
()

Dynamic Ray Scheduling for Improved System Performance

Paul Arthur Navrátil, Donald S. Fussell and Calvin Lin†

Department of Computer Sciences
The University of Texas at Austin

Abstract
The performance of full-featured ray tracers has historically been limited by the hardware’s floating point com-
putational power. However, next generation multi-threaded multi-core architectures promise to provide sufficient
CPU power to support real time frame rates. In such systems, the emerging problem will be limited memory system
performance in terms of both on-chip cache and DRAM-to-cache bandwidth. This paper presents a novel ray trac-
ing algorithm that significantly improves both cache utilization and DRAM-to-cache bandwidth. The key insight
is to view ray traversal as a scheduling problem, which allows our algorithm to match ray traversal computations
and intersection computations with available system resources. Using a detailed simulator, we show that our al-
gorithm reduces the amount of geometry brought into the cache by up to 32× for primary rays and up to 60× for
shadow rays, in exchange for the small overhead of maintaining the ray schedule. Moreover, our algorithm creates
units of work that are more amenable to parallelization than traditional Whitted-style ray tracers.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Ray Tracing

1. Introduction

Full-featured ray tracing can produce high-quality images
but not yet at interactive frame rates. Floating-point CPU
power has traditionally been the limiting factor, but mod-
ern CPUs have partially removed this barrier. Several cur-
rent systems trace primary and hard-shadow rays, generated
from point lights, at interactive rates [SWW∗04, RSH05,
WSS05, WIK∗06]. New chips with many processing cores
promise to overcome this computational bound on ray trac-
ing. Moreover, ray tracing’s embarrassingly parallel nature
seems to lend itself well to such architectures. However,
these multi-core architectures introduce a new bottleneck
in the memory-system, because cache and bandwidth must
be shared among many cores. This contention is exacer-
bated by the use of a complex lighting model, which is
necessary for photo-realistic images. Complex lighting al-
gorithms can generate incoherent memory accesses (e.g.,
Monte-Carlo methods, photon mapping [Jen96]) and can re-
quire the use of additional data structures (e.g., photon map-
ping [Jen96]). We conclude, then, that real-time ray tracing

† [pnav | fussell | lin]@cs.utexas.edu

of dynamic scenes with complex lighting could be feasible if
the ray tracing algorithms could be made memory efficient.

Recursive ray tracers, derived from Whitted’s algorithm
[Whi80], are not memory-efficient because they traverse
rays depth-first. Consecutive primary rays may be tested for
intersection against the same geometry, but these tests can
be widely separated in time. For example, all child rays of
the first primary ray must be traversed before the second
primary ray can begin. If the scene is small enough or the
cache large enough, the impact of this inefficiency may be
masked, but the trend is toward larger scenes rendered us-
ing a complex lighting model. Optimizations such as trac-
ing rays in SIMD-friendly packets [WSBW01] or using ray
frustums [RSH05] help, but only if rays are sufficiently co-
herent, which is typically only the case for primary and per-
haps shadow rays. These techniques can be considered sim-
ple scheduling schemes designed to improve the memory
access behavior of the ray tracer. Unfortunately, since they
are designed specifically to work for already coherent sets
of rays, they show little promise to be of much benefit in
handling the incoherent rays in a globally illuminated scene.

Pharr, et al. [PKGH97] use a somewhat more sophisti-
cated scheduler to improve the memory efficiency of ray
tracing scenes much too large to fit into main memory. They

c© The Eurographics Association .

University of Texas at Austin, Department of Computer Sciences / Technical Report TR-07-19

schedule rays for processing according to their location in
scene space independently of their spawn order. The rays
traverse the cells of a uniform grid, and they are queued at
any cell that contains geometry. When a cell is selected for
processing, all rays queued at that cell are tested for intersec-
tion against geometry in the cell. Any rays that do not inter-
sect an object traverse to the next non-empty cell. This ap-
proach significantly reduces bandwidth usage between disk
and main memory and increases the utilization of geometry
data in main memory. However, the algorithm is not suited
for managing traffic between main memory and processor
cache because it allows ray state to grow unchecked, and
because the acceleration structure does not adapt to the lo-
cal geometric density of the scene. These two factors create
work loads of highly variable sizes, the effects of which are
masked at main memory scale (hundreds of MB) but cannot
be masked at cache scale (hundreds of KB).

In this paper, we present an algorithm that schedules ray
processing by actively managing both ray and geometry
state to maximize cache utilization and bandwidth utiliza-
tion without exceeding peak bandwidth supply. We view the
algorithm of Pharr, et al., and Whitted’s recursive ray tracing
algorithm as two points on a continuum that varies the num-
ber of rays that can be active in the system at once. In this
view, our new algorithm generalizes both algorithms, select-
ing the appropriate point along the continuum based on the
available resources of the host architecture. To demonstrate
its feasibility, we sketch an implementation of our algorithm.
Using detailed simulation of three scenes, we show that our
algorithm obtains up to 32× reduction in the amount of ge-
ometry loaded when traversing primary rays, and up to 60×
reduction when traversing shadow rays, with relatively lit-
tle added overhead to handle ray state. We conclude that our
notion of dynamically scheduled rays provides data access
patterns that are spatially coherent both in terms of scene
space and in terms of localized data access. Our algorithm
can be easily combined with current ray tracing optimiza-
tions for coherent ray data, and, unlike those techniques, it
promises to scale for use with complex lighting models.

The remainder of the paper is organized as follows: Sec-
tion 2 describes our algorithm in detail and presents our im-
plementation sketch; we describe our simulation and testing
framework in Section 3; we discuss our results in Section 4;
in Section 5 we present related work, and we sketch future
directions and draw conclusions in Section 6.

2. Dynamic Ray Scheduling

The goal of our new ray tracing algorithm is to actively man-
age ray and geometry state to provide better cache utilization
and lower bandwidth requirements, which will in turn lead
to faster execution time.

Our algorithm is rooted in two concepts: rays can be
traced independently (non-recursively), and rays can be

queued at regions in scene space where the geometry in that
region fits completely in available memory. Taken together,
these concepts permit tight control on the use of memory
resources because, for any particular queue point, there is a
known, tight upper bound on the amount of data that must
be touched to process all the rays in that queue.

Our algorithm seeks to optimize both (1) bandwidth uti-
lization between main memory and the lowest level of pro-
cessor cache and (2) utilization of the lowest level of pro-
cessor cache itself. Without loss of generality, we will refer
to DRAM-to-L2 bandwidth and L2 utilization in our discus-
sion, since these are common components of the multi-core
hardware we target (see Figure 2).

The algorithm described here uses a k-d tree as the ac-
celeration structure, but it could be adapted to other acceler-
ation structures, including regular grids, hierarchical grids,
and bounding volume hierarchies. The ability of the chosen
acceleration structure to adapt to varying densities of scene
geometry directly affects the quality of scheduling possible
by determining how much flexibility we have in choosing
queue points for rays. Our discussion will provide insight as
to how the acceleration structure interacts with other parts of
the algorithm, but a thorough analysis of the impact of accel-
eration structure choice is beyond the scope of this paper.

2.1. Traversal Algorithm

Our traversal algorithm traces rays from the root of the ac-
celeration structure down to queue points, where further
ray processing is deferred. It later iterates over these queue
points to complete all ray traversals. To simplify our discus-
sion, we first describe the traversal of primary rays only. Our
technique, however, is applicable to all ray types, so we then
generalize it to deal with secondary rays.

2.1.1. Traversing Primary Rays

We select queue points in the acceleration structure based
on the amount of geometry that will fit in available cache.
Each queue point is the root of a subtree of the acceleration
structure, a subtree that contains no more geometry than will
fit into L2 cache. See Figure 1 for an example. If the en-
tire scene can fit into cache, then the root of the acceleration
structure becomes the only queue point, and the traversal de-
generates to Whitted’s recursive algorithm.

Our algorithm can also efficiently schedule worst-case
conditions in an acceleration structure. Sometimes the con-
struction algorithm for the acceleration structure cannot
adapt to dense local geometry. At such points in a k-d tree,
a leaf with an unusually large amount of geometry is placed
in the acceleration structure. If the geometry at that leaf ex-
ceeds cache capacity, a recursive ray traversal will always
thrash the cache each time such a leaf is pierced by a ray. Our
algorithm treats such leaves as a separate scheduling prob-
lem, and loads blocks of both rays and geometry to process

c© The Eurographics Association .

University of Texas at Austin, Department of Computer Sciences / Technical Report TR-07-19

D

26

16

10

2

12 4

8

10

57

B C

D D

A

B

C C D

D

Figure 1: Queue Point Selection — Here, we demonstrate
how our queue point selection algorithm works on a toy k-
d tree. We measure the amount of cache available to hold
geometry and determine what is the maximum amount of ge-
ometry (gmax) that can be loaded without exceeding avail-
able cache capacity. We select the first node on each branch
of the tree that contains geometry: g ≤ gmax. In this figure,
if gmax ≥ 26, the root (A) is the only queue point, and our
algorithm degenerates to Whitted-style ray tracing, because
all geometry fits in cache. If 26 > gmax ≥ 16, the internal
nodes (B) are queue points. If 16 > gmax ≥ 10, the nodes
(C) are queue points. If gmax ≤ 10, the leaves (D) are queue
points. Note that even if gmax is smaller than the amount of
geometry at a leaf, that leaf is made a queue point because
there is no remaining acceleration structure beneath it (see
Section 2.2).

the queue efficiently. See Section 2.2 for implementation de-
tails.

Our algorithm queues all primary rays, then iterates over
the queues until all rays have terminated or have left the
bounds of the scene. When a queue is selected for process-
ing, each ray traverses any of the remaining subtree and is
tested for intersection against the geometry at each leaf of
the subtree that the ray may reach. Once a ray is selected at
this stage, it is processed until either a successful intersection
is found or until the ray leaves the bounds of the subtree. If
the ray leaves the bound of the subtree, it continues its traver-
sal through the full acceleration structure, either to the next
queue point or until it leaves the bounds of the scene.

When a ray intersects a surface, we can either shade the
intersection point immediately (as in ray casting) or save it
for deferred casting of secondary rays. A pixel id is main-
tained with the ray so that the proper pixel can be shaded.
When supersampling, samples can be blended in the frame-
buffer as they arrive. If secondary rays are cast (described
in Section 2.1.2), then the point is shaded iteratively as each
secondary ray is processed.

2.1.2. Traversing Secondary Rays

Our algorithm can be easily generalized to handle secondary
rays. These rays are processed in generations: shadow rays
from the current generation are processed, then any newly
spawned non-shadow rays are processed. By processing rays
in generations, we limit the amount of active ray state in the
system while still providing coherent access to scene geom-
etry.

To generate shadow rays and other secondary rays, we
maintain the intersection points for the current generation
of rays. For each point light, we trace shadow rays from the
light toward the intersection points, which makes the traver-
sal identical to the primary ray traversal method described in
Section 2.1.1. Shadow rays inherit both the pixel id and the
shading information from their spawning ray. Thus, when
light visibility has been determined, the shading contribu-
tion, if any, can be added to the appropriate pixel.

Once all shadow rays for the current generation have ter-
minated, we traverse newly spawned non-shadow rays. Each
new ray starts queued at whichever queue point contains its
origin. Our algorithm then iterates over queue points to tra-
verse rays, as before. Note that while we may achieve less
coherence here than for primary and shadow rays, we can
achieve significantly better coherence than a recursive ray
tracer by allowing many secondary rays to be active at once.
Once all rays of this new generation have been processed,
any resultant intersection points are used to generate the next
generation of shadow and secondary rays. This process con-
tinues until no new secondary rays are generated.

Note that our technique can employ adaptive sampling
techniques by maintaining ray information across genera-
tions. We do this by adding a field in the ray structure for
a pointer to the information to be maintained (see Figure 2.
This solution is similar to splitting shading information for
geometry into a separate structure, which is loaded only
when needed.

2.2. Implementation Sketch

We now describe how our algorithm can be implemented on
a modern multi-core processor. We maintain geometry and
acceleration structure data in cache while buffering rays to
ensure threads are maximally occupied. For the discussion
below, we assume a 4MB L2 cache.

We want the acceleration structure to remain resident in
cache. We represent k-d tree nodes using eight bytes, similar
to the k-d tree used in PBRT [PH04]. We use an additional
bit from the least-significant end of the mantissa of the split
location in order to indicate whether a node is a queue point
(leaving 20 bits for the single-precision mantissa representa-
tion). We expect this quantization not to significantly affect
the quality of the k-d tree. Using this representation, 128K
nodes can remain resident if we reserve 1MB of the L2 for

c© The Eurographics Association .

University of Texas at Austin, Department of Computer Sciences / Technical Report TR-07-19

(not to scale)

z i j kx y color

basic ray layout
(32 bytes total, 64 color bits)

x y z i j k ptr clr

adaptive sampling ray layout
(32 bytes total, 32 color bits)

core core

corecore

0 1

2 3

cache

L2
bus

Main Memory (DRAM)

Figure 2: System Block Diagram and Ray Layout — we tar-
get a multi-core architecture, as represented in this block
diagram. We use a tight ray representation, whether or not
adaptive sampling is required. Our basic ray layout supports
48-bit color plus a 16-bit alpha channel. Our adaptive sam-
pling ray layout, which contains a pointer to the information
that must be maintained for the adaptive sampler, supports
24-bit color plus an 8-bit alpha channel.

nodes. If the k-d tree is larger, we have the option of reserv-
ing more space or maintaining only the top of the tree, from
the root down to the queue points. If we maintain only the
top of the tree, we must load each subtree before processing
its associated queue. This situation will only occur for ex-
tremely large scenes, where the added cost for loading the
subtree will be insignificant compared to the cost of loading
the associated geometry.

We also maintain a table that associates each queue point
with a buffer in main memory that contains the actual ray
queue. We keep this table and its associated buffers in mem-
ory so that rays can be enqueued quickly and without having
to load data to compute the address to which the ray should
be sent. This table costs 8 bytes per entry, and we expect 32K
queue points to be sufficient for most trees, which makes the
table cost 256KB.

We must have rays cached to perform traversals and in-
tersections, yet we expect to have hundreds to thousands of
rays queued at each point. Bringing all rays in at once would
evict other needed data from cache. Further, we do not need

all rays loaded, since we can only process as many rays as
there are threads available. Yet we require more than a single
ray per thread so that the thread can swap if a ray reaches a
leaf with yet-uncached geometry. We want to buffer enough
rays to mask the latency of the initial cache miss on a leaf’s
geometry. We know that all queued rays must be traversed
through the active subtree, so this work will be available so
long as there are queued rays. A single ray traversal step
in a k-d tree is a ray-plane intersection test, made simpler
because the plane is guaranteed to be axis-aligned. The ray-
plane intersection test can be computed with a multiply, an
add and a comparison. With instruction latency, the test takes
about seven cycles to complete [SSM∗05]. We expect about
ten traversal steps will be necessary to take a ray from the
queue point to a leaf, and modern DRAMs can return a ran-
dom data request in about 80 cycles. Therefore, having two
rays per thread should be sufficient. We represent our rays
in 32 bytes (see Figure 2), and if we have 4 threads, the ray
buffer requires 256 bytes.

Finally, we need to cache geometry. We select queue
points in the acceleration structure so that the geometry in
the subtree will fit in available cache (taking into account
the acceleration structure, ray buffer, etc., described above).
We could load all geometry in the subtree immediately, but
we do not yet know which geometry, if any, will actually be
required. To avoid spurious geometry loads, we wait to load
geometry until a ray has definitely reached it (i.e., reached
the leaf that contains the geometry). Note that if a queue
point is at a leaf, then the geometry may be loaded immedi-
ately because the geometry will definitely be tested for inter-
section.

For systems where cache resources are very limited, it is
possible to have a queue point, which must be at a leaf of the
acceleration structure, that contains more geometry than will
fit in available cache. A Whitted-style ray tracer will thrash
the cache each time a ray pierces such a leaf. Our algorithm
permits more flexible approaches by treating this condition
as a separate scheduling problem. We know the amount of
geometry at each leaf from building the acceleration struc-
ture, so we can detect a thrashing condition before loading
any geometry. We create cache-sized blocks of geometry and
iterate over them as we test for intersection against the rays
in the ray buffer. This iterated processing technique results in
fewer overall cache loads than allowing uncontrolled cache
thrashing.

3. Experimental Methodology

We have performed a feasibility study of our algorithm using
a research (non-optimized) ray tracer with a simulated L2
cache. With this arrangement, we test the performance of our
algorithm in terms of cache utilization and bandwidth con-
sumption, over a range of cache sizes to determine its effec-
tiveness. Our simulation results, presented here, are promis-
ing enough that we are currently creating an optimized im-

c© The Eurographics Association .

University of Texas at Austin, Department of Computer Sciences / Technical Report TR-07-19

Figure 3: Test scene images — We test our algorithm on three scenes: room, grove, and sphereflake. For each we mea-
sure the total geometry in the scene and the number of triangles potentially visible (p-v), which must be tested for intersection
when tracing primary rays only and primary + secondary rays. [room: 47K triangles, 6.6K p-v primary, 7.7K p-v secondary];
[grove: 164K triangles, 127K p-v primary, 142K p-v secondary]; [sphereflake: 797K triangles, 258K p-v primary, 535K
p-v secondary]. Note that the geometry artifacts in room are contained in the scene specification and are not due to our ray
tracer.

plementation targeted for specific hardware. We discuss this
implementation further in Section 6.

To obtain the cache measurements in our simulation, we
create a memory trace using explicit reads and writes in our
code and run that trace through various cache configurations
using Dinero IV [EH98], a light-weight trace-driven simu-
lator. We simulate cache sizes in power-of-two increments
from 1KB to 4MB, with 64B cache lines. This wide range of
sizes allows us to understand the performance of our algo-
rithm both when cache resources are scarce and when they
are plentiful. We make each cache fully associative to elimi-
nate conflict misses. Thus, after the cache is warm, all misses
are capacity misses.

We test our algorithm on three scenes, each rendered at
1024 × 1024 resolution (see Figure 3). These models pro-
vide a variety of total geometry, potentially-visible (p-v) ge-
ometry, and geometric topology. We use a small architectural
scene (room: 47K triangles, 6.6K p-v primary, 7.7K p-v sec-
ondary), a grove of tree models (grove: 164K triangles,
127K p-v primary, 142K p-v secondary), and a five-level
sphereflake model from the Standard Procedural Database
scenes [Hai87] (sphereflake: 797K triangles, 258K p-
v primary, 535K p-v secondary). We specifically mention
potentially-visible geometry when tracing primary and sec-
ondary rays because these figures are a more accurate mea-
sure of the geometry load when rendering. Total geometry
affects the size and quality of the acceleration structure and
whether the scene can fit in main memory, but it does not
impact the geometry traffic between main memory and pro-
cessor cache unless all geometry must be tested for intersec-
tion.

We compare our algorithm against two recursive ray trac-

ers: a single-ray tracer using rays ordered along a Hilbert
curve, and a ray packet tracer using 8× 8 packets tiled over
the image plane. We use a Hilbert curve ordering for single
rays, since this ordering is known to produce better utiliza-
tion of the memory system [Voo91]. We use an 8×8 packet
size since it is the midpoint of currently popular packet sizes
(4× 4 [RSH05, WIK∗06] — 16× 16 [WBS07]) and it was
recently found to provide the most system speed-up in this
range [BEL∗07].

4. Results and Discussion

We present the results of our algorithm feasibility study here.
We show that by using dynamic ray scheduling to actively
manage both ray and geometry data, we can improve the
cache utilization for geometry data by as much as 32× over
recursive ray tracing when tracing primary rays, and by as
much as 60× when tracing both primary and point-light
shadow rays. These savings will become increasingly im-
portant as additional lighting and shading data is stored in
scene space, both increasing the amount of data that must be
loaded and decreasing the available cache space for geome-
try.

4.1. Tracing Primary Rays

In Figures 4–6, we present our measurements for tracing
primary rays only. These measurements show that our algo-
rithm reduces geometry traffic between DRAM and L2 for
all cache sizes at the cost of increased ray traffic. Ray traffic
is more desirable than geometry traffic, since a thread must
block for a geometry load but can switch to another ray if
one is available. Said another way, we want to keep geom-

c© The Eurographics Association .

University of Texas at Austin, Department of Computer Sciences / Technical Report TR-07-19

room
cache geometry traffic ray traffic geometry traffic reduction total traffic reduction

size recursive packet dynamic recursive packet dynamic recursive packet recursive packet
1 K 6056.65 — 4531.30 32.00 — 245.32 33.7% — 27.5% —
2 K 5863.94 — 943.52 32.00 — 323.14 521.5% — 365.5% —
4 K 4939.97 403.16 231.89 32.00 32.00 313.38 2030.3% 73.9% 811.8% -25.3%
8 K 1269.55 136.71 90.05 32.00 32.00 314.44 1309.8% 51.8% 221.8% -139.8%

16 K 133.23 18.58 3.95 32.00 32.00 285.63 3274.7% 370.7% -75.3% -472.5%
32 K 4.86 11.10 3.31 32.00 32.00 263.97 46.9% 235.5% -625.1% -520.1%
64 K 3.83 8.75 2.90 32.00 32.00 231.63 32.3% 202.1% -554.5% -475.5%

128 K 3.45 6.37 2.74 32.00 32.00 155.70 26.1% 132.6% -346.9% -312.9%
256 K 3.24 3.14 2.57 32.00 32.00 108.39 26.4% 22.4% -214.8% -215.8%
512 K 3.05 2.90 2.53 32.00 32.00 72.49 20.6% 14.5% -114.0% -115.0%

1024 K 2.89 2.77 2.42 32.00 32.00 52.53 19.2% 14.6% -57.5% -58.0%
2048 K 2.59 2.55 2.42 32.00 32.00 32.35 7.3% 5.4% -0.5% -0.6%
4096 K 2.42 2.42 2.42 32.00 32.00 32.00 0.0% 0.0% 0.0% 0.0%

Figure 4: Data traffic (MB) for room — Even on our smallest test scene, both in total geometry and in visible geometry, our
algorithm reduces geometry traffic. The most dramatic traffic reduction comes at the smallest tested cache sizes. While overall
traffic increases significantly for the middle range of caches (32K - 512K), we expect this not to impact performance because
our algorithm prevents cache pollution from ray data and the traffic does not exceed peak bandwidth on current architectures.
Note that ray traffic does not decrease monotonically due to the selection of different queue points in the acceleration structure.
We do not report results for packets for 1K and 2K caches because they are too small to contain the packet and any geometry.

grove
cache geometry traffic ray traffic geometry traffic reduction total traffic reduction

size recursive packet dynamic recursive packet dynamic recursive packet recursive packet
1 K 11084.02 — 9641.98 32.00 — 390.63 15.0% — 10.8% —
2 K 10230.37 — 5992.17 32.00 — 382.68 70.7% — 61.0% —
4 K 9132.21 4120.02 2564.29 32.00 32.00 340.52 256.1% 60.7% 215.5% 42.9%
8 K 7861.03 1925.96 943.50 32.00 32.00 294.80 733.2% 104.1% 537.4% 58.1%

16 K 5361.92 781.82 227.31 32.00 32.00 251.28 2258.9% 243.9% 1027.0% 70.0%
32 K 1313.46 365.39 139.96 32.00 32.00 211.86 838.5% 161.1% 282.4% 13.0%
64 K 182.14 216.75 118.75 32.00 32.00 177.97 53.4% 82.5% -38.6% -19.3%

128 K 138.09 169.63 105.55 32.00 32.00 153.36 30.8% 60.7% -52.2% -28.4%
256 K 121.41 168.35 97.31 32.00 32.00 127.47 24.8% 73.0% -46.5% -12.2%
512 K 112.68 166.10 91.95 32.00 32.00 101.35 22.5% 80.6% -33.6% 2.5%

1024 K 107.00 160.23 87.37 32.00 32.00 86.23 22.5% 83.4% -24.9% 10.7%
2048 K 103.40 141.21 84.92 32.00 32.00 70.06 21.8% 66.3% -14.5% 11.8%
4096 K 100.44 95.67 83.87 32.00 32.00 57.78 19.8% 14.1% -7.0% -10.9%

Figure 5: Data traffic (MB) for grove — On this larger test scene, the benefit of our algorithm becomes clear. When cache
resources are scarce (here, < 64K), our algorithm significantly reduces data traffic. When cache resources are plentiful (here,
≥ 64K) we still obtain better cache utilization with respect to geometry, at the cost of more ray traffic. Again, we expect this
increased ray traffic to not affect system performance because peak bandwidth between DRAM and cache is not exceeded. We
do not report results for packets for 1K and 2K caches because they are too small to contain the packet and any geometry.

c© The Eurographics Association .

University of Texas at Austin, Department of Computer Sciences / Technical Report TR-07-19

sphereflake
cache geometry traffic ray traffic geometry traffic reduction total traffic reduction

size recursive packet dynamic recursive packet dynamic recursive packet recursive packet
1 K 4185.85 — 3451.22 32.00 — 142.80 21.3% — 17.4% —
2 K 3600.98 — 2263.18 32.00 — 133.51 59.1% — 51.6% —
4 K 2773.87 922.74 629.53 32.00 32.00 130.79 340.6% 46.6% 269.0% 25.6%
8 K 1289.94 378.95 208.70 32.00 32.00 123.86 518.1% 81.6% 297.5% 23.6%

16 K 339.72 205.01 110.64 32.00 32.00 132.35 207.0% 85.3% 53.0% -2.5%
32 K 122.87 134.69 78.10 32.00 32.00 128.85 57.3% 72.5% -33.6% -24.2%
64 K 97.58 108.71 73.60 32.00 32.00 134.33 32.6% 47.7% -60.5% -47.8%

128 K 88.69 105.91 70.52 32.00 32.00 137.08 25.8% 50.2% -72.0% -50.5%
256 K 83.53 105.23 68.53 32.00 32.00 141.08 21.9% 53.5% -81.4% -52.8%
512 K 80.42 103.85 67.63 32.00 32.00 149.31 18.9% 53.6% -93.0% -59.7%

1024 K 78.44 91.00 66.80 32.00 32.00 142.11 17.4% 36.2% -89.2% -69.8%
2048 K 77.09 74.84 66.04 32.00 32.00 146.63 16.7% 13.3% -94.9% -99.0%
4096 K 76.37 74.82 65.70 32.00 32.00 150.94 16.2% 13.9% -99.9% -102.8%

Figure 6: Data traffic (MB) for sphereflake — This scene has more total geometry, but less potentially visible geometry
than grove. The acceleration structure created for this scene challenges our algorithm. The geometry is finely tessellated yet
structured, which results in a deep, poor k-d tree. Our algorithm still reduces geometry traffic for all caches. Note that the effect
of the acceleration structure can be seen in the parabolic trend of the ray traffic measurements. We do not report results for
packets for 1K and 2K caches because they are too small to contain the packet and any geometry.

etry in cache and stream rays, so long as there are enough
rays in cache to keep all threads busy.

Further, our algorithm significantly reduces geometry
traffic when system resources are scarce. When the data load
on the system is greatest, our algorithm adapts to make ef-
ficient use of available resources. Recursive ray tracing can-
not adapt in this way, and ends up thrashing the cache with
geometry data. Note that recursive ray tracing maximally
constrains the amount of ray traffic at the potential cost of
increased geometry traffic. Our algorithm relaxes this con-
straint, allowing ray traffic to grow while significantly reduc-
ing geometry traffic. Thus our algorithm can make efficient
use of system resources and adapt to various system loads.

For example, the Intel 5000X chipset [Int07] provides
21GB/s peak bandwidth between DRAM and L2. At 20
frames per second (fps), a ray tracer has only enough time
to use 1GB of bandwidth for any one frame (we are ignoring
computation time here which would further reduce the time
available to load data). When cache resources are scarce, our
algorithm reduces geometry traffic to fit within this band-
width constraint. When cache resources are plentiful, the ray
traffic overhead generated by our algorithm does not exceed
available bandwidth.

4.2. Tracing Secondary Rays

Our algorithm performs well when tracing both primary rays
and secondary rays. In this section, we present measure-
ments for tracing primary rays and shadow rays from three
point-lights in each scene. We present our measurements for
each light individually, to observe the effects of each light
position, and for all three lights together, to observe their

interaction. Because our algorithm does not always reduce
geometry traffic in our secondary ray tests, and as we have
said, we always have ray overhead, we focus our discussion
on geometry traffic and what our measurements imply for
more complex lighting models.

In Figures 7–9, we show how much our algorithm reduces
geometry traffic when tracing both primary and point-light
shadow rays. The relative performance of our algorithm de-
pends on the number and location of point lights in the scene.
In Figures 7 and 8, light 0 is located at the camera point,
which is a best-case for recursive algorithms because no new
geometry is accessed between the hit point and the light.
Thus, if cache is sufficiently large enough to hold the geom-
etry tested for intersection against the primary ray, then no
new geometry will be loaded. Our algorithm does compara-
tively worse because we trace all primary rays, then trace the
shadow rays. Thus we miss this locality. However, this rela-
tive measure does not translate into negative system perfor-
mance because it only occurs when resources are plentiful.
As we discuss in Section 4.1, so long as our algorithm does
not exceed peak bandwidth, overall rendering time will not
be affected. Further, recursive algorithms cannot maintain
this locality under a more complex lighting model. Global il-
lumination approximations generate tens to hundreds of sec-
ondary rays per primary ray, each of which may access new,
uncached geometry. A recursive ray tracer will eventually
thrash the cache with geometry data, whereas our algorithm
will continue to process these rays coherently.

Our algorithm performs slightly worse for the 1K cache,
the smallest we use. We attribute this to the difference in
shadow ray direction between our algorithm and the re-
cursive algorithms. Our algorithm traces shadow rays from

c© The Eurographics Association .

University of Texas at Austin, Department of Computer Sciences / Technical Report TR-07-19

room with shadows
cache light 0 traffic reduction light 1 traffic reduction light 2 traffic reduction all 3 lights traffic reduction

size recursive packet recursive packet recursive packet recursive packet
1 K 26.6% — -2.6% — -9.1% — -7.9% —
2 K 438.4% — 300.6% — 231.5% — 240.0% —
4 K 1404.8% 930.9% 1450.4% 360.4% 1263.5% 304.6% 1060.9% 739.8%
8 K 756.4% 571.3% 1754.8% 211.2% 1704.5% 203.8% 1148.7% 456.7%

16 K 1588.2% 1738.4% 5927.2% 607.7% 5966.1% 618.3% 3368.8% 1380.2%
32 K -33.1% 76.6% 73.8% 221.0% 69.2% 212.2% -11.7% 65.1%
64 K -48.8% 57.0% 24.2% 219.6% 23.9% 218.5% -57.8% 64.8%

128 K -56.8% 19.5% 6.4% 166.8% 10.8% 177.7% -81.1% 38.8%
256 K -56.5% -60.5% -0.8% 63.3% 2.9% 68.6% -95.0% -17.3%
512 K -64.2% -72.9% -12.6% -9.3% -7.6% -4.2% -116.4% -110.7%

1024 K -65.9% -72.8% -17.3% -22.2% -10.9% -15.5% -125.2% -134.0%
2048 K -84.4% -87.4% -39.1% -42.3% -31.7% -34.8% -166.1% -172.8%
4096 K -97.6% -97.6% -55.1% -55.1% -46.9% -46.9% -197.9% -197.9%

Figure 7: Data traffic (MB) for room with shadows — On this smallest scene, the worst for our algorithm because total
geometry can nearly fit in cache, our algorithm only reduces geometry traffic when cache resources are scarce. Light 0 is
located at the camera point, which is a best-case for recursive algorithms since no new geometry is accessed by the shadow ray.
We do not report results for packets for 1K and 2K caches because they are too small to contain the packet and any geometry.

grove with shadows
cache light 0 traffic reduction light 1 traffic reduction light 2 traffic reduction all 3 lights traffic reduction

size recursive packet recursive packet recursive packet recursive packet
1 K 11.0% — 10.3% — -21.7% — -12.4% —
2 K 61.8% — 73.3% — 23.9% — 37.5% —
4 K 209.3% 114.7% 273.8% 109.9% 155.8% 26.3% 178.1% 101.2%
8 K 513.7% 277.2% 755.6% 230.6% 477.7% 75.2% 475.7% 263.3%

16 K 1182.0% 729.1% 1934.7% 516.9% 1407.4% 238.0% 1095.7% 640.3%
32 K 346.1% 315.7% 955.0% 311.4% 604.3% 164.0% 510.1% 410.1%
64 K -21.9% 0.1% 155.0% 153.4% 71.5% 76.2% 90.9% 127.2%

128 K -42.8% -16.2% 65.7% 97.7% 22.5% 44.7% 20.8% 35.8%
256 K -50.2% -8.3% 34.9% 88.6% 8.1% 46.6% -5.3% 22.7%
512 K -53.3% -4.0% 23.2% 108.6% 1.5% 58.8% -21.3% 30.7%

1024 K -53.7% -2.7% 10.9% 115.6% -5.4% 63.6% -39.8% 34.1%
2048 K -54.9% -13.4% 1.6% 113.6% -9.7% 64.8% -56.6% 36.0%
4096 K -57.6% -65.4% -3.5% 96.7% -16.2% 38.3% -74.0% 29.4%

Figure 8: Data traffic (MB) for grove with shadows — On this larger scene, our algorithm reduces geometry traffic both when
cache is scarce and when cache is plentiful. Light 0 is located at the camera point, which is a best-case for recursive algorithms
since no new geometry is accessed by the shadow ray. We do not report results for packets for 1K and 2K caches because they
are too small to contain the packet and any geometry.

point light to hit points, whereas the recursive algorithms
trace shadow rays from hit points to point light. In so doing,
the recursive algorithms gain a bit of temporal locality by
immediately testing the shadow ray for intersection with the
geometry around the primary ray hit point. For larger cache
sizes, the ray coherence benefits of tracing shadow rays from
light to hit point overwhelm this smaller effect.

5. Related Work

As mentioned earlier, our work builds on several previous
ray scheduling schemes to create a ray tracing algorithm in
which both geometry and rays are actively managed compo-

nents. Below, we discuss this and other related work to better
distinguish the contributions of our algorithm.

All recursive ray tracers implement some form of Whit-
ted’s original recursive ray tracing algorithm [Whi80]. Re-
cent innovations to the basic algorithm include the use
of SIMD instructions to trace multiple rays in parallel
[WSBW01] and tracing a frustum of rays through the ac-
celeration structure to eliminate upper level traversal steps
[RSH05]. These techniques can increase the number of rays
active in the system at once, but none of them allow rays
to be dynamically scheduled: once a ray (or packet of rays)
is selected for traversal, the selected ray(s) and all child
rays must be traced to completion before another selection

c© The Eurographics Association .

University of Texas at Austin, Department of Computer Sciences / Technical Report TR-07-19

sphereflake with shadows
cache light 0 traffic reduction light 1 traffic reduction light 2 traffic reduction all 3 lights traffic reduction

size recursive packet recursive packet recursive packet recursive packet
1 K -1.6% — -2.4% — 5.1% — -4.2% —
2 K 21.6% — 27.0% — 41.6% — 27.3% —
4 K 228.4% 73.1% 304.0% 109.7% 332.7% 130.2% 306.6% 160.7%
8 K 421.9% 128.7% 553.8% 179.7% 580.1% 207.3% 631.7% 243.8%

16 K 275.5% 152.8% 298.5% 160.1% 340.8% 185.8% 577.2% 271.5%
32 K 61.7% 82.8% 84.1% 102.5% 83.0% 103.0% 148.9% 184.7%
64 K 20.0% 33.7% 41.2% 52.2% 50.6% 61.1% 72.0% 96.6%

128 K 7.6% 25.8% 28.4% 38.9% 37.3% 51.1% 47.9% 65.5%
256 K -0.8% 26.3% 22.3% 42.3% 29.9% 55.1% 34.6% 65.6%
512 K -6.4% 27.2% 18.1% 44.8% 25.2% 58.7% 26.2% 69.9%

1024 K -11.3% 24.0% 14.5% 43.1% 21.1% 58.0% 19.9% 68.1%
2048 K -14.3% -7.6% 12.6% 21.0% 17.7% 32.7% 14.5% 64.1%
4096 K -17.4% -18.7% 8.6% 4.2% 16.7% 12.4% 9.6% 16.5%

Figure 9: Data traffic (MB) for sphereflake with shadows — On this large scene, as on grove, our algorithm reduces
geometry traffic both when cache is scarce and when cache is plentiful. Light 0 is located near the camera point, which is a
good case for recursive algorithms since little new geometry is accessed by the shadow ray. We do not report results for packets
for 1K and 2K caches because they are too small to contain the packet and any geometry.

choice is made. The fixed active ray state in these algorithms
hampers their ability to handle system-related issues such
as thrashing and effectively hiding latency. Recently, Bou-
los, et al. [BEL∗07], attempted to achieve real-time frame
rates on a current workstation-class system for both Whitted-
style ray tracing with full specular effects and distribution
ray tracing [CPC84]. They claim interactive rates for their
Whitted-style tracer for both primary and secondary rays
by employing clever methods of organizing secondary rays.
Further, Boulos, et al., observes that shading computation
may soon overtake visibility computation as the primary sys-
tem cost. Note that our algorithm could accept a modified
form of their secondary ray organization technique. Also, be-
cause our algorithm operates in local regions of scene space,
it facilitates grouping similarly shaded points, making effi-
cient use of shading computation.

Pharr, et al. [PKGH97], take an approach quite differ-
ent from the Whitted tracing model. They decompose the
rendering equation [Kaj86] so that it can be calculated for-
ward as rays are traced, rather than using the recursion stack
to accumulate shading calculations. Pharr’s algorithm tar-
gets efficient use of main memory and traffic between disk
and RAM to render models that cannot fit in main memory.
Pharr uses Monte-Carlo-based global illumination to model
indirect diffuse lighting, a technique that uses many sample
rays per primary ray. Since this algorithm targeted a higher
level of the memory hierarchy, there are aspects of it that
are poorly suited for RAM to cache traffic. The accelera-
tion structure is a uniform grid, the non-adaptivity of which
makes it more difficult to guarantee the amount of geometry
found at any particular cell. This variance may be masked
at the RAM level, but at the cache level it complicates ef-
fective scheduling. Also, while rays can be reordered under
Pharr’s algorithm, ray state is not actively managed. Pharr

actively seeks to get deep into the ray tree quickly, the re-
sult of which is that many secondary rays of many ray gen-
erations are active at once in the system. Again, while this
technique may be effective when considering disk to RAM
traffic, the ray state explosion that results can cause uncon-
trollable thrashing in cache-sized memories. Our technique
controls both geometry state and ray state to ensure efficient
operation within a given system.

We are aware of two implementations of algorithms sim-
ilar to that of Pharr et al. Dachille and Kaufman [DK00]
used Pharr’s ray deferring algorithm in a hardware-based
volume rendering system. They use specialized hardware to
perform standard volume rendering and volume rendering
with a simplified global illumination model. In this system,
rays are collected at each cell of the volume, much like how
rays collect in Pharr’s uniform grid. Cells are then sched-
uled for processing like Pharr’s algorithm. They were able
to achieve interactive frame rates on a simulation of their
hardware. Because they use direct volume rendering, there
is no significant geometry traffic per cell: the system loads
the eight vertices of the cell and trilinearly interpolates each
sample along each ray. Thus, their system does not address
managing geometry traffic at all. Steinhurst, et al. [SCL05],
use Pharr-like reordering to obtain better cache performance
for photon mapping. Like Pharr, their system experiences
ray state explosion. However, its effects cannot be masked at
the cache level, and the performance of their system suffers.
We expect that our algorithm would perform better on this
task because it actively manages ray state.

6. Conclusions and Future Work

We have presented a ray tracing algorithm that dynamically
schedules rays in order to actively manage both ray and ge-

c© The Eurographics Association .

University of Texas at Austin, Department of Computer Sciences / Technical Report TR-07-19

ometry data. In so doing, our algorithm significantly reduces
geometry traffic between DRAM and L2 cache with a mod-
erate increase in ray traffic. Further, our algorithm dramat-
ically reduces overall data traffic when memory resources
are scarce, thus permitting the efficient ray tracing of large,
complex scenes.

We have three areas for future work. First, we will im-
plement a cycle-accurate cache model in our simulator to
obtain measurements for the utilization analysis we give in
Section 4.1. Second, we will expand our research ray tracer
to include secondary rays, global illumination and distribu-
tion ray tracing effects [CPC84]. Third, we will complete the
implementation of our system as described in Section 2.2
targeted at the latest multi-core multi-threaded commodity
architecture. With this implementation, we hope to either
achieve real-time ray tracing performance directly or to de-
termine what additional system resources are required to
achieve it.

Acknowledgments

Omitted for anonymous review.

References

[BEL∗07] BOULOS S., EDWARDS D., LACEWELL J. D.,
KNISS J., KAUTZ J., WALD I., SHIRLEY P.: Packet-
based Whitted and Distribution Ray Tracing. In Proceed-
ings of Graphics Interface 2007 (2007).

[CPC84] COOK R. L., PORTER T., CARPENTER L.: Dis-
tributed ray tracing. In SIGGRAPH ’84: Proceedings of
the 11th annual conference on Computer graphics and in-
teractive techniques (New York, NY, USA, 1984), ACM
Press, pp. 137–145.

[DK00] DACHILLE IX F., KAUFMAN A.: Gi-cube: an
architecture for volumetric global illumination and ren-
dering. In HWWS ’00: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hard-
ware (New York, NY, USA, 2000), ACM Press, pp. 119–
128.

[EH98] EDLER J., HILL M. D.: Dinero IV cache simula-
tor (http://www.cs.wisc.edu/m̃arkhill/DineroIV/), 1998.

[Hai87] HAINES E.: A proposal for standard
graphics environments. IEEE computer graph-
ics and applications (November 1987), 3–5.
http://www.acm.org/tog/resources/SPD/.

[Int07] INTEL CORPORATION: In-
tel 5000X Chipset Overview
(http://www.intel.com/products/chipsets/5000x), 2007.

[Jen96] JENSEN H. W.: Global Illumination using Photon
Maps. in X. Pueyo and P. Schröder, editors, Rendering
Techniques ’96, pages 21–30. Springer-Verlag, 1996.

[Kaj86] KAJIYA J. T.: The rendering equation. In SIG-
GRAPH ’86: Proceedings of the 13th annual conference
on Computer graphics and interactive techniques (New
York, NY, USA, 1986), ACM Press, pp. 143–150.

[PH04] PHARR M., HUMPREYS G.: Physically Based
Rendering: From Theory to Implementation. Morgan
Kaufmann, 2004.

[PKGH97] PHARR M., KOLB C., GERSHBEIN R., HAN-
RAHAN P.: Rendering complex scenes with memory-
coherent ray tracing. In SIGGRAPH ’97: Proceedings of
the 24th annual conference on Computer graphics and in-
teractive techniques (New York, NY, USA, 1997), ACM
Press/Addison-Wesley Publishing Co., pp. 101–108.

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.:
Multi-level ray tracing algorithm. In SIGGRAPH ’05:
Proceedings of the 32nd annual conference on Com-
puter graphics and interactive techniques (New York, NY,
USA, 2005), ACM Press.

[SCL05] STEINHURST J., COOMBE G., LASTRA A.: Re-
ordering for cache conscious photon mapping. In GI ’05:
Proceedings of the 2005 conference on Graphics inter-
face (School of Computer Science, University of Water-
loo, Waterloo, Ontario, Canada, 2005), Canadian Human-
Computer Communications Society, pp. 97–104.

[SSM∗05] SLUSALLEK P., SHIRLEY P., MARK W.,
STOLL G., WALD I.: Parallel & distributed processing. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses (New
York, NY, USA, 2005), ACM Press, p. 11.

[SWW∗04] SCHMITTLER J., WOOP S., WAGNER D.,
PAUL W. J., SLUSALLEK P.: Realtime ray tracing of dy-
namic scenes on an FPGA chip. In Graphics Hardware
2004 (2004).

[Voo91] VOORHIES D.: Space-filling curves and a mea-
sure of coherence. in J. Arvo, editor, Graphics Gems II,
pages 26–30. Academic Press, 1991.

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray trac-
ing deformable scenes using dynamic bounding volume
hierarchies. ACM Transactions on Graphics 26, 1 (2007),
6.

[Whi80] WHITTED T.: An improved illumination model
for shaded display. Communications of the ACM 23, 6
(June 1980), 343–349.

[WIK∗06] WALD I., IZE T., KENSLER A., KNOLL A.,
PARKER S. G.: Ray Tracing Animated Scenes using
Coherent Grid Traversal. ACM Transactions on Graph-
ics (2006), 485–493. (Proceedings of ACM SIGGRAPH
2006).

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C.,
WAGNER M.: Interactive rendering with coherent ray
tracing. In Proc. of Eurographics 2001 (2001).

[WSS05] WOOP S., SCHMITTLER J., SLUSALLEK P.:

c© The Eurographics Association .

University of Texas at Austin, Department of Computer Sciences / Technical Report TR-07-19

RPU: a programmable ray processing engine. In SIG-
GRAPH ’05: Proceedings of the 32nd annual conference
on Computer graphics and interactive techniques (New
York, NY, USA, 2005), ACM Press.

c© The Eurographics Association .

