution) fs
t,a→ h ≡ f s+t,a→ h

Proof: First, we dispose of the case where h = ⊥. In that case, both sides of the
equivalence are true (because f

t,a→ ⊥, for all t, a and f). Henceforth, assume
that h 6= ⊥.

If s = 0, the result follows by appealing to the proposition f0 = f . Hence-
forth, let s > 0. If f is 0, M(m), if or let , then fs is ⊥, which has transition
only to ⊥. Since h 6= ⊥, f is not one of the given expressions. If f is Rtimer(u),
then Rtimer(u)s

t,a→ h where h 6= ⊥ arises only when u ≥ s + t. Then, the
result is easy to see.

We give proofs by structural induction for expressions of the form (f | g),
(f >x> g) and (f <x< g) in place of f .

(f | g): Suppose (f | g)s
t,a→ h. From definition, that is fs | gs t,a→ h. Assume,

without loss in generality, that this is deduced by applying (Sym1), i.e.,

fs
t,a→ f ′, and h = f ′ | (gs)t

Now,

fs
t,a→ f ′

⇒ {induction}
f

s+t,a→ f ′

⇒ {Apply (Sym1)}
f | g s+t,a→ f ′ | gs+t

⇒ {gs+t = (gs)t}
f | g s+t,a→ f ′ | (gs)t

⇒ {h = f ′ | (gs)t}
f | g s+t,a→ h

In the other direction, suppose that f | g s+t,a→ h. Assume, without loss
in generality, that this is deduced by applying (Sym1), i.e.,

f
s+t,a→ f ′, and h = f ′ | gs+t

Now,

f
s+t,a→ f ′

⇒ {induction}
fs

t,a→ f ′

⇒ {Apply (Sym1)}
fs | gs t,a→ f ′ | (gs)t

⇒ {gs+t = (gs)t}

CHAPTER 1. INTRODUCTION 11

fs | gs t,a→ f ′ | gs+t
⇒ {h = f ′ | gs+t}

fs | gs t,a→ h
⇒ {definition}

(f | g)s
t,a→ h

(f >x> g): Suppose (f >x> g)s
t,a→ h. From definition, that is fs >x> g

t,a→ h.
There are two cases, depending on whether or not a is a publication event.
First assume a 6= !v, and by rule (Seq1N):

fs
t,a→ f ′, and h = f ′ >x> g.

Now,

fs
t,a→ f ′

⇒ {induction}
f

s+t,a→ f ′

⇒ {Apply (Seq1N)}
f >x> g

s+t,a→ f ′ >x> g
⇒ {h = f ′ >x> g}

f >x> g
s+t,a→ h

Next assume a = !v, and by rule (Seq1V):

fs
t,!m→ f ′, and h = (f ′ >x> g) | [m/x].g.

Now,

fs
t,!m→ f ′

⇒ {induction}
f

s+t, !v→ f ′

⇒ {Apply (Seq1V)}
f >x> g

s+t, !v→ (f ′ >x> g) | [m/x].g
⇒ {h = (f ′ >x> g) | [m/x].g}

f >x> g
s+t, !v→ h

In the other direction, suppose that f >x> g
s+t,a→ h. Again there are

two cases corresponding to the presence of a publication. First assume
a 6= !v, and by rule (Seq1N):

f
s+t,a→ f ′, and h = f ′ >x> g

Now,

CHAPTER 1. INTRODUCTION 12

f
s+t,a→ f ′

⇒ {induction}
fs

t,a→ f ′

⇒ {Apply (Seq1N)}
fs >x> g

t,a→ f ′ >x> g
⇒ {h = f ′ >x> g}

fs >x> g
t,a→ h

⇒ {definition}
(f >x> g)s

t,a→ h

Next assume a = !v, and by rule (Seq1V):

f
s+t, !v→ f ′, and h = (f ′ >x> g) | [m/x].g

Now,

f
s+t, !v→ f ′

⇒ {induction}
fs

t,!m→ f ′

⇒ {Apply (Seq1V)}
fs >x> g

t,!m→ (f ′ >x> g) | [m/x].g
⇒ {h = (f ′ >x> g) | [m/x].g}

fs >x> g
t,!m→ h

⇒ {definition}
(f >x> g)s

t,!m→ h

(f <x< g): Suppose (f <x< g)s
t,a→ h. From definition, that is fs <x< gs

t,a→
h. First assume the transition is due to a transition of fs by (Asym1N),
i.e.,

fs
t,a→ f ′, and h = f ′ <x< (gs)t.

Now,

fs
t,a→ f ′

⇒ {induction}
f

s+t,a→ f ′

⇒ {Apply (Asym1N)}
f <x< g

s+t,a→ f ′ <x< gs+t

⇒ {gs+t = (gs)t}
f <x< g

s+t,a→ f ′ <x< (gs)t

⇒ {h = f ′ <x< (gs)t}
f <x< g

s+t,a→ h

CHAPTER 1. INTRODUCTION 13

Next assume the transition is due to a transition of gs. There are two
cases, depending on whether or not a is a publication event. First assume
a 6= !v, and by rule (Asym2):

gs
t,a→ g′ and h = (fs)t <x< g′.

Now,

gs
t,a→ g′

⇒ {induction}
g

s+t,a→ g′

⇒ {Apply (Asym2)}
f <x< g

s+t,a→ fs+t <x< g′

⇒ {fs+t = (fs)t}
f <x< g

s+t,a→ (fs)t <x< g′

⇒ {h = (fs)t <x< g′}
f <x< g

s+t,a→ h

Finally assume a = !v, and by rule (Asym1V):

gs
t,!m→ g′ and h = [m/x].(fs)t.

Now,

gs
t,!m→ g′

⇒ {induction}
g

s+t, !v→ g′

⇒ {Apply (Asym1V)}
f <x< g

s+t, !v→ [m/x].fs+t

⇒ {fs+t = (fs)t}
f <x< g

s+t, !v→ [m/x].(fs)t

⇒ {h = [m/x].(fs)t}
f <x< g

s+t, !v→ h

In the other direction, suppose that f <x< g
s+t,a→ h. First assume the

transition is due to a transition of f by (Asym1N), i.e.,

f
s+t,a→ f ′, and h = f ′ <x< gs+t

Now,

CHAPTER 1. INTRODUCTION 14

f
s+t,a→ f ′

⇒ {induction}
fs

t,a→ f ′

⇒ {Apply (Asym1N)}
fs <x< gs

t,a→ f ′ <x< (gs)t

⇒ {(gs)t = gs+t}
fs <x< gs

t,a→ f ′ <x< gs+t

⇒ {h = f ′ <x< gs+t}
fs <x< gs

t,a→ h
⇒ {definition}

(f <x< g)s
t,a→ h

Next assume the transition is due to g. There are two cases depending on
whether or not a is a publication event. First assume a 6= !v, and by rule
(Asym2):

g
s+t,a→ g′, and h = fs+t <x< g′

Now,

g
s+t,a→ g′

⇒ {induction}
gs

t,a→ g′

⇒ {Apply (Asym2)}
fs <x< gs

t,a→ (fs)t <x< g′

⇒ {(fs)t = fs+t}
fs <x< gs

t,a→ fs+t <x< g′

⇒ {h = fs+t <x< g′}
fs <x< gs

t,a→ h
⇒ {definition}

(f <x< g)s
t,a→ h

Finally assume a = !v, and by rule (Asym1V):

g
s+t, !v→ g′, and h = [m/x].fs+t.

Now,

g
s+t, !v→ g′

⇒ {induction}
gs

t,!m→ g′

⇒ {Apply (Asym1V)}

CHAPTER 1. INTRODUCTION 15

fs <x< gs
t,!m→ [m/x].(fs)t

⇒ {(fs)t = fs+t}
fs <x< gs

t,!m→ [m/x].fs+t

⇒ {h = [m/x].fs+t}
fs <x< gs

t,!m→ h
⇒ {definition}

(f <x< g)s
t,!m→ h

Theorem 6 (Shift) f t
u⇒ g iff f

ut⇒ g.

Proof:
If u = ε, ut = ε and f = f t = g. Otherwise, u = (s, a)u′s, and

f t
s,a→ f ′

u′⇒ g
≡ {Thm. 5 (Evolution) on page 10}

f
t+s,a→ f ′

u′⇒ g
≡ {definition of executions}

f
(t+s,a)u′t+s⇒ g

≡ {Obs. 1 on page 6}

f
(t+s,a)(u′s)t⇒ g

≡ {definition of shifting}

f
((s,a)u′s)t⇒ g

Observation 8 u ∈ [[f t]] ≡ ut ∈ [[f]]

Proof: Follows from Theorem 6, page 15.

1.5.2 Substitution Independence

The goal of this section is to show that in an execution of an Orc expression,
a pair of adjacent events, (t, a)(t, b), can be swapped, given that a is not a
substitution and b is a substitution. First, we prove a lemma.

Lemma 2 Suppose f
(0,a)→ f ′, where a is not a substitution. Then, [m/x].f

(0,a)→
[m/x].(f ′).

Proof: Proof is by induction on the structure of f .

• 0: The expression 0 only transitions as a result of rule (Subst).

• ?k: By the operational semantics, the only transition of ?k is by rule
(Return), where ?k

t, !m→ 0. The result follows because [m/x].?k =?k and
[m/x].0 = 0.

CHAPTER 1. INTRODUCTION 16

• M(m): By the operational semantics, the only transition of M(m) is by rule
(Call), where M(m)

0,τ→ ?k. The result follows because [m/x].M(m) = M(m)
and [m/x].?k =?k.

• M(x): The expression M(x) only transitions as a result of rule (Subst).

• f | g: Without loss in generality, suppose that f
(0,a)→ f ′, so that f | g (0,a)→

f ′ | g. We show [m/x].(f | g)
(0,a)→ [m/x].(f ′ | g).

[m/x].(f | g)
= {from substitution rules}

[m/x].f | [m/x].g
(0,a)→ {from f

(0,a)→ f ′, inductively, [m/x].f
(0,a)→ [m/x].f ′;

apply rule (SYM1) from operational semantics}
[m/x].f ′ | ([m/x].g)0

= {simplify the last term}
[m/x].f ′ | [m/x].g

= {from substitution rules}
[m/x].(f ′ | g)

• f >x> g: We have two proofs for the two rules (SEQ1N) and (SEQ1V).

Case 1) Suppose f
(0,a)→ f ′ and (SEQ1N) was applied in deducing f >x> g

(0,a)→
f ′ >x> g.

First we consider the case where substitution is made to the bound variable
x. We show [m/x].(f >x> g)

(0,a)→ [m/x].(f ′ >x> g).

[m/x].(f >x> g)
= {from substitution rules}

([m/x].f) >x> g
(0,a)→ {from f

(0,a)→ f ′, inductively, [m/x].f
(0,a)→ [m/x].f ′;

apply rule (SEQ1N) from operational semantics}
([m/x].f ′) >x> g

= {from substitution rules}
[m/x].(f ′ >x> g)

Next, consider the case where substitution is made to variable y, y 6= x. We

show [m/y].(f >x> g)
(0,a)→ [m/y].(f ′ >x> g).

[m/y].(f >x> g)
= {from substitution rules}

([m/y].f) >x> ([m/y].g)
(0,a)→ {from f

(0,a)→ f ′, inductively, [m/y].f
(0,a)→ [m/y].f ′;

apply rule (SEQ1N) from operational semantics}

CHAPTER 1. INTRODUCTION 17

([m/y].f ′) >x> ([m/y].g)
= {from substitution rules}

[m/y].(f ′ >x> g)

Case 2) Suppose f
(0,!n)→ f ′ and (SEQ1V) was applied in deducing f >x> g

(0,τ)→
f ′ >x> g | [n/x].g.

First we consider the case where substitution is made to the bound variable
x. We show [m/x].(f >x> g)

(0,τ)→ [m/x].(f ′ >x> g | [n/x].g).

[m/x].(f >x> g)
= {from substitution rules}

([m/x].f) >x> g
(0,τ)→ {from f

(0,!n)→ f ′, inductively, [m/x].f
(0,!n)→ [m/x].f ′;

apply rule (SEQ1V) from operational semantics}
([m/x].f ′) >x> g | [n/x].g

= {[n/x].g has no free occurrence of x; so [m/x].([n/x].g) = [n/x].g}
([m/x].f ′) >x> g | [m/x].([n/x].g)

= {from substitution rules, ([m/x].f ′) >x> g = [m/x].(f ′ >x> g)}
([m/x].(f ′ >x> g) | [m/x].([n/x].g)

= {from substitution rules}
[m/x].(f ′ >x> g | [n/x].g)

Next, consider the case where substitution is made to variable y, y 6= x. We

show [m/y].(f >x> g)
(0,τ)→ [m/y].(f ′ >x> g | [n/x].g).

[m/y].(f >x> g)
= {from substitution rules}

([m/y].f) >x> [m/y].g
(0,τ)→ {from f

(0,!n)→ f ′, inductively, [m/y].f
(0,!n)→ [m/y].f ′;

apply rule (SEQ1V) from operational semantics}
([m/y].f ′) >x> [m/y].g | [n/x].([m/y].g)

= {from substitution rules, ([m/y].f ′) >x> [m/y].g = [m/y].(f ′ >x> g)}
[m/y].(f ′ >x> g) | [n/x].([m/y].g)

= {x 6= y; so [n/x].([m/y].g) = [m/y].([n/x].g)}
[m/y].(f ′ >x> g) | [m/y].([n/x].g)

= {from substitution rules}
[m/y].(f ′ >x> g | [n/x].g)

• f <x< g: We have three proofs for the three rules (ASYM1), (ASYM2N),
(ASYM2V).

Case 1) Suppose f
(0,a)→ f ′ and (ASYM1) was applied in deducing f <x< g

(0,a)→
f ′ <x< g.

First, we consider the case where substitution is made to the bound variable

x. We show [m/x].(f <x< g)
(0,a)→ [m/x].(f ′ <x< g).

CHAPTER 1. INTRODUCTION 18

[m/x].(f <x< g)
= {from substitution rules}

f <x< [m/x].g
(0,a)→ {given f

(0,a)→ f ′;
apply rule (ASYM1) from operational semantics}
f ′ <x< [m/x].g

= {from substitution rules}
[m/x].(f ′ <x< g)

Next, consider the case where substitution is made to variable y, y 6= x. We

show [m/y].(f <x< g)
(0,a)→ [m/y].(f ′ <x< g).

[m/y].(f <x< g)
= {from substitution rules}

[m/y].f <x< [m/y].g
(0,a)→ {using induction on f

(0,a)→ f ′, [m/y].f
(0,a)→ [m/y].f ′;

apply rule (ASYM1) from operational semantics}
[m/y].f ′ <x< [m/y].g

= {from substitution rules}
[m/y].(f ′ <x< g)

Case 2) Suppose g
(0,a)→ g′, a is not a publication, and (ASYM2N) was applied

in deducing f <x< g
(0,a)→ f <x< g′.

First, we consider the case where substitution is made to the bound variable

x. We show [m/x].(f <x< g)
(0,a)→ [m/x].(f <x< g′).

[m/x].(f <x< g)
= {from substitution rules}

f <x< [m/x].g
(0,a)→ {using induction on g

(0,a)→ g′, [m/x].g
(0,a)→ [m/x].g′;

apply rule (ASYM2N) from operational semantics}
f <x< [m/x].g′

= {from substitution rules}
[m/x].(f <x< g′)

Next, we consider the case where substitution is made to variable y, y 6= x.

We show [m/y].(f <x< g)
(0,a)→ [m/y].(f <x< g′).

[m/y].(f <x< g)
= {from substitution rules}

[m/y].f <x< [m/y].g
(0,a)→ {using induction on g

(0,a)→ g′, [m/y].g
(0,a)→ [m/y].g′;

apply rule (ASYM2N) from operational semantics}

CHAPTER 1. INTRODUCTION 19

[m/y].f <x< [m/y].g′

= {from substitution rules}
[m/y].(f <x< g′)

Case 3) Suppose g
(0,!n)→ g′ and (ASYM2V) was applied in deducing f <x< g

(0,τ)→
[n/x].f .

First, we consider the case where substitution is made to the bound variable

x. We show [m/x].(f <x< g)
(0,τ)→ [m/x].([n/x].f).

[m/x].(f <x< g)
= {from substitution rules}

f <x< [m/x].g
(0,τ)→ {using induction on g

(0,!n)→ g′, [m/x].g
(0,!n)→ [m/x].g′;

apply rule (ASYM2V) from operational semantics}
[n/x].(f0)

= {simplify}
[n/x].f

= {[n/x].f has no free occurrence of x}
[m/x].([n/x].f)

Next, we consider the case where substitution is made to variable y, y 6= x.

We show [m/y].(f <x< g)
(0,τ)→ [m/y].([n/x].f).

[m/y].(f <x< g)
= {from substitution rules}

[m/y].f <x< [m/y].g
(0,τ)→ {using induction on g

(0,!n)→ g′, [m/y].g
(0,!n)→ [m/y].g′;

apply rule (ASYM2V) from operational semantics}
[n/x].(([m/y].f)0)

= {simplify}
[n/x].([m/y].f)

= {[n/x] and [m/y] are substitutions to different variables}
[m/y].([n/x].f) 2

Theorem 7 Let p(t, a)(t, b)q be an execution of expression g, where a is not
a substitution and b is a substitution [m/x]. Then, p(t, b)(t, a)q is also an
execution of g.

Proof: Let g
p⇒ f

(t,a)→ f ′
(0,b)→ f ′′, where a is not a substitution and b is. We

show that g
p⇒ f

(t,b)→ (0,a)→ f ′′. It is is sufficient to show for any expression

f that f
(t,a)→ f ′

(0,b)→ f ′′ implies f
(t,b)→ (0,a)→ f ′′.

f
(t,a)→ f ′

(0,b)→ f ′′

⇒ {from the Evolution theorem, Theorem 5, page 10, f
(t,a)→ f ′ implies f t

(0,a)→ f ′}

CHAPTER 1. INTRODUCTION 20

f t
(0,a)→ f ′

(0,b)→ f ′′

⇒ {from Lemma 2, page 15, f t
(0,a)→ f ′ implies [m/x].f t

(0,a)→ [m/x].(f ′)}
[m/x].f t

(0,a)→ [m/x].(f ′) and f ′
(0,b)→ f ′′

⇒ {b = [m/x]. So, from f ′
(0,b)→ f ′′, f ′′ = [m/x].(f ′)}

[m/x].f t
(0,a)→ f ′′

⇒ {Given b = [m/x], f
(t,b)→ [m/x].f t}

f
(t,b)→ [m/x].f t

(0,a)→ f ′′

We can prove this theorem under a weaker restriction: a and b are not
substitutions to the same variable. In that case, two substitutions, being applied
at the same time to different variables, may be executed in either order. We
don’t, however, need this generality for our subsequent proofs.

Substitution Independent Set Set U is substitution independent if

p(t, a)(t, b)q ∈ U implies p(t, b)(t, a)q ∈ U ,
whenever a is not a substitution and b is a substitution.

Observation 9 1. For any expression f , [[f]] is substitution independent.

2. Let U be substitution independent, and p(0, b)q ∈ U , where no event in p
is a substitution and b is a substitution. Then, (0, b)pq ∈ U .

3. Union of substitution independent sets is substitution independent.

Proof: Part (1) follows from Theorem 7, page 19. Part (2) follows by applying
induction on the length of p. For p = ε, the result is immediate. Given p =
r(0, a), from the definition of substitution independent set, r(0, b)(0, a)q ∈ U ,
and inductively, (0, b)r(0, a)q = (0, b)pq ∈ U . Part (3) follows from the definition
of substitution independent set.

Lemma 3 Let U be a substitution independent set and a be a substitution at
time 0. Then, U\a = U\a.

Proof: We show U\a ⊆ U\a and U\a ⊆ U\a.

• U\a ⊆ U\a: We show that for any p, where p ∈ U\a, p ∈ U\a.

p ∈ U\a
⇒ {definition of \a; note that a.time = 0}

ap ∈ U
⇒ {definition of trace; a is a substitution, so a = a}

ap ∈ U
⇒ {definition of \a; note that a.time = 0}

p ∈ U\a

CHAPTER 1. INTRODUCTION 21

• U\a ⊆ U\a:

p ∈ U\a
⇒ {definition of \a; note that a.time = 0}

ap ∈ U
⇒ {definition of trace}

(∃u, q : u is a sequence of τ at time 0 ∧ q = p : uaq ∈ U)
⇒ {from Observation 9, page 20, part(2), auq ∈ U}

(∃u, q : u is a sequence of τ at time 0 ∧ q = p : auq ∈ U)
⇒ {definition of U\a; note that a.time = 0}

(∃u, q : u is a sequence of τ ∧ q = p : uq ∈ U\a)
⇒ {uq ∈ U\a implies uq ∈ U\a}

(∃u, q : u is a sequence of τ ∧ q = p : uq ∈ U\a)
⇒ {u = ε, q = p}

p ∈ U\a

Corollary 1 For any substitution a at time 0, 〈〈a.f〉〉 = 〈〈f〉〉\a.

Proof:

〈〈f〉〉\a
= {definition of trace}

[[f]]\a
= {from Observation 9, page 20, [[f]] is substitution independent;

applying Lemma 3, page 20}
[[f]]\a

= {from Observation 6, page 8, [[f]]\a = [[a.f]]}
[[a.f]]

= {definition of trace}
〈〈a.f〉〉

1.6 Identities

In this section, we list certain identities over arbitrary expressions (i.e., with
or without free variables), some of them similar to the laws of Kleene alge-
bra. Proofs of the identities, using strong bisimulation, are given below. Other
identities such as f >x> let(x) ∼= f , can also be proved using weak bisimulation.

Below, “f is x-free” means that x is not a free variable of f .

1. f | 0 ∼ f

2. f | g ∼ g | f

3. f | (g | h) ∼ (f | g) | h

4. f >x> (g >y> h) ∼ (f >x> g) >y> h, if h is x-free.

5. 0 >x> f ∼ 0

CHAPTER 1. INTRODUCTION 22

6. (f | g) >x> h ∼ f >x> h | g >x> h

7. (f | g) <x< h ∼ (f <x< h) | g, if g is x-free.

8. (f >y> g) <x< h ∼ (f <x< h) >y> g, if g is x-free.

9. (f <x< g) <y< h ∼ (f <y< h) <x< g,
if g is y-free and h is x-free.

10. 0 <x< b ∼ b� 0, where b is a site call or handle.

Proof:

1. f | 0 ∼ f .

The only subexpression is f . Subexpression 0 has no transition.

f
t,a→ f ′

⇒ {Sym1}
f | 0

t,a→ f ′ | 0t

⇒ {definition of 0t}
f | 0

t,a→ f ′ | 0

And,

f
t,a→ f ′

Assumed: f ′ | 0 ∼ f ′.

2. f | g ∼ g | f .

First, we consider the transitions of f .

f
t,a→ f ′

⇒ {Sym1}
f | g t,a→ f ′ | gt

f
t,a→ f ′

⇒ {Sym2}
g | f t,a→ gt | f ′

Assumed: f ′ | gt ∼ gt | f ′

The derivation with g’s transition is symmetric.

3. f | (g | h) ∼ (f | g) | h. We consider the transitions of f , g and h in turn.

(a) (Transition of f : f
t,a→ f ′)

CHAPTER 1. INTRODUCTION 23

f
t,a→ f ′

⇒ {Sym1}
f | (g | h)

t,a→ f ′ | (g | h)t

⇒ {definition of (g | h)t}
f | (g | h)

t,a→ f ′ | (gt | ht)
And,

f
t,a→ f ′

⇒ {Sym1}
f | g t,a→ f ′ | gt

⇒ {Sym1}
(f | g) | h t,a→ (f ′ | gt) | ht

Assumed: f ′ | (gt | ht) ∼ (f ′ | gt) | ht

(b) (Transition of g: g
t,a→ g′)

g
t,a→ g′

⇒ {Sym1}
g | h t,a→ g′ | ht

⇒ {Sym2}
f | (g | h)

t,a→ f t | (g′ | ht)
And,

g
t,a→ g′

⇒ {Sym2}
f | g t,a→ f t | g′

⇒ {Sym1}
(f | g) | h t,a→ (f t | g′) | ht

Assumed: f t | (g′ | ht) ∼ (f t | g′) | ht

(c) (Transition of h: h
t,a→ h′)

h
t,a→ h′

⇒ {Sym2}
g | h t,a→ gt | h′

⇒ {Sym2}
f | (g | h)

t,a→ f t | (gt | h′)
And,

h
t,a→ h′

⇒ {Sym2}
(f | g) | h t,a→ (f | g)t | h′

⇒ {definition of (f | g)t}
(f | g) | h t,a→ (f t | gt) | h′

Assumed: f t | (gt | h′) ∼ (f t | gt) | h′

CHAPTER 1. INTRODUCTION 24

4. f >x> (g >y> h) ∼ (f >x> g) >y> h, provided h is x-free.

Only the transitions of f have corresponding transitions in f >x> (g >y> h).
And, only the transitions of f have corresponding transitions in f >x> g,
and hence in (f >x> g) >y> h. Therefore, we consider only the transitions
of f , publications and non-publications.

(a) (f
t,!m→ f ′)

f
t,!m→ f ′

⇒ {Seq1V}
f >x> (g >y> h)

t,τ→ f ′ >x> (g >y> h) | [m/x].(g >y> h)
And,

f
t,!m→ f ′

⇒ {Seq1V}
f >x> g

t,τ→ f ′ >x> g | ([m/x].g)
⇒ {Seq1N}

(f >x> g) >y> h
t,τ→ (f ′ >x> g | [m/x].g) >y> h

We show f ′ >x> (g >y> h) | [m/x].(g >y> h) ∼ (f ′ >x> g | [m/x].g) >y> h

f ′ >x> (g >y> h) | [m/x].(g >y> h)
= {substitution distributes}

f ′ >x> (g >y> h) | ([m/x].g) >y> ([m/x].h)
= {h is x-free}

f ′ >x> (g >y> h) | ([m/x].g) >y> h

And,

(f ′ >x> g | [m/x].g) >y> h
∼ {distributivity law}

(f ′ >x> g) >y> h | [m/x].g >y> h
∼ {Associativity}

f ′ >x> (g >y> h) | ([m/x].g) >y> h

(b) (f
t,a→ f ′, a 6= !m)

f
t,a→ f ′

⇒ {Seq1N}
f >x> (g >y> h)

t,a→ f ′ >x> (g >y> h)
And,

f
t,a→ f ′

⇒ {Seq1N}
f >x> g

t,a→ f ′ >x> g
⇒ {Seq1N}

(f >x> g) >y> h
t,a→ (f ′ >x> g) >y> h

Assumed: f ′ >x> (g >y> h) ∼ (f ′ >x> g) >y> h, given h is x-free.

CHAPTER 1. INTRODUCTION 25

Corollary: f � (g >y> h) ∼ (f � g) >y> h

5. 0 � f ∼ 0, 0 >x> f ∼ 0.

Only transitions of 0 � f and 0 correspond to those of 0, and 0 has no
transition.

6. (f | g) >x> h ∼ f >x> h | g >x> h.

We consider only the transitions of f and g because transitions of h do
not have corresponding transitions for either expression. By symmetry
and the commutativity of | we need consider only the transitions of f .

(a) (f
t,a→ f ′, a 6= !m)

f
t,a→ f ′

⇒ {Sym1}
f | g t,a→ f ′ | gt

⇒ {Seq1N}
(f | g) >x> h

t,a→ (f ′ | gt) >x> h

And,

f
t,a→ f ′

⇒ {Seq1N}
f >x> h

t,a→ f ′ >x> h
⇒ {Sym1}

f >x> h | g >x> h
t,a→ f ′ >x> h | (g >x> h)t

⇒ {definition of (g >x> h)t}
f >x> h | g >x> h

t,a→ f ′ >x> h | gt >x> h

Assumed: (f ′ | gt) >x> h ∼ f ′ >x> h | gt >x> h.

(b) (f
t,!m→ f ′)

f
t,!m→ f ′

⇒ {Seq1V}
f >x> h

t,τ→ f ′ >x> h | [m/x].h
⇒ {Sym1}

f >x> h | g >x> h
t,τ→ (f ′ >x> h | [m/x].h) | (g >x> h)t

⇒ {definition of (g >x> h)t}
f >x> h | g >x> h

t,τ→ (f ′ >x> h | [m/x].h) | (gt >x> h)

And,

f
t,!m→ f ′

⇒ {Sym1}
f | g t,!m→ f ′ | gt

⇒ {Seq1V}
(f | g) >x> h

t,τ→ (f ′ | gt) >x> h | [m/x].h

CHAPTER 1. INTRODUCTION 26

To see (f ′ >x> h | [m/x].h) | gt >x> h ∼ (f ′ | gt) >x> h | [m/x].h

(f ′ | gt) >x> h | [m/x].h
∼ {distributivity}

(f ′ >x> h | gt >x> h) | [m/x].h
∼ {associativity and commutativity of | }

(f ′ >x> h | [m/x].h) | gt >x> h

7. (f | g) <x< h ∼ (f <x< h) | g, provided g is x-free.

There are four different kinds of transitions for each of the expressions:
transitions of f , g, publication of h and non-publication of h.

(a) f
t,a→ f ′:

f
t,a→ f ′

⇒ {Sym1}
f | g t,a→ f ′ | gt

⇒ {Asym2}
(f | g) <x< h

t,a→ (f ′ | gt) <x< ht

And,

f
t,a→ f ′

⇒ {Asym2}
f <x< h

t,a→ f ′ <x< ht

⇒ {Sym1}
(f <x< h) | g t,a→ (f ′ <x< ht) | gt

Assumed: (f ′ | gt) <x< ht ∼ (f ′ <x< ht) | gt

(b) g
t,a→ g′:

g
t,a→ g′

⇒ {Sym2}
f | g t,a→ f t | g′

⇒ {Asym2}
(f | g) <x< h

t,a→ (f t | g′) <x< ht

And,

g
t,a→ g′

⇒ {Sym2}
(f <x< h) | g t,a→ (f <x< h)t | g′

⇒ {definition of (f <x< h)t}
(f <x< h) | g t,a→ (f t <x< ht) | g′

Since g is x-free, so is g′. Assumed: (f t | g′) <x< ht ∼ (f t <x< ht) | g′.

(c) h
t,a→ h′, a 6= !m:

CHAPTER 1. INTRODUCTION 27

h
t,a→ h′

⇒ {Asym1N}
(f | g) <x< h

t,a→ (f | g)t <x< h′

⇒ {definition (f | g)t}
(f | g) <x< h

t,a→ (f t | gt) <x< h′

And,

h
t,a→ h′

⇒ {Asym1N}
f <x< h

t,a→ f t <x< h′

⇒ {Sym1}
(f <x< h) | g t,a→ (f t <x< h′) | gt

Given g is x-free, and assumed (f t | gt) <x< h′ ∼ (f t <x< h′) | gt.

(d) h
t,!m→ h′:

h
t,!m→ h′

⇒ {Asym1V}
(f | g) <x< h

t,τ→ [m/x].(f | g)t

⇒ {definition of (f | g)t}
(f | g) <x< h

t,τ→ [m/x].(f t | gt)
And,

h
t,!m→ h′

⇒ {Asym1V}
f <x< h

t,τ→ [m/x].f t

⇒ {Sym1}
(f <x< h) | g t,τ→ [m/x].f t | gt

To see that [m/x].(f t | gt) ∼ [m/x].f t | gt, we show they are equal.

[m/x].(f t | gt)
= {substitution distributes}

([m/x].f t) | ([m/x].gt)
= {g is x-free, and so is gt}

([m/x].f t) | gt

8. (f >y> g) <x< h ∼ (f <x< h) >y> g, provided g is x-free.

The transitions of the left side expression correspond to those of (f >y> g)
and h, i.e., of f and h. Similarly for the right side expression. We consider
publication and non-publication transitions of f and h separately.

(a) (f
t,a→ f ′, a 6= !m)

f
t,a→ f ′

⇒ {Seq1N}

CHAPTER 1. INTRODUCTION 28

f >y> g
t,a→ f ′ >y> g

⇒ {Asym2}
(f >y> g) <x< h

t,a→ (f ′ >y> g) <x< ht

And,

f
t,a→ f ′

⇒ {Asym2}
f <x< h

t,a→ f ′ <x< ht

⇒ {Seq1N}
(f <x< h) >y> g

t,a→ (f ′ <x< ht) >y> g

Assumed: (f ′ >y> g) <x< ht ∼ (f ′ <x< ht) >y> g.

(b) (f
t,!m→ f ′)

f
t,!m→ f ′

⇒ {Seq1V}
f >y> g

t,τ→ f ′ >y> g | [m/y].g
⇒ {Asym2}

(f >y> g) <x< h
t,τ→ (f ′ >y> g | [m/y].g) <x< ht

And,

f
t,!m→ f ′

⇒ {Asym2}
f <x< h

t,!m→ f ′ <x< ht

⇒ {Seq1V}
(f <x< h) >y> g

t,τ→ (f ′ <x< ht) >y> g | [m/y].g

To see that (f ′ >y> g | [m/y].g) <x< ht ∼ (f ′ <x< ht) >y> g | [m/y].g

(f ′ >y> g | [m/y].g) <x< ht

∼ {g is x-free. So, is [m/y].g}
(f ′ >y> g <x< ht) | [m/y].g

∼ {this law}
(f ′ <x< ht) >y> g | [m/y].g

(c) (h
t,a→ h′, a 6= !m)

h
t,a→ h′

⇒ {Asym1N}
(f >y> g) <x< h

t,a→ (f >y> g)t <x< h′

⇒ {definition of (f >y> g)t}
(f >y> g) <x< h

t,a→ (f t >y> g) <x< h′

And,

h
t,a→ h′

⇒ {Asym1N}

CHAPTER 1. INTRODUCTION 29

f <x< h
t,a→ f t <x< h′

⇒ {Seq1N}
(f <x< h) >y> g

t,a→ (f t <x< h′) >y> g

Assumed: (f t >y> g) <x< h′ ∼ (f t <x< h′) >y> g

(d) (h
t,!m→ h′)

h
t,!m→ h′

⇒ {Asym1V}
(f >y> g) <x< h

t,τ→ [m/x].(f >y> g)t

⇒ {definition of (f >y> g)t}
(f >y> g) <x< h

t,τ→ [m/x].(f t >y> g)
And,

h
t,!m→ h′

⇒ {Asym1V}
f <x< h

t,τ→ [m/x].f t

⇒ {Seq1N}
(f <x< h) >y> g

t,τ→ ([m/x].f t) >y> g

To see that [c/x](f t >y> g) ∼ ([c/x]f t) >y> g:
[c/x](f t >y> g)

= {substitution distributes}
([c/x]f t) >y> ([c/x]g)

= {g is x-free. So, [c/x]g = g}
([c/x]f t) >y> g

9. (f <x< g) <y< h ∼ (f <y< h) <x< g, provided g is y-free and h is x-free.

We have to consider the transitions corresponding to those of f , g and h.
The roles of g and h are symmetric; so, we consider only the transitions
of g.

(a) (f
t,a→ f ′)

f
t,a→ f ′

⇒ {Asym2}
f <x< g

t,a→ f ′ <x< gt

⇒ {Asym2}
(f <x< g) <y< h

t,a→ (f ′ <x< gt) <y< ht

And,

f
t,a→ f ′

⇒ {Asym2}
f <y< h

t,a→ f ′ <y< ht

⇒ {Asym2}
(f <y< h) <x< g

t,a→ (f ′ <y< ht) <x< gt

CHAPTER 1. INTRODUCTION 30

Assumed: (f ′ <x< gt) <y< ht ∼ (f ′ <y< ht) <x< gt

(b) (g
t,a→ g′, a 6= !m)

g
t,a→ g′

⇒ {Asym1N}
f <x< g

t,a→ f t <x< g′

⇒ {Asym2}
(f <x< g) <y< h

t,a→ (f t <x< g′) <y< ht

And,

g
t,a→ g′

⇒ {Asym1N}
(f <y< h) <x< g

t,a→ (f <y< h)t <x< g′

⇒ {definition of (f <y< h)t}
(f <y< h) <x< g

t,a→ (f t <y< ht) <x< g′

Assumed: (f t <x< g′) <y< ht ∼ (f t <y< ht) <x< g′.

(c) (g
t,!m→ g′)

g
t,!m→ g′

⇒ {Asym1V}
f <x< g

t,τ→ [c/x]f t

⇒ {Asym2}
(f <x< g) <y< h

t,τ→ [c/x]f t <y< ht

And,

g
t,!m→ g′

⇒ {Asym1V}
(f <y< h) <x< g

t,τ→ [c/x](f <y< h)t

⇒ {definition of (f <y< h)t}
(f <y< h) <x< g

t,τ→ [c/x](f t <y< ht)

To see that [c/x]f t <y< ht ∼ [c/x](f t <y< ht),

[c/x](f t <y< ht)
= {substitution distributes}

[c/x]f t <y< [c/x]ht

⇒ {h is x-free and so is ht}
[c/x]f t <y< ht

10. 0 <x< M(v) ∼M(v) � 0, for any site M and value v.

The only transition of the constituent expression M(v) is M(v)
0,τ→ ?k.

M(v)
0,τ→ ?k

⇒ {Asym1N}

CHAPTER 1. INTRODUCTION 31

0 <x< M(v)
0,τ→ 0t <x< ?k

⇒ {definition of 0t}
0 <x< M(v)

0,τ→ 0 <x< ?k

And,

M(v)
0,τ→ ?k

⇒ {Seq1N}
M(v) � 0

0,τ→ ?k � 0

Assumed: 0 <x< ?k ∼?k � 0

Corollaries

(a) f <x< M(v) ∼ f | M(v) � 0, if f is x-free

f <x< M(v)
∼ {proved}

(f | 0) <x< M(v)
∼ {f is x-free}

f | (0 <x< M(v))
∼ {proved}

f | M(v) � 0

(b) f <x< 0 ∼ f , if f is x-free

f <x< 0
∼ {from above}

f | 0 � 0
∼ {proved}

f | 0
∼ {proved}

f

Chapter 2

Combinators applied to
Executions

In Section 2.1 we characterize the execution sets of the base expressions. In
Section 2.2, we define U ∗ V where U and V are sets of executions and ∗ is any
Orc combinator: | , >x> , and <x< . These definitions give the meaning
function for each combinator when applied to sets. We prove results about
monotonicity (Section 2.2.4, page 37) and distributivity (Section 2.2.5, page 39)
of the combinators.

In subsequent sections of this chapter, we prove that for expressions f and
g, [[f ∗ g]] = [[f]] ∗ [[g]].

Throughout we assume a fixed environment mapping Σ and set of definitions
D. We denote the set of times by T .

2.1 Base Expressions

For variable x and set of sequences A, the exclusion of x from A, written A\x,
is defined by

A\x ∆ {p ∈ A | [m/x] does not occur in p}.

Theorem 8 The following sets characterize the executions of the base Orc ex-
pressions:

• [[0]] = D(T)

• [[?k]] = (∪(t,m) : (t,m) ∈ k : D(t) · (t, !m) · [[0]]t) ∪ (∪ω : ω ∈ k : [[0]])

• [[M(m)]] = (∪k : k ∈ Σ(M,m) : D(0) · (0, τ) · [[?k]])

• [[M(x)]] = (∪t,m : t ∈ T ,m ∈ V : D(t)\x · (t, [m/x]) · [[M(m)]]t)

Proof:

32

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 33

• [[0]] = D(T): Only the rule (Subst) applies to 0, hence every execution
is a finite sequence of substitution events with nondecreasing time.

• [[?k]] = (∪(t,m) : (t,m) ∈ k : D(t) · (t, !m) · [[0]]t) ∪ (∪ω : ω ∈ k : [[0]]):
The proof is by mutual inclusion.

– [[?k]] ⊆ (∪(t,m) : (t,m) ∈ k : D(t)·(t, !m)·[[0]]t)∪(∪ω : ω ∈ k : [[0]]):
Assume p ∈ [[?k]]. If p = ε the result follows because ε ∈ D(t) and
ε ∈ [[0]]. Otherwise let p = aqt, so

?k
t,a→ f

q⇒ f ′.

By the operational semantics, the transition
t,a→ must be due to

either rule (Return) or (Subst).
In the (Return) case, we have (t,m) ∈ k, a = !m and f = 0.
Since z ∈ [[0]], it follows that (t, !m)qt ∈ (t, !m)[[0]]t and also, since
ε ∈ D(t), that D(t)(t, !m)qt ∈ (t, !m)[[0]]t.
In the (Subst) case, we have

?k
t,[m/x]→ ?kt

q⇒ f ′.

By Thm. 6 on page 15 we have qt ∈ [[?k]], and so by induction
we have either qt ∈ (∪(t,m) : (t,m) ∈ k : D(t) · (t, !m) · [[0]]t) or
qt ∈ (∪ω : ω ∈ k : [[0]]). In either case prepending a substitution
event at time t preserves the inclusion because aD(t) ⊆ D(t) and
a[[0]] ⊆ [[0]].

– (∪(t,m) : (t,m) ∈ k : D(t)·(t, !m)·[[0]]t)∪(∪ω : ω ∈ k : [[0]]) ⊆ [[?k]]:
First assume p ∈ (∪ω : ω ∈ k : [[0]]). Since ω ∈ k, the only rule that
applies to ?k is (Subst), and ?kt =?k for any t. The result follows
by induction on the length of p.
Otherwise, assume p ∈ (∪(t,m) : (t,m) ∈ k : D(t) · (t, !m) · [[0]]t).
Hence, for some (t,m) ∈ k, p ∈ D(t) · (t, !m) · [[0]]t. If p = ε, then the
result follows by prefix closure of execution sets. Otherwise p 6= ε.
Suppose p = q(t, !m)rt, where r ∈ [[0]] and p ∈ D(t); the other cases
follow by prefix-closure of execution sets. If q = ε, then p = (t, !m)rt
and ?k

t, !m→ 0 r⇒ by the operational semantics. Otherwise, q = aqs
and p = ap′s, where a is a substitution event at time s, for some s ≤ t,
and p′ = qt(t, !m)rt. By induction, p′s ∈ [[?k]], and so by Thm 6 on
page 15 p′ ∈ [[?ks]]. Finally,

?k a→ ?ks
p′⇒ .

• [[M(m)]] = (∪k : k ∈ Σ(M,m) : D(0) · (0, τ) · [[?k]]): The proof is by
mutual inclusion.

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 34

– [[M(m)]] ⊆ (∪k : k ∈ Σ(M,m) : D(0) · (0, τ) · [[?k]]): Consider
p ∈ [[M(m)]]. If p = ε the result follows because ε ∈ D(0). Otherwise

M(m)
t,a→ f

q⇒ f ′.

By the operational semantics, the transition
t,a→ must be due to

either rule (Call) or (Subst).
In the (Call) case, we have

M(m)
0,τ→ ?k

q⇒ f ′.

Since q ∈ [[?k]], it follows that (0, τ)q ∈ (0, τ)[[?k]], and hence
(0, τ)q ∈ D(0)(0, τ)[[?k]].
In the (Subst) case, we have

M(m)
0,[m/x]→ M(m)

q⇒ f ′.

Note that the substitution must occur at time 0 because M(m)t = ⊥
for t > 0. By induction, q ∈ (∪k : k ∈ Σ(M,m) : D(0) · (0, τ) · [[?k]]).
The result follows because (0, [m/x])D(0) ⊆ D(0).

– (∪k : k ∈ Σ(M,m) : D(0) · (0, τ) · [[?k]]) ⊆ [[M(m)]]: Consider
p ∈ (∪k : k ∈ Σ(M,m) : D(0) · (0, τ) · [[?k]]). Assume p = q(0, τ)r,
where q ∈ D(0) and r ∈ [[?k]]; the other cases follow by prefix-
closure of execution sets. If p = ε, the result follows by prefix-closure
of execution sets. Otherwise p 6= ε. If q = ε, then p = (0, τ)r. Since
r ∈ [[?k]], we have by rule (Call)

M(m)
0,τ→ ?k r⇒ .

Otherwise q = aq′ and p = ap′, where a is a substitution event at
time 0. By induction we have p′ ∈ [[M(m)]], and the result follows
from

M(m) a→ M(m)
p′⇒ .

• [[M(x)]] = (∪t,m : t ∈ T ,m ∈ V : D(t)\x · (t, [m/x]) · [[M(m)]]t): The
proof is by mutual inclusion.

– [[M(x)]] ⊆ (∪t,m : t ∈ T ,m ∈ V : D(t)\x · (t, [m/x]) · [[M(m)]]t):
Consider p ∈ [[M(x)]]. If p = ε the result follows because ε ∈ D(t)
for all times t. Otherwise

M(x)
t,a→ f

q⇒ f ′.

By the operational semantics, this transition must be by rule (Subst).

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 35

If the substitution is to a variable y 6= x, then

M(x)
t,[m/y]→ M(x)

q⇒ f ′.

By induction, q ∈ (∪t,m : t ∈ T ,m ∈ V : D(t)\x · (t, [m/x]) ·
[[M(m)]]t). Then for some s ∈ T and value m, q ∈ D(s)\x·(s, [m/y])·
[[M(m)]]s. Since qt ∈ D(s + t)\x · (s + t, [m/y]) · [[M(m)]]s+t. The
result follows because (t, [m/y])D(s+ t)\x ⊆ D(s+ t)\x.
Otherwise we have

M(x)
t,[m/x]→ M(m)

q⇒ .

Then q ∈ [[M(m)]] and so (t, [m/x])qt ∈ (t, [m/x])[[M(m)]]t, from
which the result follows.

– (∪t,m : t ∈ T ,m ∈ V : D(t)\x · (t, [m/x]) · [[M(m)]]t) ⊆ [[M(x)]]:
Consider p ∈ (∪t,m : t ∈ T ,m ∈ V : D(t)\x · (t, [m/x]) · [[M(m)]]t).
So, for some t ∈ T and value m, p ∈ D(t)\x · (t, [m/x]) · [[M(m)]]t.
Assume p = q(t, [m/x])rt, where q ∈ D(t)\x and r ∈ [[M(m)]]; the
other cases follow by prefix-closure of execution sets. If p = ε, the
result follows by prefix-closure of execution sets. Otherwise, p 6= ε.
If q = ε, then by r ∈ [[M(m)]] and rule (Subst),

M(x)
t,[m/x]→ M(m) r⇒ .

Otherwise, q = (s, [m/y])q′ and p = (s, [m/y])p′, where s ≤ t and
y 6= x. By induction, p′ ∈ [[M(x)]], and the result follows from

M(x)
s,[m/y]→ M(x)

p′⇒ .

2.2 Meanings of Execution Combinators

2.2.1 Meaning of Symmetric Composition

We introduce guarded set, a notational device, which simplifies our definition
and subsequent algebraic manipulations. Let p be a predicate and S a set. Then

[p → S] =
{
S if p
{ε} otherwise

We call [p → S] a guarded set, and predicate p its guard.
We define merge over two sequences that yields a non-empty set of sequences.

The merge of u and v, written as u | v is defined by the following two rules.
Henceforth, a ' b means that a and b are identical substitution events, and
a � b means that a is a base event and a.time ≤ b.time.

ε | v = {ε}, u | ε = {ε},
au | bv = [a ' b→ a(u | v)] ∪ [a � b→ a(u | bv)] ∪ [b � a→ b(au | v)]

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 36

We define | to be coercive so that

U | V = (∪u, v : u ∈ U, v ∈ V : u | v)

Therefore | distributes over set union, and observation 2, as well as observa-
tions 3 and 4, page 7, apply.

2.2.2 Meaning of Sequential Composition

In this section, we deal with expressions of the form f >x> g; variable x will be
treated specially in this section. We write own-substitution for a substitution
to x and other-substitution for any other substitution, i.e., made to a variable
other than x.

We define p >x> V , for sequence p and set V , as a set of sequences.

ε >x> φ = φ,
ε >x> V = {ε}, for V 6= φ

ap >x> V =

 a(p >x> V) if c1(a) (SCD1)
a(p >x> V ′) if c2(a) (SCD2)
(t, τ)(p >x> V | V ′′t) if c3(a) (SCD3)

where

c1(a) is “a is a non-publication base event or an own-substitution”,
c2(a) is “a is an other-substitution (t, b)”; here V ′ = V \(0, b),
c3(a) is “a is publication (t, !m)”; here V ′′ = V \(0, [m/x]).

Coerce the definition for set U :

U >x> V = (∪u : u ∈ U : u >x> V)

The form of coercion for sequential composition is different from that for
merge. Merge is defined with two sequences as arguments, whereas sequential
composition has a set as a second argument.

2.2.3 Meaning of Asymmetric Composition

In this section, we deal with expressions of the form f <x< g; variable x will be
treated specially in this section. We write own-substitution for a substitution
to x and other-substitution for any other substitution, i.e., made to a variable
other than x.

Constrained Partial and Full Merge

Let a ≈x b mean that a and b are identical other-substitutions. As before, a � b
means that a is a base event and a.time ≤ b.time. Let b ��

x
a denote that:

(either b is a base event or an own-substitution) and b.time ≤ a.time. Define
partial merge, |

x
, an extension of merge, over a pair of sequences.

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 37

ε|xv = {ε}, u|xε = {ε}
au|xbv = [a ≈x b→ a(u|xv)] ∪ [a � b→ a(u|xbv)] ∪ [b ��x a→ b(au|xv)]

Coerce the definition to sets U and V :

U |xV = (∪u, v : u ∈ U, v ∈ V : u|xv)

Next, we define full merge, using a notation similar to guarded sets. Let
〈p → S〉 be set S if p is true and the empty set, φ, if p is false. Note that,
unlike the guarded sets of Section 3.2, page 76, the default value here is the
empty set, not {ε}. Therefore, 〈p → S〉 ∪ 〈false → S′〉 = 〈p → S〉.

Constrained full merge of u and v, written as u +
x
v, is a set of sequences

defined as follows.

u+
x
ε =

{
{u} if u contains no substitution event
φ otherwise

ε+xv =
{
{v} if v contains no other-substitution
φ otherwise

au+
x
bv = 〈a ≈

x
b→ a(u+

x
v)〉 ∪ 〈a � b→ a(u+

x
bv)〉 ∪ 〈b ��

x
a→ b(au+

x
v)〉

Coerce the definition to sets U and V :

U +xV = (∪u, v : u ∈ U, v ∈ V : u+xv)

Definition of Asymmetric Composition

Define

d0(u, v) ∆ u and v have the same sequence of other-substitutions
d1(u, v) ∆ u has no own-substitution and v has no publication
d2(u, v) ∆
u is of the form u′(t, [m/x])u′′, v is of the form v′(t, !m)v′′, and
d0(u′, v′), d1(u′, v′)

We now define u <x< v.

u <x< v =

 u|
x
v if d1(u, v)

(u′ +
x
v′)(t, τ)u′′ if d2(u, v)

φ otherwise
U <x< V = (∪u, v : u ∈ U, v ∈ V : u <x< v)

2.2.4 Monotonicity

Theorem 9 For any Orc combinator ∗, U ∗V is φ if either U or V is φ. Further,
suppose U ⊆ U ′ and V ⊆ V ′. Then, U ∗ V ⊆ U ′ ∗ V ′.

Proof: The first part follows from the definitions of meaning functions where ∗
is either | or <x< . Combinator >x> is coercive in its left argument; so,
φ >x> V = φ. To show U >x> φ = φ, we show p >x> φ = φ, for any p. This
can be proved by applying induction on the length of p.

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 38

For the next part, combinator | is coercive in both of its arguments; so,
U ⊆ U ′ and V ⊆ V ′ implies U | V ⊆ U ′ ∗ V ′. Similar remarks apply for
<x< . Combinator >x> is coercive in its left argument; so, U ⊆ U ′ implies
U >x> V ⊆ U ′ >x> V . Next, we prove that V ⊆ W implies U >x> V ⊆
U >x> W .

If U = φ, from the definition, U >x> V = φ = U >x> W . For U 6= φ, let
p ∈ U . We show p >x> V ⊆ p >x> W . Proof is by induction on the length of
p.

For p = ε, the result follows by inspection of the definition. Next, we prove
ap >x> V ⊆ ap >x> W . Consider three cases:

• c1(a):

ap >x> V
= {definition of meaning function}

a(p >x> V)
⊆ {V ⊆W ; inductively, p >x> V ⊆ p >x> W}

a(p >x> W)
= {definition of meaning function}

ap >x> W

• c2(a):

ap >x> V
= {definition of meaning function}

a(p >x> V ′)
⊆ {V ⊆W ; from the definition of \(0, b) from Section 1.3.1, page 6, V ′ ⊆W ′;

apply induction}
a(p >x> W ′)

= {definition of meaning function}
ap >x> W

• c3(a):

ap >x> V
= {definition of meaning function}

a(p >x> V | (V ′′)t)
⊆ {V ⊆W ; inductively, p >x> V ⊆ p >x> W

| is monotonic in both arguments}
a(p >x> W | (V ′′)t)

= {from the definition of \(0, b) from Section 1.3.1, page 6, V ′′ ⊆W ′′;
given V ′′ ⊆W ′′, (V ′′)t ⊆ (W ′′)t}
a(p >x> W | (W ′′)t)

= {definition of meaning function}
ap >x> W

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 39

2.2.5 Distributivity

Lemma 4 Let V0 ⊆ V1 · · · . Then, (∪i :: p >x> Vi) = p >x> (∪i :: Vi), for any
p.

Proof:
A note on notation: we use subscripts i, j, k and n (in addition to a 0 and 1)
to designate sets such as V0. At thesame time, we will write Vt, for time-shift
of V . And, they will be combined a few times as in (Vi)t; we use context to
differentiate the two usages.

Proof is by mutual inclusion.

• (∪i :: p >x> Vi) ⊆ p >x> (∪i :: Vi): For any i,

p >x> Vi
⊆ {Vi ⊆ (∪i :: Vi); >x> is monotonic from Theorem 9, page 37}

p >x> V

Therefore, (∪i :: p >x> Vi) ⊆ p >x> (∪i :: Vi).

• p >x> (∪i :: Vi) ⊆ (∪i :: p >x> Vi):
If (∪i :: Vi) = φ then, Vi = φ, for all i. So, p >x> (∪i :: Vi) = φ = (∪i ::
p >x> Vi). Assume, henceforth, that (∪i :: Vi) 6= φ. Then, there is some Vj ,
Vj 6= φ. The proof is by induction on the length of p.

If p = ε, then p >x> (∪i :: Vi) = {ε} and p >x> Vj = {ε} ⊆ (∪i :: p >x> Vi).
Next, we show that ap >x> (∪i :: Vi) ⊆ (∪i :: ap >x> Vi), for any ap. We

consider three cases, depending on a.
Case 1) c1(a):

ap >x> (∪i :: Vi)
= {c1(a)}

a(p >x> (∪i :: Vi))
⊆ {induction on p >x> (∪i :: Vi)}

a(∪i :: p >x> Vi)
= {concatenation distributes over set union}

(∪i :: a(p >x> Vi))
= {c1(a)}

(∪i :: ap >x> Vi)

Case 2) c2(a):

ap >x> (∪i :: Vi)
= {c2(a)}

a(p >x> (∪i :: Vi)′)
= {removal operator distributes over set union}

a(p >x> (∪i :: V ′i))
⊆ {induction on p >x> (∪i :: V ′i)}

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 40

a(∪i :: p >x> V ′i)
= {concatenation distributes over set union}

(∪i :: a(p >x> V ′i))
= {c2(a)}

(∪i :: ap >x> Vi)

Case 3) c3(a):

ap >x> (∪i :: Vi)
= {c3(a)}

a(p >x> (∪i :: Vi) | ((∪i :: Vi)′′)t)
= {removal operator distributes over set union}

a(p >x> (∪i :: Vi) | (∪i :: V ′′i)t)
= {time-shift distributes over set union}

a(p >x> (∪i :: Vi) | (∪i :: (V ′′i)t))
⊆ {induction on p >x> (∪i :: Vi);

merge and concatenation are montonic wrt set union}
a(∪i :: p >x> Vi) | (∪i :: (V ′′i)t)

Now it is sufficient to show that for any q ∈ (∪i :: p >x> Vi) and r ∈ (∪i ::
(V ′′i)t), a(q | r) ⊆ (∪i :: ap >x> Vi).

Since q ∈ (∪i :: p >x> Vi), for some j, q ∈ p >x> Vj .
Since r ∈ (∪i :: (V ′′i)t), for some k, r ∈ (V ′′k)t.
Let n = max(j, k). Then Vj ⊆ Vn and Vk ⊆ Vn.

q ∈ p >x> Vj
⇒ {Vj ⊆ Vn and >x> is monotonic from Theorem 9, page 37}

q ∈ p >x> Vn

Similarly, from r ∈ (V ′′k)t and Vk ⊆ Vn, we get r ∈ (V ′′n)t. Then,

a(q | r)
⊆ {q ∈ p >x> Vn;

merge and concatenation are montonic wrt set union}
a(p >x> Vn | r)

⊆ {r ∈ (V ′′n)t}
a(p >x> Vn | (V ′′n)t)

= {c3(a)}
ap >x> Vn

⊆ {set theory}
(∪i :: ap >x> Vi)

Next, we establish that every Orc combinator distributes over set union in
in its left argument and in its right argument under a certain condition. Below
∗ is any Orc combinator: | , >x> or <x< .

Theorem 10 For any U and V ,

1. (Left Distributivity) (∪i :: Pi ∗ V) = (∪i :: Pi) ∗ V , for a family of sets Pi.

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 41

2. (Right Distributivity) (∪i :: U ∗Qi) = U ∗ (∪i :: Qi), for a sequence of sets
Qi, where Q0 ⊆ Q1 ⊆ · · · .

Proof: Left Distributivity follows from the definitions of the combinators over
sets.

(∪i :: Pi ∗ V)
= {expanding Pi ∗ V }

(∪i :: (∪p : p ∈ Pi : p ∗ V))
= {set theory}

(∪p : p ∈ (∪i :: Pi) ∗ V)
= {definition of coercion}

(∪i :: Pi) ∗ V

Right distributivity for | and <x< follow similarly, because they are co-
ercive in both arguments. Now, we show that (∪i :: U >x> Qi) = U >x> (∪i ::
Qi), for a sequence of sets Qi, where Q0 ⊆ Q1 ⊆ · · · .

(∪i :: U >x> Qi)
= {expanding U >x> Qi}

(∪i :: (∪p : p ∈ U : p >x> Qi))
= {set theory}

(∪p : p ∈ U : (∪i :: p >x> Qi))
= {(∪i :: p >x> Qi) = p >x> (∪i :: Qi), from Lemma 4, page 39}

(∪p : p ∈ U : p >x> (∪i :: Qi))
= {definition of coercion}

U >x> (∪i :: Qi) 2

We note that right distributivity holds for the combinators | and <x<

for arbitrary sets Qis; the additional condition Q0 ⊆ Q1 ⊆ · · · is not required.
This condition is needed only for >x> , as we outline below.

We show that U >x> (V ∪ W) 6= U >x> V ∪ U >x> W , in general; in
fact, ap >x> (V ∪W) 6= (ap >x> V) ∪ (ap >x> W) when c3(a) holds. Let
V1 = p >x> V and V2 = (V ′′)t, and W1 and W2 are similarly defined.

ap >x> (V ∪W)
= {c3(a)}

a(p >x> (V ∪W) | ((V ∪W)′′)t)
⊇ {p >x> (V ∪W) ⊇ p >x> V ∪ p >x> W}

a((p >x> V ∪ p >x> W) | ((V ∪W)′′)t)
= {V1 = p >x> V and V2 = (V ′′)t; similarly for W1 and W2}

a((V1 ∪W1) | (V2 ∪W2))
= {coercion}

a((V1 | V2) ∪ (V1 | W2) ∪ (W1 | V2) ∪ (W1 | W2))

And,

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 42

(ap >x> V) ∪ (ap >x> W)
= {c3(a)}

a(p >x> V | (V ′′)t) ∪ a(p >x> W | (W ′′)t)
= {V1 = p >x> V and V2 = (V ′′)t; similarly for W1 and W2}

a(V1 | V2) ∪ a(W1 | W2)
= {rewriting}

a((V1 | V2) ∪ (W1 | W2))

Thus, in general, ap >x> (V ∪W) ⊇ (ap >x> V) ∪ (ap >x> W).

2.3 Characterization of Symmetric Composition

The goal of this section is to show that [[f | g]] = [[f]] | [[g]]. We prove this
result in two parts: [[f | g]] ⊆ [[f]] | [[g]] and [[f]] | [[g]] ⊆ [[f | g]]. For the
proof we employ the operational semantics of | , from Section 1.2, page 2, and
the meaning function given in Section 2.2.1, page 35.

We note some preliminary facts.

1. a ' b ≡ b ' a.

2. a ' b⇒ ¬(a � b), a ' b⇒ ¬(b � a).

3. It is possible for a ' b, a � b and b � a to be all false at the same time.

Lemma 5 (u | v)t = ut | vt.

Proof: Apply the definition of | to both sides. Note that at ' bt ≡ a ' b,
at � bt ≡ a � b. The result follows by applying induction.

2.3.1 [[f | g]] ⊆ [[f]] | [[g]]

Theorem 11 [[f | g]] ⊆ [[f]] | [[g]]

Proof: Given p ∈ [[f | g]], we show that p ∈ [[f]] | [[g]]. Proof is by induction
on the length of p.

• p = ε : then, p ∈ {ε} | {ε} ⊆ [[f]] | [[g]], since {ε} ⊆ [[f]], and {ε} ⊆ [[g]].

• p = aqt, where a is base: Given p ∈ [[f | g]], without loss in generality,
assume that f a→ f ′ and f ′ | gt q⇒ .

Case 1) q = ε: Since gt 6= ⊥, there is some y ∈ [[t]] , that is, yt ∈ [[g]].

aqt
∈ {q = ε}

a(ε | yt)
⊆ {a is a base event at time t; use definition of | }

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 43

aε | yt
= {aε = a}

a | yt
⊆ {from f

a→ , a ∈ [[f]]; we have yt ∈ [[g]].}
[[f | g]]

Case 2) q 6= ε: From f ′ | gt q⇒ , inductively, q ∈ x | y, where x ∈ [[f ′]] and
y ∈ [[gt]]. Since q 6= ε, we get y 6= ε.

aqt
∈ {q ∈ x | y}

a(x | y)t
= {distribute time-shift}

a(xt | yt)
⊆ {a.time = t ≤ (yt).time, and a is base}

axt | yt
⊆ {f a→ f ′

x⇒ , a.time = t; so f axt⇒ , or axt ∈ [[f]]
y ∈ [[gt]], so, yt ∈ [[g]]}

[[f]] | [[g]]

• p = aqt, where a is a substitution event: Since aqt ∈ [[f | g]], from the
operational semantics, f a→ f ′, g a→ g′, and f ′ | g′ q⇒ . Inductively, from
f ′ | g′ q⇒ , there exists x and y, where x ∈ [[f ′]], y ∈ [[g′]] and q ∈ x | y.

q ∈ x | y
⇒ {simple algebra}

aqt ∈ a(x | y)t
⇒ {a(x | y)t = a(xt | yt)}

aqt ∈ a(xt | yt)
⇒ {since a is a substitution event, a(xt | yt) = axt | ayt}

aqt ∈ (axt | ayt)
⇒ {f a→ f ′

x⇒ ; so, axt ∈ [[f]]. Similarly, ayt ∈ [[g]]}
aqt ∈ [[f]] | [[g]]

2.3.2 [[f]] | [[g]] ⊆ [[f | g]]

Theorem 12 [[f]] | [[g]] ⊆ [[f | g]]

Proof: Let p ∈ [[f]] | [[g]]; we show that p ∈ [[f | g]]. Proof is by induction on
the length of p.

• p = ε: The execution set of every expression, hence [[f | g]], contains ε.

• p = aqt, where a is a base event:

aqt ∈ [[f]] | [[g]]
⇒ {assume that a is an event from [[f]]; definition of | }

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 44

aqt ∈ aut | vt, where aut ∈ [[f]], vt ∈ [[g]]
⇒ {a is a base event; so, aut | vt = a(ut | vt)}

aqt ∈ a(ut | vt), where aut ∈ [[f]], vt ∈ [[g]]
⇒ {ut | vt = (u | v)t}

q ∈ u | v, and aut ∈ [[f]], vt ∈ [[g]]
⇒ {aut ∈ [[f]] means f a→ f ′

u⇒ , for some f ′,
vt ∈ [[g]] means gt v⇒ }
q ∈ [[f ′]] | [[gt]]

⇒ {induction}
q ∈ [[f ′ | gt]]

⇒ {f a→ f ′ implies f | g a→ f ′ | gt and f ′ | gt q⇒ }
aqt ∈ [[f | g]]

• p = aqt, where a is a substitution event:

aqt ∈ [[f]] | [[g]]
⇒ {a is a substitution event, use definition of merge}

aut ∈ [[f]], avt ∈ [[g]], where q ∈ u | v
⇒ {rewriting}

f
a→ f ′

u⇒ , for some f ′, and g
a→ g′

v⇒ , for some g′

⇒ {q ∈ u | v}
q ∈ [[f ′]] | [[g′]]

⇒ {f a→ f ′ and g
a→ g′ implies f | g a→ f ′ | g′}

f | g a→ f ′ | g′ q⇒
⇒ {rewriting}

aqt ∈ [[f | g]]

2.4 Characterization of Sequential Composition

The goal of this section is to show that [[f >x> g]] = [[f]] >x> [[g]]. We
prove this result in two parts: [[f >x> g]] ⊆ [[f]] >x> [[g]] and [[f >x> g]] ⊆
[[f]] >x> [[g]]. For the proof we employ the operational semantics of >x> , from
Section 1.2, page 2, and the meaning function given in Section 2.2.2, page 36.

2.4.1 Preliminary Results

Lemma 6 For any p and V , pt >x> V = (p >x> V)t

Proof: If V = φ, the result is trivial. Assume V 6= φ. Proof is by induction on
the length of p.

• εt >x> V = (ε >x> V)t:
εt >x> V = ε >x> V = {ε} and (ε >x> V)t = {ε}t = {ε}.

• (ap)t >x> V = (ap >x> V)t:
The proof is similar for the first two cases in the definition (i.e., when a is not

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 45

a publication). So, we show just one proof, for the first case in the definition
where c1(a) holds.

(ap)t >x> V
= {(ap)t = atpt}

atpt >x> V
= {definition; note that c1(a) holds, so c1(at) holds}

at(pt >x> V)
= {induction: pt >x> V = (p >x> V)t}

at(p >x> V)t
= {time-shift of t distributes over concatenation}

(a(p >x> V))t
= {definition: ap >x> V = a(p >x> V), given c1(a)}

(ap >x> V)t

For the last case in the definition, let a be a publication at time s.

(ap)t >x> V
= {(ap)t = atpt}

atpt >x> V
= {definition; note that a is a publication at s;

so c3(a) and c3(at) hold}
(s+ t, τ)(pt >x> V | (V ′′)s+t)

= {induction: pt >x> V = (p >x> V)t}
(s+ t, τ)((p >x> V)t | (V ′′)s+t)

= {time-shift of t distributes over merge}
((s+ t, τ)(p >x> V | V ′′s)t)

= {move time-shift over concatenation}
((s, τ)(p >x> V | V ′′s))t

= {from definition, ap >x> V = (s, τ)(p >x> V | V ′′s), given c3(a)}
(ap >x> V)t

Observation 10 For y 6= x, f >x> g
(t,[m/y])→ f ′ >x> g′, where f

(t,[m/y])→ f ′

and g
(0,[m/y])→ g′

Proof:

f >x> g
(t,[m/y])→ {definition of substitution}

[m/y].(f >x> g)t

= {definition of (f >x> g)t}
[m/y].(f t >x> g)

= {substitution rules, note that y 6= x}
[m/y].(f t) >x> [m/y].g

= {f (t,[m/y])→ [m/y].(f t) = f ′, g
(0,[m/y])→ [m/y].g = g′}

f ′ >x> g′

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 46

Observation 11 f >x> g
(t,[m/x])→ f ′ >x> g, where f

(t,[m/x])→ f ′.

Proof:

f >x> g
(t,[m/x])→ {definition of substitution}

[m/x].(f >x> g)t

= {definition of (f >x> g)t}
[m/x].(f t >x> g)

= {substitution rules}
[m/x].(f t) >x> g

= {f (t,[m/x])→ [m/x].(f t) = f ′}
f ′ >x> g

2.4.2 [[f >x> g]] ⊆ [[f]] >x> [[g]]

Theorem 13 [[f >x> g]] ⊆ [[f]] >x> [[g]]

Proof: Given p ∈ [[f >x> g]], we show that p ∈ [[f]] >x> [[g]]. Proof is by
induction on the length of p.

• p = ε: We have ε ∈ [[f]] and {ε} ⊆ [[g]]. Therefore, {ε} = ε >x> {ε} ⊆
[[f]] >x> [[g]].

• p = aqt, where a is an other-substitution:

aqt ∈ [[f >x> g]]
⇒ {operational semantics of [[f >x> g]]}

f >x> g
a→ f ′ >x> g′

q⇒
⇒ {from Observation 10, page 45, f a→ f ′, g

(0,b)→ g′, where a = (t, b)}
f

a→ f ′, g
(0,b)→ g′, where a = (t, b) and f ′ >x> g′

q⇒
⇒ {induction on q ∈ [[f ′ >x> g′]]}

q ∈ [[f ′]] >x> [[g′]]
⇒ {rewriting}

aqt ∈ a([[f ′]] >x> [[g′]])t
⇒ {see sublemma below}

aqt ∈ (a[[f ′]]t) >x> [[g]]
⇒ {f a→ f ′; from Observation 6, page 8, a[[f ′]]t ⊆ [[f]]}

aqt ∈ [[f]] >x> [[g]]

Sublemma: We show that a([[f ′]] >x> [[g′]])t = (a[[f ′]]t) >x> [[g]], given

g
(0,b)→ g′, and a = (t, b).

(a[[f ′]]t) >x> [[g]]
= {from definition (SCD2), since c2(a)}

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 47

a([[f ′]]t >x> ([[g]]\(0, b)))
= {g (0,b)→ g′. So, [[g]]\(0, b) = [[g′]], from Observation 6, page 8}

a([[f ′]]t >x> [[g′]])
⇒ {from Lemma 6, page 44, [[f ′]]t >x> [[g′]] = ([[f ′]] >x> [[g′]])t}

= {g (0,b)→ g′. So, [[g]]\(0, b) = [[g′]]}
a([[f ′]] >x> [[g′]])t

• p = aqt, where a is an own-substitution:

aqt ∈ [[f >x> g]]
⇒ {from Observation 11, page 46}

f >x> g
a→ f ′ >x> g

q⇒ , where f a→ f ′

⇒ {induction on q ∈ [[′ >x> g]]}
q ∈ [[f ′]] >x> [[g]]

⇒ {rewriting}
aqt ∈ a([[f ′]] >x> [[g]])t

⇒ {from Lemma 6, page 44, ([[f ′]] >x> [[g]])t = [[f ′]]t >x> [[g]]}
aqt ∈ a([[f ′]]t >x> [[g]])

= {from definition (SCD1), since c1(a)}
aqt ∈ (a[[f ′]]t) >x> [[g]]

⇒ {f a→ f ′; so, a[[f ′]]t ⊆ [[f]]}
aqt ∈ [[f]] >x> [[g]]

• p = aqt, where a 6= τ and a is not a substitution:
Since aqt ∈ [[f >x> g]], a can not be a publication. Hence, c1(a) holds. Also,
a 6= τ means

f
a→ f ′, and f >x> g

a→ f ′ >x> g
q⇒

The proof is similar to the case where a is an own-substitution.

• p = aqt, where a = (t, τ):
If a is not due to a publication, that is, f a→ f ′ so that f >x> g

a→ f ′ >x> g,
the proof is similar to the case where a is an own-substitution.

If a is due to a publication (t, !m), i.e., f
(t,!m)→ f ′,

f
(t,!m)→ f ′

⇒ {operational semantics}
f >x> g

(t,τ)→ f ′ >x> g | [m/x].g
⇒ {p = aqt ∈ [[f >x> g]] and a = (t, τ)}

q ∈ [[f ′ >x> g | [m/x].g]]
⇒ {from theorems Theorem 11, page 42 and Theorem 12, page 43:

[[f ′ >x> g | [m/x].g]] = [[f ′ >x> g]] | [[[m/x].g]]}

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 48

q ∈ [[f ′ >x> g]] | [[[m/x].g]]
⇒ {rewriting}

q ∈ u | v, where u ∈ [[f ′ >x> g]], and v ∈ [[[m/x].g]]
⇒ {induction on u ∈ [[f ′ >x> g]]}

u ∈ [[f ′]] >x> [[g]], q ∈ u | v, v ∈ [[[m/x].g]]
⇒ {q ∈ u | v. So qt ∈ (u | v)t = ut | vt}

aqt ∈ a(ut | vt), v ∈ [[[m/x].g]]
⇒ {from Observation 6, page 8, [[[m/x].g]] = [[g]]\(0, [m/x])}

aqt ∈ a(ut | vt), v ∈ ([[g]]\(0, [m/x]))
⇒ {a = (t, τ), u ∈ [[f ′]] >x> [[g]]}

aqt ∈ (t, τ)(([[f ′]] >x> [[g]])t | ([[g]]\(0, [m/x]))t)
⇒ {from Lemma 6, page 44, ([[f ′]] >x> [[g]])t = ([[f ′]]t >x> [[g]])}

aqt ∈ (t, τ)(([[f ′]]t >x> [[g]]) | ([[g]]\(0, [m/x]))t)
⇒ {from definition (SCD3) given c3(a)}

aqt ∈ ((t, !m)[[f ′]]t) >x> [[g]]

⇒ {from f
(t,!m)→ f ′, (t, !m)[[f ′]]t ⊆ [[f]]}

aqt ∈ [[f]] >x> [[g]]

2.4.3 [[f]] >x> [[g]] ⊆ [[f >x> g]]

Theorem 14 [[f]] >x> [[g]] ⊆ [[f >x> g]]

Proof: For p ∈ [[f]] >x> [[g]], we show p ∈ [[f >x> g]]. If p = ε, the result
follows from ε ∈ [[f >x> g]].

Let p = aqt. From definition (SCD1–SCD3), a can not be a publication. We
consider four cases: (1) a is an own-substitution, (2) a is an other-substitution,
and (3) a is not a substitution and a 6= (t, τ), for any t, and (4) a = (t, τ), for
some t.

Case 1) a is an own-substitution: So, c1(a) holds.

aqt ∈ [[f]] >x> [[g]]
⇒ {from definition (SCD1), since c1(a)}

aqt ∈ a(rt >x> [[g]]), where art ∈ [[f]]
⇒ {simplify and rewrite}

qt ∈ rt >x> [[g]], and f
a→ f ′

r⇒
⇒ {from Lemma 6, page 44, rt >x> [[g]] = (r >x> [[g]])t}

qt ∈ (r >x> [[g]])t, and f ′
r⇒

⇒ {simplify}
q ∈ r >x> [[g]], and f ′

r⇒
⇒ {r ∈ [[f ′]]}

q ∈ ([[f ′]] >x> [[g]])
⇒ {induction}

q ∈ [[f ′ >x> g]]
⇒ {from operational semantics and Observation 11, page 46

f
a→ f ′ and c1(a) implies f >x> g

a→ f ′ >x> g}

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 49

f >x> g
a→ f ′ >x> g

q⇒
⇒ {rewrite}

aqt ∈ [[f >x> g]]

Case 2) a is an other-substitution: So, c2(a) holds. Let a = (t, b) and a0 = (0, b).

aqt ∈ [[f]] >x> [[g]]
⇒ {from definition (SCD2), since c2(a)}

aqt ∈ a(rt >x> ([[g]]\a0)), where art ∈ [[f]]
⇒ {Let g a0⇒ g′; then, from Observation 6, page 8, ([[g]]\a0) = [[g′]]}

aqt ∈ a(rt >x> [[g′]]), where art ∈ [[f]] and g
a0⇒ g′

⇒ {simplify and rewrite}
qt ∈ rt >x> [[g′]], f a→ f ′

r⇒ and g
a0⇒ g′

⇒ {rt >x> [[g′]] = (r >x> [[g′]])t, from Lemma 6, page 44}
q ∈ r >x> [[g′]], f a→ f ′

r⇒ , and g
a0⇒ g′

⇒ {r ∈ [[f ′]]}
q ∈ [[f ′]] >x> [[g′]], f a→ f ′

r⇒ , and g
a0⇒ g′

⇒ {induction on q ∈ [[f ′]] >x> [[g′]]}
q ∈ [[f ′ >x> g′]], f a→ f ′

r⇒ , and g
a0⇒ g′

⇒ {from Observation 10, page 45, f >x> g
a→ f ′ >x> g′}

f >x> g
a→ f ′ >x> g′

q⇒
⇒ {rewrite}

aqt ∈ [[f >x> g]]

Case 3) a is not a substitution and a 6= (t, τ), for any t: So, c1(a) holds and the
proof is similar to that for Case (1).

Case 4) a = (t, τ), for some t: Then, the third case in the definition, (SCD3),
applies.

aqt ∈ [[f]] >x> [[g]]
⇒ {a = (t, τ)}

(t, τ)qt ∈ [[f]] >x> [[g]]
⇒ {from definition (SCD3)}

(t, τ)qt ∈ (t, τ)(rt >x> [[g]] | ([[g]]\(0, [m/x]))t), where

f
(t,!m)→ f ′

r⇒ , for some m

⇒ {let g
(0,[m/x])→ g′′; from Observation 6, page 8, [[g]]\(0, [m/x]) = [[g′′]]}

qt ∈ (rt >x> [[g]] | [[g′′]]t), f
(t,!m)→ f ′

r⇒ , g
(0,[m/x])→ g′′

⇒ {from Lemma 6, page 44, rt >x> [[g]] = (r >x> [[g]])t; simplify}
q ∈ (r >x> [[g]] | [[g′′]]), f

(t,!m)→ f ′
r⇒ , g

(0,[m/x])→ g′′

⇒ {r ∈ [[f ′]]}
q ∈ [[f ′]] >x> [[g]] | [[g′′]], f

(t,!m)→ f ′
r⇒ and g

(0,[m/x])→ g′′

⇒ {definition of symmetric composition}
q ∈ u | v, where u ∈ [[f ′]] >x> [[g]] and v ∈ [[g′′]]

⇒ {induction on u ∈ [[f ′]] >x> [[g]]}

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 50

q ∈ u | v, where u ∈ [[f ′ >x> g]] and v ∈ [[g′′]]
⇒ {rewrite}

q ∈ [[f ′ >x> g]] | [[g′′]]
⇒ {theorems on Merge: [[f ′ >x> g]] | [[g′′]] = [[f ′ >x> g | g′′]]}

q ∈ [[f ′ >x> g | g′′]]
⇒ {given f

(t,!m)→ f ′}
f >x> g

(t,τ)→ f ′ >x> g | [m/x].g
⇒ {[m/x].g = g′′}

f >x> g
(t,τ)→ f ′ >x> g | g′′

⇒ {q ∈ [[f ′ >x> g | g′′]]}
f >x> g

(t,τ)→ f ′ >x> g | g′′ q⇒
⇒ {rewrite}

(t, τ)qt ∈ [[f >x> g]]

2.5 Characterization of Asymmetric Composi-
tion

The goal of this section is to show that [[f <x< g]] = [[f]] <x< [[g]]. We
prove this result in two parts: [[f <x< g]] ⊆ [[f]] <x< [[g]] and [[f <x< g]] ⊆
[[f]] <x< [[g]]. For the proof we employ the operational semantics of <x< , from
Section 1.2, page 2, and the meaning function given in Section 2.2.3, page 36.

2.5.1 Preliminary Results

We often write apt to mean that a is an event at time t, (and pt is the execution
following a). It is possible for p to be ε.

Observation 12 f <x< g
p⇒ implies f <x< g

pc⇒ , where c is an other-
substitution, and c.time = p.time.

Proof: From the operational semantics.

Observation 13 (apt).time = t+ p.time

Proof: For p = ε, (apt).time = t = t+ p.time.
p 6= ε, (apt).time = t+ p.time.

Observation 14 (apt).time− (aqt).time = p.time− q.time.
(apt).time− (qt).time = p.time− q.time, provided q 6= ε.

Proof: The first part follows directly from Observation 13, page 50. The second
part follows similarly, by noting that (qt).time = t+ q.time, for q 6= ε.

Observation 15 Let

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 51

u.time = t+ u′.time,
v.time = t+ v′.time,
T = max(u.time, v.time),
T ′ = max(u′.time, v′.time).

Then, T − u.time = T ′ − u′.time and T − v.time = T ′ − v′.time.

Proof: The two proofs are similar; we prove only the first one.

T
= {definition}

max(u.time, v.time)
= {u.time = t+ u′.time, v.time = t+ v′.time}

max(t+ u′.time, t+ v′.time)
= {arithmetic}

t+ max(u′.time, v′.time)
= {T ′ = max(u′.time, v′.time)}

t+ T ′

= {u.time = t+ u′.time, so, t = u.time− u′.time}
u.time− u′.time+ T ′

Therefore, T − u.time = T ′ − u′.time.

Observation 16 ε ∈ u+
x
v ≡ u = ε ∧ v = ε

Proof: ε ∈ u+
x
v by application of the base rule only, because the inductive rule

creates items starting with an item. The result follows by considering the base
rule.

Lemma 7 p ∈ u+
x
v ⇒ d0(u, v) ∧ p.time = max(u.time, v.time).

Proof: Proof is by induction on the combined lengths of u and v.
u = ε and v = ε: then, d0(u, v). And, p = ε, so, p.time = 0 = max(u.time, v.time).
u = ε and v 6= ε: Since u +

x
v 6= φ, v contains no other-substitution. So,

d0(u, v). And, p = v, so, p.time = v.time = max(u.time, v.time).
u 6= ε and v = ε: Since u +xv 6= φ, u contains no substitution. So, d0(u, v).

And, p = u, so, p.time = u.time = max(u.time, v.time).
u 6= ε and v 6= ε: We rename the terms and consider cp ∈ au+

x
bv. We will

show that d0(au, bv) and (cp).time = max(au.time, bv.time).

Case 1) a ≈x b, a = b = c and p ∈ u+xv: Inductively, d0(u, v); so, d0(au, bv).
Let a.time = b.time = c.time = t. And, u = u′t, v = v′t, p = p′t. From p ∈ u+xv,
we get p′t ∈ u′t +

x
v′t, or p′t ∈ (u′ +

x
v′)t, or p′ ∈ u′ +

x
v′.

max(au.time, bv.time)
= {u = u′t, v = v′t}

max((au′t).time, (bv
′
t).time)

= {a.time = t, b.time = t; from Observation 13, page 50}

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 52

max(t+ u′.time, t+ v′.time)
= {arithmetic}

t+ max(u′.time, v′.time)
= {from p′ ∈ u′ +

x
v′, inductively, p′.time = max(u′.time, v′.time)}

t+ p′.time
= {a.time = t, from Observation 13, page 50}

(ap′t).time
= {p = p′t, a = c}

(cp).time

Case 2) a � b, c = a and p ∈ u +
x
bv: Inductively, d0(u, bv); so, d0(au, bv),

because a is base, from a � b. Let a.time = c.time = t. And, u = u′t,
bv = (b′v′)t, p = p′t. From p ∈ u+

x
bv, we get p′t ∈ u′t+x

(b′v′)t, or p′t ∈ (u′+
x
b′v′)t,

or p′ ∈ u′ +
x
b′v′.

max(au.time, bv.time)
= {u = u′t, bv = (b′v′)t}

max((au′t).time, (b
′v′)t.time)

= {a.time = t; from Observation 13, page 50}
max(t+ u′.time, t+ (b′v′).time)

= {arithmetic}
t+ max(u′.time, (b′v′).time)

= {from p′ ∈ u′ +
x
b′v′, inductively, p′.time = max(u′.time, (b′v′).time)}

t+ p′.time
= {a.time = t, from Observation 13, page 50}

(ap′t).time
= {p = p′t, a = c}

(cp).time

Case 3) b ��
x
a, c = b and p ∈ au+

x
v: Similar to Case (2).

The prefix-closure of u, written as u
∗
, is the set of prefixes of u. Formally,

ε
∗

= {ε},
(au)

∗
= {ε} ∪ au∗

Note that {ε} ⊆ u
∗
, for all u. Therefore, (au)

∗
= {ε} ∪ au∗ holds (vacuously)

even when a = ε. Set U is prefix-closed if u
∗ ⊆ U , for every u in U .

Lemma 8 u|
x
v is prefix-closed.

Proof: We first observe that ε ∈ (u|xv), for any u and v. If either u or v is empty,
the result follows from definition. For au|

x
bv, ¬((a ' b) ∧ (a � b)); so, at least

one of these conditions is false, and the corresponding guarded set contributes
{ε}.

The proof of prefix-closure is by induction on the combined lengths of u and
v. For empty u or empty v, the result is obvious.

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 53

(au|xbv)
∗

= {definition}
[a ≈

x
b→ a(u|

x
v)] ∪ [a � b→ a(u|

x
bv)] ∪ [b ��

x
a→ b(au|

x
v)]
∗

= {prefix-closure distributes over set union and guarded sets}
[a ≈

x
b→ (a(u|

x
v))
∗
] ∪ [a � b→ (a(u|

x
bv))

∗
] ∪ [b ��

x
a→ (b(au|

x
v))
∗
]

= {expand prefix-closure}
[a ≈x b→ {ε} ∪ a(u|xv)

∗
] ∪ [a � b→ {ε} ∪ a(u|xbv)

∗
] ∪ [b ��x a→ {ε} ∪ b(au|xv)

∗
]

= {guarded set property}
{ε} ∪ [a ≈

x
b→ a(u|

x
v)
∗
] ∪ [a � b→ a(u|

x
bv)
∗
] ∪ [b ��

x
a→ b(au|

x
v)
∗
]

= {induction}
{ε} ∪ [a ≈

x
b→ a(u|

x
v)] ∪ [a � b→ a(u|

x
bv)] ∪ [b ��

x
a→ b(au|

x
v)]

= {definition of au|xbv}
{ε} ∪ (au|xbv)

= {ε ∈ (au|
x
bv)}

au|
x
bv

Lemma 9 Suppose p ∈ u|
x
v. Then there are prefixes u′ of u and v′ of v such

that

1. p ∈ u′ +
x
v′,

2. u′.time ≤ v.time and v′.time ≤ u.time

Proof: Proof is by induction on the length of p.

• p = ε: Let u′ = v′ = ε. Then, p ∈ u′ +xv
′. Also, u′.time = 0 ≤ v.time and

v′.time = 0 ≤ u.time.

• p 6= ε: We rename the terms to get cp ∈ au|xbv. We consider the three cases
in the inductive definition of au|

x
bv.

Case 1) a ≈
x
b ≈

x
c and p ∈ u|

x
v:

Inductively, for some prefix u′ of u and v′ of v, we have p ∈ u′ +xv
′, u′.time ≤

v.time and v′.time ≤ u.time. Then, au′ is a prefix of au and bv′ of bv. From
a ≈

x
b ≈

x
c and p ∈ u′ +

x
v′, cp ∈ au′ +

x
bv′. Further, from u′.time ≤ v.time

and a = b, (au′).time ≤ (bv).time. Symmetrically, (bv′).time ≤ (au).time.

Case 2) a � b, c = a and p ∈ u|xbv:
Inductively, for some prefix u′ of u and w′ of bv, we have p ∈ u′+xw

′, u′.time ≤
(bv).time and w′.time ≤ u.time. We consider two cases, (2.1) w′ = ε and (2.2)
w′ 6= ε.

Case 2.1) w′ = ε: From p ∈ u′ +
x
w′, p = u′. Then, cp = ap = au′ ∈ (au′ +

x
w′),

and au′ is a prefix of au and w′ of bv. Next we show (au′).time ≤ (bv).time
and w′.time ≤ (au).time. The latter one is trivial since w′ = ε.

To show (au′).time ≤ (bv).time, consider two cases.
u′ = ε: (au′).time = a.time {from a � b} ≤ b.time ≤ (bv.time).

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 54

u′ 6= ε: (au′).time = u′.time {given} ≤ (bv.time).

Case 2.2) w′ 6= ε: Since w′ is a prefix of bv, w′ = bv′ for some prefix v′ of v.

cp
∈ {c = a, p ∈ u′ +

x
w′ = u′ +

x
bv′}

a(u′ +
x
bv′)

⊆ {a � b; apply definition of +
x
}

au′ +xbv
′

To show (au′).time ≤ (bv).time, consider two cases.
u′ = ε: (au′).time = a.time {from a � b} ≤ b.time ≤ (bv.time).
u′ 6= ε: (au′).time = u′.time {given} ≤ (bv.time).

To show (bv′).time ≤ (au).time:
(bv′).time = w′.time {given} ≤ u.time ≤ (au).time.

Case 3) b ��
x
b, c = b and p ∈ au|

x
v:

Similar to case (2).

Lemma 10 uc+
x
vc ⊆ uc|

x
vc, where c is an other-substitution.

Proof: We prove the result using induction on the combined length of u and v.

• u = ε and v = ε: uc+
x
vc = c+

x
c = c(ε+

x
ε) = {c}, and uc|

x
vc = c|

x
c = {ε, c}.

• u = ε and v = bv′:

uc+
x
vc

= {u = ε and v = bv′}
c+

x
bv′c

= {since c is an other-substitution, ¬(c � b); from definition of +x}
〈c ≈x b→ c(ε+xv

′c)〉 ∪ 〈b ��x c→ b(c+xv
′c)〉

= {v′c contains an other-substitution; so, ε+
x
v′c = φ}

〈b ��
x
c→ b(c+

x
v′c)〉

⊆ {apply induction}
〈b ��x c→ b(c|xv′c)〉

⊆ {definitions of the two kinds of guarded sets}
[b ��

x
c→ b(c|

x
v′c)]

⊆ {definition of |
x
}

c|
x
bv′c

= {u = ε and v = bv′}
uc|xvc

• v = ε and a = au′: The proof is similar to the previous case.

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 55

uc+xvc
= {v = ε and a = au′}

au′c+
x
c

= {since c is an other-substitution, ¬(c ��
x
a); from definition of +

x
}

〈a ≈
x
c→ c(u′c+

x
ε)〉 ∪ 〈a � c→ a(u′c+

x
c)〉

= {u′c contains a substitution; so, u′c+xε = φ}
〈a � c→ a(u′c+xc)〉

⊆ {apply induction}
〈a � c→ a(u′c|

x
c)〉

⊆ {definitions of the two kinds of guarded sets}
[a � c→ a(u′c|

x
c)]

⊆ {definition of |x}
au′c|xc

= {v = ε and a = au′}
uc|

x
vc

• u = au′ and v = bv′:

au′c+
x
bv′c

= {definition of +
x
}

〈a ≈x b→ a(u′c+xv
′c)〉 ∪ 〈a � b→ a(u′c+xbv

′c)〉 ∪ 〈b ��x a→ b(au′c+xv
′c)〉

⊆ {induction}
〈a ≈

x
b→ a(u′c|

x
v′c)〉 ∪ 〈a � b→ a(u′c|

x
bv′c)〉 ∪ 〈b ��

x
a→ b(au′c|

x
v′c)〉

⊆ {definitions of the two kinds of guarded sets}
[a ≈

x
b→ a(u′c|

x
v′c)] ∪ [a � b→ a(u′c|

x
bv′c)] ∪ [b ��

x
a→ b(au′c|

x
v′c)]

= {definition of |x}
au′c|xbv′c

Lemma 11 Let c be an other-substitution and pc ∈ u+
x
v. Then, u = u′c and

v = v′c, for some u′ and v′.

Proof: Proof is by induction on the length of p.

• p = ε: Then, c ∈ u +xv. This can not be derived by the base rule, because
c is an other-substitution. So, c ∈ u +xv is derived by the inductive rule. We
examine each term in that rule.

a ≈
x
b: Then, a = b = c and ε ∈ u +

x
v. From Observation 16, page 51,

u = ε ∧ v = ε. Hence, au = c and bv = c, as required.
a � b: Since a is a base event, a 6= c. Therefore, this term can not derive c.
b ��x a Since b is base or own-substitution, b 6= c. Therefore, this term can

not derive c.

• p 6= ε: Let pc = dp′c. As before, the base rule can not be used for deriving
pc. In the inductive rule, p′c has to be generated by either u +

x
v, au +

x
v or

u+
x
bv. Inductively, in each case, p′c ∈ u′c+

x
v′c, for some u′ and v′.

Lemma 12 (u+xv)t = ut +xvt.

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 56

Proof: Apply the definition of | to both sides. Note that at ≈x bt ≡ a ≈x b,
at � bt ≡ a � b and bt ��x at ≡ b ��x a. The result follows by applying
induction.

2.5.2 [[f <x< g]] ⊆ [[f]] <x< [[g]]

Lemma 13 Let f <x< g
q⇒ h, where the publication rule, (ASYM2V), was

not used in forming q. Then,

(*1) there exist f u⇒ f ′ and g
v⇒ g′, such that

(*2) d1(u, v),

(*3) q ∈ u+
x
v, and

(*4) h = f ′′ <x< g′′, where f ′′ = (f ′)q.time−u.time, g′′ = (g′)q.time−v.time

Proof: Proof is by induction on the length of q.

• q = ε: Then f <x< g
ε⇒ f <x< g. So, h = f <x< g. Let u = ε, v = ε,

f ′ = f , g′ = g. Then, q.time = u.time = v.time = 0. Now,

1. f u⇒ f ′ and g
v⇒ g′, from f

ε→ f , g ε→ g

2. d1(u, v), from d1(ε, ε),

3. q ∈ u+xv, from ε ∈ ε+xε

4. h = (f ′)q.time−u.time <x< (g′)q.time−v.time, from h = f <x< g = f0
<x< g0

• q = apt where a is an other-substitution: Then, f a→ f1, g a→ g1 and
f1 <x< g1

p⇒ h. Applying induction on f1 <x< g1
p⇒ h, we get

1. there exist f1
u′⇒ f2, and g1

v′⇒ g2, such that

2. d1(u′, v′),

3. p ∈ u′ +
x
v′

4. h = f3 <x< g3 where f3 = (f2)p.time−u
′.time, g3 = (g2)p.time−v

′.time

Let u = au′t, v = av′t, f
′ = f2, g′ = g2.

Now, we show the required items under (*).
(*1) f u⇒ f ′ and g

v⇒ g′:

f
u⇒ f ′: f a→ f1

u′⇒ f2 = f ′. Since u = au′t, f
u⇒ f ′.

g
v⇒ g′: similarly.

(*2) d1(u, v): From d1(u′, v′) and that a is an other-substitution.

(*3) q ∈ u+xv:

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 57

q
= {definition of q}

apt
∈ {p ∈ u′ +

x
v′ implies pt ∈ u′t +

x
v′t}

a(u′t +
x
v′t)

⊆ {a is an other-substitution; apply definition of +
x
}

au′t +xav
′
t

= {u = au′t, v = av′t}
u+

x
v

(*4) h = (f ′)q.time−u.time <x< (g′)q.time−v.time:
We are given
h = f3 <x< g3 where f3 = (f2)p.time−u

′.time, g3 = (g2)p.time−v
′.time.

Since f ′ = f2, g′ = g2, it is sufficient to show that

q.time− u.time = p.time− u′.time
q.time− v.time = p.time− v′.time

Since q = apt, u = au′t and v = av′t, the results follow from Observation 14,
page 50.

• q = apt, where a is own-substitution:
Then, f <x< g

a→ f1 <x< g1
p⇒ h.

From the definition of own-substitution, f1 = f t and g
a→ g1.

Applying induction on f1 <x< g1
p⇒ h, we get:

1. there exist f1
u′⇒ f2, and g1

v′⇒ g2, such that

2. d1(u′, v′),

3. p ∈ u′ +
x
v′

4. h = f3 <x< g3 where f3 = (f2)p.time−u
′.time, g3 = (g2)p.time−v

′.time

Case 1) Suppose u′ 6= ε: Let u = u′t, v = av′t, f
′ = f2, g′ = g2. We show the

required items under (*).
(*1) f u⇒ f ′ and g

v⇒ g′:
f

v⇒ f ′: Given

f1
u′⇒ f2

⇒ {f1 = f t}
f t

u′⇒ f2
⇒ {time-shift}

f
u′t⇒ f2

⇒ {u = u′t, f
′ = f2}

f
u⇒ f ′

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 58

g
v⇒ g′: Given

g
a→ g1

v′⇒ g2
⇒ {rewriting}

g
av′t⇒ g2

⇒ {av′t = v, g2 = g′}
g

v⇒ g′

(*2) d1(u, v): Since u = u′t, and u′t contains no own-substitution, from d1(u′, v′),
we conclude that u has no own-substitution. And, v = av′t contains no publica-
tion, because v′ does not contain any, from d1(u′, v′).

(*3) q ∈ u+
x
v:

q
= {definition of q}

apt
∈ {p ∈ u′ +

x
v′ implies pt ∈ u′t +

x
v′t}

a(u′t +
x
v′t)

⊆ {a is an own-substitution at time t; apply definition of +
x
}

u′t +xav
′
t

= {u = u′t, v = av′t}
u+

x
v

(*4) h = (f ′)q.time−u.time <x< (g′)q.time−v.time:
We are given
h = f3 <x< g3 where f3 = (f2)p.time−u

′.time, g3 = (g2)p.time−v
′.time. Since

f ′ = f2, g′ = g2, it is sufficient to show that

q.time− u.time = p.time− u′.time
q.time− v.time = p.time− v′.time

Since q = apt, u = u′t where u′ 6= ε, and v = av′t, the results follow from Obser-
vation 14, page 50.

Case 2) Suppose u′ = ε: From p ∈ u′ +
x
v′ and u′ = ε, we conclude that p = v′

and v′ has no other-substitution. We are given f1
u′=ε⇒ f2, so f1 = f2, and

g1
v′=p⇒ g2.
Let u = ε, v = av′t = apt = q, f ′ = f , and g′ = g2. We show the required

items under (*).
(*1) f u⇒ f ′ and g

v⇒ g′:
f

u⇒ f ′: Follows from f
u=ε⇒ f = f ′

g
v⇒ g′: Given

g
a→ g1

v′⇒ g2
⇒ {rewriting}

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 59

g
av′t⇒ g2

⇒ {av′t = v, g2 = g′}
g

v⇒ g′

(*2) d1(u, v): Since u = ε, it contains no own-substitution. From d1(u′, v′),
there is no publication in v′; further, a is a substitution; so, v has no publication.

(*3) q ∈ u+xv: Given

p = v′

⇒ {q = apt = av′t = v,
v has no other-substitution, because v′ has none and a is own-substitution}
q ∈ ε+

x
v

⇒ {u = ε}
q ∈ u+xv

(*4) h = (f ′)q.time−u.time <x< (g′)q.time−v.time:
We are given
h = f3 <x< g3 where f3 = (f2)p.time−u

′.time, g3 = (g2)p.time−v
′.time.

First, we show f3 = (f ′)q.time−u.time.

f3
= {given}

(f2)p.time−u
′.time

= {from f1
ε⇒ f2, f2 = f1, and f1 = f t}

(f t)p.time−u
′.time

= {arithmetic}
f t+p.time−u

′.time

= {q.time = (apt).time = t+ p.time, u.time = u′.time = 0;
so t+ p.time− u′.time = q.time− u.time}
fq.time−u.time

= {f = f ′}
(f ′)q.time−u.time

Next, we show g3 = (g′)q.time−v.time.

g3
= {given}

(g2)p.time−v
′.time

= {g2 = g′}
(g′)p.time−v

′.time

= {p.time− v′.time = 0, from p = v′; also, q.time− v.time = 0, from q = v}
(g′)q.time−v.time

• q = apt, where a is base:
Let g a→ g1 so that f <x< g

a→ f t <x< g1
p⇒ h. The proof for this case is

identical to the last case where a was an own-substitution.

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 60

The proof is similar for the case where f
a→ f1 so that f <x< g

a→
f1 <x< gt

p⇒ h.

Theorem 15 [[f <x< g]] ⊆ [[f]] <x< [[g]]

Proof: Let p ∈ [[f <x< g]]. We show p ∈ [[f]] <x< [[g]]. We consider two
cases for the execution p of f <x< g: (1) rule (ASYM2V) was not used in the
execution p, and (2) (ASYM2V) was used.

• (ASYM2V) was not used in the execution p: Since f <x< g
p⇒ , from

Observation 12, page 50, f <x< g
pc⇒ , where c is an other-substitution, and

c.time = p.time. Then, applying Lemma 13, page 56,

1. there exist f u⇒ f ′ and g
v⇒ g′, such that

2. d1(u, v),

3. pc ∈ u+xv

Now,

pc ∈ u+
x
v

⇒ {from Lemma 11, page 55}
pc ∈ u′c+

x
v′c, where u = u′c and v = v′c

⇒ {from Lemma 10, page 54, u′c+xv
′c ⊆ u′c|xv′c = u|xv}

pc ∈ u|xv
⇒ {u|

x
v is prefix-closed, from Lemma 8, page 52}

p ∈ u|
x
v

⇒ {given d1(u, v), u <x< v = u|
x
v}

p ∈ u <x< v

⇒ {given f
u⇒ , u ∈ [[f]]; similarly, v ∈ [[g]]}

p ∈ [[f]] <x< [[g]]

• (ASYM2V) was used in the execution p: Then, p = q(t, τ)rt, where
f <x< g

q⇒ h
s,τ→ r⇒ , and t = q.time+ s.

Applying Lemma 13, page 56, on f <x< g
q⇒ h,

1. there exist f u⇒ f ′ and g
v⇒ g′, such that

2. d1(u, v),

3. q ∈ u+xv, and

4. h = f ′′ <x< g′′, where f ′′ = (f ′)q.time−u.time, g′′ = (g′)q.time−v.time

Also, g′′
s,!m→ , and [m/x].(f ′′)s r⇒ .

Let j = u(t, [m/x])rt, and k = v(t, !m). We first show that (1) j ∈ [[f]], (2)
k ∈ [[g]], and (3) d2(j, k), from which we have an easy proof of p ∈ [[f]] <x< [[g]].

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 61

(1) j ∈ [[f]]: We show

f
u⇒ f ′

(t1,[m/x])→ [m/x].(f ′′)s r⇒ , where t1 + u.time = t

Hence, j = u(t, [m/x])rt ∈ [[f]].

To prove the result, we already have f u⇒ f ′ and [m/x].(f ′′)s r⇒ . So, we

need only prove f ′
(t1,[m/x])→ [m/x].(f ′′)s.

f ′

(t1,[m/x])→ {application of substitution}
[m/x].(f ′)t1

= {t1 = t− u.time= {t = q.time+ s} q.time− u.time+ s}
[m/x].(f ′)q.time−u.time+s

= {f ′′ = (f ′)q.time−u.time}
[m/x].(f ′′)s

(2) k ∈ [[g]]: we have to show g
v(t,!m)⇒ . We show g

v⇒ g′
t2,!m→ , where

v.time+ t2 = t.
We are given g

v⇒ g′. To show, g′
t2,!m→ ,

g′′
s,!m→

⇒ {g′′ = (g′)q.time−v.time}
g′

q.time−v.time+s,!m→
⇒ {from t = q.time+ s, q.time− v.time+ s = t− v.time = t2}

g′
t2,!m→

(3) d2(j, k): Both j and k are of the required form. We are given d1(u, v). To
see d0(u, v):

q ∈ u+xv
⇒ {set theory}

u+
x
v 6= φ

⇒ {from Lemma 7, page 51}
d0(u, v)

Now, we show that p ∈ [[f]] <x< [[g]].

p
= {given}

q(t, τ)rt
∈ {q ∈ u+xv}

(u+xv)(t, τ)rt
= {j = u(t, [m/x])rt, k = v(t, !m) and d2(j, k) holds}

j . k
= {d2(j, k) holds}

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 62

j <x< k
⊆ {j ∈ [[f]], k ∈ [[g]]}

[[f]] <x< [[g]]

2.5.3 [[f]] <x< [[g]] ⊆ [[f <x< g]]

Lemma 14 Suppose f u⇒ f ′, g v⇒ g′ and d0(u, v).
Let T = max(u.time, v.time), f ′′ = (f ′)T−u.time, g′′ = (g′)T−v.time.
Then, for any p, where p ∈ u+

x
v, f <x< g

p⇒ f ′′ <x< g′′.

Note: The lemma does not assert that under the given conditions, p is an
execution of f <x< g. This is because f ′′ or g′′ may be ⊥. In order to show
that p is an execution of f <x< g, it has to be shown that neither of these
expressions is ⊥.
Proof: Proof is by induction on the combined lengths of u and v.

• u = ε and v = ε: Then, f ′ = f and g′ = g. Also, u.time = v.time = T = 0,
and f ′′ = f and g′′ = g. Since p = ε, we have to show f <x< g

ε⇒ f <x< g,
which follows.

• u 6= ε and v = ε: p ∈ u +
x
v means that p = u and u has no substitutions.

Given u 6= ε, we may write u = au′t. Here a is a base event because u has no

substitution. Then, f a→ f1
u′⇒ f ′.

f <x< g
a→ {f a→ f1, and a is a base event}

f1 <x< gt

u′⇒ {Induction on f1
u′⇒ f ′ and gt

ε⇒ gt;
let T ′ = max(u′.time, 0) = u′.time}

(f ′)T
′−u′.time

<x< (gt)T
′−v′.time

= {T − u.time = 0 = T ′ − u′.time;
T − v.time = T = u.time = t+ u′.time = t+ T ′, so,
(gt)T

′−v′.time = (g′)T−v.time}
(f ′)T−u.time <x< (g′)T−v.time

• u = ε and v 6= ε: Similar to the above.

• u 6= ε and v 6= ε: Let p = aqt. We consider three cases, (1) a is base (2) a is
an other-substitution, and (3) a is an own-substitution.

Case (1) a is base: We have p = aqt ∈ u+
x
v, where a is base. Without loss in

generality, assume that

u = u′t and v = av′t, so that f
u=u′t⇒ f ′, g a→ g1

v′⇒ g′.

p ∈ u+
x
v

⇒ {p = aqt, u = u′t and v = av′t}

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 63

aqt ∈ u′t +xav
′
t

⇒ {a is base; so, u′t +xav
′
t = a(u′t +xv

′
t) = a(u′ +xv

′)t}
aqt ∈ a(u′ +

x
v′)t

⇒ {obviously}
q ∈ u′ +

x
v′

From d0(u, v), we have d0(u′, v′). Let T ′ = max(u′.time, v′.time).

f <x< g
a→ {g a→ g1}

f t <x< g1
q⇒ {induction on f t

u′⇒ f ′, g1
v′⇒ g′ using q ∈ u′ +

x
v′ and d0(u′, v′)}

f2 <x< g2, where f2 = (f ′)T
′−u′.time, g2 = (g′)T

′−v′time

⇒ {Using Observation 15, page 50,
T ′ − u′.time = T − u.time, T ′ − v′.time = T − v.time}
f2 <x< g2, where f2 = (f ′)T−u.time, g2 = (g′)T−v.time

Case (2) a is an other-substitution: We have p = aqt ∈ u +
x
v, which means

u = au′t, v = av′t and q ∈ u′ +xv
′.

Then, f a→ f1
u′⇒ f ′, g a→ g1

v′⇒ g′. Let T ′ = max(u′.time, v′.time). From
d0(u, v), we have d0(u′, v′). Let T ′ = max(u′.time, v′.time).

f <x< g
a→ {a is an other-substitution; f a→ f1 and g

a→ g1}
f1 <x< g1

q⇒ {induction on f1
u′⇒ f ′, g1

v′⇒ g′ using q ∈ u′ +
x
v′ and d0(u′, v′)}

f2 <x< g2, where f2 = (f ′)T
′−u′.time, g2 = (g′)T

′−v′.time

⇒ {Using Observation 15, page 50,
T ′ − u′.time = T − u.time, T ′ − v′.time = T − v.time}
f2 <x< g2, where f2 = (f ′)T−u.time, g2 = (g′)T−v.time

Case (3) a is an own-substitution: this case is similar to Case (1) where a is
base.

Lemma 15 u ∈ [[f]], v ∈ [[g]], and d1(u, v) implies u <x< v ⊆ [[f <x< g]]

Proof:

p ∈ u <x< v
⇒ {definition of u <x< v given d1(u, v)}

p ∈ u|
x
v

⇒ {from Lemma 9, page 53}
p ∈ u′ +xv

′, where u′ and v′ are prefixes of u and v,
u′.time ≤ v.time and v′.time ≤ u.time

⇒ {from Lemma 7, page 51, p ∈ u′ +
x
v′ ⇒ d0(u′, v′)}

p ∈ u′ +
x
v′, for prefixes u′ of u and v′ of v, and d0(u′, v′),

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 64

u′.time ≤ v.time and v′.time ≤ u.time
⇒ {u ∈ [[f]], v ∈ [[g]]; u′ and v′ are prefixes of u and v}

p ∈ u′ +
x
v′, f u′⇒ f ′, g v′⇒ g′, for some f ′ and g′, d0(u′, v′),

u′.time ≤ v.time and v′.time ≤ u.time
⇒ {from Lemma 14, page 62}

f <x< g
p⇒ (f ′)T−u

′.time
<x< (g′)T−v

′.time, where
T = max(u′.time, v′.time), u′.time ≤ v.time and v′.time ≤ u.time

Next, we show that (f ′)T−u
′.time 6= ⊥ and (g′)T−v

′.time 6= ⊥; hence, that
p ∈ [[f <x< g]], i.e., u <x< v ⊆ [[f <x< g]].

Given that u ∈ [[f]], u′ is a prefix of u, and f u′⇒ f ′, we have f u′⇒ f ′
u′′⇒ ,

where u = u′(u′′)u′.time.

(f ′)u
′′.time 6= ⊥

⇒ {from u = u′(u′′)u′.time, u.time = u′.time+ u′′.time}
(f ′)u.time−u

′.time 6= ⊥
⇒ {u′ is a prefix of u; so, u′.time ≤ u.time

Given, v′.time ≤ u.time. So, T = max(u′.time, v′.time) ≤ u.time.
Hence, T − u′.time ≤ u.time− u′.time}
(f ′)T−u

′.time 6= ⊥

Similarly, (g′)T−v
′.time 6= ⊥.

Theorem 16 [[f]] <x< [[g]] ⊆ [[f <x< g]]

Proof: We show

1. u ∈ [[f]], v ∈ [[g]], and d1(u, v) implies u <x< v ⊆ [[f <x< g]],

2. u ∈ [[f]], v ∈ [[g]], and d2(u, v) implies u <x< v ⊆ [[f <x< g]], and

3. u ∈ [[f]], v ∈ [[g]], ¬d1(u, v), and ¬d2(u, v) implies u <x< v ⊆ [[f <x< g]]

The first case follows from Lemma 15, page 63. The last case is trivial, since
u <x< v in that case is φ, a subset of any set. So, we prove only the second
case.

• u ∈ [[f]], v ∈ [[g]], and d2(u, v) implies u <x< v ⊆ [[f <x< g]]: Given d2(u, v)
we may assume that

u = u′(t, [m/x])u′′t ∈ [[f]], v = v′(t, !m)v′′ ∈ [[g]] (F1)

Then u <x< v = (u′ +xv
′)(t, τ)u′′t .

We have to show that for any p, where p ∈ u′ +xv
′, p(t, τ)u′′t ⊆ [[f <x< g]].

We prove this by showing

f <x< g
p⇒ f ′ <x< g′

t−T,τ→ [m/x].(f ′)t−T u′′⇒ , where T = p.time, or
f <x< g

p⇒ f ′ <x< g′, for some f ′ and g′, (1)

f ′ <x< g′
t−T,τ→ [m/x].(f ′)t−T , (2)

[m/x].(f ′)t−T u′′⇒ (3)

CHAPTER 2. COMBINATORS APPLIED TO EXECUTIONS 65

Note that, given p ∈ u′+xv
′, using Lemma 7, page 51, p.time = max(u′.time, v′.time).

Since T = p.time, T = max(u′.time, v′.time).
Now,

u ∈ [[f]] means f u′⇒ f1
t1,[m/x]→ [m/x].(f1)t1 u′′⇒ , where

t1 + u′.time = t. Also, (f1)t1 6= ⊥. (F2)

v ∈ [[g]] means g v′⇒ g1
t2,!m→ , where

t2 + v′.time = t. Also, (g1)t2 6= ⊥. (F3)

(1) f <x< g
p⇒ f ′ <x< g′: We are given f

u′⇒ f1, g v′⇒ g1. Also, d0(u′, v′)
follows from d2(u, v), and p ∈ u′ +xv

′. Applying Lemma 14, page 62, we get

f <x< g
p⇒ f ′ <x< g′, where

f ′ = (f1)T−u
′.time, g′ = (g1)T−v

′.time (Recall T = max(u′.time, v′.time))

Next, we show that f ′ 6= ⊥ and g′ 6= ⊥. First, from u = u′(t, [m/x])u′′t ,
u′.time ≤ t, and from v = v′(t, !m)v′′, v′.time ≤ t. Therefore, T = max(u′.time, v′.time) ≤
t. Now, t1 = t − u′.time ≥ T − u′.time. Since (f1)t1 6= ⊥, from (F2),
(f1)T−u

′.time = f ′ 6= ⊥. Similarly, g′ 6= ⊥.

(2) f ′ <x< g′
t−T,τ→ [m/x].(f ′)t−T : From (F2),

g1
t2,!m→

⇒ {t2 = t− v′.time = T − v′.time+ t− T}
(g1)T−v

′.time t−T,!m→
⇒ {g′ = (g1)T−v

′.time}
(g′)

t−T,!m→

Hence, from the operational semantics, using (ASYM2V),

f ′ <x< g′
t−T,τ→ [m/x].(f ′)t−T

(3) [m/x].(f ′)t−T u′′⇒ :

(f ′)t−T

= {f ′ = (f1)T−u
′.time}

(f1)T−u
′.time+t−T

= {simplify exponent}
(f1)t−u

′.time

= {t1 = t− u′.time, from (F2)}
(f1)t1

Given [m/x].(f1)t1 u′′⇒ , we have [m/x].(f ′)t−T u′′⇒ . This completes the proof.

Chapter 3

Breadth and Trace
Preservation

The goal of this chapter is to show that the traces of f ∗ g can be determined
from the traces of f and g. Specifically, we show

〈〈f ∗ g〉〉 = 〈〈f〉〉 ∗ 〈〈g〉〉. (P1)

where ∗ is any orc combinator, | , >x> or <x< .
We prove (P1) by first showing, for sets U and V ,

U ∗ V = U ∗ V . (P2)

Then (P1) follows,

〈〈f ∗ g〉〉
= {definition of 〈〈f ∗ g〉〉}

[[f ∗ g]]
= {from Characterization Theorems in Chapter 2, [[f ∗ g]] = [[f]] ∗ [[g]]}

[[f]] ∗ [[g]]
= {Use (P2) with U = [[f]] and V = [[g]]}

[[f]] ∗ [[g]]
= {from definition, 〈〈f〉〉 = [[f]] and similarly for g}

〈〈f〉〉 ∗ 〈〈g〉〉

The sets U and V in (P2) are not arbitrary, however. In particular, we call
set U to be broad (1) if x ∈ U , then xc ∈ U , for any substitution c where
c.time = x.time, and (2) if xb ∈ U , then xc ∈ U , for any substitution c where
x.time ≤ c.time ≤ b.time. the formal definition, given in Section 3.1.1, page 67,
is inductively defined to facilitate algebraic manipulations, though it is equiva-
lent to the definition given here . Additionally, we will require that the sets be
substitution independent, see Section 1.5.2, page 15. We establish (P2) under
these conditions.

66

CHAPTER 3. BREADTH AND TRACE PRESERVATION 67

Clearly, we have to show that every [[f]] is broad and substitution indepen-
dent. The latter result has been proved in Observation 9, page 20. We prove
that [[f]] is broad by induction on the structure of f . Base orc expressions are
broad, from Lemma 27, page 73. And we show that each combinator preserves
breadth, i.e., if U and V are broad then so is U ∗V . In this chapter, we discharge
both sets of proof obligations: (1) U ∗V is broad given U and V are broad, and
(2) U ∗ V = U ∗ V , given U and V are broad and substitution independent.
We prove these results separately for each combinator, after establishing some
preliminary results in the following section.

3.1 Additional Operators on Sequences

3.1.1 Breadth

The breadth of p, β(p), is the set of sequences that can be generated from p by
applying the substitution rule. Formally,

β(ε) = A(0)
β(apt) = A(t) ∪ a(β(p))t, where t = a.time

Notation: Henceforth, we write β(p)t for (β(p))t. Note that β(p)t is different
from β(pt) (see Lemma 20, page 70, for a relationship between the two). We
define β() to be coercive, i.e.,

β(P) = (∪p : p ∈ P : β(p)).

Note that β(φ) = φ.

Observation 17 β(ε) ⊆ β(p), for any p.

Proof: β(ε) = A(0), and from the definition of β(), A(0) ⊆ β(p), for any p.

Broad Define set P to be broad iff P = β(P).

It follows that if P and Q are broad, P ∪Q is broad:
β(P ∪Q) = β(P) ∪ β(Q) = P ∪Q. Also, that the empty set is broad.

Lemma 16 A(r) is broad for any r.

Proof: We observe that for p, any finite sequence of substitutions at time 0,
β(p) = A(0) (proof is by induction on the length of p). Therefore, β(A(0)) =
A(0), i.e., A(0) is broad.

Next, observe that any sequence of A(r) is of the form apt, where 0 ≤ t ≤ r,
a is a substitution at t, and p is a finite sequence of substitutions at time 0.

β(apt)
= {definition of β()}

CHAPTER 3. BREADTH AND TRACE PRESERVATION 68

A(t) ∪ aβ(p)t
= {p ∈ A(0). Hence, β(p) = A(0), from the the proof above}

A(t) ∪A(0)t
= {A(0)t ⊆ A(t)}

A(t)

We now show that A(r) is broad, i.e., β(A(r)) = A(r).

β(A(r))
= {coercion}

(∪q : q ∈ A(r) : β(q))
= {from above, β(q) = A(t), where t = q.time}

(∪t : 0 ≤ t ≤ r : A(t))
= {for t ≤ r, A(t) ⊆ A(r)}

A(r)

Lemma 17 D(t) is broad for any t.

Proof: The proof is by induction on the length of p ∈ D(t). For p = ε, β(ε) =
A(0) and A(0) ⊆ D(t) by Obs. 7 on page 9. Otherwise p = aqs, for substitution
event a with a.time = s ≤ t.

β(aqs)
= {definition of β()}

A(s) ∪ aβ(q)s
⊆ {induction on q ∈ D(t− s)}

A(s) ∪ aD(t− s)s
⊆ {aD(t− s)s ⊆ D(t)}

A(s) ∪D(t)
⊆ {A(s) ⊆ A(t) ⊆ D(t) by Obs. 7}

D(t)

Lemma 18 β(β(p)) = β(p). So, β(p) is broad.

Proof: Proof is by induction on the length of p. For p = ε, β(ε) = A(0), and
A(0) is broad from Lemma 16, page 67.

β(β(apt)), where t = a.time
= {definition of β()}

β(A(t) ∪ aβ(p)t)
= {β() distributes over union}

β(A(t)) ∪ β(aβ(p)t)
= {β(A(t)) = A(t), from Lemma 16, page 67}

A(t) ∪ β(aβ(p)t)
= {definition of β()}

A(t) ∪A(t) ∪ aβ(β(p))t
= {induction}

A(t) ∪ aβ(p)t
= {definition of β()}

β(apt)

CHAPTER 3. BREADTH AND TRACE PRESERVATION 69

Lemma 19 p
∗ ⊆ β(p).

Proof: Proof is by induction on the length of p.
First, we show ε

∗ ⊆ β(ε). ε
∗

= {ε}, and β(ε) = A(0). And, {ε} ⊆ A(0), from
the definition of A(0).

Next, we show that (apt)
∗ ⊆ β(apt), where t = a.time.

(apt)
∗

= {definition of prefix-closure}
{ε} ∪ a(pt)

∗

= {(pt)
∗

= (p
∗
)t, from Lemma 1, page 7}

{ε} ∪ a(p
∗
)t

⊆ {{ε} ⊆ A(t) and inductively, p
∗ ⊆ β(p), so (p

∗
)t ⊆ β(p)t}

A(t) ∪ aβ(p)t
= {definition of breadth}

β(apt)

Corollary 2 p ∈ β(p). And P ⊆ β(P).

Proof: p ∈ p∗ . From Lemma 19, page 69, p
∗ ⊆ β(p). Therefore, p ∈ β(p). And,

P ⊆ β(P) follows by applying coercion.

Corollary 3 A broad set is prefix-closed.

Proof: For broad set P and any sequence q, we show that q ∈ P ⇒ q
∗ ⊆ P .

q ∈ P
⇒ {apply β() to both sides}

β(q) ⊆ β(P)
⇒ {β(P) = P , since P is broad}

β(q) ⊆ P
⇒ {q∗ ⊆ β(q), from Lemma 19, page 69}

q
∗ ⊆ P 2

To prove that set P is broad, we can employ any of the following character-
izations of a broad set.

Corollary 4 P is broad iff

1. P = β(Q), for some set Q.

2. β(P) ⊆ P .

3. for every p, where p ∈ P , β(p) ⊆ P .

4. P is a union of broad sets.

CHAPTER 3. BREADTH AND TRACE PRESERVATION 70

Proof: (1) If P is broad, P = β(P), by definition. And, if P = β(Q), for some set
Q, then β(P) = β(β(Q)) = β(Q) = P ; hence P is broad. (2) From the definition
of broad, and Corollary 2, page 69. (3) is a rewriting of (2): β(P) ⊆ P is same
as, for all p, p ∈ P , β(p) ⊆ P . (4) If P is a union of broad sets, say Pis, then
β(P) = β(∪i :: Pi) = (∪i :: β(Pi)) = (∪i :: Pi) = P . Conversely, if P is a broad
set then it is a union of broad sets vacuously (to make it non-vacuous, take the
union of P and the empty set, which are both broad).

Lemma 20 For non-empty q, β(qs) = A(s) ∪ β(q)s

Proof: Let q = apt, where t = a.time. Then qs = asps+t = bps+t, where b = as.

β(qs)
= {qs = bps+t}

β(bps+t)
= {b.time = as.time = a.time+ s = s+ t; expand β(bps+t)}

A(s+ t) ∪ bβ(p)s+t
= {A(s+ t) = A(s) ∪A(t)s, from Observation 7, page 9; rewrite b}

A(s) ∪A(t)s ∪ asβ(p)s+t

And,

A(s) ∪ β(q)s
= {q = apt}

A(s) ∪ β(apt)s
= {definition of β()}

A(s) ∪ (A(t) ∪ aβ(p)t)s
= {rewriting}

A(s) ∪A(t)s ∪ asβ(p)s+t

Lemma 21 uc ∈ β(u), where c is any substitution and c.time = u.time.

Proof: By induction on the length of u.

• u = ε: We write simply c for the sequence containing just c, in the following
proof. We have to show that c ∈ β(ε) = A(0), where c is any substitution at
time 0. This follows from the definition of A(0).

• autct ∈ β(aut) where c.time = u.time: Inductively, uc ∈ β(u), and

uc ∈ β(u)
⇒ {time shift applied to both sides}

(uc)t ∈ β(u)t
⇒ {concatenation applied to both sides}

a(uc)t ∈ aβ(u)t
⇒ {aβ(u)t ⊆ β(aut), from definition of β()}

a(uc)t ∈ β(aut)
⇒ {a(uc)t = autct}

autct ∈ β(aut)

CHAPTER 3. BREADTH AND TRACE PRESERVATION 71

3.1.2 Visible sequences and Traces

A sequence is visible if it is empty or its last event is non-τ .

Lemma 22 For visible sequence p, β(p) = β(p).

Proof: Proof is by induction on the length of p.

β(ε) = A(0), and from Observation 7, page 9, A(0) = A(0), and
β(ε) = β(ε) = A(0)

Consider apt, where apt is visible and t = a.time. Note that p is visible (p
could be ε).

β(apt)
= {definition of β()}

A(t) ∪ aβ(p)t
= {distribute trace over union and concatenation}

A(t) ∪ a(β(p)t)
= {(β(p)t) = (β(p))t, from Lemma 1, page 7}

A(t) ∪ a(β(p))t
= {induction using p is visible; also use A(t) = A(t)}

A(t) ∪ aβ(p)t

We show that A(t) ∪ aβ(p)t = β(apt). Consider: (1) a 6= τ , (2) a = τ .
(1) a 6= τ : Then a = a.

A(t) ∪ aβ(p)t
= {definition of β() and a.time = t}

β(a pt)
= {(p)t = (pt), from Lemma 1, page 7}

β(a (pt))
= {distribute trace over concatenation}

β(apt)

(2) a = τ : then a = ε and p is non-empty and visible, because apt is visible.

A(t) ∪ aβ(p)t
= {a = ε}

A(t) ∪ β(p)t
= {p is non-empty and visible; so p is non-empty. from Lemma 20, page 70}

β((p)t)
= {(p)t = (pt), from Lemma 1, page 7}

β(pt)
= {a = ε. So, β(pt) = β(a pt) = β(apt)}

β(apt)

Lemma 23 Given that U is broad, U is broad.

CHAPTER 3. BREADTH AND TRACE PRESERVATION 72

Proof: We show that β(x) ⊆ U for every x ∈ U . Then U is broad, from
Corollary 4, page 69.

Given that x ∈ U there is y ∈ U such that x = y. We can assume that y
is visible (otherwise, z, the longest prefix of y that is visible satisfies x = z and
z ∈ U , from prefix-closure of U). Note that if x = ε, then y = ε satisfies the
requirements.

y ∈ U
⇒ {U is broad; use Corollary 4, page 69}

β(y) ⊆ U
⇒ {apply trace to both sides}

β(y) ⊆ U
⇒ {y is visible; from Lemma 22, page 71, β(y) = β(y)}

β(y) ⊆ U
⇒ {x = y}

β(x) ⊆ U

Event Removal from front of a sequence

We have defined the removal operator in page 6. Repeating the definition,

u\a =
{
{v} if u = avt where t = a.time
φ otherwise

U\a = {v| avt ∈ U}, where t = a.time

Lemma 24 Given that U is broad, U\a is broad.

Proof: We show that for any p, p ∈ U\a, β(p) ⊆ U\a. The result follows from
Corollary 4, page 69 part(3).

p ∈ U\a
⇒ {definition of U\a}

apt ∈ U , where t = a.time
⇒ {U broad; use Corollary 4, page 69}

β(apt) ⊆ U
⇒ {aβ(p)t ⊆ β(apt), from the definition of breadth}

aβ(p)t ⊆ U
⇒ {definition of U\a}

β(p) ⊆ U\a

Reducing times in a sequence

Given set V , define V−t, for t ≥ 0, to be

V−t = {v| vt ∈ V }

Thus, every sequence in V that starts at or after t has all its event times reduced
by t, and all other non-empty sequences are discarded. The empty sequence, if
it is in V , is retained because εt = ε.

CHAPTER 3. BREADTH AND TRACE PRESERVATION 73

Observation 18 A(t)−t = A(0), from definition.

Lemma 25 Given that V is broad and some ut ∈ V , where u 6= ε, V−t is broad.

Proof: First, note the essential requirement that some sequence ut, whose first
event starts at or after t, is in V . Otherwise, take V = A(0), which is broad,
and choose some positive t. Then A(0)−t = {ε}. But {ε} is not broad.

The proof follows by showing that for any v, v ∈ V−t, β(v) ∈ V−t. Proof is
by induction on the length of v.

• v = ε: We have to show that β(ε) = A(0) ⊆ V−t. Given,

ut ∈ V
⇒ {V is broad}

β(ut) ⊆ V
⇒ {A(t) ⊆ β(ut), from definition of β()}

A(t) ⊆ V
⇒ {definition of V−t}

A(t)−t ⊆ V−t
⇒ {A(t)−t = A(0), from Observation 18, page 73}

A(0) ⊆ V−t

• v 6= ε:

v ∈ V−t
⇒ {definition of V−t}

vt ∈ V
⇒ {V is broad}

β(vt) ∈ V
⇒ {from Lemma 20, page 70, β(v)t ⊆ β(vt)}

β(v)t ∈ V
⇒ {definition of V−t}

β(v) ∈ V−t

3.1.3 Base Expressions are Broad

Lemma 26 A(t) ⊆ [[M(x)]], for any time t.

Proof: Consider p ∈ A(t). If p does not contain a substitution to x, then
p ∈ [[M(x)]] follows easily from Theorem 8 on page 32. Otherwise, let p =
q(t, [m/x])r, where q has no substitution to x. By Theorem 8 it suffices to show
that p ∈ D(t)\x · (t, [m/x]) · [[M(m)]]t. Since A(t) ⊆ D(t) by Observation 7 on
page 9, we have A(t)\x ⊆ D(t)\x. Since q ∈ A(t)\x it follows that q ∈ D(t)\x.
And r ∈ A(t) ⊆ D(t), and so r ∈ [[M(m)]]t by Theorem 8.

Lemma 27 Base expressions are broad.

Proof:

CHAPTER 3. BREADTH AND TRACE PRESERVATION 74

• β([[0]]) ⊆ [[0]]:

β([[0]])
= {Theorem 8 on page 32}

β((∪t : t ∈ T : D(t)))
= {β() is coercive}

(∪t : t ∈ T : β(D(t)))
⊆ {Lemma 17 on page 68}

(∪t : t ∈ T : D(t))
= {Theorem 8 on page 32}

[[0]]

• β([[?k]]) ⊆ [[?k]]: We show that, for p ∈ [[?k]], β(p) ⊆ [[?k]]. By Theorem 8
on page 32, either p ∈ [[0]] or, for some time t and value m, p ∈ D(t) ·
(t, !m) · [[0]]t. The first case follows from the proof above that β([[0]]) ⊆
[[0]]. Otherwise it suffices to consider p = q(t, !m)rt, where q ∈ D(t) and
r ∈ [[0]]; the other cases follow from Corollary 3 on page 69.

Suppose q = ε.

β((t, !m)rt)
= {definition of β()}

A(t) ∪ (t, !m)β(r)t
⊆ {r ∈ [[0]] by assumption}

A(t) ∪ (t, !m)β([[0]])t
⊆ {above}

A(t) ∪ (t, !m)[[0]]t
⊆ {A(t) ⊆ D(t) by Observation 7 on page 9}

D(t) ∪ (t, !m)[[0]]t
⊆ {D(t) ⊆ [[?k]] and (t, !m)[[0]]t ⊆ [[?k]] by Theorem 8 on page 32}

[[?k]]

Otherwise q = aq′s and p = ap′s.

β(ap′s)
= {definition of β()}

A(s) ∪ aβ(p′)s
⊆ {induction on p′ ∈ [[?k]]}

A(s) ∪ a[[?k]]s
⊆ {A(s) ⊆ D(s)}

D(s) ∪ a[[?k]]s
⊆ {D(s) ⊆ [[?k]] and a[[?k]]s ⊆ [[?k]] by Theorem 8 on page 32}

[[?k]]

• β([[M(m)]]) ⊆ [[M(m)]]: We show that, for p ∈ [[M(m)]], β(p) ⊆ [[M(m)]].
By Theorem 8 on page 32, it suffices to consider p = q(0, τ)r ∈ D(0)·(0, τ)·
[[?k]], for some k ∈ Σ(M,m) where q ∈ D(0) and r ∈ [[?k]]; the other cases
follow from Corollary 3 on page 69.

CHAPTER 3. BREADTH AND TRACE PRESERVATION 75

Suppose q = ε.

β((0, τ)r)
= {definition of β()}

A(0) ∪ (0, τ)β(r)
⊆ {r ∈ [[?k]], which is broad}

A(0) ∪ (0, τ)?k
⊆ {A(0) ⊆ D(0) by Observation 7 on page 9}

D(0) ∪ (0, τ)?k
⊆ {D(0) ⊆ [[M(m)]] and (0, τ)[[?k]] ⊆ [[M(m)]] by Theorem 8 on page 32}

[[M(m)]]

Otherwise q = aq′ and p = ap′, where a.time = 0.

β(ap′)
= {definition of β()}

A(0) ∪ aβ(p′)
⊆ {induction on p′ ∈ [[M(m)]]}

A(0) ∪ a[[M(m)]]
⊆ {A(0) ⊆ D(0) by Observation 7 on page 9}

D(0) ∪ a[[M(m)]]
⊆ {D(0) ⊆ [[M(m)]] and a ⊆ [[M(m)]] by Theorem 8 on page 32}

[[M(m)]]

• β([[M(x)]]) ⊆ [[M(x)]]: Consider p ∈ [[M(x)]]. By Theorem 8 on page 8, it
suffices to consider p = q(t, [m/x])rt, where q ∈ D(t)\x and r ∈ [[M(m)]];
the other cases follow from Corollary 3 on page 69.

Suppose q = ε.

β((t, [m/x])rt)
= {definition of β()}

A(t) ∪ (t, [m/x])β(r)t
⊆ {r ∈ [[M(m)]], β(M(m)) ⊆M(m) as above}

A(t) ∪ (t, [m/x])[[M(m)]]t
⊆ {A(t) ⊆ [[M(x)]] by Lemma 26 on page 73, (t, [m/x])[[M(m)]]t ⊆ [[M(x)]] by Theorem 8}

[[M(x)]]

Otherwise q = aq′s and p = ap′s.

β(ap′s)
= {definition of β()}

A(s) ∪ aβ(p′)s
⊆ {induction on p′ ∈ [[M(x)]]}

A(s) ∪ a[[M(x)]]s
⊆ {A(s) ⊆ [[M(x)]] by Lemma 26 on page 73, a[[M(x)]]s ⊆ [[M(x)]] by Theorem 8}

[[M(x)]]

CHAPTER 3. BREADTH AND TRACE PRESERVATION 76

3.2 Symmetric Composition

We use the definition of | applied to sets, as given in Section 2.2.1, page 35.

3.2.1 Preliminary Results

We use the following algebraic properties of guarded sets.

Observation 19 1. [true → S] = S, [false → S] = {ε}.

2. Given that ε ∈ S′, [false → S] ∪ [p′ → S′] = [p′ → S′].

3. Given that S ⊆ S′, [p → S] ⊆ [p → S′].

4. Suppose f(ε) = {ε}. Then, f [p → S] = [p → f(S)]. Thus,

[p → S] = [p → S],
[p → S]

∗
= [p → S

∗
],

β([p → S]) = [p → β(S)]

Lemma 28 | is commutative.

Proof: Proof is by induction on the combined length of the arguments. If either
u or v is empty, then u | v = {ε} = v | u. Now, we show that bv | au = au | bv.

bv | au
= {definition of | }

[b ' a→ b(v | u)] ∪ [b � a→ b(v | au)] ∪ [a � b→ a(bv | u)]
= {b ' a ≡ a ' b. Also, a ' b⇒ a = b}

[a ' b→ a(v | u)] ∪ [b � a→ b(v | au)] ∪ [a � b→ a(bv | u)]
= {induction: v | u = u | v, v | au = au | v, bv | u = u | bv}

[a ' b→ a(u | v)] ∪ [b � a→ b(au | v)] ∪ [a � b→ a(u | bv)]
= {rearranging the terms around set union}

au | bv

Observation 20 ε ∈ (u | v), for any u and v.

Proof: If either u or v is empty, the result follows from definition. For au | bv,
¬((a ' b) ∧ (a � b)); so, at least one of these conditions is false, and the
corresponding guarded set contributes {ε}.

We can prove a much stronger result, that u | v is (non-empty and) prefix-
closed. We do not need this result in developing the theory.

Observation 21 [false → S] ∪ [p → u | v] = [p → u | v]

Proof: This follows from [false → S] = {ε} and that u | v includes ε, from
(Observation 20, page 76).

This observation allows us to simplify expressions by dropping terms whose
guards are false, provided that one of the sets that is retained contains ε.

CHAPTER 3. BREADTH AND TRACE PRESERVATION 77

3.2.2 Symmetric Composition Preserves Breadth

We show that for broad sets U and V , U | V is broad.

Lemma 29 Given s ≤ t, A(s) | A(t) = A(s).

Proof: Let u be a sequence of substitutions all at some time r and v a sequence
of substitutions all at time r′. Prove by induction that u | v is the set of
common prefixes of u and v. Considering the sequences in A(s) and A(t),
A(s) | A(t) = A(s).

Corollary 5 A(t) | A(t) = A(t).
β(ε) | β(ε) = β(ε)

Corollary 6 Let U and V be broad sets, and at ∈ U and bt ∈ V , for some a
and b. Then, A(t) ⊆ U | V .

Proof:

at ∈ U
⇒ {U broad}

β(at) ⊆ U
⇒ {A(t) ⊆ β(at), by the definition of β()}

A(t) ⊆ U
⇒ {similarly, A(t) ⊆ V }

A(t) ⊆ U , A(t) ⊆ V
⇒ {apply | }

A(t) | A(t) ⊆ U | V
⇒ {A(t) | A(t) = A(t), from Corollary 5, page 77}

A(t) ⊆ U | V

Lemma 30 (U | V)\a = U\a | V \a, where a is a substitution.

Proof: Since \a is coercive, it is sufficient to prove that (u | v)\a = u\a | v\a.
If both u and v do not start with a, then u | v does not start with a, from

the definition of | and that a is a substitution. Then (u | v)\a = φ. Also, at
least one of u\a and v\a is φ, so u\a | v\a = φ.

If both u and v start with a, then u = apt and v = aqt, where t = a.time.

(u | v)\a
= {u = apt and v = aqt}

(apt | aqt)\a
= {from definition of | , apt | aqt = a(pt | qt) = a(p | q)t}

(a(p | q)t)\a
= {definition of \a}

p | q
= {u = apt and v = aqt. So, {p} = u\a and {q} = v\a}

u\a | v\a

CHAPTER 3. BREADTH AND TRACE PRESERVATION 78

Lemma 31 Given U and V broad, a a base event at t, a ∈ U , and bt ∈ V for
some event b. Then, u ∈ U\a | V−t ⇒ aut ∈ U | V .

Proof: Proof is by case analysis on u.

• u = ε We have to show that a ∈ U | V .

a ∈ U
⇒ {bt ∈ V }

a | bt ⊆ U | V
⇒ {from definition of | , [a � bt → a(ε | bt)] ⊆ a | bt}

[a � bt → a(ε | bt)] ⊆ U | V
⇒ {a � bt holds given that a is base event at t; ε | bt = {ε}}

a ∈ U | V

• u 6= ε Given u ∈ U\a | V−t, u ∈ p | q, where p ∈ U\a, and q ∈ V−t. Neither
p nor q is empty because u in non-empty.

u ∈ p | q
⇒ {apply time-shift}

ut ∈ pt | qt
⇒ {concatenation}

aut ∈ a(pt | qt)
⇒ {let q = cr. Then, apt | qt = apt | ctrt ⊇ {a � ct} a(pt | ctrt) = a(pt | qt)}

aut ∈ apt | qt
⇒ {p ∈ U\a⇒ apt ∈ U ; q ∈ V−t ⇒ qt ∈ V }

aut ∈ U | V

Theorem 17 Given that U and V are broad, U | V is broad.

Proof: If either of U or V is the empty set, then U | V is the empty set, which
is broad. Now, assume that both sets are non-empty. We show for any u and
v, where u ∈ U and v ∈ V , that β(u | v) ⊆ U | V . Then from Corollary 4,
page 69, U | V is broad.

The proof of β(u | v) ⊆ U | V is by induction on the combined length of u
and v.

• u or v is empty: Then u | v = {ε}, and we have to show β(ε) ⊆ U | V . From
Observation 17, page 67, using β(U) = U ,

β(ε) ⊆ U
⇒ {similarly with V }

β(ε) ⊆ U , β(ε) ⊆ V
⇒ {taking | }

β(ε) | β(ε) ⊆ U | V
⇒ {β(ε) | β(ε) = β(ε), from Corollary 5, page 77}

β(ε) ⊆ U | V

CHAPTER 3. BREADTH AND TRACE PRESERVATION 79

• aut ∈ U and avt ∈ V , where a.time = t and a ' b: we show β(aut | avt) ⊆
U | V .

β(aut | avt)
= {definition of | }

β(a(u | v)t)
= {definition of β()}

A(t) ∪ aβ(u | v)t

Now, A(t) ⊆ U | V follows from Corollary 6, page 77, because a ∈ U , a ∈ V ,
and a.time = t. We show aβ(u | v)t ⊆ U | V .

aut ∈ U , avt ∈ V
⇒ {definition}

u ∈ U\a, v ∈ V \a
⇒ {apply | }

u | v ⊆ U\a | V \a
⇒ {U\a and V \a are broad from Lemma 24, page 72; apply induction}

β(u | v) ⊆ U\a | V \a
⇒ {U\a | V \a = (U | V)\a, from Lemma 30, page 77}

β(u | v) ⊆ (U | V)\a
⇒ {definition of (U | V)\a}

aβ(u | v)t ⊆ U | V

• au ∈ U and bv ∈ V , where ¬(a ' b): we show β(au | bv) ⊆ U | V .

β(au | bv)
= {definition of | given ¬(a ' b)}

β([a � b→ a(u | bv)] ∪ [b � a→ b(au | v)] ∪ {ε})
= {β() distributes over set union and guarded sets}

[a � b→ β(a(u | bv))] ∪ [b � a→ β(b(au | v))] ∪ β(ε)

In the earlier proof with u = ε or v = ε, we showed β(ε) ⊆ U | V . The
remaining two terms are symmetric in au and bv, using commutativity of | .
Therefore, it is sufficient to show that [a � b→ β(a(u | bv))] ⊆ U | V .

If ¬(a � b), then [a � b → β(a(u | bv))] = {ε}, which is trivially in U | V .
Assume a � b. We rename the terms as aut and btvt. Our goal is to show
β(a(ut | btvt)) ⊆ U | V , where t = a.time, aut ∈ U , btvt ∈ V .

β(a(ut | btvt))
= {distribute time-shift}

β(a(u | bv)t)
= {definition of β()}

A(t) ∪ aβ(u | bv)t

From Corollary 6, page 77, A(t) ⊆ U | V . The remaining task is to show
aβ(u | bv)t ⊆ U | V .

CHAPTER 3. BREADTH AND TRACE PRESERVATION 80

aut ∈ U , and btvt ∈ V
⇒ {definitions}

u ∈ U\a, bv ∈ V−t
⇒ {U\a is broad, from Lemma 24, page 72,

given btvt ∈ V , and V broad, from Lemma 25, page 73, V−t is broad,
apply induction (combined length of u and bv is less than aut and btvt)}
β(u | bv) ⊆ U\a | V−t

⇒ {Apply Lemma 31, page 78, for each element in β(u | bv):
a is base, from a � b,
a ∈ U , from aut ∈ U , and U prefix-closed,
bt ∈ V , from btvt ∈ V , and V prefix-closed}
aβ(u | bv)t ⊆ U | V

3.2.3 Symmetric Composition Preserves Traces

We show that for broad sets U and V , U | V = U | V .

Lemma 32 Let u and v be visible. Then, u | v = u | v

Proof: We prove the result by induction on the combined length of u and v.
If either u or v is ε, both sides are {ε}, from the definition. Next, we take

au and bv which are both visible, and show that au | bv = au | bv. Note that u
and v are visible, given au and bv are visible; either or both of u and v may be
ε.

au | bv
= {definition of au | bv}

[a ' b→ a(u | v)] ∪ [a � b→ a(u | bv)] ∪ [b � a→ b(au | v)]
= {distribute trace over set union, guarded sets and concatenation}

[a ' b→ a(u | v)] ∪ [a � b→ a(u | bv)] ∪ [b � a→ b(au | v)]
= {induction. Note that au, bv, u and v are visible}

[a ' b→ a(u | v)] ∪ [a � b→ a(u | bv)] ∪ [b � a→ b(au | v)]
= {distribute trace over concatenation}

[a ' b→ a(u | v)] ∪ [a � b→ a(u | b v)] ∪ [b � a→ b(a u | v)] (*)

We show that au | bv = au | bv for each of these cases: (1) a, b = τ, τ , (2) a 6= τ
and b 6= τ (3) a 6= τ and b = τ , (4) a = τ and b 6= τ .

Case 1) a, b = τ, τ : au | bv = u | v

au | bv
= {use ¬(a ' b) in (*) since a, b = τ, τ ; apply Observation 21, page 76}

[a � b→ (u | v)] ∪ [b � a→ (u | v)]
= {a, b = τ, τ , so a � b ≡ a.time ≤ b.time, and b � a ≡ b.time ≤ a.time}

[a.time ≤ b.time → (u | v)] ∪ [b.time ≤ a.time → (u | v)]
= {condition in at least one of the guarded sets applies and ε ∈ u | v}

u | v

CHAPTER 3. BREADTH AND TRACE PRESERVATION 81

Case 2) a 6= τ and b 6= τ :

au | bv
= {distribute trace over concatenation}

au | bv
= {apply definition}

[a ' b→ a(u | v)] ∪ [a � b→ a(u | bv)] ∪ [b � a→ b(au | v)]

And, this matches (*) given a = a and b = b.

Case 3) a 6= τ and b = τ :
Then, au | bv = au | v (L)
And,

au | bv
= {use ¬(a ' b) in (*) since b = τ}

[a � b→ a(u | v)] ∪ [b � a→ (au | v)] ∪ {ε}
= {drop {ε}, using Observation 21, page 76, on the second term}

[a � b→ a(u | v)] ∪ [b � a→ (au | v)] (R)

Since bv is visible and b = τ , v is non-empty and visible. Therefore v 6= ε.
Let c be the first event of v. Then, considering bv, b.time ≤ c.time. We show
(L) = (R) for 3 cases: (1) a.time < b.time, (2) a.time = b.time, and (3)
a.time > b.time.

Case 3.1) a.time < b.time:

(L) = au | v
= {a.time < b.time ≤ c.time. Hence, ¬(a ' c) and ¬(c � a)

Apply definition of | }
[a � c→ a(u | v)] ∪ {ε}

= {a.time ≤ c.time means a � c ≡ a is base }
[a is base → a(u | v)] ∪ {ε}

And,

(R) = [a � b→ a(u | v)] ∪ [b � a→ (au | v)]
= {a.time < b.time. So, ¬(b � a). Also, a � b ≡ a is base }

[a is base → a(u | v)] ∪ {ε}
= {from above derivation}

(L)

Case 3.2) a.time = b.time:

(R) = [a � b→ a(u | v)] ∪ [b � a→ (au | v)]
= {from a.time = b.time, a � b ≡ a is base and b � a holds given b = τ}

CHAPTER 3. BREADTH AND TRACE PRESERVATION 82

[a is base → a(u | v)] ∪ (au | v)
= {If a is not base :

[a is base → a(u | v)] ∪ (au | v) = {ε} ∪ (au | v) = (au | v)
If a is base :

[a is base → a(u | v)] ∪ (au | v) = a(u | v) ∪ (au | v)
a.time ≤ c.time implies, from | definition, au | v ⊇ a(u | v)

In all cases, [a is base → a(u | v)] ∪ (au | v) = (au | v)}
au | v = (L)

Case 3.3) a.time > b.time:

(R) = [a � b→ a(u | v)] ∪ [b � a→ (au | v)]
= {¬(a � b) and b � a hold}

(au | v) ∪ {ε}
= {from Observation 20, page 76, {ε} ⊆ (au | v)}

au | v = (L)

Lemma 33 Let u and v be visible. Then, u | v = u | v

Proof: We prove the result by induction on the combined length of u and v.
If either u or v is ε, both sides are {ε}, from the definition. Next, we take

au and bv which are both visible, and show that au | bv = au | bv. Note that u
and v are visible, given au and bv are visible; either or both of u and v may be
ε.

au | bv
= {definition of au | bv}

[a ' b→ a(u | v)] ∪ [a � b→ a(u | bv)] ∪ [b � a→ b(au | v)]
= {distribute trace over set union, guarded sets and concatenation}

[a ' b→ a(u | v)] ∪ [a � b→ a(u | bv)] ∪ [b � a→ b(au | v)]
= {induction. Note that au, bv, u and v are visible}

[a ' b→ a(u | v)] ∪ [a � b→ a(u | bv)] ∪ [b � a→ b(au | v)] (R)

We show that au | bv = au | bv for each of these cases: (1) a 6= τ and b 6= τ (2)
b = τ , (3) and a = τ .

Case 1) a 6= τ and b 6= τ :

au | bv
= {distribute trace over concatenation}

au | bv
= {apply definition}

[a ' b→ a(u | v)] ∪ [a � b→ a(u | bv)] ∪ [b � a→ b(au | v)]

And, this matches (R) given a = a and b = b.

Case 2) b = τ : Since bv is visible and b = τ , it follows that v is non-empty and
visible. Let v = cv′. Then, considering bv, b.time ≤ c.time.

CHAPTER 3. BREADTH AND TRACE PRESERVATION 83

au | bv
= {b = τ}

au | v (L1)
= {induction}

au | v
= {v = cv′; expand au | cv′ from (R) replacing b by c and v by v′}

[a ' c→ a(u | v′)] ∪ [a � c→ a(u | v)] ∪ [c � a→ c(au | v′)] (L2)

We consider two cases and show that (R) equals (L1) or (L2) in each case.

Case 2.1) b.time ≤ a.time:

(R)
= {¬(a ' b) from b = τ , and b � a using b.time ≤ a.time}

[a � b→ a(u | v)] ∪ (au | v) ∪ {ε}
= { given b.time ≤ c.time, a � b⇒ a � c;

so, [a � b→ a(u | v)] ⊆ [a � c→ a(u | v)] ∪ {ε};
from (L1,L2), [a � c→ a(u | v)] ⊆ (au | v);
so, [a � b→ a(u | v)] ⊆ (au | v) ∪ {ε}}

(au | v) ∪ {ε}
= {from Observation 20, page 76, {ε} ⊆ (au | v)}

(L1)

Case 2.2) ¬(b.time ≤ a.time):

(R)
= {given a.time < b.time. So, ¬(a ' b), ¬(b � a)}

[a � b→ a(u | v)] ∪ {ε}
= {given a.time < b.time ≤ c.time, a � c ≡ {a is base} a � b}

[a � c→ a(u | v)] ∪ {ε}
= {given a.time < b.time ≤ c.time. So, ¬(a ' c), ¬(c � a)}

(L2)

Case 3) a = τ : Similar to case (2).

Lemma 34 u | v ⊆ uc | vd, for any events c and d.

Proof: : We prove u | v ⊆ uc | v. Similarly, using commutativity, it can be
shown that u | v ⊆ u | vd. Then, u | v ⊆ uc | v ⊆ uc | vd.

Now, we prove u | v ⊆ uc | v by induction on the combined length of u and
v.

• u = ε or v = ε: Left side is {ε}, and the right side, being a merge, contains
ε, from Observation 20, page 76.

• au | bv ⊆ auc | bv:

CHAPTER 3. BREADTH AND TRACE PRESERVATION 84

au | bv
= {definition of | }

[a ' b→ a(u | v)] ∪ [a � b→ a(u | bv)] ∪ [b � a→ b(au | v)]
⊆ {induction: u | v ⊆ uc | v; similarly for the other terms}

[a ' b→ a(uc | v)] ∪ [a � b→ a(uc | bv)] ∪ [b � a→ b(auc | v)]
= {definition of | }

auc | bv

Theorem 18 Let U and V be broad sets. Then U | V = U | V .

Proof: The proof is in two parts: U | V ⊆ U | V , and U | V ⊆ U | V .

• U | V ⊆ U | V : For any u in U and v in V . We show u | v ⊆ U | V .

u | v
⊆ {from Lemma 21, page 70, there is uc ∈ β(u) ⊆ U and vd ∈ V

where c and d are substitutions
apply Lemma 34, page 83}

(uc | vd)
= {uc and vd are visible; apply Lemma 32, page 80}

(uc | vd)
⊆ {from uc ∈ U , uc ∈ U ; similarly, vd ∈ V }

U | V

• U | V ⊆ U | V : We show that for u in U and v in V , u | v ⊆ U | V .
Let p be the longest visible prefix of u and q of v. Then u = p and v = q.

From prefix-closure, p ∈ U and q ∈ V .

u | v
= {from above}

p | q
= {p and q are visible}

p | q
⊆ {p ∈ U and q ∈ V }

U | V

3.3 Sequential Composition

We use the definition of >x> applied to sets, as given in Section 2.2.2, page 36.

3.3.1 Preliminary Results

Lemma 35 For p that has no publication and V 6= φ, p >x> V = {p}.

Proof: By induction on the length of p.

Corollary 7 A(t) >x> V = A(t), for V 6= φ.

Proof: From above Lemma, because no sequence in A(t) has a publication.

CHAPTER 3. BREADTH AND TRACE PRESERVATION 85

Notational Simplification Define

â =
{
a if a is not a publication
(t, τ) if a is a publication at time t

Then, replacing p by pt in the definition of sequential composition, and using
Lemma 6, page 44, apt >x> V = âPt, where P is

(SCD)

 p >x> V if c1(a)
p >x> V ′ if c2(a)
p >x> V | V ′′ if c3(a)

3.3.2 Sequential Composition Preserves Breadth

Theorem 19 For broad sets P and V , P >x> V is broad.

Proof: We have P >x> φ = φ, from Lemma 2.2.4, page 37, and φ is broad,
vacuously. Assume, henceforth, that V 6= φ. We prove below that for any
sequence q, β(q) >x> V is broad. Then,

P >x> V
= {P is broad; so, P = β(P)}

β(P) >x> V
= {β(P) = (∪q : q ∈ P : β(q))}

(∪q : q ∈ P : β(q)) >x> V
= {distribute >x> over set union}

(∪q : q ∈ P : β(q) >x> V)

Each β(q) >x> V is broad (to be shown) and union of broad sets is broad, from
Corollary 4, page 69. Hence the result.

We prove β(q) >x> V is broad by induction on the length of q.

• q = ε:
β(ε) >x> V = A(0) >x> V = A(0), from Corollary 7, page 84. And, A(0) is
broad, from Lemma 16, page 67.

• q = apt, where a.time = t:

β(apt) >x> V
= {definition of breadth}

(A(t) ∪ aβ(p)t) >x> V
= {distribute >x> over set union}

(A(t) >x> V) ∪ (aβ(p)t >x> V)
= {A(t) >x> V = A(t)}

A(t) ∪ (aβ(p)t >x> V)
= {replace p by β(p) in (SCD), page 85, to get U}

CHAPTER 3. BREADTH AND TRACE PRESERVATION 86

A(t) ∪ âUt (*1)
= {from induction hypothesis

β(p) >x> V is broad, given V is broad
β(p) >x> V ′ is broad, because V ′ is broad from Lemma 24, page 72
β(p) >x> V | V ′′ is broad, because V ′′ is broad, from Lemma 24, page 72, and
merge of two broad sets is broad, from Theorem 17, page 78;
therefore, U is broad; hence U = β(U)}
A(t) ∪ âβ(U)t

= {definition of β(); note that â.time = t}
β(âUt)

It follows from Corollary 4, page 69 Part (1), that β(apt) >x> V is broad since
it is β(Q), for some Q.

Lemma 36 (U\a >x> V) = (U >x> V)\a, where a is an own substitution
and a.time = t.

Proof: We show for arbitrary u ∈ U that (u\a >x> V) = (u >x> V)\a. The
result then follows by coersion.

If u = ε, then

(ε\a >x> V)
= {definition of \}

(∅ >x> V)
= {coersion}

∅,

and

(ε >x> V)\a
= {definition of ε >x> V }

{ε}\a
= {definition of \}

∅.

Next suppose u = bu′ and b 6= a. Then

(bu′\a >x> V)
= {definition of \, b 6= a}

(∅ >x> V)
= {coersion}

∅,

Then if b is an other-substitution:

(bu′ >x> V)\a
= {condition c2 holds}

(b(u′ >x> V \b))\a
= {definition of \, b 6= a}

∅.

CHAPTER 3. BREADTH AND TRACE PRESERVATION 87

If b is a non-publication base event:

(bu′ >x> V)\a
= {condition c1 holds}

(b(u′ >x> V))\a
= {definition of \, b 6= a}

∅.

Finally, if b is a publication event (t, !m):

((t, !m)u′ >x> V)\a
= {condition c3 holds}

((t, τ)(u′ >x> V | (V \a)t))\a
= {definition of \}

∅.

Otherwise, suppose b = a.

(au′\a >x> V)
= {definition of \}

(u′ >x> V)

and

(au′ >x> V)\a
= {condition c1 holds}

(a(u′ >x> V))\a
= {definition of \}

(u′ >x> V).

Lemma 37 (U\a >x> V \a) = (U >x> V)\a, where a is an other substitution
and a.time = t.

Proof: We show for arbitrary u ∈ U that (u\a >x> V \a) = (u >x> V)\a. The
result then follows by coersion.

If u = ε, then

(ε\a >x> V \a)
= {definition of \}

(∅ >x> V \a)
= {coersion}

∅,

and

(ε >x> V)\a
= {definition of ε >x> V }

{ε}\a
= {definition of \}

∅.

CHAPTER 3. BREADTH AND TRACE PRESERVATION 88

Next suppose u = bu′ and b 6= a. Then

(bu′\a >x> V \a)
= {definition of \, b 6= a}

(∅ >x> V)
= {coersion}

∅,

Then if b is an other-substitution:

(bu′ >x> V)\a
= {condition c2 holds}

(b(u′ >x> V \b))\a
= {definition of \, b 6= a}

∅.

If b is an own-substitution or a non-publication base event:

(bu′ >x> V)\a
= {condition c1 holds}

(b(u′ >x> V))\a
= {definition of \, b 6= a}

∅.

Finally, if b is a publication event (t, !m):

((t, !m)u′ >x> V)\a
= {condition c3 holds}

((t, τ)(u′ >x> V | (V \[m/x])t))\a
= {definition of \}

∅.

Otherwise, suppose b = a.

(au′\a >x> V \a)
= {definition of \}

(u′ >x> V \a)

and

(au′ >x> V)\a
= {condition c2 holds}

(a(u′ >x> V \a))\a
= {definition of \}

(u′ >x> V \a).

CHAPTER 3. BREADTH AND TRACE PRESERVATION 89

3.3.3 Sequential Composition Preserves Traces

Theorem 20 For broad P and V , where V is substitution independent (see
page 20), P >x> V = P >x> V .

Proof: As in Theorem 19, page 85, it is sufficient to show that for any sequence
q and non-empty broad V , β(q) >x> V = (β(q) >x> V). Proof is by induction
on the length of q.

• q = ε:
β(ε) >x> V= {from Corollary 7, page 84} β(ε), and
(β(ε) >x> V) = {β(ε) = β(ε)} β(ε) >x> V = {Corollary 7, page 84} β(ε).

• q = apt, where a.time = t: We show β(apt) >x> V = β(apt) >x> V .
First, we prove a sublemma.

Sublemma Let

U =

 β(p) >x> V if c1(a)
β(p) >x> V ′ if c2(a)
β(p) >x> V | V ′′ if c3(a)

and

W =

β(p) >x> V if c1(a)
β(p) >x> (V)′ if c2(a)
β(p) >x> V | (V)′′ if c3(a)

Then W = U . (*2)
Note: We get U from (SCD), page 85, replacing p by β(p). And, W is obtained
from U by replacing β(p) and V by β(p) and V , respectively.

Proof: Observe that

U =

β(p) >x> V if c1(a)
β(p) >x> V ′ if c2(a)
β(p) >x> V | V ′′ if c3(a)

We consider the three cases for U , as given above, and show that U = W .

(Subcase 1: c1(a) holds) Applying induction, β(p) >x> V = β(p) >x> V , or
U = W .

(Subcase 2: c2(a) holds)

U
= {from the definition of U in the second case}

CHAPTER 3. BREADTH AND TRACE PRESERVATION 90

β(p) >x> V ′

= {V ′ is broad, from Lemma 24, page 72; apply induction}
β(p) >x> V ′

= {given V is substitution independent, from Lemma 3, page 20, V ′ = V
′}

β(p) >x> V
′

= {definition of W}
W

(Subcase 3: c3(a) holds)

U
= {from the definition of U in the third case}

β(p) >x> V | V ′′
= {β(p) >x> V is broad, from Theorem 19, page 85

V ′′ is broad, from Lemma 24, page 72
apply Theorem 18, page 84}
β(p) >x> V | V ′′

= {given V is substitution independent, from Lemma 3, page 20, V ′′ = V
′′}

β(p) >x> V | V ′′

= {induction on the first term}
β(p) >x> V | V ′′

= {definition of W}
W (End of Sublemma)

Next, we simplify β(apt) >x> V and (β(apt) >x> V).

β(apt) >x> V
= {from the derivation in Theorem 19, page 85, see (*1)}

A(t) ∪ âUt, where U is as given in the Sublemma
= {distribute trace over set union, concatenation and time-shift;

A(t) = A(t); â = â}
A(t) ∪ âU t (*3)

Next,

β(apt) >x> V
= {expanding β(apt)}

A(t) ∪ aβ(p)t >x> V

= {distribute trace over set union; A(t) = A(t)}
(A(t) ∪ aβ(p)t) >x> V

= {distribute >x> over set union; A(t) >x> V = A(t)}
A(t) ∪ (aβ(p)t >x> V)

= {distribute trace over concatenation and time-shift}
A(t) ∪ ((a β(p)t) >x> V) (*4)

CHAPTER 3. BREADTH AND TRACE PRESERVATION 91

To complete the proof that β(apt) >x> V = β(apt) >x> V , we consider two
cases.
Case 1) a 6= τ :

β(apt) >x> V
= {from (*4)}

A(t) ∪ ((a β(p)t) >x> V)
= {a 6= τ , so a = a}

A(t) ∪ ((aβ(p)t) >x> V)
= {from (SCD), page 85, where W is as given in the Sublemma}

A(t) ∪ âWt

= {A(t) = A(t), â = â}
A(t) ∪ âW t

= {W = U , from (*2)}
A(t) ∪ âU t

= {from (*3)}
β(apt) >x> V

Case 2) a = τ :

β(apt) >x> V
= {from (*4)}

A(t) ∪ ((a β(p)t) >x> V)
= {A(t) = A(t), a = ε, distribute trace over set union}

A(t) ∪ β(p)t >x> V

= {β(p)t >x> V = (β(p) >x> V)t, from Lemma 6, page 44;
distribute time-shift over trace}
A(t) ∪ (β(p) >x> V)t

= {induction}
A(t) ∪ (β(p) >x> V)t

= {given a = τ , i.e., c1(a), and definition of U}
A(t) ∪ U t

= {a = τ}
A(t) ∪ âU t

= {from (*3)}
β(apt) >x> V

3.4 Asymmetric Composition

We use the definition of <x< applied to sets, as given in Section 2.2.3, page 36.

3.4.1 Preliminary Results on Constrained Partial Merge

Observation 22 ε ∈ (u|
x
v), for any u and v.

CHAPTER 3. BREADTH AND TRACE PRESERVATION 92

Proof: If either u or v is empty, the result follows from definition. For au|xbv,
¬((a ≈x b) ∧ (a � b)); so, at least one of these conditions is false, and the
corresponding guarded set contributes {ε}.

Observation 23 [false → S] ∪ [p → u|
x
v] = [p → u|

x
v]

Proof: This follows from [false → S] = {ε} and that u|
x
v includes ε, from

(Observation 22, page 91).
This observation allows us to simplify expressions by dropping terms whose

guards are false, provided that one of the sets that is retained contains ε.

Lemma 38 (u|xv)t = ut|xvt
Proof: Apply the definition of |

x
to both sides. Note that at ≈x

bt ≡ a ≈
x
b,

at � bt ≡ a � b and bt ��x
at ≡ b ��

x
a. The result follows by applying

induction on the combined length of u and v.

Lemma 39 A(t)|
x
A(t) = A(t).

Proof: Proof is by mutual inclusion.

• A(t)|xA(t) ⊆ A(t): Let u be a sequence of substitutions, all at time r,
and v be a sequence of substitutions, all at time s. If the base rule is used in
forming u|

x
v, then u|

x
v = {ε} ⊆ A(t). If the inductive rule is used, then each

term starts with an event at min(r, s). Using induction, it can be shown that
u|

x
v then contains sequences of substitutions all at time min(r, s). Therefore,

u|
x
v ⊆ A(t).

• A(t) ⊆ A(t)|xA(t): Let p ∈ A(t). We show u ∈ A(t) and v ∈ A(t), such
that p ∈ u|xv, u.time = v.time = p.time and either both u and v are empty or
neither is. Proof is by induction on the length of p.

Case 1) p = ε: Let u = v = ε. All the conditions are met.

Case 2) p = aq: From the definition of A(t), q ∈ A(t).
Case 2.1) a is an own-substitution:

If q = ε, let v = a, u = c, where c is an other-substitution at a.time. All the
conditions are met.

If q 6= ε, inductively, q ∈ u′|
x
v′, where u′ ∈ A(t), v′ ∈ A(t), u′.time =

v′.time = q.time; further, since q 6= ε neither u′ nor v′ is empty. Let u = u′

and v = av′. Since aq ∈ A(t), a.time = q.time, hence, a.time = v′.time, and
av′ = v ∈ A(t).

aq
∈ {q ∈ u′|

x
v′}

a(u′|xv′)
⊆ {a is own-substitution, a.time = u′.time}

u′|
x
av′

= {u = u′ and v = av′}
u|

x
v

CHAPTER 3. BREADTH AND TRACE PRESERVATION 93

Case 2.2) a is an other-substitution: Inductively, q ∈ u′|xv′, where u′ ∈ A(t),
v′ ∈ A(t), u′.time = v′.time = q.time. And either both u′ and v′ are empty or
neither is. Let u = au′ and v = av′.

If both u′ and v′ are empty: then q = ε. Hence, p = aq = a ∈ A(t). From
the definition of |

x
, a ∈ a|

x
a = u|

x
v. The other conditions are met.

If neither of u′ and v′ is empty: Since aq ∈ A(t), a.time = q.time. Given
q.time = u′.time = v′.time, we get a.time = u′.time and a.time = v′.time. So,
u = au′ ∈ A(t) and v = av′ ∈ A(t).

aq
∈ {q ∈ u′|xv′}

a(u′|
x
v′)

⊆ {a is other-substitution}
au′|

x
av′

= {u = au′ and v = av′}
u|xv

Corollary 8 Let U and V be broad sets, and at ∈ U and bt ∈ V , for some a
and b. Then, A(t) ⊆ U |

x
V .

Proof:

at ∈ U
⇒ {U broad}

β(at) ⊆ U
⇒ {A(t) ⊆ β(at), from the definition of β()}

A(t) ⊆ U
⇒ {similarly, A(t) ⊆ V }

A(t) ⊆ U , A(t) ⊆ V
⇒ {apply |

x
}

A(t)|
x
A(t) ⊆ U |

x
V

⇒ {A(t)|
x
A(t) = A(t), from Lemma 39, page 92}

A(t) ⊆ U |xV

Lemma 40 (U |xV)\a = U\a|xV \a, where a is an other-substitution.

Proof: Since \a is coercive, it is sufficient to prove that (u|xv)\a = u\a|xv\a.
If both u and v do not start with a, then u|

x
v does not start with a, from the

definition of |
x

and that a is an other-substitution. Then (u|
x
v)\a = φ. Also,

at least one of u\a and v\a is φ, so u\a|
x
v\a = φ.

If both u and v start with a, then u = apt and v = aqt, where t = a.time.

(u|xv)\a
= {u = apt and v = aqt}

(apt|xaqt)\a
= {from the definition of |

x
, apt|xaqt = a(pt|xqt) = a(p|

x
q)t}

(a(p|
x
q)t)\a

= {from the definition of \a; see Section 3.1.2, page 72}

CHAPTER 3. BREADTH AND TRACE PRESERVATION 94

p|xq
= {u = apt and v = aqt. So, {p} = u\a and {q} = v\a}

u\a|
x
v\a

Lemma 41 Given U and V broad, a is a base event at t, a ∈ U , and bt ∈ V
for some event b. Then, u ∈ U\a|xV−t ⇒ aut ∈ U |xV .

Proof: Proof is by case analysis on u.

• u = ε: We have to show that a ∈ U |
x
V . Given,

a ∈ U
⇒ {bt ∈ V }

a|xbt ⊆ U |xV
⇒ {apply the definition of |

x
to a|

x
bt,

[a � bt → a(ε|
x
bt)] ⊆ a|xbt}

[a � bt → a(ε|
x
bt)] ⊆ U |xV

⇒ {a � bt holds given that a is base event at t; ε|
x
bt = {ε}}

a ∈ U |xV

• u 6= ε: Given u ∈ U\a|
x
V−t, we have u ∈ p|

x
q, where p ∈ U\a, and q ∈ V−t.

Neither p nor q is empty because u in non-empty.

u ∈ p|
x
q

⇒ {apply time-shift}
ut ∈ pt|xqt

⇒ {concatenation}
aut ∈ a(pt|xqt)

⇒ {let q = cr. Then, apt|xqt = apt|xctrt ⊇ {a � ct} a(pt|xctrt) = a(pt|xqt)}
aut ∈ apt|xqt

⇒ {p ∈ U\a⇒ apt ∈ U ; q ∈ V−t ⇒ qt ∈ V }
aut ∈ U |xV

Corollary 9 Given that U and V are broad, b a base event or an own-substitution
at t, b ∈ V , at ∈ U , for some event a. Then, u ∈ U−t|xV \b ⇒ but ∈ U |xV .

Proof: Similar to Lemma 41, page 94.

Theorem 21 Given that U and V are broad, U |xV is broad.

Proof: If either of U or V is the empty set, then U |
x
V is the empty set, which

is broad. Now, assume that both sets are non-empty. We show for any u and v,
where u ∈ U and v ∈ V , that β(u|xv) ⊆ U |xV . Then from Corollary 4, page 69,
U |xV is broad.

The proof of β(u|
x
v) ⊆ U |

x
V is by induction on the combined length of u

and v.

• u = ε or v = ε: Then u|
x
v = {ε}, and we have to show β(ε) ⊆ U |

x
V . From

Observation 17, page 67, using β(U) = U ,

CHAPTER 3. BREADTH AND TRACE PRESERVATION 95

β(ε) ⊆ U
⇒ {similarly with V }

β(ε) ⊆ U , β(ε) ⊆ V
⇒ {taking |

x
}

β(ε)|
x
β(ε) ⊆ U |

x
V

⇒ {β(ε) = A(0); from Lemma 39, page 92, β(ε)|
x
β(ε) = β(ε)}

β(ε) ⊆ U |xV

• aut ∈ U and avt ∈ V , where a.time = t and a ≈
x
b: we show β(aut|xavt) ⊆

U |xV .

β(aut|xavt)
= {definition of |x}

β(a(u|xv)t)
= {definition of β()}

A(t) ∪ aβ(u|
x
v)t

Now, A(t) ⊆ U |
x
V follows from Corollary 8, page 93, because a ∈ U , a ∈ V ,

and a.time = t. We show aβ(u|
x
v)t ⊆ U |xV .

aut ∈ U , avt ∈ V
⇒ {definition}

u ∈ U\a, v ∈ V \a
⇒ {apply |

x
}

u|xv ⊆ U\a|xV \a
⇒ {U\a and V \a are broad from Lemma 24, page 72; apply induction}

β(u|
x
v) ⊆ U\a|

x
V \a

⇒ {a is other-substitution; so, U\a|
x
V \a = (U |

x
V)\a, from Lemma 40, page 93}

β(u|
x
v) ⊆ (U |

x
V)\a

⇒ {definition of (U |
x
V)\a}

aβ(u|xv)t ⊆ U |xV

• au ∈ U and bv ∈ V , where ¬(a ≈
x
b): we show β(au|

x
bv) ⊆ U |

x
V .

β(au|
x
bv)

= {definition of |x given ¬(a ≈x b)}
β([a � b→ a(u|xbv)] ∪ [b ��x a→ b(au|xv)] ∪ {ε})

= {β() distributes over set union and guarded sets}
[a � b→ β(a(u|

x
bv))] ∪ [b ��

x
a→ β(b(au|

x
v))] ∪ β(ε)

In the earlier proof with u = ε or v = ε, we showed β(ε) ⊆ U |
x
V . We now show

that [a � b→ β(a(u|
x
bv))] ⊆ U |

x
V and [b ��

x
a→ β(b(au|

x
v))] ⊆ U |

x
V .

Case 1) [a � b→ β(a(u|xbv))] ⊆ U |xV :
If ¬(a � b), then [a � b → β(a(u|

x
bv))] = {ε}, which is trivially in U |

x
V .

Assume a � b. We rename the terms as aut and btvt. Our goal is to show
β(a(ut|xbtvt)) ⊆ U |xV , where t = a.time, aut ∈ U , btvt ∈ V .

CHAPTER 3. BREADTH AND TRACE PRESERVATION 96

β(a(ut|xbtvt))
= {distribute time-shift}

β(a(u|
x
bv)t)

= {definition of β()}
A(t) ∪ aβ(u|

x
bv)t

From Corollary 8, page 93, A(t) ⊆ U |
x
V (using aut ∈ U , btvt ∈ V). The

remaining task is to show aβ(u|
x
bv)t ⊆ U |xV .

aut ∈ U , and btvt ∈ V
⇒ {definitions}

u ∈ U\a, bv ∈ V−t
⇒ {U\a is broad, from Lemma 24, page 72,

given btvt ∈ V , and V broad, from Lemma 25, page 73, V−t is broad,
apply induction (combined length of u and bv is less than aut and btvt)}
β(u|

x
bv) ⊆ U\a|

x
V−t

⇒ {Apply Lemma 41, page 94, for each element in β(u|
x
bv):

a is base, from a � b; also, a.time = t,
a ∈ U , from aut ∈ U , and U is prefix-closed,
bt ∈ V , from btvt ∈ V , and V is prefix-closed}
aβ(u|

x
bv)t ⊆ U |xV

Case 2) [b ��x a→ β(b(au|xv))] ⊆ U |xV :
The proof is similar to that of Case (1); we include it here for completeness.

If ¬(b ��
x
a), then [b ��

x
a → β(a(u|

x
bv))] = {ε}, which is in U |

x
V , from

Observation 22, page 91. Assume b ��
x
a. We rename the terms as atut and

bvt. Our goal is to show β(b(atut|xvt)) ⊆ U |
x
V , where t = b.time, atut ∈ U ,

bvt ∈ V .

β(b(atut|xvt))
= {distribute time-shift}

β(b(au|xv)t)
= {definition of β()}

A(t) ∪ bβ(au|
x
v)t

From Corollary 8, page 93, A(t) ⊆ U |xV (using atut ∈ U , bvt ∈ V). The
remaining task is to show bβ(au|

x
v)t ⊆ U |xV .

atut ∈ U , and bvt ∈ V
⇒ {definitions}

au ∈ U−t, v ∈ V \a
⇒ {given atut ∈ U , and U broad, from Lemma 25, page 73, U−t is broad,

given V broad, from Lemma 24, page 72, V \b is broad,
apply induction (combined length of au and v is less than atut and bvt)}
β(au|xv) ⊆ U−t|xV \a

⇒ {Apply Corollary 9, page 94, for each element in β(au|
x
v):

b is base or own-substitution, from b ��
x
a, and b.time = t

at ∈ U , from atut ∈ U , and U is prefix-closed,
b ∈ V , from bvt ∈ V , and V is prefix-closed}

CHAPTER 3. BREADTH AND TRACE PRESERVATION 97

bβ(au|xv)t ⊆ U |xV

Lemma 42 Let u and v be visible. Then, u|xv = u|xv

Proof: We prove the result by induction on the combined length of u and v.
If either u or v is ε, both sides are {ε}, from the definition. Next, we take

au and bv which are both visible, and show that au|xbv = au|xbv. Note that u
and v are visible, given au and bv are visible; either or both of u and v may be
ε.

au|xbv
= {definition of au|

x
bv}

[a ≈
x
b→ a(u|

x
v)] ∪ [a � b→ a(u|

x
bv)] ∪ [b ��

x
a→ b(au|

x
v)]

= {distribute trace over set union, guarded sets and concatenation}
[a ≈

x
b→ a(u|

x
v)] ∪ [a � b→ a(u|

x
bv)] ∪ [b ��

x
a→ b(au|

x
v)]

= {apply induction. Note that u, v, au and bv are visible}
[a ≈x b→ a(u|xv)] ∪ [a � b→ a(u|xbv)] ∪ [b ��x a→ b(au|xv)]

= {distribute trace over concatenation}
[a ≈

x
b→ a(u|

x
v)] ∪ [a � b→ a(u|

x
b v)] ∪ [b ��

x
a→ b(a u|

x
v)] (*)

We show that au|
x
bv = au|

x
bv for each of these cases: (1) a, b = τ, τ , (2) a 6= τ

and b 6= τ (3) a 6= τ and b = τ , (4) a = τ and b 6= τ .

Case 1) a, b = τ, τ : au|
x
bv = a u|

x
b v = u|

x
v

au|
x
bv

= {use ¬(a ≈
x
b) in (*) since a, b = τ, τ ; apply Observation 23, page 92}

[a � b→ (u|
x
v)] ∪ [b ��

x
a→ (u|

x
v)]

= {a, b = τ, τ , so a � b ≡ a.time ≤ b.time, and b ��x a ≡ b.time ≤ a.time}
[a.time ≤ b.time → (u|xv)] ∪ [b.time ≤ a.time → (u|xv)]

= {condition in at least one of the guarded sets applies, and
ε ∈ (u|

x
v), from Observation 22, page 91}

u|
x
v

Case 2) a 6= τ and b 6= τ :

au|
x
bv

= {distribute trace over concatenation}
au|

x
bv

= {apply definition}
[a ≈x b→ a(u|xv)] ∪ [a � b→ a(u|xbv)] ∪ [b ��x a→ b(au|xv)]

And, this matches (*) given a = a and b = b.

Case 3) a 6= τ and b = τ :
Then, au|

x
bv = au|

x
v (L)

And,

CHAPTER 3. BREADTH AND TRACE PRESERVATION 98

au|xbv
= {since b = τ , ¬(a ≈x b). Simplify (*)}

[a � b→ a(u|
x
v)] ∪ [b ��

x
a→ (au|

x
v)] ∪ {ε}

= {drop {ε}, using Observation 23, page 92, on the second term}
[a � b→ a(u|

x
v)] ∪ [b ��

x
a→ (au|

x
v)] (R)

Since bv is visible and b = τ , v is non-empty and visible. Therefore v 6= ε.
Let c be the first event of v. Then, considering bv, b.time ≤ c.time. We show
(L) = (R) for 3 cases: (1) a.time < b.time, (2) a.time = b.time, and (3)
a.time > b.time.

Case 3.1) a.time < b.time:

(L) = au|xv
= {a.time < b.time ≤ c.time. Hence, ¬(a ≈

x
c) and ¬(c ��

x
a)

Apply definition of |
x
}

[a � c→ a(u|
x
v)] ∪ {ε}

= {a.time ≤ c.time means a � c ≡ a is base }
[a is base → a(u|xv)] ∪ {ε}

And,

(R) = [a � b→ a(u|xv)] ∪ [b ��x a→ (au|xv)]
= {a.time < b.time. So, ¬(b ��x a). Also, a � b ≡ a is base }

[a is base → a(u|
x
v)] ∪ {ε}

= {from above derivation}
(L)

Case 3.2) a.time = b.time:

(R) = [a � b→ a(u|
x
v)] ∪ [b ��

x
a→ (au|

x
v)]

= {from a.time = b.time, a � b ≡ a is base and b ��x a holds, given b = τ}
[a is base → a(u|xv)] ∪ (au|xv)

= {If a is not base :
[a is base → a(u|

x
v)] ∪ (au|

x
v) = {ε} ∪ (au|

x
v) = (au|

x
v)

If a is base :
[a is base → a(u|

x
v)] ∪ (au|

x
v) = a(u|

x
v) ∪ (au|

x
v)

a.time ≤ c.time implies, from |x definition, au|xv ⊇ a(u|xv)
In all cases, [a is base → a(u|xv)] ∪ (au|xv) = (au|xv)}
au|

x
v = (L)

Case 3.3) a.time > b.time:

(R) = [a � b→ a(u|
x
v)] ∪ [b ��

x
a→ (au|

x
v)]

= {¬(a � b) and b ��x a hold}
(au|xv) ∪ {ε}

= {from Observation 22, page 91, {ε} ⊆ (au|
x
v)}

au|
x
v = (L)

CHAPTER 3. BREADTH AND TRACE PRESERVATION 99

Case 4) a = τ and b 6= τ : Similar to Case (3)

Lemma 43 u|
x
v ⊆ uc|

x
vd, for other substitutions c and d.

Proof: : We prove u|
x
v ⊆ uc|

x
v. Similarly, it can be shown that u|

x
v ⊆ u|

x
vd.

Then, u|
x
v ⊆ uc|

x
v ⊆ uc|

x
vd.

Now, we prove u|xv ⊆ uc|xv by induction on the combined length of u and
v.

• u = ε or v = ε: Left side is {ε}, and the right side, being a merge, contains
ε, from Observation 22, page 91.

• au|
x
bv ⊆ auc|

x
bv:

au|
x
bv

= {definition of |
x
}

[a ≈
x
b→ a(u|

x
v)] ∪ [a � b→ a(u|

x
bv)] ∪ [b ��

x
a→ b(au|

x
v)]

⊆ {induction: u|
x
v ⊆ uc|

x
v; similarly for the other terms}

[a ≈x b→ a(uc|xv)] ∪ [a � b→ a(uc|xbv)] ∪ [b ��x a→ b(auc|xv)]
= {definition of |x}

auc|
x
bv

Theorem 22 Let U and V be broad sets. Then U |xV = U |xV .

Proof: The proof is in two parts: U |xV ⊆ U |xV , and U |xV ⊆ U |xV .

• U |xV ⊆ U |xV : For any u in U and v in V , we show u|xv ⊆ U |xV .

u|
x
v

⊆ {from Lemma 21, page 70, there is uc ∈ β(u) ⊆ U and, similarly, vd ∈ V ,
where we may pick c and d to be other-substitutions,
apply Lemma 43, page 99}

(uc|
x
vd)

= {uc and vd are visible; apply Lemma 42, page 97}
(uc|xvd)

⊆ {from uc ∈ U , uc ∈ U ; similarly vd ∈ V }
U |

x
V

• U |xV ⊆ U |xV : We show that for u in U and v in V , u|xv ⊆ U |xV .
Let p be the longest visible prefix of u and q of v. Then u = p and v = q.

From prefix-closure, p ∈ U and q ∈ V .

u|
x
v

= {from above}
p|

x
q

= {p and q are visible}
p|

x
q

⊆ {p ∈ U and q ∈ V }
U |xV

CHAPTER 3. BREADTH AND TRACE PRESERVATION 100

3.4.2 Preliminary Results on Constrained Full Merge

Lemma 44 u+
x
v = u+

x
v.

Proof: The proof is analogous to Lemma 42, page 97. Proof is by induction on
the combined length of u and v.

Suppose u is ε: if v contains no other-substitution (then neither does v),
u+

x
v = {v} and u+

x
v = {v}. If v contains an other-substitution, then so does

v, and u+
x
v = φ = φ = u+

x
v. The proof for v = ε is analogous.

Next, we show that au+xbv = au+xbv.

au+xbv
= {definition of au+xbv}

〈a ≈x b→ a(u+xv)〉 ∪ 〈a � b→ a(u+xbv)〉 ∪ 〈b ��x a→ b(au+xv)〉
= {distribute trace over set union, guarded sets and concatenation}

〈a ≈
x
b→ a(u+

x
v)〉 ∪ 〈a � b→ a(u+

x
bv)〉 ∪ 〈b ��

x
a→ b(au+

x
v)〉

= {induction}
〈a ≈

x
b→ a(u+

x
v)〉 ∪ 〈a � b→ a(u+

x
bv)〉 ∪ 〈b ��

x
a→ b(au+

x
v)〉

= {distribute trace over concatenation}
〈a ≈x b→ a(u+xv)〉 ∪ 〈a � b→ a(u+xb v)〉 ∪ 〈b ��x a→ b(a u+xv)〉(*)

We show that au+
x
bv = au +

x
bv for each of these cases: (1) a, b = τ, τ , (2)

a 6= τ and b 6= τ (3) a 6= τ and b = τ , (4) a = τ and b 6= τ .

Case 1) a, b = τ, τ : Then, au+xbv = u+xv

au+
x
bv

= {simplify (*), noting that ¬(a ≈
x
b), from a, b = τ, τ}

〈a � b→ (u+
x
v)〉 ∪ 〈b ��

x
a→ (u+

x
v)〉

= {given a, b = τ, τ , a � b ≡ a.time ≤ b.time and b ��
x
a ≡ b.time ≤ a.time,

so, at least one of a � b and b ��x a holds }
u+xv

Case 2) a 6= τ and b 6= τ :

au+
x
bv

= {distribute trace over concatenation}
au+xbv

= {apply definition}
〈a ≈

x
b→ a(u+

x
v)〉 ∪ 〈a � b→ a(u+

x
bv)〉 ∪ 〈b ��

x
a→ b(au+

x
v)〉

And, this matches (*) given a = a and b = b.

Case 3) a 6= τ and b = τ :
Then, au+

x
bv = au+

x
v (L)

And,

CHAPTER 3. BREADTH AND TRACE PRESERVATION 101

au+xbv
= {from (*), noting that ¬(a ≈x b), from b = τ}

〈a � b→ a(u+
x
v)〉 ∪ 〈b ��

x
a→ (au+

x
v)〉 (R)

Since bv is visible and b = τ , v is non-empty and visible. Therefore v 6= ε. Let c
be the first event of v. Then, b.time ≤ c.time. We show (L) = (R) for 3 cases:
(1) a.time < b.time, (2) a.time = b.time, and (3) a.time > b.time.

Case 3.1) a.time < b.time:

(L) = au+
x
v

= {a.time < b.time ≤ c.time. Hence, ¬(a ≈
x
c) and ¬(c ��

x
a)

Apply definition of +x}
〈a � c→ a(u+xv)〉

= {from a.time < c.time, a � c ≡ a is base}
〈a is base → a(u+

x
v)〉

And,

(R) = 〈a � b→ a(u+
x
v)〉 ∪ 〈b ��

x
a→ (au+

x
v)〉

= {a.time < b.time. So, ¬(b ��
x
a)}

〈a � b→ a(u+
x
v)〉

= {a.time < b.time. So, a � b ≡ a is base }
〈a is base → a(u+xv)〉

= {above derivation}
(L)

Case 3.2) a.time = b.time:

(R) = 〈a � b→ a(u+
x
v)〉 ∪ 〈b ��

x
a→ (au+

x
v)〉

= {given a.time = b.time and b = τ , b ��
x
a holds}

〈a � b→ a(u+xv)〉 ∪ (au+xv)
= {given a.time = b.time, a � b ≡ a is base }

〈a is base → a(u+
x
v)〉 ∪ (au+

x
v)

= {If a is not base :
〈a is base → a(u+

x
v)〉 ∪ (au+

x
v) = au+

x
v,

If a is base :
〈a is base → a(u+xv)〉 ∪ (au+xv) = a(u+xv) ∪ (au+xv),
a.time ≤ c.time implies, from +x definition, au+xv ⊇ a(u+xv)

In all cases, 〈a is base → a(u+
x
v)〉 ∪ (au+

x
v) = au+

x
v}

au+
x
v = (L)

Case 3.3) a.time > b.time:

(R) = 〈a � b→ a(u+xv)〉 ∪ 〈b ��x a→ (au+xv)〉
= {¬(a � b) and b ��x a hold}

au+
x
v = (L)

CHAPTER 3. BREADTH AND TRACE PRESERVATION 102

Case (4) a = τ and b 6= τ : Similar to Case(3).
Call a sequence pub-free if it has no publication. Formally, ε is pub-free, and

ap is pub-free iff a is not a publication and p is pub-free. A set is pub-free if all
its sequences are.

Observation 24 A(t) is pub-free.

Proof: From the definition of A(t).

Lemma 45 Given p is pub-free, β(p) is pub-free.

Proof: By induction on the length of p. For p = ε, β(ε) = A(0) is pub-free, by
Observation 24. Next, consider apt where a is not a publication and p is pub-
free. Then, β(apt) = A(t) ∪ β(p)t, where A(t) is pub-free, by Observation 24,
and β(p) is pub-free by induction hypothesis (then, so is β(p)t).

Lemma 46 Let V be broad and W be its pub-free subset. Then, W is broad.

Proof: We show that for every v, where v ∈W , β(v) ⊆W .

v ∈W
⇒ {W ⊆ V ; v ∈W means v is pub-free}

v ∈ V and v is pub-free
⇒ {V is broad}

β(v) ⊆ V and v is pub-free
⇒ {v is pub-free implies β(v) is pub-free, from Lemma 45, page 102}

β(v) ⊆ V and β(v) is pub-free
⇒ {W is the pub-free subset of V }

β(v) ⊆W

Lemma 47 β(paqt) = β(pc) ∪ paβ(q)t, where t = a.time, and c is any substi-
tution at time t.

Proof: Proof is by induction on the length of p.

• p = ε : we have to show β(aqt) = β(c) ∪ aβ(q)t.

β(c) ∪ aβ(q)t
= {c is at time t; from definition of β(), β(c) = A(t) ∪ cβ(ε)t}

A(t) ∪ cβ(ε)t ∪ aβ(q)t
= {β(ε)t = A(0)t; c being a substitution, cA(0)t ⊆ A(t)}

A(t) ∪ aβ(q)t
= {definition of β()}

β(aqt)

• β(bpaqt) = β(bpc) ∪ bpaβ(q)t:
Let s = b.time, p′s = p, a′s = a, and r = t− s.

CHAPTER 3. BREADTH AND TRACE PRESERVATION 103

β(bpaqt)
= {transform using p′s = p, a′s = a, and r = t− s.}

β(b(p′a′qr)s)
= {apply definition of β(), using s = b.time}

A(s) ∪ bβ(p′a′qr)s
= {induction; note a.time = t, so (a′s).time = t, or a′.time = t− s = r}

A(s) ∪ b(β(p′d) ∪ p′a′β(q)r)s, where d is any substitution at a′.time = r
= {rewrite using p′sa

′
s = pa}

A(s) ∪ bβ(p′d)s ∪ bpaβ(q)r+s
= {β(b(p′d)s) = A(s) ∪ bβ(p′d)s}

β(b(p′d)s) ∪ bpaβ(q)r+s
= {p′s = p; r + s = t}

β(bpds) ∪ bpaβ(q)t

Now, c = ds is an arbitrary substitution at d.time+ s = r + s = t 2

Lemma 48 Let pa ∈ U , where U is broad. Then pc ∈ U , where c is any
substitution at a.time.

Proof:

pa ∈ U
⇒ {U is broad}

β(pa) ⊆ U
⇒ {from Lemma 47, page 102, with q = ε, β(pa) = β(pc) ∪ paβ(ε)t

So, β(pc) ⊆ β(pa); note that c.time = a.time}
β(pc) ⊆ U , where c.time = a.time

⇒ {from Corollary 2, page 69, pc ∈ β(pc)}
pc ∈ U , where c.time = a.time

3.4.3 Asymmetric Composition Preserves Breadth

We show that for broad sets U and V , U <x< V is broad.

Lemma 49 Let U and V be broad and V pub-free. For any p, p ∈ U |xV , there
exist u in U and v in V such that d1(u, v) and p ∈ u|xv.

Proof: First, we prove a sublemma.

Sublemma Consider sequences u and v. Let u = u′cu′′ where c is an own-
substitution. Let d be an other-substitution, where c.time = d.time and d does
not occur in v. Then, u|xv = u′d|xv.
Proof: Proof is by induction on the combined length of u′ and v.

• v = ε: Then u|
x
v = {ε} = u′d|

x
v.

• u′ = ε: We may assume that v 6= ε, i.e., v = bv′.

CHAPTER 3. BREADTH AND TRACE PRESERVATION 104

u|xv
= {u = cu′′ and v = bv′}

cu′′|
x
bv′

= {definition of |
x
}

[c ≈
x
b→ c(u′′|

x
v′)] ∪ [c � b→ c(u′′|

x
bv′)] ∪ [b ��

x
c→ b(cu′′|

x
v′)]

= {¬(c ≈x b), since c is not an other-substitution
¬(c � b), since c is not a base event}

[b ��
x
c→ b(cu′′|

x
v′)] ∪ {ε}

= {induction: cu′′|
x
v′ = d|

x
v′}

[b ��
x
c→ b(d|

x
v′)] ∪ {ε}

= {b ��
x
c ≡ b ��

x
d, because c.time = d.time}

[b ��x d→ b(d|xv′)] ∪ {ε}

And,

u′d|xv
= {u′ = ε and v = bv′}

d|
x
bv′

= {definition of |
x
}

[d ≈
x
b→ d(ε|

x
v′)] ∪ [d � b→ d(ε|

x
bv′)] ∪ [b ��

x
d→ b(d|

x
v′)]

= {¬(d ≈x b), since d does not occur in v
¬(d � b), since d is not a base event}

[b ��
x
d→ b(d|

x
v′)] ∪ {ε}

= {from above proof}
u|

x
v

• u′ = aw′: Then u = aw′cu′′. Abbreviate w′cu′′ by w.

u|
x
v

= {u = aw′cu′′ = aw and v = bv′}
aw|

x
bv′

= {definition of |x}
[a ≈x b→ a(w|xv′)] ∪ [a � b→ a(w|xbv′)] ∪ [b ��x a→ b(aw|xv′)]

= {induction on every term; recall w = w′cu′′; so, replace w by w′d}
[a ≈

x
b→ a(w′d|

x
v′)] ∪ [a � b→ a(w′d|

x
bv′)] ∪ [b ��

x
a→ b(aw′d|

x
v′)]

= {definition of |
x
}

aw′d|
x
bv′

= {u′ = aw′ and v = bv′}
u′d|xv

Now, we are ready to prove the main lemma. Given p ∈ U |xV , there exist r
and s, in U and V , respectively, such that p ∈ r|xs. If r has no own-substitution,
then d1(r, s), because s is pub-free (from V pub-free); thus u, v = r, s.

If r has a own-substitution c, let r = r′cr′′, where r′ has no own-substitution.
Since U is broad, it is prefix-closed; therefore r = r′cr′′ ∈ U implies r′c ∈ U .
Using Lemma 48, page 103, (set p = r′ and a = c), r′d ∈ U , where d is any
substitution at c.time. Choose d to be an other-substitution that does not occur

CHAPTER 3. BREADTH AND TRACE PRESERVATION 105

in s (this is possible because s has a finite number of substitutions). Let u = r′d
and v = s. Then, p ∈ r|xs = {from Sublemma} r′d|xs = u|xv. Further, u has
no own substitution because r′ has none and d is an other-substitution. Also, s
is pub-free. So, d1(u, v).

Lemma 50 Let U and W be broad and W be pub-free. Then U <x< W =
U |

x
W .

Proof:

U |
x
W

= {definition of coercion}
(∪u ∈ U, w ∈W : u|xw)

= {from Lemma 49, page 103}
(∪u ∈ U, w ∈W, d1(u,w) : u|

x
w)

= {definition of u <x< w using w is pub-free}
(∪u ∈ U, w ∈W, d1(u,w) : u <x< w)

= {given w is pub-free, ¬d1(u,w) implies u <x< w = φ}
(∪u ∈ U, w ∈W, d1(u,w) : u <x< w) ∪ (∪u ∈ U, w ∈W, ¬d1(u,w) : u <x< w)

= {set theory}
(∪u ∈ U, w ∈W : u <x< w)

= {definition of <x< over sets}
U <x< W

Theorem 23 For broad sets U and V , U <x< V is broad.

Proof: We show that for every p, where p ∈ U <x< V , β(p) ⊆ U <x< V . Let
W be the pub-free subset of V . We consider two cases: (1) p ∈ U <x< W , and
(2) p ∈ U <x< (V −W), and show in each case that β(p) ⊆ U <x< V .

• p ∈ U <x< W : We first show that U <x< W is broad.

W is the pub-free subset of V
⇒ {from Lemma 46, page 102}

W is broad
⇒ {U is broad; from Theorem 21, page 94}

U |xW is broad
⇒ {U and W are broad, and W is pub-free; from Lemma 50, page 105}

U <x< W = U |
x
W , and U |

x
W is broad

⇒ {obviously}
U <x< W is broad

Hence,

p ∈ U <x< W
⇒ {U <x< W is broad}

β(p) ⊆ U <x< W
⇒ {W ⊆ V }

β(p) ⊆ U <x< V

CHAPTER 3. BREADTH AND TRACE PRESERVATION 106

• p ∈ U <x< (V −W): Any such p is generated by u ∈ U and v ∈ V , where
d2(u, v). So, u = u′(t, [m/x])u′′t and v = v′(t, !m)v′′, d0(u′, v′) and d1(u′, v′).

p ∈ (u′ +
x
v′)(t, τ)u′′t

⇒ {apply β() to both sides}
β(p) ⊆ β((u′ +

x
v′)(t, τ)u′′t)

⇒ {from Lemma 47, page 102,
β((u′ +xv

′)(t, τ)u′′t) = β((u′ +xv
′)c) ∪ (u′ +xv

′)(t, τ)β(u′′)t,
where c is an other-substitution at time t}
β(p) ⊆ β((u′ +

x
v′)c) ∪ (u′ +

x
v′)(t, τ)β(u′′)t,

where c is an other-substitution at t

We show that each of β((u′ +
x
v′)c) and (u′ +

x
v′)(t, τ)β(u′′)t are subsets of

U <x< V .

Case 1) β((u′ +
x
v′)c) ⊆ U <x< V :

Since U is broad, and hence prefix-closed, from u′(t, [m/x])u′′t ∈ U , we have
u′(t, [m/x]) ∈ U , and using Lemma 48, page 103, u′c ∈ U ; similarly, v′c ∈ V .
From d1(u′, v′), u′ has no own-substitution; therefore, u′c has none either. From
d1(u′, v′), v′ is pub-free, and so is v′c. So, d1(u′c, v′c). Also, v′c ∈ W , since
v′c ∈ V and W is the pub-free subset of V .

β(u′c+
x
v′c)

⊆ {from Lemma 10, page 54, u′c+
x
v′c ⊆ u′c|

x
v′c}

β(u′c|
x
v′c)

⊆ {u′c ∈ U ; v′c ∈W}
β(U |xW)

= {U is broad,
W is broad, from Lemma 46, page 102,
so, U |

x
W is broad, from Theorem 21, page 94}

U |
x
W

= {U and W are broad, W has no publication; from Lemma 50, page 105}
U <x< W

⊆ {W ⊆ V }
U <x< V

Case 2) (u′ +
x
v′)(t, τ)β(u′′)t ⊆ U <x< V :

(u′ +
x
v′)(t, τ)β(u′′)t

= {d2(u, v) implies d2(w, v), where w = u′(t, [m/x])w′, for any w′,
use each element of β(u′′)t for w′; apply definition of <x< }
u′(t, [m/x])β(u′′)t <x< v

⊆ {from Lemma 47, page 102, u′(t, [m/x])β(u′′)t ⊆ β(u′(t, [m/x])u′′t) = β(u)}
β(u) <x< v

⊆ {u ∈ U , v ∈ V }
β(U) <x< V

= {U is broad; so β(U) = U}
U <x< V

CHAPTER 3. BREADTH AND TRACE PRESERVATION 107

Lemma 51 (U <x< V \a) ⊆ (U <x< V)\a, where a is an own substitution
and a.time = t.

Proof: We show for arbitrary u ∈ U and v ∈ V that (u <x< v\a) ⊆ (u <x< v)\a.
The result then follows by coersion.

Suppose v does not begin with a. Then

(u <x< v\a)
= {definition of \}

(u <x< ∅)
= {coersion}

∅,

Suppose d1(u, v) holds. Then

(u <x< v)\a
= {definition of u <x< v, d1(u, v)}

(u|
x
v)\a

= {if v does not begin with a, then neither does any execution of u|xv}
∅.

Suppose d2(u, v) holds. Then

(u <x< v)\a
= {definition of u <x< v, d2(u, v)}

((u′ +xv
′)(t, τ)u′′)\a

= {if v does not begin with a, then neither does any execution of u′ +
x
v′}

∅.

Suppose neither d1(u, v) not d2(u, v) holds. Then

(u <x< v)\a
= {definition of u <x< v, neither d2(u, v) nor d2(u, v)}

∅\a.
= {definition of \}

∅.

Otherwise assume v starts with a, and v = av′.
Suppose d1(u, v) holds. Then

u <x< av′\a
= {definition of \}

u <x< v′

= {definition of u <x< v′, d1(u, av′) implies d1(u, v′)}
u|

x
v′

and

CHAPTER 3. BREADTH AND TRACE PRESERVATION 108

(u <x< av′)\a
= {definition of u <x< av′, d1(u, av′)}

(u|
x
av′)\a

⊆ {definition of u|
x
av′}

a(u|
x
v′)\a

= {definition of \}
u|xv′

Suppose d2(u, v) holds. Then

u <x< av′\a
= {definition of \}

u <x< v′

= {definition of u <x< v′, d2(u, av′) implies d2(u, v′)}
(u′′ +xv

′′)(t, τ)u′′′

and

(u <x< av′)\a
= {definition of u <x< av′, d2(u, av′)}

(u′′ +
x
av′′)(t, τ)u′′′\a

⊆ {definition of u′′ +xav
′′}

a(u′′ +xv
′′)(t, τ)u′′′\a

= {definition of \}
(u′′ +

x
v′′)(t, τ)u′′′

Suppose neither d1(u, v) nor d2(u, v) holds. Then

u <x< av′\a
= {definition of \}

u <x< v′

= {definition of u <x< v′, ¬d1(u, av′) implies ¬d1(u, v′) and
¬d2(u, av′) implies ¬d2(u, v′)}

∅

and

(u <x< av′)\a
= {definition of u <x< av′, ¬d1(u, av′) and ¬d2(u, av′)}

∅\a
= {definition of \}

∅

Lemma 52 (U\a <x< V \a) = (U <x< V)\a, where a is an other substitution
and a.time = t.

Proof: We show for arbitrary u ∈ U and v ∈ V that (u\a <x< v\a) =
(u <x< v)\a. The result then follows by coersion.

Suppose u does not begin with a. (The case when v does not begin with a
is similar.) Then

CHAPTER 3. BREADTH AND TRACE PRESERVATION 109

(u\a <x< v\a)
= {definition of \}

(∅ <x< v\a)
= {coersion}

∅,

Suppose d1(u, v) holds. Then

(u <x< v)\a
= {definition of u <x< v, d1(u, v)}

(u|
x
v)\a

= {if u does not begin with a, then neither does any execution of u|
x
v}

∅.

Suppose d2(u, v) holds. Then

(u <x< v)\a
= {definition of u <x< v, d2(u, v)}

((u′ +xv
′)(t, τ)u′′)\a

= {if u does not begin with a, then neither does any execution of u′ +xv
′}

∅.

Suppose neither d1(u, v) not d2(u, v) holds. Then

(u <x< v)\a
= {definition of u <x< v, neither d2(u, v) nor d2(u, v)}

∅\a.
= {definition of \}

∅.

Otherwise, assume both u and v begin with a, and u = au′ and v = av′.
Suppose d1(u, v) holds. Then

au′\a <x< av′\a
= {definition of \}

u′ <x< v′

= {definition of u′ <x< v′, d1(au′, av′) implies d1(u′, v′)}
u′|xv′

and

(au′ <x< av′)\a
= {definition of au′ <x< av′, d1(au′, av′)}

(au′|xav′)\a
= {definition of au′|

x
av′}

a(u′|
x
v′)\a

= {definition of \}
u′|

x
v′

CHAPTER 3. BREADTH AND TRACE PRESERVATION 110

Suppose d2(u, v) holds. Then

au′\a <x< av′\a
= {definition of \}

u′ <x< v′

= {definition of u′ <x< v′, d2(au′, av′) implies d2(u′, v′)}
(u′′ +

x
v′′)(t, τ)u′′′

and

(au′ <x< av′)\a
= {definition of au′ <x< av′, d2(au′, av′)}

(au′′ +
x
av′′)(t, τ)u′′′\a

= {definition of au′′ +
x
av′′}

a(u′′ +xv
′′)(t, τ)u′′′\a

= {definition of \}
(u′′ +

x
v′′)(t, τ)u′′′

Suppose neither d1(u, v) nor d2(u, v) holds. Then

au′\a <x< av′\a
= {definition of \}

u′ <x< v′

= {definition of u′ <x< v′, ¬d1(au′, av′) implies ¬d1(u′, v′) and
¬d2(au′, av′) implies ¬d2(u′, v′)}

∅

and

(au′ <x< av′)\a
= {definition of au′ <x< av′, ¬d1(au′, av′) and ¬d2(au′, av′)}

∅\a
= {definition of \}

∅

3.4.4 Asymmetric Composition Preserves Traces

We show that for broad sets U and V , U <x< V = U <x< V .

Observation 25 d0(u, v) ≡ d0(u, v), d1(u, v) ≡ d1(u, v), and d2(u, v) ≡ d2(u, v).

Proof: The results follow from the definitions of d0, d1 and d2.

Theorem 24 Given that U and V are broad, U <x< V = U <x< V .

Proof: Let V = W ∪R, where W is the pub-free subset of V and every sequence
in R has a publication. Then,

CHAPTER 3. BREADTH AND TRACE PRESERVATION 111

U <x< V
= {definition of <x< over sets}

(U <x< W) ∪ (U <x< R)
= {distribute trace over set union}

U <x< W ∪ U <x< R

Similarly, using V = W ∪R, we get U <x< V = U <x< W ∪U <x< R. We
show that U <x< W = U <x< W , and U <x< R = U <x< R.

• U <x< W = U <x< W :

U <x< W
= {since U and W are broad, U and W are broad, from Lemma 23, page 71;

W is pub-free since W is; apply Lemma 50, page 105}
U |

x
W

= {from Theorem 22, page 99}
U |

x
W

= {simplify}
U |

x
W

= {from Lemma 50, page 105}
U <x< W

• U <x< R = U <x< R: For any u ∈ U and w ∈ R, we first show that

u <x< w = u <x< w (**)

Case 1) ¬d2(u,w):
Since w ∈ R, w has a publication. So, ¬d1(u,w). From ¬d1(u,w) and ¬d2(u,w),
u <x< w = φ. From Observation 25, page 110, ¬d1(u,w) and ¬d2(u,w); so,
u <x< w = φ.

Case 2) d2(u,w): Let u = u′(t, [m/x])u′′ and w = w′(t, !m)w′′. From Observa-
tion 25, page 110, d2(u,w).

u <x< w
= {expanding u′(t, [m/x])u′′ <x< w′(t, !m)w′′}

(u′ +xw
′)(t, τ)u′′

= {simplify}
(u′ +xw

′)u′′

= {from Lemma 44, page 100, (u′ +xw
′) = u′ +xw

′}
(u′ +

x
w′)u′′

Now,

u <x< w
= {in the above derivation, replace u′, w′ and u′′ by u′, w′ and u′′}

CHAPTER 3. BREADTH AND TRACE PRESERVATION 112

(u′ +
x
w′)u′′

= {simplify}
(u′ +

x
w′)u′′

= {from above derivation}
u <x< w

Now, we show that U <x< R = U <x< R, by mutual inclusion.

• U <x< R ⊆ U <x< R:
For any u ∈ U and w ∈ R, we show u <x< w ⊆ U <x< R.

u <x< w
= {from (**)}

u <x< w
⊆ {given u ∈ U , u ∈ U ; similarly, w ∈ R}

U <x< R

• U <x< R ⊆ U <x< R:
For any p ∈ U and q ∈ R, we show p <x< q ⊆ U <x< R. Since p ∈ U , there is
some u ∈ U , such that u = p; similarly, there is some w ∈ R, such that w = q.

p <x< q
= {u = p, w = q}

u <x< w
⇒ {from (**)}

u <x< w
⇒ {u ∈ U , w ∈ R}

U <x< R

Chapter 4

Traces are Denotations

We are finally ready to prove the main result, that the traces of an expression
can be generated from the traces of its constituent expressions. Let ∗ denote
any Orc combinator, | , >x> or <x< .

Theorem 25 For any expression f , [[f]] is broad.

Proof: The proof is by induction on the structure of the expression. For base
expression f , [[f]] is broad, from Lemma 27, page 73. For f | g, We have from
Section 2.3, page 42

[[f | g]] = [[f]] | [[g]]
⇒ {inductively, [[f]] and [[g]] are broad;

apply Theorem 17, page 78}
[[f | g]] = [[f]] | [[g]] and [[f]] | [[g]] is broad

⇒ {obviously}
[[f | g]] is broad

Proofs for the other combinators are similar: for >x> , use the result from
Section 2.4, page 44 and apply the breadth preservation Theorem 19, page 85;
for <x< , use the result from Section 2.5, page 50 and Theorem 23, page 105.

Theorem 26 For any Orc combinator ∗, 〈〈f ∗ g〉〉 = 〈〈f〉〉 ∗ 〈〈g〉〉

Proof:

〈〈f ∗ g〉〉
= {definition of trace}

[[f ∗ g]]
= {from the characterization theorems, [[f ∗ g]] = [[f]] ∗ [[g]]

see Section 2.3, page 42 for Symmetric Composition,
see Section 2.4, page 44 for Sequential Composition,
see Section 2.5, page 50 for Asymmetric Composition.}

113

CHAPTER 4. TRACES ARE DENOTATIONS 114

[[f]] ∗ [[g]]
= {from Theorem 25, page 113, [[f]] and [[g]] are broad,

[[g]] is substitution independent, from Observation 9, page 20;
for broad sets U and V , where V is substitution independent:
U | V = U | V , from Theorem 18, page 84;
U >x> V = U >x> V , from Theorem 20, page 89;
U ∗ V = U ∗ V , from Theorem 24, page 110}

[[f]] ∗ [[g]]
= {definition of trace}

〈〈f〉〉 ∗ 〈〈g〉〉

4.1 The Denotation of an Orc Expression

A family of functions µi, for i ≥ 0, is defined that maps recursive Orc expressions
to trace sets. The denotation for recursive expression f is defined as the least
upper bound of the trace sets µi(f), where µi is defined by:

• µ0(f) = 00

• µi+1(f) =

〈〈b〉〉 if f = b, a base expression
µi+1(g) ∗ µi+1(h) if f = g ∗ h
µi([p/x].g) if f = E(p) and D(E(x)) = g

And µ(f) = (∪i : i ≥ 0 : µi(f)).

Lemma 53 µ(f) = µ(f).

Proof: By induction on i. The base case is trivial, because 00 contains no τ
events. Assume µi(f) = µi(f), for an expression f . Then µi+1(b) = 〈〈b〉〉 = 〈〈b〉〉.
For the combinator case,

µi+1(f ∗ g)
= {definition of µ}

µi+1(f) ∗ µi+1(g)
= {trace is idempotent}

µi+1(f) ∗ µi+1(g)
= {definition of µ}

µi+1(f ∗ g)

For a defined expression E(p), where E(x) ∆ g,

µi+1(E(p))
= {definition of µ}

µi([p/x].g)
= {induction on i}

CHAPTER 4. TRACES ARE DENOTATIONS 115

µi([p/x].g)
= {definition of µ}

µi+1(E(p))

Lemma 54 For any combinator ∗, 00 ∗ 00 = 00.

Proof: By Lemma 29, page 77, 00 | 00 = 00. By Corollary 7, page 84 00 >x> 00 = 00.
Finally

00 <x< 00
= {Lemma 50, page 105}

00|x00
= {Lemma 39, page 92}

00

Lemma 55 µ(f) is broad.

Proof: We show by induction on i and the structure of f that µi(f) is broad for
all i, where i ≥ 0. For i = 0, the result follows from Lemma 16, page 67. Next,
assume for all expressions f that µi(f) is broad. We show µi+1(f) is broad.

• f = b, a base expression: µi+1(b) = 〈〈b〉〉, and 〈〈b〉〉 is broad by Lemma 27,
page 73.

• f = g ∗ h: µi+1(g ∗ h) = µi+1(g) ∗ µi+1(h). By structural induction, both
µi+1(g) and µi+1(h) are broad. The combinators preserve breadth by
Theorem 17, page 78, Theorem 19, page 85 and Theorem 23, page 105.
And trace preserves breadth by Lemma 23, page 71.

• f = E(p), where E(x) ∆ g: µi+1(E(p)) = µi([p/x].g), which is broad by
induction on i.

Lemma 56 µi(a.(f | g)) ⊆ µi(f | g)\a, for all i, where i ≥ 0.

Proof: The proof is by induction on i and the subterm ordering. µ0(a.(f | g)) =
00 by definition and µi(f | g)\a = 00\a = 00 by Observation 7, page 9. Next,
assume µi(a.(f | g)) ⊆ µi(f | g)\a. We show µi+1(a.(f | g)) ⊆ µi+1(f | g)\a.

µi+1(a.(f | g))
= {definition of substitution}

µi+1(a.f | a.g)
= {definition of µi+1}

µi+1(a.f) | µi+1(a.g)
⊆ {subterm induction}

µi+1(f)\a | µi+1(g)\a
⊆ {Lemma 30, page 77}

(µi+1(f) | µi+1(g))\a
⊆ {Lemma 3, page 20}

CHAPTER 4. TRACES ARE DENOTATIONS 116

(µi+1(f) | µi+1(g))\a
= {definition of µi+1}

(µi+1(f | g))\a

Lemma 57 µi(a.(f >x> g)) ⊆ µi(f >x> g)\a, for all i, where i ≥ 0.

Proof: The proof is by induction on i and the subterm ordering. µ0(a.(f >x> g)) =
00 by definition and µi(f >x> g)\a = 00\a = 00 by Observation 7, page 9. Next,
assume µi(a.(f >x> g)) ⊆ µi(f >x> g)\a. We show µi+1(a.(f >x> g)) ⊆
µi+1(f >x> g)\a.

• Case a = [m/x]:

µi+1(a.(f >x> g))
= {definition of substitution}

µi+1(a.f >x> g)
= {definition of µi+1}

µi+1(a.f) >x> µi+1(g)
⊆ {subterm induction}

µi+1(f)\a >x> µi+1(g)
= {Lemma 36, page 86}

(µi+1(f) >x> µi+1(g))\a
⊆ {Lemma 3, page 20}

(µi+1(f) >x> µi+1(g))\a
= {definition of µi+1}

µi+1(f >x> g))\a

• Case a = [m/y], where y 6= x:

µi+1(a.(f >x> g))
= {definition of substitution, x 6= y}

µi+1(a.f >x> a.g)
= {definition of µi+1}

µi+1(a.f) >x> µi+1(a.g)
⊆ {subterm induction}

µi+1(f)\a >x> µi+1(g)\a
= {Lemma 37, page 87}

(µi+1(f) >x> µi+1(g))\a
⊆ {Lemma 3, page 20}

(µi+1(f) >x> µi+1(g))\a
= {definition of µi+1}

(µi+1(f >x> g))\a

Lemma 58 µi(a.(f <x< g)) ⊆ µi(f <x< g)\a, for all i, where i ≥ 0.

Proof: The proof is by induction on i and the subterm ordering. µ0(a.(f <x< g)) =
00 by definition and µi(f <x< g)\a = 00\a = 00 by Observation 7, page 9. Next,

CHAPTER 4. TRACES ARE DENOTATIONS 117

assume µi(a.(f <x< g)) ⊆ µi(f <x< g)\a. We show µi+1(a.(f <x< g)) ⊆
µi+1(f <x< g)\a.

• Case a = [m/x]:

µi+1(a.(f <x< g))
= {definition of substitution}

µi+1(f <x< a.g)
= {definition of µi+1}

µi+1(f) <x< µi+1(a.g)
⊆ {subterm induction}

µi+1(f) <x< µi+1(g)\a
⊆ {Lemma 51, page 107}

(µi+1(f) <x< µi+1(g))\a
⊆ {Lemma 3, page 20}

(µi+1(f) <x< µi+1(g))\a
= {definition of µi+1}

µi+1(f <x< g))\a

• Case a = [m/y], where y 6= x:

µi+1(a.(f <x< g))
= {definition of substitution, x 6= y}

µi+1(a.f <x< a.g)
= {definition of µi+1}

µi+1(a.f) <x< µi+1(a.g)
⊆ {subterm induction}

µi+1(f)\a <x< µi+1(g)\a
= {Lemma 52, page 108}

(µi+1(f) <x< µi+1(g))\a
⊆ {Lemma 3, page 20}

(µi+1(f) <x< µi+1(g))\a
= {definition of µi+1}

(µi+1(f <x< g))\a

Lemma 59 For expression f , substitution a and i ≥ 0, µi(a.f) ⊆ µi(f)\a.

Proof: By induction on i.

• µ0(a.f) = µ0(f)\a:

µ0(a.f)
= {definition of µ0}

00
= {Observation 7, page 9}

00\a
= {definition of µi+1}

µ0(f)\a

CHAPTER 4. TRACES ARE DENOTATIONS 118

• µi+1(a.f) = µi+1(f)\a: By induction on the structure of f .

– Case f = b, a base expression:

µi+1(a.b)
= {definition of µi, a.b is a base expression}

〈〈a.b〉〉
= {Corollary 1, page 21}

〈〈b〉〉\a
= {definition of µi+1(b)}

µi+1(b)\a
– Case f = g ∗ h:

µi+1(a.(g ∗ h))
= {definition of substitution}

µi+1(a.g ∗ a.h)
= {definition of µi+1}

µi+1(a.g) ∗ µi+1(a.h)
= {induction on a.g and a.h as subterms of a.f}

µi+1(g)\a ∗ µi+1(h)\a
⊆ {Lemma 56, page 115, Lemma 57, page 116 and Lemma 58, page 116}

(µi+1(g) ∗ µi+1(h))\a
= {definition of µi+1}

(µi+1(g ∗ h))\a
– Case f = E(p), where D(E(x)) = g: We consider two cases. First,

assume the substitution is [m/p]:

µi+1([m/p].E(p))
= {definition of substitution}

µi+1(E(m))
= {definition of µi+1}

µi([m/x].g)
= {only x is free in g}

µi([m/p].([p/x].g))
= {induction on i}

µi([p/x].g)\[m/p]
= {definition of µi+1}

µi+1(E(p))\[m/p]
Next, assume the substitution is [m/q], where q 6= p.

µi+1([m/q].E(p))
= {definition of substitution}

µi+1(E(p))
= {definition of µi+1}

µi([p/x].g)
= {only x is free in g}

µi([m/q].[p/x].g)
= {induction on i}

CHAPTER 4. TRACES ARE DENOTATIONS 119

µi([p/x].g)\[m/q]
= {definition of µi+1}

µi+1(E(p))\[m/q]

Lemma 60 For expression f and substitution event a, µ(a.f) ⊆ µ(f)\a.

Proof:

µ([m/x].f)
= {definition of µ}

(∪i : i ≥ 0 : µi([m/x].f))
= {Lemma 59, page 117}

(∪i : i ≥ 0 : µi(f)\[m/x])
= {operator \ is coercive}

(∪i : i ≥ 0 : µi(f))\[m/x]
= {definition of µ}

µ(f)\[m/x]

Lemma 61 Suppose D(E(x)) = g. Then µ(E(p)) = µ([p/x].g).

Proof:

µ(E(p))
= {definition of µ}

(∪i : i ≥ 0 : µi(E(p)))
= {set theory, definition of µ0(E(p))}

00 ∪ (∪i : i ≥ 0 : µi+1(E(p)))
= {definition of µi+1(E(p))}

00 ∪ (∪i : i ≥ 0 : µi([p/x].g))
= {definition of µ}

00 ∪ µ([p/x].g)
= {00 ⊂ µ([p/x].g)}

µ([p/x].g)

Theorem 27 (Equivalence of Semantics) For expression f , 〈〈f〉〉 = µ(f).

Proof: By well founded induction on the product of the subterm ordering on the
structure of f and the usual ordering on the natural numbers.

• f = b, a base expression

µ(b)
= {definition of µ}

00 ∪ (∪i : i ≥ 0 : µi+1(b))
= {definition of µi+1(b)}

00 ∪ (∪i : i ≥ 0 : 〈〈b〉〉)
= {00 ⊆ 〈〈f〉〉, for any expression f}

〈〈b〉〉.

CHAPTER 4. TRACES ARE DENOTATIONS 120

• f = g ∗ h:

〈〈g ∗ h〉〉
= {Theorem 26, page 113}

〈〈g〉〉 ∗ 〈〈h〉〉
= {induction}

µ(g) ∗ µ(h)
= {definition of µ}

(∪i : i ≥ 0 : µi(g)) ∗ (∪i : i ≥ 0 : µi(h))
= {Theorem 10, page 40, monotonicity of µi}

(∪i : i ≥ 0 : µi(g) ∗ µi(h))
= {definition of µi+1(g ∗ h), 00 ∗ 00 = 00 by Lemma 54, page 115}

00 ∪ (∪i : i ≥ 0 : µi+1(g ∗ h))
= {definition of µ, µ(g ∗ h) = µ(g ∗ h) by Lemma 53, page 114}

µ(g ∗ h)

• f = E(p), where E(x) ∆ g. The proof is by mutual inclusion.

– µ(E(p)) ⊆ 〈〈E(p)〉〉: We show, for all i ≥ 0, that µi(E(p)) ⊆ 〈〈E(p)〉〉.
We proceed by induction on i.
Suppose i = 0 and u ∈ 00. Then u ∈ 〈〈E(p)〉〉 by definition. Otherwise
assume that µi(E(p)) ⊆ 〈〈E(p)〉〉 and consider u ∈ µi+1(E(p)).

u ∈ µi+1(E(p))
⇒ {definition}

u ∈ µi([p/x].g)
⇒ {induction on i}

u ∈ 〈〈[p/x].g〉〉
⇒ {by definition, for some v such that v = u}

v ∈ [[[p/x].g]]
⇒ {operational semantics, E(x) ∆ g}

(0, τ)v ∈ [[E(p)]]
⇒ {(0, τ)v = v = u, [[E(p)]] = 〈〈E(p)〉〉}

u ∈ 〈〈E(p)〉〉
– 〈〈E(p)〉〉 ⊆ µ(E(p)): Consider u ∈ 〈〈(E(p))〉〉. Let v ∈ [[E(p)]] such

that v = u. We show v ∈ µ(E(p)), which implies u ∈ µ(E(p)). The
proof proceeds by induction on v.
Suppose v = ε, so v = ε. Then the result follows from Lemma 55,
page 115, breadth of µ, because ε is in all broad sets. Otherwise
v = av′t. If a is a substitution event, then t = 0 because E(p)t = ⊥
for t > 0.

av′ ∈ [[E(p)]]
⇒ {operational semantics}

v′ ∈ [[a.E(p)]]
⇒ {definition of trace}

CHAPTER 4. TRACES ARE DENOTATIONS 121

v′ ∈ 〈〈a.E(p)〉〉
⇒ {induction on v′}

v′ ∈ µ(a.E(p))
⇒ {µ(a.E(p)) ⊆ µ(E(p))\a by Lemma 60, page 119}

v′ ∈ µ(E(p))\a
⇒ {definition of \}

av′ ∈ µ(E(p))
⇒ {av′ = av′}

av′ ∈ µ(E(p))

Otherwise, by rule (Def), E(p)
0,τ→ [p/x].g v′⇒ , where E(x) ∆ g.

So v = (0, τ)v′.

(0, τ)v′ ∈ [[E(p)]]
⇒ {operational semantics}

v′ ∈ [[[p/x].g]]
⇒ {definition of trace}

v′ ∈ 〈〈[p/x].g〉〉
⇒ {induction on v′}

v′ ∈ µ([p/x].g)
⇒ {Lemma 61, page 119}

v′ ∈ µ(E(p))
⇒ {v′ = (0, τ)v′}

(0, τ)v′ ∈ µ(E(p))

