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Abstract

In a previous paper we show how the FLAME methods and tools provide a solution to compute dense
dense linear algebra operations on a multi-GPU platform with reasonable performance while requiring
little programming effort. In this paper we generalize the approach for systems with multiple hardware
accelerators, and incorporate software implementations of standard cache/memory coherence techniques
from computer architecture to improve the performance. Our experimental evaluation on an NVIDIA
Tesla S870 platform delivers a peak performance well over 400 GFLOPS.

1 Introduction

The limitations of current VLSI technology and the desire to transform the ever-increasing number of tran-
sistors on a chip dictated by Moore’s Law into faster computers has led most hardware manufacturers to
design multicore processors and/or specialized hardware accelerators [19]. In response, the computer science
community is beginning to embrace (explicit) parallel programming as the means to exploit the potential
of the new architectures [1]. While the problem seems to be solved from the hardware viewpoint, how to
program these new architectures easily and efficiently is the key that will determine their success or failure.

Dense linear algebra has been traditionally used as a pioneering area to conduct research on the perfor-
mance of new architectures and multicore processors have been no exception. The traditional approach in
this problem domain, inherited from the solutions adopted for shared-memory multiprocessors years ago, is
based on the use of multithreaded implementations of the BLAS [25, 16, 15]. Code for operations constructed
in terms of the BLAS (e.g, for solving a linear system or a linear least-squares problem) extract all the paral-
lelism at the BLAS level. Thus, the intricacies of efficiently utilizing the target architecture are hidden inside
the BLAS, and the burden of its parallelization lies in the hands of a few experts with a deep knowledge of
the architecture. More recently, the FLAME, PLASMA, and SMPSs projects [11, 12, 13, 29, 30, 31, 9, 8, 4]
have advocated for a different approach, extracting the parallelism at a higher level, so that only a sequential
tuned implementation of the BLAS is necessary and more parallelism is detected and exploited. Cilk [26]
is a precursor of these projects that suffered from not being able to deal with dependencies well. FLAME
and PLASMA both focus on dense linear algebra, with the former working at a higher level of abstraction
(much in the spirit of object-oriented programming), while the target domain for SMPSs is more general.

Recently, specialized hardware accelerators as the IBM Cell B.E., graphics processors (GPUs), and Field
Programmable Gate Arrays (FPGAs) have also attracted the interest of the developers of dense linear algebra
libraries [24, 23, 18, 2, 3, 10, 34]. Squeezing these architectures for performance is revealing itself as a task
of complexity similar to that of developing a highly tuned implementation of the BLAS for a processor.
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The next evolutionary step has been the construction and use of systems with multiple accelerators:
IBM Cell B.E. processors are currently available in the form of blades or PCI-Express accelerator boards,
NVIDIA offers nodes with 2 and 4 G80 processors in the Tesla multi-GPU series that can be connected via
PCI-Express to a workstation, and ClearSpeed PCI-Express boards are furnished with 2 CSX600 processors.
The natural question that arises at this point is how to program these multi-accelerator platforms.

For systems with multiple GPUs, a possibility that has been explored in [34] is to distribute the data
among the video memory of the GPUs and code in a style similar to that of the message-passing libraries
ScaLAPACK and PLAPACK [14, 33]. We identify two hurdles for this approach:

• While the state-of-the-art numerical methods have not changed, following this approach will require a
complete rewrite of dense linear algebra libraries (alike the redesign of LAPACK for parallel distributed-
memory architectures that was done in the ScaLAPACK and PLAPACK projects). Therefore, a large
programming effort and a considerable amount of funding will be necessary to cover a functionality
like that of LAPACK. Note that coding at such low level can be quite complex so that the number of
contributors can be significantly reduced.

• The product that is obtained as a result of this style of programming will exhibit a parallelism similar to
that of libraries based on multithreaded implementations of the BLAS and far from that demonstrated
by the dynamic scheduling techniques in the FLAME, PLASMA, and SMPSs projects. While look-
ahead techniques [32] can increase the scalability of this solution to a certain extent, they do so at the
cost of a much more complicated coding.

Our approach in this context is fundamentally different. In a previous paper [10], we gave an overview of
software tools and methods developed as part of the FLAME project, and we show how, when applied to a
platform with multiple GPUs, they provide an out-of-the-box solution that attains reasonable performance
almost effortlessly. The key lies in maintaining the independence of code and target architecture, leaving the
parallel executing of the operation in the hands of a runtime system [10]. The advantages of this approach
are twofold:

• When a new platform appears, it is only the runtime system that needs to be adapted. The routines in
the library, which reflect the numerical algorithms, do not need to be modified. For a specific platform,
only one runtime is needed to execute all algorithms in parallel.

• The parallelism is extracted by a runtime system which can be easily adapted to exploit multiple
accelerators following the ideas that have been shown to be so successful in the multicore arena [11,
12, 13, 29, 30, 31, 9, 8, 4].

While [10] focused in the programmability of the solution, this paper makes the following new contribu-
tions:

• We give a detailed description of how the programming model accommodates not only the Tesla multi-
GPU platforms but generic architectures with multiple hardware accelerators (IBM Cell B.E., NVIDIA
GPUs, ClearSpeed boards, etc.).

• We describe several techniques that can be employed to tailor the runtime system for a generic multi-
accelerator architecture. Some of these techniques were not employed in [10] and clearly enhance the
performance of the code on the multi-GPU platform.

• We use the tuned implementation of the matrix-matrix product described in [34] as well as other
implementations of the BLAS kernels for the GPUs, again with a clear impact on the performance of
the solution.

• Overall a peak performance of 424 GFLOPS is attained for the (single-precision) Cholesky factorization
on a 4-GPU NVIDIA Tesla platform.
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The rest of the paper is structured as follows. Section 2 presents the operation considered here: the
Cholesky factorization of a dense matrix. Section 3 offers a brief overview of FLAME, the key to easy devel-
opment of high-performance dense linear algebra libraries that underlies our approach for multi-accelerator
platforms. Section 4 describes how the tools in FLAME accommodate for the parallel execution of dense
linear algebra codes on these platforms almost effortlessly. More elaborate techniques are presented in Sec-
tion 5 together with their corresponding performance results. Finally, a few concluding remarks summarize
the results in Section 6.

2 A Motivating Example

Following [10], in this paper we will consider the Cholesky factorization of an n × n symmetric positive
definite matrix A to illustrate our approach. In this operation, the matrix is decomposed into the product
A = LLT , where L is the n × n lower triangular Cholesky factor. (Alternatively, A can be decomposed as
A = UT U , with U being upper triangular.) In traditional algorithms for this factorization, L overwrites the
lower triangular part of A while the strictly upper triangular part remains unmodified. Here, we denote this
as A := {L\A} = Chol(A).

3 The FLAME Approach to Developing Dense Linear Algebra
Libraries

Key elements of FLAME are the high-level notation for expressing algorithms for dense and banded linear al-
gebra operations, the formal derivation methodology to obtain provably correct algorithms, and the high-level
application programming interfaces (APIs) to transform the algorithms into codes. FLASH and SuperMa-
trix are also important components of FLAME that address storage of matrices by blocks and automatic
decomposition of linear algebra codes into tasks and dynamic scheduling of these tasks to multithreaded
architectures (basically, SMP and multicore processors). We next review all this elements briefly.

3.1 FLAME: Formal Linear Algebra Methods Environment

The fundamental innovation that enabled FLAME is the notation for expressing dense and banded linear
algebra algorithms. Figure 1 (left) shows a blocked algorithm for computing the Cholesky factorization using
the FLAME notation.

The formal derivation methodology consists of a series of steps which, systematically applied, yield families
of algorithms (multiple algorithmic variants) for computing an operation [21, 20, 6]. The significance of this
for scientific computing is that often different algorithmic variants deliver higher performance on different
platforms and/or problem sizes [7, 28]. This derivation of algorithms has also been made mechanical [5].

The FLAME/C API for the C programming language captures the notation in which we express our
algorithms. Using this API, the blocked algorithm on the left of Figure 1 can be transformed into the C
code on the right of that figure. Note the close resemblance between algorithm and code. As indentation
plays an importing role in making the FLAME/C code look like the algorithm, we recommend the use of
a high-level mechanical tool like the Spark webpage (http://www.cs.utexas.edu/users/flame/Spark/)
which automatically yields a code skeleton.

3.2 Storage-by-blocks using FLASH

Algorithms-by-blocks [17] view matrices as collections of submatrices and express their computation in terms
of these submatrix blocks. Algorithms are then written as before, except with scalar operations replaced by
operations on the blocks. Although a number of solutions have been proposed to solve this problem, none of
these have yielded a consistent methodology that allows the development of high-performance libraries with
functionality that rivals those of LAPACK or FLAME. The problem is primarily one of programmability.
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Algorithm: A := Chol blk var1(A)

Partition A→
„

ATL ATR

ABL ABR

«

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition
„

ATL ATR

ABL ABR

«
→
0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A

where A11 is b× b

A11 := {L\A}11 = Chol unb(A11)

A21 := L21 = A21L−T
11

A22 := A22 − L21LT
12 = A22 −A21AT

21

Continue with„
ATL ATR

ABL ABR

«
←
0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A

endwhile

FLA_Error FLA_Chol_blk_var1( FLA_Obj A, int nb_alg )
{

FLA_Obj ATL, ATR, A00, A01, A02,
ABL, ABR, A10, A11, A12,

A20, A21, A22;
int b;

FLA_Part_2x2( A, &ATL, &ATR,
&ABL, &ABR, 0, 0, FLA_TL );

while ( FLA_Obj_length( ATL ) < FLA_Obj_length( A ) ) {
b = min( FLA_Obj_length(ABR), nb_alg );
FLA_Repart_2x2_to_3x3(

ATL, /**/ ATR, &A00, /**/ &A01, &A02,
/* ************* */ /* ******************** */

&A10, /**/ &A11, &A12,
ABL, /**/ ABR, &A20, /**/ &A21, &A22, b, b, FLA_BR );

/*---------------------------------------------*/
FLA_Chol_unb_var1( A11 );
FLA_Trsm( FLA_RIGHT, FLA_LOWER_TRIANGULAR,

FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
FLA_ONE, A11, A21 );

FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,
FLA_MINUS_ONE, A21, FLA_ONE, A22 );

/*---------------------------------------------*/
FLA_Cont_with_3x3_to_2x2(

&ATL, /**/ &ATR, A00, A01, /**/ A02,
A10, A11, /**/ A12,

/* *************** */ /* ****************** */
&ABL, /**/ &ABR, A20, A21, /**/ A22, FLA_TL );

}
return FLA_SUCCESS;

}

Figure 1: Blocked algorithm for computing the Cholesky factorization (left) and the corresponding
FLAME/C implementation (right).

Our approach to the problem views the matrix as a matrix of smaller matrices using the FLASH API.
This view thus yields a matrix hierarchy, potentially with multiple levels. Code for an algorithm-by-blocks
for the Cholesky factorization using the FLASH API is given in Figure 2 (left). It may seem that the
complexity of the algorithm is merely hidden in the routines FLASH Trsm and FLASH Syrk. The abbreviated
implementation of an algorithm-by-blocks for the former is given in Figure 2 (right) while the latter routine
has a similar implementation. The reader can see here that many of the details of the FLASH implementation
have been buried within the FLASH-aware FLAME object definition.

3.3 SuperMatrix runtime system

SuperMatrix extracts the parallelism at a high level of abstraction, decomposing the operation into tasks,
identifying the dependencies among these, scheduling them for execution when ready (all operands avail-
able/dependencies fulfilled), and mapping tasks to execution units (cores/accelerators) taking into account
the target platform. All of this is done without exposing any of the details of the parallelization to the
application programmer. The success of this approach has been previously reported in a number of pa-
pers [11, 12, 13, 29, 30, 31].

Further details on the operation of SuperMatrix will be illustrated in the next two sections as the strategy
to adapt it to a multi-accelerator platform is exposed.

4 Adapting FLAME to Platforms with Multiple Accelerators

Previous work on NVIDIA G80 graphics processors and the IBM Cell B.E. view these accelerators as mul-
ticore architectures [34, 24] and exploit the parallelism at this level. Our approach is different in that we
view one of these accelerators as the equivalent of a single core, for which a tuned “serial” implementation
of (specific kernels of the level 3) BLAS is available; our analog of a multicore processor is then a system
with multiple accelerators. We therefore exploit parallelism at two levels: at a high level, parallelism due,
e.g., to the presence of multiple Cell B.E. or G80 processors is addressed by SuperMatrix. At the low level,
the hardware parallelism within the 8 SPUs of a single Cell B.E. or the 128 microcores of a G80 is extracted
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FLA_Error FLASH_Chol_by_blocks_var1( FLA_Obj A )
{

FLA_Obj ATL, ATR, A00, A01, A02,
ABL, ABR, A10, A11, A12,

A20, A21, A22;

FLA_Part_2x2( A, &ATL, &ATR,
&ABL, &ABR, 0, 0, FLA_TL );

while ( FLA_Obj_length( ATL ) < FLA_Obj_length( A ) ) {
FLA_Repart_2x2_to_3x3(

ATL, /**/ ATR, &A00, /**/ &A01, &A02,
/* ************* */ /* ******************** */

&A10, /**/ &A11, &A12,
ABL, /**/ ABR, &A20, /**/ &A21, &A22,
1, 1, FLA_BR );

/*---------------------------------------------*/
FLA_Chol_unb_var1( FLASH_MATRIX_AT( A11 ) );
FLASH_Trsm( FLA_RIGHT, FLA_LOWER_TRIANGULAR,

FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
FLA_ONE, A11,

A21 );
FLASH_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

FLA_MINUS_ONE, A21,
FLA_ONE, A22 );

/*---------------------------------------------*/
FLA_Cont_with_3x3_to_2x2(

&ATL, /**/ &ATR, A00, A01, /**/ A02,
A10, A11, /**/ A12,

/* *************** */ /* ****************** */
&ABL, /**/ &ABR, A20, A21, /**/ A22,
FLA_TL );

}
return FLA_SUCCESS;

}

void FLASH_Trsm_rltn( FLA_Obj alpha, FLA_Obj L,
FLA_Obj B )

/* Special case with mode parameters
FLASH_Trsm( FLA_RIGHT, FLA_LOWER_TRIANGULAR,

FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
... )

Assumption: L consists of one block and
B consists of a column of blocks */

{
FLA_Obj BT, B0,

BB, B1,
B2;

FLA_Part_2x1( B, &BT,
&BB, 0, FLA_TOP );

while ( FLA_Obj_length( BT ) < FLA_Obj_length( B ) ) {
FLA_Repart_2x1_to_3x1( BT, &B0,

/* ** */ /* ** */
&B1,

BB, &B2, 1, FLA_BOTTOM );
/*---------------------------------------------*/
FLA_Trsm( FLA_RIGHT, FLA_LOWER_TRIANGULAR,

FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
alpha, FLASH_MATRIX_AT( L ),

FLASH_MATRIX_AT( B1 ) );
/*---------------------------------------------*/
FLA_Cont_with_3x1_to_2x1( &BT, B0,

B1,
/* ** */ /* ** */

&BB, B2, FLA_TOP );
}

}

Figure 2: FLASH implementation of the Cholesky factorization and the corresponding triangular system
solve.

by the BLAS. We hereafter do not pursue further this second level of parallelism and assume the existence
of such an implementation of the BLAS.

Our generic multi-accelerator platform consists of a workstation, possibly (but not necessarily) with a
multicore CPU, connected to multiple hardware accelerators through a fast interconnect. Processors in the
accelerator boards are passive elements that simply wait to be ordered what to do. The workstation RAM
(simply RAM from now on) and the memory in the accelerator boards are independent and no hardware
memory coherence mechanism is in place (though having one would certainly benefit our approach, as will
be reported in the experiments). Communication between the CPU and the accelerators is done via data
copies between memories. Communication between two accelerators is only possible through the RAM and
is handled by the CPU. This abstract model is general enough to accommodate a workstation connected to
a Tesla multi-GPU platform or containing multiple boards with Cell B.E. or ClearSpeed processors.

The SuperMatrix runtime computes the Cholesky factorization by executing the algorithm-by-blocks
in Figure 2 (left) in two stages, both executed at run time. During the analysis stage, a single thread
“executes” the algorithm code, but instead of computing operations immediately as they are encountered,
it simply annotates these in a queue of pending tasks. This happens inside the calls to FLA Chol unb var1,
FLA Trsm, FLA Syrk, and FLA Gemm encountered in the routines FLASH Chol by blocks var1, FLASH Trsm,
and FLASH Syrk. As operations are encountered in the code, tasks are enqueued, dependencies are identified,
and a DAG (directed acyclic graph) that contains all the dependencies among operations of the overall
problem is constructed. To illustrate the outcome of this first stage, the execution of the analysis when the
code in Figure 2 is used to factorize the 3× 3 blocked matrix

A →




Ā00 Ā01 Ā02

Ā10 Ā11 Ā12

Ā20 Ā21 Ā22


 , (1)
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Operation/Result In In/out

1. Ā00 := Chol(Ā00) Ā00
√

2. Ā10 := Ā10tril(Ā00)
−T

Ā00 Ā10
√

3. Ā20 := Ā20tril(Ā00)
−T

Ā00 Ā20
√

4. Ā11 := Ā11−Ā10ĀT
10 Ā10 Ā11

√

5. Ā21 := Ā21−Ā20ĀT
10 Ā20Ā10 Ā21

√

6. Ā22 := Ā22−Ā20ĀT
20 Ā20 Ā22

√

7. Ā11 := Chol(Ā11) Ā11

8. Ā21 := Ā21tril(Ā11)
−T

Ā11 Ā21

9. Ā22 := Ā22−Ā21ĀT
21 Ā21 Ā22

10. Ā22 := Chol(Ā22) Ā22

Figure 3: An illustration of the DAG resulting from the execution of the SuperMatrix analysis
stage for the Cholesky factorization of a 3 × 3 matrix of blocks in (1) using the algorithm-by-blocks
FLASH Chol by blocks var1. The “

√
”-marks denote those operands that are initially available (i.e., those

operands that are not dependent upon other operations).

results in the “DAG” implicitly contained in Figure 3.
Once the DAG is constructed, the dispatch stage commences. In the SuperMatrix runtime for mul-

tithreaded architectures, idle threads monitor the queue of pending tasks till they find a task ready for
execution (that is, an operation with all operands available), compute it, and upon completion, update the
dependency information in the queue. It is the part of the runtime system responsible for the execution of
this second stage that we tailor for multi-accelerator platforms as described next, while the part in charge
of the analysis remains unmodified.

Specifically, in our basic implementation we run as many threads in the CPU as accelerators are present
in the system. When a thread encounters a ready task, it copies the data associated with the operation to
the memory of the accelerator, orders it to compute the operation using the appropriate BLAS kernel, and
transfers the results back to RAM. We are exposing here a hybrid model of execution where the CPU is
responsible for scheduling tasks to the accelerators while tracking dependencies, and the accelerators perform
the actual computations. In this hybrid model, tasks that are considered not suitable for execution in the
accelerator (due, e.g., to their low complexity or the lack of the appropriate BLAS kernel) can be executed
in the CPU. (Hybrid CPU/GPU computation has been previously explored in [2, 3, 10, 34].) Given that the
major computational cost is performed by the accelerators in this scheme, the existence of multiple cores in
the CPU, though advisable, is not necessary.

This basic implementation incurs an undesirable high amount of data transfers between RAM and the
memories of the accelerators so that, unless the cost of communication is negligible, it will surely attain a
low practical performance (at this point, we encourage the reader to have a quick glimpse at the line labeled
as “Basic implementation” in Figure 4). In the following section we improve the mechanism by including
software cache and memory coherence techniques to reduce the number of transfers.

5 Improving the Performance

5.1 Cache and memory coherence

Standard policies in computer architecture to maintain the coherence between data in the cache of a processor
and the main memory are write-through (writes to data are immediately propagated to main memory) and
write-back (data in the main memory is updated only when the cache line where the modified data lie
is replaced) [22]. On shared-memory multiprocessors, policies to maintain coherence among the caches of
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Figure 4: Performance of the blocked algorithm for the Cholesky factorization in the NVIDIA Tesla S870.

the processors are write-update (writes to data by one of the processors are immediately propagated to the
copies in the caches of the remaining processors) and write-invalidate (writes to data by one of the processors
invalidate copies of that cache line in the remaining processors) [22].

These policies all aim at reducing the number of data transfers between the cache of the processors
and the main memory. Now, at a high level of abstraction, a shared-memory multiprocessor is similar to
a workstation connected to multiple accelerators. Each one of the accelerators is the equivalent of one
processor with the memory of the accelerator playing the role of the processor cache. The workstation RAM
is then the analog of the shared-memory in the multiprocessor. It is not surprising then that we can employ
software implementations of standard coherence policies to reduce the number of data transfers between the
memory of the accelerators and the RAM of the workstation.

5.2 Application to the multi-accelerator platform

The target platform used in the experiments was an NVIDIA Tesla S870 computing system with 4 NVIDIA
G80 GPUs and 6 GBytes of DDR3 memory (1.5 GBytes per GPU), which exhibits a theoretical peak per-
formance close to 1400 GFLOPS in single-precision (1 GFLOPS = 109 floating-point arithmetic operations,
or flops, per second). The Tesla system is connected to a workstation with one Intel Xeon QuadCore E5405
processor executing at 2.0 GHz with 9 GBytes of DDR2 RAM. The Intel 5400 chipset provides two PCI-
Express Gen2 interfaces, for a peak bandwidth of 48 Gbits/second on each interface, to connect with the
Tesla. NVIDIA CUBLAS (version 1.1) built on top of the CUDA API (version 1.1) together with NVIDIA
driver (171.05) were used in our tests.

When reporting the rate of computation, we consider the cost of the Cholesky factorization to be the
standard n3/3 flops for a square matrix of order n so that the GFLOPS rate is computed as n3/(3t× 10−9),
where t equals elapsed time in seconds. However, the actual number of flops in one of the variants that will
be evaluated is higher.

Figure 4 reports the performance of the blocked algorithm for the Cholesky factorization in Figure 2 (right)
using several variants of the SuperMatrix runtime system and tuned kernels for the G80 BLAS. Unless oth-
erwise stated, these enhancements are incremental so that a variant includes a new strategy plus those of all
previous ones. The following seven variants are evaluated:

A. Basic implementation: This variant corresponds to the implementation of the runtime system de-
scribed in Section 4. The Cholesky factorization of the diagonal blocks is computed in the cores of
the CPU while all remaining computations (matrix-matrix products, symmetric rank-k updates, and
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Ā00

Ā10 Ā11

Ā20 Ā21 Ā22

Ā30 Ā31 Ā32 Ā33


 →

G00

G10 G11

G00 G01 G00

G10 G11 G10 G11

Figure 5: Cyclic 2-D mapping of the blocks in the lower triangular part of a 4 × 4 blocked mapping to the
four G80 processors: G00, G10, G01, and G11.

triangular system solves) are performed in the G80 processors. FLASH provides transparent storage-
by-blocks for the data matrix with one level of hierarchy. The block size is adjusted experimentally.

B. 2-D + write-through: In order to improve data locality (and therefore reduce the costly data transfers
between the memory of the GPUs), workload is distributed following a cyclic 2-D mapping of the data
matrix to a 2 × 2 logical grid of the G80s; see Figure 5. (Bidimensional workload distribution in the
context of shared-memory multiprocessors has been previously investigated in [27].) In this scheme all
operations that compute results which overwrite a given block are mapped to the same G80 processor.
Thus, e.g., the updates Ā21 := Ā21 − Ā20Ā

T
10 and Ā21 := Ā21tril(Ā11)

−T are both performed in G01.
Blocks are thus classified from the viewpoint of a G80 processor into proprietary (owned and written
by it) and non-proprietary.

Initially all data blocks reside in the RAM and the memory of the GPUs is empty. When a task is to
be computed in a G80 processor, blocks which are not already there are copied to the GPU memory.
Proprietary blocks remain in that memory for the rest of the execution of the algorithm while non-
proprietary blocks are discarded as soon as the operation is completed. A write-through policy is
implemented in software to maintain the coherence between the proprietary blocks in the memory of
the GPU and the RAM so that any update of a proprietary block is immediately propagated to the
RAM. There is no need to maintain the coherence between the memory of the GPUs and the RAM
for non-proprietary blocks as these are read-only blocks. Following the previous example, when the
task which computes the update Ā21 := Ā21 − Ā20Ā

T
10 is to be computed at G01, blocks Ā21, Ā20, and

Ā10 are copied to the memory of this GPU; the update is computed and the new contents of Ā21 are
propagated to RAM. Block Ā21 then remains in the GPU memory while the contents of Ā20 and Ā10

are discarded. Latter, when Ā21 := Ā21tril(Ā11)
−T is to be computed, only Ā11 is copied to the GPU

memory as Ā21 is already there. Once this second update is computed, following the write-through
policy the updated contents of Ā21 are sent back to RAM and Ā11 is discarded.

Other workload distributions are easily supported by the runtime system and, more important, are
transparent to the developer of the algorithms.

C. Cache + write-invalidate: The previous strategy reduces the number of transfers between RAM and
GPU memory of blocks that are modified, but still produces a large amount of transfers of read-only
blocks. In this variant we implement a software cache of read-only blocks in each GPU memory to
maintain recently used blocks. With this mechanism in place, e.g., when G10 solves the linear systems
Ā10 := Ā10tril(Ā00)

−T and Ā30 := Ā30tril(Ā00)
−T, a copy of Ā00 is transferred from RAM to the

cache in the GPU memory before the first linear system is solved and remains there for the solution of
the second linear system, saving a second transfer.

To complement the cache system, when a task is completed, the thread in the CPU in charge of
its execution invalidates all read-only copies of that block in the memory of the “remaining” GPUs
(write-invalidate policy).

The replacement policy, currently LRU (least recently used first), and the number of blocks per cache
can be easily modified in the runtime system.
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D. Write-back: The purpose now is to reduce the number of transfers from the memory of the GPUs to
RAM that occur when (proprietary) blocks are updated by the G80 processors. For this, write-through
is abandoned in favor of a write-back policy which allows inconsistencies between proprietary blocks in
the memory of the GPUs and the RAM. Thus, blocks written by a G80 processor are updated in the
RAM only when a different G80 (or the GPU) is to compute with them. (Software cache for read-only
blocks and the write-invalidate policy are still in place.)

When the execution of the complete algorithm is terminated, the data matrix in the RAM must be
updated with the contents of the blocks that have been updated in the memory of the GPU.

E. Tuned Sgemm: The matrix-matrix multiplication kernel in CUBLAS 1.1 is replaced by an new imple-
mentation to appear in CUBLAS 2.0 and described in [34].

F. Tuned Ssyrk: The symmetric rank-k update kernel in CUBLAS 1.1 is replaced by our own implemen-
tation based on the tuned matrix-matrix product in CUBLAS 2.0.

G. Tuned Strsm: Triangular system solves are computed by first inverting the matrix in the CPU followed
by a matrix-matrix multiplication in the GPU. This alternative is proposed in [34] (in the context of the
LU factorization with partial pivoting) and incurs an extra useless number of flops that can be balanced
by the superior performance of the matrix-matrix multiply kernel. Whether this is an interesting option
depends on the performance of the kernels, the cost of communicating the data, and the problem size.

A careful analysis of the numerical stability of this option in the case of the Cholesky factorization
is also needed as, in general, solving a triangular linear system in this manner can lead to numerical
difficulties.

To put the results into perspective, in Figure 6 we compare the performance with that of optimized
implementations of the Cholesky factorization on current high-performance platforms. Single precision was
employed in all cases:

• spotrf on Intel Itanium: Multithreaded MKL 8.1 implementation of LAPACK routine spotrf exe-
cuted on a 1.5 GHz Intel Itanium2 processor.

• spotrf on SGI Altix 350: Multithreaded MKL 8.1 implementation of LAPACK routine spotrf exe-
cuted on a ccNUMA platform with 16 Intel Itanium2 processors at 1.5 GHz which share 32 GBytes of
RAM and connected via a SGI NUMAlink.
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• spotrf on Intel Xeon QuadCore: Multithreaded MKL 10.0 implementation of LAPACK routine spotrf
executed on a quad-core Xeon SMP workstation that is connected to the Tesla S870.

• AB on SGI Altix 350: Our algorithm-by-blocks linked with sequential BLAS in MKL on the the SGI
Altix 350.

• AB on NVIDIA Tesla S870: Our variant G of the algorithm-by-blocks on the Tesla platform (4 GPUs).

The results show that, on the SGI Altix 350, our algorithm-by-blocks clearly outperforms the highly tuned
implementations provided by MKL. On the other hand, the Tesla S870 combined with the algorithm-by-
blocks offers a remarkable GFLOPS rate when compared with the multithreaded architectures.

6 Conclusions

In this paper we have shown how separation of concerns leads to great flexibility while reducing complexity
when porting representative dense linear algebra algorithms to novel architectures. By separating the API for
coding algorithms-by-blocks, the part of the runtime system that builds a DAG of operations and tracks the
dependencies, and the part of the runtime system that executes operations with blocks, different scheduling
heuristics were shown to be easy to implement, allowing customization to what otherwise would have been
a very hostile environment: a workstation connected to a multi-GPU accelerator. The particular difficulty
of the setting is the fact that the local memory of the GPU is not shared with the host making it necessary
to carefully amortize the cost of data transfers.

While the experiments on the paper discuss specifically the multi-GPU NVIDIA Tesla system, the tech-
niques clearly are also applicable to a similar setting where a standard workstation is connected via a fast
network to multiple ClearSpeed boards or IBM Cell B.E. accelerators.

Remarkable rates of execution are demonstrated for the important Cholesky factorization operation.

Additional information

For additional information on FLAME visit http://www.cs.utexas.edu/users/flame/.
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