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Abstract

We present the first general implementation to provide the properties of digital signature using MACs
in a system consisting of any number of untrusted clients and n servers, up to f of which are Byzantine. At
the heart of the implementation is a novel matrix signature that captures the collective knowledge of the
servers about the authenticity of a message. Matrix signatures can be generated or verified by the servers
in response to client requests and they can be transmitted and exchanged between clients independently
of the servers. The implementation requires that no more than one third of the servers be faulty, which
we show to be optimal. The implementation places no synchrony requirements on the communication and
only require fair channels between clients and servers.
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1 Introduction

Developing dependable distributed computing protocols is a complex task. Primitives that provide strong
guarantees can help in dealing with this complexity, and often result in protocols that are simpler to design,
reason about, and prove correct. Digital signatures are a case in point: by guaranteeing, for example, that
the recipient of a signed message will be able to prove to a disinterested third party that the signer did
indeed sign the message (non repudiation), they can discourage fraudulent behavior and hold malicious
signers to their responsibilities. Weaker primitives such as message authentication codes (MACs) do not
provide this desirable property.

MACs, however, offer other attractive theoretical and practical features that digital signatures lack.
First, in a system in which no principal is trusted, it is possible to implement MACs that provide uncon-
ditional security—digital signatures instead are only secure under the assumption that one-way functions
exist [13], which, in practical implementations, translates in turn to a series of unproven assumptions
about the difficulty of factoring, the difficulty of computing discrete logarithms, or both. Second, certain
MAC implementations (though not the ones that guarantee unconditional security!) can be three orders
of magnitude faster to generate and verify than digital signatures [3].

Given these rather dramatic tradeoffs, it is natural to wonder whether, by introducing stronger as-
sumptions about some of the principals, it is possible to get the best of both worlds: a MAC-based
implementation of digital signatures.

The few successful attempts to date at addressing this challenge [3, 4, 5, 8, 15] have produced solutions
specific only to the particular protocols for which the implementation was being sought—these MAC-
based, signature-free protocols do not offer, nor seek to offer, a generic mechanism for transforming an
arbitrary protocol based on digital signatures into one that uses MACs. Further, these new protocols are
significantly less intuitive than their signature-based counterparts, so much so that their presentation tends
to be confined to obscure technical reports [3, 9].

In this paper, we present the first general implementation to provide the properties of digital signature
using MACs in a system consisting of any number of untrusted clients and n servers, up to f of which
are Byzantine. At the heart of the implementation is a novel matrix signature that captures the collective
knowledge of the servers about the authenticity of a message. Matrix signatures can be generated or
verified by the servers in response to client requests and they can be transmitted and exchanged between
clients independently of the servers. The implementation requires that no more than one third of the
servers be faulty, which we show to be optimal. The implementation places no synchrony requirements on
the communication and only require fair channels between clients and servers.

In summary, we make three main contributions:

• We introduce matrix signatures, a general, protocol-agnostic MAC-based signature scheme that pro-
vides properties, such as non-repudiation, that so far have been reserved to digital signatures.

• We present an implementation of a signing and verification service for matrix signatures. We prove its
correctness under fairly weak system assumptions (asynchronous communication and fair channels)
as long as at most one third of the servers are arbitrarily faulty.

• We show that no MAC based signature and verification service can be implemented using fewer
servers, even under stronger assumptions (synchronous communication and reliable channels).

2 Related Work

Matrix signatures differ fundamentally from earlier attempts at using MACs in lieu of signatures by offering
a general, protocol-agnostic translation mechanism.

Recent work on practical BFT state machine replication [4, 3, 5, 8] has highlighted the performance
opportunities offered by substituting MACs for digital signatures. These papers follow a similar pattern:
they first present a relatively simple protocol based on digital signatures and then remove them in favor
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of MACs to achieve the desired performance. These translations, however, are protocol specific, produce
protocols that are significantly different from the original—with proofs of correctness that require un-
derstanding on their own— and are often incomplete. Of these efforts, only [3] succeeds in completely
replacing signatures with MACs by replacing the signature generated by a set of replicas with an (implicit)
broadcast-like primitive work of Srikanth and Toueg [15] (discussed below).

Aiyer et al. [1] present a wait-free atomic register implementation that tolerates Byzantine readers and
up to one third Byzantine servers without relying on cryptographic primitives. Their protocol entirely
avoids digital signatures, but the secret sharing mechanism they use depends on assuming a non-malicious
writer.

Srikanth and Toueg [15] consider the problem of implementing authenticated broadcast in a system
where processes are subject to Byzantine failures. Their implementation, which provides unconditional
guarantees, is applicable only to a closed system of n > 3f processes, with authenticated pairwise com-
munication between them. They do not consider the general problem of implementing signatures: given a
message one cannot tell if it was “signed” unless one goes through the history of all messages ever received
and determines that at some point the message was broadcast. This renders their approach unusable if
the signed messages are persistent.

In contrast, we provide signing and verification primitives for an open asynchronous system with any
number of clients. While our approach can be used with unconditionally secure MACs, using practical
implementations of MACs (without the unconditional guarantees) requires only bounded memory at each
server.

Mechanisms based on unproven number theoretic assumptions, are known to implement digital sig-
natures using local computation without requiring any trusted principal [6, 12]. It is also known that
implementing signatures using authenticated channels (or MACs) is possible if clients communicate with
a known trusted principal in the system [14]. In the absence of a known trusted principal, implementing
digital signatures locally requires one-way functions [13]. Our results show that with partial trust in the
system, implementing digital signatures is still possible without requiring one-way functions.

3 MACs and Digital Signature Schemes

Digital signatures provide the following properties, analogous to those of their physical counterparts [14]:

• Authenticity The signature convinces the recipient that the signer has signed the message.

• Unforgeability Only an authorized signer can generate a signature that successfully passes the
verification.

• Non-Reusability The signature of a message (that has not been signed) cannot be derived from
the signature(s) of a different message(s).

• Non-repudiation Upon successful verification the verifier can convince any other participant that
the signer has signed the message.

• Integrity The signature generated for one message can not be used as a signature for a different
message.

Collectively these properties allow recipients to authenticate both the origin and the content of a message
in a manner that is provable to a disinterested third party [2]—a desirable ability in distributed systems
where processes, the network, or both can fail in unpredictable ways. These properties, however, are
informal descriptions of physical signatures. In the rest of this section we formalize these properties for
digital signatures.
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3.1 Digital Signatures

Digital signatures are implemented by signature schemes. In general, a signature scheme defined over a
set of signers S and a set of verifiers V (not necessarily disjoint) consists of a signing procedure S and a
verification procedure V:

SS,V : Σ∗ 7→ Σ∗ (1)

VS,V : Σ∗ × Σ∗ 7→ {true, false} (2)

The signing procedure S takes as arguments the message to be signed and returns a signature. The
verification procedure takes as arguments a message and a signature and returns a boolean value. When
a verification procedure returns true, we say that the signature passes the verification procedure for the
message; otherwise it fails.

The set of signing processes S contains all the processes that can invoke the signing procedure. To
simplify the exposition, we assume that this set contains, a priori, any processes with which signers might
want to collude and we assume that once S is specified only processes in S can invoke the signing procedure.
V contains all the processes that can verify a signature for the signature scheme.

Formal definitions that aim to capture mathematical constructions of signature schemes explicitly
include signing and verification keys in the definition. In this work, we are only interested in using
signatures schemes as black boxes, so we omit the keys for simplicity and assume they are implicitly
captured in S and V . In practice, S would be the set of processes that has the necessary information
(keys) to sign and V would be the set of processes that has the necessary information (keys) to verify the
signatures. For example, with public key cryptography, the private key which is necessary to sign is known
only to one participant – namely the signer, and the public key which is necessary to verify the signature
is known to all. S would be a singleton and V consists of all the participants in the system.

We formalize the following requirements of a digital signature scheme:

• (Consistency) If a non-faulty sender s ∈ S invokes SS,V (s,msg) to generate msgsig and v ∈ V is a
non-faulty verifier, then VS,V (msg,msgsig) invoked by v always returns true.

• (Validity) A signature msgsig can pass the verification function for a message msg at a non-faulty
verifier v ∈ V

VS,V (msg,msgsig) = true

only if a sender s ∈ S has invoked the signing function SS,V (s,msg) on the same message msg.

• (Verifiability) If a non-faulty verifier v ∈ V returns true on invoking the verification procedure
VS,V (msg,msgsig) then it can generate a proof msgproof to convince any (non-faulty) disinterested
third party that a sender s ∈ S has executed SS,V (s,msg).

Digital Signatures typically achieve verifiability by allowing all processes to be able to invoke the
verification procedure; and by ensuring that if VS,V (msg,msgsig) returns true, the verifier can produce a
proof msgproof such that VS,V (msg,msgproof ) will always succeed. Signature schemes with a deterministic
verifying procedure, such as [6, 12], have msgproof = msgsig.

Any digital signature scheme that meets these requirements provides the general properties expected
of signatures. Consistency provides authentication; validity provides unforgeability, non-reusability and
integrity; and verifiability provides non-repudiation since the set of verifiers is typically considered to be
all processes.

3.2 Message Authentication Codes

MACs are used to implement reliable communication between a particular sender and a particular receiver.
They can be formalized in terms of the signing and verifying procedures as above, but are constrained to
have |S| = |V | = .
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MACs are defined with respect to a particular signer s and a particular verifier v. It consists of a
signing procedure S and a verification procedure V:

Ss,v : Σ∗ 7→ Σ∗ (3)

Vs,v : Σ∗ × Σ∗ 7→ {true, false} (4)

The signing procedure takes a message and generates a MAC as an output. The verification procedure
takes a message and a MAC and checks if the MAC is correct.

MACs are required to ensure authentication, unforgeability, non-reusability and integrity. They are do
not provide non-repudiation. So, formally, they are only required to satisfy the consistency and validity
requirements.

• (Consistency) If the non-faulty sender s invokes Ss,v(s,msg) to generate msgmac and Vs,v(msg,msgmac)
invoked by a non-faulty verifier v always returns true.

• (Validity) A MAC msgmac can pass the verification procedure invoked by a non-faulty verifier v for
a message msg

Vs,v(msg,msgmac) = true

only if the sender s has invoked the signing function Ss,v(s,msg) to generate the MAC msgmac.

Typically, MACs are implemented based on symmetric key cryptography, where both the signer and
verifier have access to all the keys used. The requirements restrict the behavior of a non-faulty verifier, so
that it does not generate the MACs by itself (except as part of the verification procedure).

3.3 Discussion

Formalisms for MACs and digital signatures typically express their properties in terms of probabilities
that the schemes can fail. For schemes that rely on unproven assumptions, restrictions are placed on the
computational powers of the adversary. In this paper we are only interested in implementing signature
using a finite number of black box MAC implementations. We state our requirement in terms of properties
of the executions that always hold without reference to probabilities or adversary powers. This does not
affect the results, but leads to a simpler exposition.1.

4 Model

The system consists of two sets of processes: a set of n server processes (also known as replicas) and a finite
set of client processes (signers and verifiers). The set of clients and servers is called the set of participants.
The identifiers of participants are elements of a completely ordered set.

An execution of a participant consists of a sequence of events. An event can be an internal event, a
message send event or a message receive event. Two particular internal events are of special interest to us.
A message signing event invokes a signing function that is guaranteed to terminate. A message verification
event is associated with the invocation of a verification procedure. In our implementations of signature
schemes we only consider communication between clients and servers to implement the signing and the
verification functions.

Clients communicate with the servers over authenticated point-to-point channels. Inter-server commu-
nication is not required. The network is asynchronous and fair—but, for simplicity, our algorithms are
described in terms of reliable FIFO channels, which can be easily implemented over fair channels between
correct nodes.

1Our implementations use only finitely many MACs, consequently the probability of breaking our implementation can

be made arbitrarily small if the probability of braking the MAC implementations can be made arbitrarily small. Also, our

requirements restrict the set of allowable executions, which in essence place a restriction on the computational power of the

verifiers. In particular, they do not allow a verifier to break the signature scheme by enumerating all possible signatures and

verifying them
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To send a message, a process uses the send function that takes an intended recipient and a message
content as parameters. We identify a sent message as a triplet (s, r, c), where s is the sender, r is the
recipient and c is the content of the message. Every message sent by a non-faulty participant to another
non-faulty participant is guaranteed to be delivered, but there is no bound on the time elapsed between
the time a message is sent and the time it is delivered. A message delivered to p is of the form (s, c), where
(s, p, c) is a message sent at an earlier time. To receive messages, a process p uses the receive function
which returns the set of messages that have been delivered to p since the last time p called the receive
function.

Each process has an internal state and follows a protocol that specifies its initial states, the state
changes, and the messages to send in response to messages received from other processes. An arbitrary
number of client processes and up to f of the server processes can exhibit arbitrary (Byzantine) faulty
behavior [10]. Remaining processes follow the protocol specification.

5 Signatures using MACs

We now show how to achieve non-repudiation using a construct based on MACs. In a distributed setting
with n ≥ 3f + 1, our construction of matrix-signatures satisfies consistency, validity and verifiability, thus
providing all the properties required of digital signatures.

We first present the high level idea assuming the existence of two trusted entities in the system. We
later relax this assumption in Section 6, where we present a general construction that does not require any
trusted entities.

5.1 Signatures with Trusted Witnesses

Suppose we have two trusted entities in the system. One trusted entity can act as a signing-witness, and
another acts as a verifying-witness. These two witnesses share a secret-key K that is used to generate and
verify MACs.

Signing a message Whenever a signer wants to sign a message, it delegates the signing witness to generate
a signature. This signature, henceforth called a MAC-signature, certifies that the signer s wants to sign
the message m. MAC-signature is essentially a MAC computed using the secret key K that is known only
to the two witnesses.

On receiving a request from s to sign a message m, the signing witness generates the MAC-signature
and gives it to s. The MAC-signature can be used by the verifiers to validate that s has signed the message.

Verifying a signature To verify that a MAC-signature is valid, the verifiers (clients) need to contact
the verifying-witness. The verifying-witness uses the message and the signer information to compute the
MAC-signature and then tells the verifiers (clients) whether the two MAC-signatures match or not. If
so, then the verifier (client) concludes that the MAC-signature is correct; otherwise, it concludes that the
MAC-signature is wrong.

5.2 Signature Properties

Consistency is ensured because the signing and verifying witnesses use the same key K to create the MAC-
values. Validity is ensured because the MAC-value is only generated by the trusted signing witness when
it receives a message from the signer over an authenticated channel. Verifiability is guaranteed because
the verifying witness is trusted and will either always accept a MAC-signature for a given message, or will
always reject it.

6 A Distributed Signature Implementation

In the absence of any known trusted witness, we can utilize n > 3f servers to implement the same service
in a fault tolerant manner.

We assume n ≥ 3f + 1 witness servers in the system, of which no more than f are faulty. These
witness servers share pairwise secret keys that can be used to generate pairwise MACs. Each witness
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h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,1 h3,2 h3,3 h3,4

h4,1 h4,2 h4,3 h4,4

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

? ? ? ?
? ? ? ?

? h1,2 ? ?
? h2,2 ? ?
? ? ? ?
? ? ? ?

A Matrix-signature Valid Signature Admissible Signature

Figure 1: Example Matrix-signatures

replica functions both as a signing-witness-server to implement the signing witness, and as a verifying-
witness-server to implement the verifying witness.

Clients can sign or verify a signature by contacting all the signing witness (or, respectively, verifying-
witness) servers. The key difference with the protocol described in the previous section is that the signatures
being generated or verified can no longer be implemented as a single MAC-value, but instead as a matrix
of n × n MAC-values, called a matrix signature.

6.1 Matrix signatures

A matrix signature consists of n2 MACs arranged into n rows and n columns which, together, capture the
collective knowledge of the servers about a message authenticity.

Each MAC is based on a secret key (K i,j) shared between a signing-witness-server and a verifying-
witness-server2.

Every row of the matrix-signature corresponds to a signing-witness-server and every column corresponds
to a verifying-witness-server. The ith row of the matrix-signature comprises of the MACs generated by the
ith signing-witness-server. The jth column of the matrix-signature comprises of the MACs generated for the
jth verifying-witness-server. In Figure 1, the row in bold font is generated by the 2nd signing-witness-server,
and the column in bold is generated for the 3rd verifying-witness-server.

Definition 1 (Valid). A matrix-signature is valid if it has at least (f + 1) correct MAC values in every
column.

Definition 2 (Admissible). A matrix-signature is said to be admissible if it has at least one column
corresponding to a non-faulty server that contains at least (f + 1) correct MAC values.

An admissible matrix-signature captures the minimum requirement for it to be successfully verified by
a non-faulty verifier. A valid matrix-signature captures the minimum requirement for being guaranteed to
be always successfully verified by any non-faulty verifier. Thus, every valid signature is admissible, but the
converse does not hold.

6.2 Protocol Description

The protocols for generating and verifying matrix-signatures is shown in Figure 2.

6.2.1 Generating a Signature

To generate a matrix-signature, the signer s sends the message Msg to be signed, along with its identity, to
all the signing-witness-servers over authenticated channels. Each signing-witness-server generates a row of
MACs, attesting that s signs Msg, and responds to the signer. The signer waits to collect the MAC-rows
from at least (2f + 1) signing-witness-servers to form the matrix-signature.

Note that the matrix-signature thus formed may contain some empty rows corresponding to the un-
responsive/slow servers. It may also contain up to f rows with incorrect MAC values corresponding to
faulty servers.

2Although a signing-witness-server and a verifying-witness-server can both be mapped to a single witness server, for the

time being it is useful to think of them as separate entities.

7



6.2.2 Verifying a Signature

To verify a matrix-signature the verifier sends (a) the matrix-signature, (b) the message, and (c) the
identity of the client claiming to be the signer to the verifying-witness-servers. A verifying-witness-server
admits the signature only if at least (f + 1) MAC-values in the server’s column are correct; otherwise, it
rejects. Note that a non-faulty server will never reject a valid matrix-signature.

The verifier collects responses from the servers until it either receives (2f + 1) 〈ADMIT, . . .〉 responses
to accept the signature, or it receives (f + 1) 〈REJECT〉 responses to reject the signature as not valid.

Regenerating a valid signature : Receiving (2f + 1) 〈ADMIT, . . .〉 responses does not guarantee that
the signature is valid–only that it is admissible, hence leaving open the possibility that a signature accepted
by a correct verifying client may not be later verifiable by a different correct verifying client. To see how
this may happen, suppose a faulty client sends a matrix signature in which the column corresponding to
a (f + 1) non-faulty verifying-witness servers is correct while all other columns contain incorrect MACs.
The f faulty verifying witness server can then answer affirmatively to some verifying clients and reject the
signature when other clients attempt the verification.

To satisfy verifiability and provide non-repudiation, we ensure that the verifier always gathers a valid
matrix-signature as a proof whenever any signature (valid or just admissible) is accepted by the verification
procedure.

This is accomplished by having a verifying-witness-server and signing-witness-server run on the same
physical server. When the witness-server admits a matrix-signature (as a verifying-witness-server), as part
of the 〈ADMIT, . . .〉 message it generates and sends the (signing-witness-server’s) corresponding row of
MAC-values. Thus, if a verifier collects (2f + 1) 〈ADMIT, . . .〉 responses, it can form a new regenerated
matrix-signature with the received MAC-rows that is valid.

Ensuring termination : In an asynchronous system, a client cannot expect responses from more than
(n − f) non-faulty servers. If n ≥ 4f + 1, the verifier can always decide either to accept the signature, or
reject it on receiving (n − f) ≥ (3f + 1) responses. However, if n ≤ 4f then the verifier may not be able
to make a decision on receiving just (n − f) responses if some (f or fewer) of them are 〈REJECT〉 and
some (2f or fewer) of them are 〈ADMIT, . . .〉 .

The verifier can wait for additional responses only if it knows that it is yet to hear from a non-faulty
server. If the original signature being verified is valid then it can wait for additional responses. However,
it is also possible that all the non-faulty servers have already responded, where waiting for additional
responses may not be a good choice.

Fortunately, these two scenarios can be distinguished in terms of the newly regenerated signature. If
all non-faulty servers have already responded, and the verifier has less than f 〈REJECT〉 responses then
the newly regenerated signature would be valid. Then, even the non-faulty servers that have rejected the
initial signature should admit the regenerated signature, giving the verifier the required (2f + 1) admit
responses. Otherwise, the verifier is yet to hear from at least one non-faulty server and waits for the
additional responses.

Eventually, when all the non-faulty servers respond (to the original signature, and the newly generated
signatures) the verifier will have enough 〈ADMIT, . . .〉 responses or 〈REJECT〉 responses to accept or
reject the signature.

6.3 Correctness

We now show that matrix-signatures satisfy all the requirements of digital signatures and ensure that the
signing/verification procedures always terminate for n ≥ 3f + 1.

Lemma 1. Every valid signature is admissible.

Lemma 2. The matrix-signatures generated by a non-faulty signer (Figure 2) is valid.

Proof. A non-faulty signer has to collect MAC-rows from at least (2f + 1) servers to generate a matrix-
signature. At least (f + 1) of these rows are from non-faulty servers and consist only of correct MAC
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Signature Client-Sign (Msg Msg) {
∀i : σMsg,S [i][] :=⊥
send 〈SIGN, Msg, S〉 to all
do

(* collect MAC-rows from the servers *)
rcv 〈σi[1 . . . n]〉 from server i

σMsg,S [i][1 . . . n] := σi[1 . . . n]
until rcvd from ≥ 2f + 1 servers
return σMsg,S

}

bool Client-Verify(Msg Msg, Signer S, ref Signature σ) {
(* σnew collects the regenerated signature proof *)
∀i : σnew [i][] :=⊥
∀i : resp[i] :=⊥
send 〈VERIFY, Msg, S, σ[][]〉 to all
do

rcv 〈ADMIT, σi[1 . . . n]〉 or 〈REJECT〉 from server i

if received 〈ADMIT, σi[1 . . . n]〉
σnew [i][1 . . . n] := σi[1 . . . n]
resp[i] := ADMIT
(* Accept: If enough servers admit it *)
if ( Count(resp, ADMIT) ≥ 2f + 1 )

(* update the signature (by reference) *)
σ := σnew

return TRUE;
else

resp[i] := REJECT
(* Reject: If at least one non-faulty server rejects it *)
if ( Count(resp, REJECT) ≥ f + 1 )

return FALSE;

(*If No decision even after (n − f) responses *)
if ( Count(resp, ADMIT) + Count(resp, REJECT) ≥ (n − f) )

(* retry with the new signature *)
send 〈VERIFY, Msg, S, σnew [][]〉 to { r : resp[r] 6= ADMIT}

until (false)
}

void Signing-Witness-Server(Id i) {
while(true) {

rcv 〈SIGN, Msg, S〉 from S

∀j : compute σi[j] := MAC(K i,j , S : Msg)
send 〈σi[1 . . . n]〉 to S

}
}

void Verifying-Witness-Server(Id j) {
while(true) {

rcv 〈VERIFY, Msg, S, σ〉 from V

correct cnt := |{i : σ[i][j] ==
MAC(K i,j , S : Msg)}|

if (correct cnt ≥ f + 1)
∀l : compute σj [l] := MAC(K j,l, S : Msg)
send 〈ADMIT, σj [1 . . . n]〉 to V

else

send 〈REJECT〉 to V

}
}

Figure 2: Signing and Verifying procedures for Matrix-signatures

values.

Lemma 3. A Valid signature always passes the verification procedure for a non-faulty verifier.

Proof. A valid signature consists of all correct MAC-values in at least (f + 1) rows. So, no non-faulty
server will send a 〈REJECT〉 message. All non-faulty servers will accept the signature, and respond with
the 〈ADMIT, . . .〉 message. Since there are at least (n − f) ≥ 2f + 1 non-faulty servers the verification
procedure will pass on receiving these messages.

Lemma 4. If a matrix-signature is not-admissible, then it will fail the verification procedure for any
non-faulty verifier.

Proof. If a matrix-signature is not admissible, then all non-faulty servers will reject it by sending the
〈REJECT〉 message. On receiving (n − f) responses, the verifier will have (n− 2f) ≥ (f + 1) 〈REJECT〉
messages causing the verification procedure to fail.

Lemma 5. If a matrix-signature passes the verification procedure for a non-faulty verifier, then it is
admissible.
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Lemma 6. An adversary cannot generate an admissible signature for a message Msg, for which the signer
did not initiate the signing procedure.

Proof. For a signature to be admissible, a column corresponding to a non-faulty server (say j) should
contain at least (f + 1) correct MAC-values. Among the (f + 1) correct MAC-values in the column, at
least one correct MAC-value will correspond to a non-faulty server (say i).

K i,j is only known to the non-faulty servers i and j. Only server i will generate the correct MAC for
the clients.

In the verification procedure, Replica i would have generated the MAC-value for the clients only if it
has received a signature that has (f + 1) correct MAC entries in its column. This could only happen if the
signature previously verified was already an admissible signature generated.

In the signing procedure, server i will generate the MAC-value for the clients only if it receives a request
from the signer to sign the document, as part of the signing procedure.

Lemma 7. If a signature passes the verification procedure for a non-faulty verifier, then the newly recon-
structed matrix-signature is valid.

Proof. For a signature to pass the verification procedure, the verifier must receive at least (2f + 1)
〈ADMIT, . . .〉 responses. At least (f + 1) of these are from non-faulty servers and include a correct
MAC-row along with the response. Thus the reconstructed matrix-signature consists of at least (f + 1)
correct rows.

Lemma 8. If a non-faulty client accepts that S has signed Msg after the matrix-signature passes the
verification procedure, then it can convince every other non-faulty client that S has signed Msg.

Proof. If a non-faulty client accepts that S has signed Msg after the matrix-signature passes the verification
procedure, then the client would be able to gather a regenerated valid matrix-signature to that effect. Since
a valid matrix-signature always passes the verification procedure, the client can present this valid matrix-
signature to convince other clients that S has signed Msg.

Theorem 1. The Matrix-signature scheme presented in Figure 2 satisfies consistency, validity and verifi-
ability.

Proof. Consistency follows from lemmas 2 and 3. Validity follows from lemmas 5 and 6. Verifiability
follows from lemmas 7 and 3.

Theorem 2. If n ≥ 3f + 1 the signing procedure always terminates for any non-faulty signer.

Proof. There are at least (n − f) non-faulty servers that will respond to the signer. Thus eventually, it
will get (n − f) ≥ (2f + 1) responses.

Theorem 3. If n ≥ 3f + 1 the verification procedure always terminates for any non-faulty verifier.

Proof. All non-faulty servers will eventually respond to the verifier. If the verifier already receives either
(f +1) 〈REJECT〉 responses, or receives (2f +1) 〈ADMIT, . . .〉 responses, the verification procedure will
clearly terminate.

Suppose that the verifier does not terminate. Then it cannot have received more than f 〈REJECT〉
responses. Thus, it would have received at least (f +1) 〈ADMIT, . . .〉 responses from the non-faulty servers
that is accompanied with the correct row of MACs. These (f + 1) rows of correct MACs will ensure that
the new signature σnew is Valid.

Thus all non-faulty servers that have not sent a 〈ADMIT, . . .〉 response will do so when they receive
σnew. The verifier will eventually have (n − f) ≥ (2f + 1) 〈ADMIT, . . .〉 responses thus enabling the
verification procedure to terminate.
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7 Discussion

Our distributed implementation of digital signatures is based on an underlying implementation of MACs.
We make no additional computational assumptions to implement the digital signatures. However, if the
underlying MAC implementation relies on some computational assumptions (e.g. collision resistant hash
functions) then the signature scheme realized will be secure only as long as those assumptions hold.

7.1 Plausible Alternative Approaches

Section 5 demonstrates a known concept that it is feasible to implement a signature scheme using a known
trusted entity. One might wonder if we can use a distributed implementation of either a replicated state
machine, or a quorum system to build such a known trusted entity. We argue that while these approaches
seem plausible, they are not feasible in a distributed setting where the network is asynchronous and channels
are fair (i.e may drop messages).

7.1.1 State Machine Approaches

Implementing a replicated state machine requires making synchrony assumptions about the network. In
an asynchronous setting a replicated state machine implementations cannot provide both safety and live-
ness [7]. Replicated state machine implementations require periods of synchrony to make any progress[4].
Thus such a system cannot guarantee that the signing procedure or the verifying procedure will terminate.

Even if the network were synchronous and implementing a replicated state machine was possible, it is
not useful to implement the notion of a trusted witness as required in section 5. Replicated state machines
are only useful to implement a service that do not have any confidentiality requirements. If the secret keys
required by the trusted witness are replicated at all the replicas, then compromising even a single replica
gives the adversary the power to generate signatures for any message.

7.1.2 Quorum based Approaches

Quorum Systems are also useful to build dependable distributed services in both synchronous and asyn-
chronous setting. They rely on the intersection property of quorum sets to tolerate faults. Without
signatures, masking f Byzantine faults require the intersection to be at least (2f +1). Hence, such systems
cannot be realized in an asynchronous setting unless the total number of servers in the system n ≥ 4f + 1.
So, these approaches will not be helpful for protocols that only assume n ≥ 3f + 1 servers.

Our solution, presented in section 6, is applicable to all distributed protocols that satisfy n ≥ 3f + 1
even if the network is asynchronous and the channels are fair. We now show that any scheme that provides
a general implementation of signatures using MACs will require n ≥ 3f + 1.

8 Lower Bound

We show that a generalized scheme to implement the properties of signatures using MACs cannot be
done with n 6> 3f replicas. The lower bound holds even in a much stronger model where the network is
synchronous and the point-to-point channels between the processes are authenticated and reliable.

8.1 A Stronger Model

We assume for the lower bound purposes that the network is synchronous. All processes can communicate
with each other over authenticated point-to-point channels that are reliable. We also assume that processes
can maintain the complete history of all messages sent and received over these authenticated channels.

Note that this model here is strictly stronger than the model described in Section 4. Lowerbound that
holds in this strong network model automatically holds in the weaker model (from Section 4) where the
network is asynchronous and the channels are fair.

8.2 High Level Idea

We first show that in this model, the authenticated point-to-point channels can be used instead of MACs.
If there exists a protocol to implement signatures using MACs with n = m replicas, then we can implement
a reliable broadcast channel using max{m, f + 1} replicas.
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Existing results show that it is impossible to build a reliable broadcast channel in this model with
n ≤ 3f replicas. We can thus conclude that it is impossible to provide a generalized construction for
implementing signatures using MACs with fewer than 3f + 1 replicas.

8.2.1 MACs and Authenticated Channels

In this synchronous model, MACs can be trivially implemented using authenticated and reliable point-to-
point channels. To sign a message, the sender sends the message to the verifier over the authenticated
point-to-point channel. To verify that a message is signed, the verifier looks into the history of messages
received over the authenticated channel. The message is deemed to have been signed if and only if it was
received on the authenticated channel from the signer.

Note that, because the system is synchronous, whenever a message is signed (i.e. sent to the receiver)
the message can be successfully verified from the next instance onwards (by which it is guaranteed to be
received over the channel).

It is well known that implementing a reliable-broadcast channel in a synchronous setting using authen-
ticated point-to-point channels, without signatures, requires at least n ≥ 3f + 1 replicas [11].

Theorem 4. Any construction that implements a generalized signature scheme using MACs require at
least n ≥ 3f + 1 replicas.

Proof. It is well known that implementing a reliable-broadcast channel in a synchronous setting, without
signatures, requires n ≥ 3f + 1 replicas in the system [11]. However, using signatures it is possible to
implement a reliable-broadcast channel with just n ≥ f + 1 replicas [11].

Suppose that there exists a generalized scheme to implement a signature scheme using a MACs with
n = m replicas. Then it is possible to combine these technique with [11] to implement a reliable-broadcast
channel using n ≥ max{m, f + 1} replicas. From [11] it follows that

max{m, f + 1} ≥ 3f + 1
⇒ m ≥ 3f + 1
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