
Operating Systems Should Provide Transactions
Donald E. Porter, Indrajit Roy, Andrew Matsuoka, Emmett Witchel

Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712
{porterde,indrajit,matsuoka,witchel}@cs.utexas.edu

TR-08-30, June 17, 2008

Abstract
Operating systems can efficiently provide system

transactions to user applications, in which user-level pro-
cesses can execute a series of system calls atomically and
in isolation from other processes on the system. The ef-
fects of system calls performed during a system transac-
tion are not visible to the rest of the system (other threads
or hardware devices) until the transaction commits. This
paper describes TxOS, a variant of Linux 2.6.22, which
is the first operating system to implement system trans-
actions on commodity hardware with recent techniques
from the transactional memory literature. The paper
demonstrates that system transactions can solve prob-
lems in a wide range of domains, including security, iso-
lating extensions, and user-level transactional memory.
We also show that combining semantically lightweight
system calls to perform heavyweight operations can yield
better performance scalability: for example, enclosing
link and unlink within a system transaction outper-
forms rename on Linux by 14% at 8 CPUs.

1 Introduction

The challenge of system API design is finding a small
set of easily understood abstractions that compose nat-
urally and intuitively to solve diverse programming and
systems problems. Using the file system as the interface
for everything from data storage to character devices and
inter-process pipes is a classic triumph of the Unix API
that has enabled large and robust applications. We show
that system transactions are a similar, broadly applicable
abstraction: transactions belong in the system-call API.
Without system transactions, important functionality is
impossible or difficult to express.

System transactions allow a user to transactionally
group a sequence of system calls, for example guaran-
teeing that two writes to a file are either both seen by
a reader or neither are seen. System transactions pro-
vide atomicity (they either execute completely or not at
all) and isolation (in-progress results are not visible so
transactions can be serially ordered). The user can start
a system transaction with the sys xbegin()system
call, she can end a transaction with sys xend()and

abort it with sys xabort(). The kernel makes sure
that all system calls between an sys xbegin()and an
sys xend()execute transactionally.

This paper introduces TxOS, a variant of Linux 2.6.22
which supports system transactions on commodity hard-
ware. TxOS is the first operating system to support
transactions that allow any sequence of system calls to
execute atomically and in isolation. It is also the first
to apply current software transactional memory (STM)
techniques to system transaction implementation, which
make transactions more efficient and which allow a flex-
ible contention management policy among transactional
and non-transactional operations. This flexibility lets the
system balance scheduling and resource allocation be-
tween transactional and non-transactional operations.

We use TxOS to solve a variety of systems prob-
lems, indicating that system transactions deserve a
place in the system API. We demonstrate that system
transactions can eliminate time-of-check-to-time-of-use
(TOCTTOU) race conditions, they can isolate an appli-
cation from some misbehaviors in libraries or plugins,
and they allow user-level transactions to modify system
resources.

An important class of current security vulnerabil-
ities consist of time-of-check-to-time-of-use (TOCT-
TOU) race conditions. During a TOCTTOU attack, the
attacker changes the file system using symbolic links
while a victim (such as a setuid program) checks a par-
ticular file’s credentials and then uses it (e.g., writing the
file). Between the credential check and the use, the at-
tacker compromises security by redirecting the victim
to another file— perhaps a sensitive system file like the
password file. At the time of writing, a search of the U.S.
national vulnerability database for the term “symlink at-
tack” yields over 400 hits [30]. System transactions can
eliminate TOCTTOU race conditions. If the user starts a
system transaction before doing their system calls (e.g.,
an access and open), then the OS will guarantee that
the interpretation of the path name used in both calls will
not change during the transaction.

Having an API for transactions frees the system from
supporting complex semantics that have accrued in their
absence. For example, text editors [1] and source code
control systems [3] use the rename system call heavily

1



because of its strong atomicity and isolation properties—
renames either successfully complete or they leave no
trace of partial execution. Allowing the user to com-
bine semantically simple system calls, such as link and
unlink, within a transaction more clearly expresses his
intent, increases the performance scalability of the sys-
tem, and reduces the implementation complexity for the
operating system.

User-level transactions, such as those provided by a
transactional memory system, run into trouble if they
need to update system state. Such transactions cannot
simply make a system call, because doing so violates
their isolation guarantees. System transactions provide
a mechanism for the transactional update of system state
and in Section 3.4 we show how to coordinate user- and
system- level transactions into a seamless whole with full
transactional semantics.

In order to support system transactions, the kernel
must be able to isolate and undo updates to shared re-
sources. This adds latency to system calls, but we show
that it can be acceptably low (13%–327%) within a trans-
action, and 10% outside of a transaction). However, us-
ing system transactions can provide better performance
scalability than locks as we show with a web server in
Section 5.4, which uses transactions to increase through-
put 2× over a server that uses fine-grained locking.

This paper makes the following contributions:

• a new approach to implementating system trans-
actions on commodity hardware, which provides
strong atomicity and isolation guarantees with low
performance overhead, implemented in Linux 2.6.
• shows that semantically lightweight system calls

can be combined within a transaction to provide bet-
ter performance scalability and ease of implementa-
tion than complex system calls. Placing link and
unlink in a transaction outperforms rename on
Linux by 14% at 8 CPUs.
• demonstration of the use of system transactions to

avoid TOCTTOU races whose performance is su-
perior to the current state-of-the-art user-space tech-
nique [45].
• showing how system transactions can be used to re-

cover from some faults in software plugins and li-
braries with minimal performance overhead.
• showing how to maintain transactional semantics

for user-level transactions that modify system state.

The paper is organized as follows: Section 2 provides
background on each of the example problems that we ad-
dress with transactions. Section 3 describes the design of
operating system transactions within Linux and Section 4
provides implementation details. Section 5 evaluates the
system in the context of the target applications. Section 6
provides related work and Section 7 concludes.

2 Overview and motivation

This section defines system level transactions and ex-
plains how they can be used by applications. It then de-
scribes three case studies with system transactions. The
usage scenarios we choose demonstrate the applicabil-
ity and advantages of system transactions across a wide
range of systems problems.

2.1 System transactions

To describe system transactions, we must first make the
distinction between system state and application state.
Writes to the file system or forking a thread are actions
that update system state, whereas updates to the data
structures within an application’s address space represent
application state. System transactions are a novel and ef-
ficient way to provide the atomic and isolated access of
transactions to system state.

A complete transactional programming model must
provide an interface that is uniform with respect to both
system and application state. Several techniques for
supporting transactions that manage application state al-
ready exist, including transactional memory [19, 21] and
recoverable virtual memory [37, 39]. We show in Sec-
tion 3 that the operating system, by providing system
transactions, can coordinate with multiple implementa-
tions of application transactions, giving applications the
freedom to choose the best fit for their needs. For our
target applications, we use both software transactional
memory and an implementation of copy-on-write recov-
ery to provide application transactions.

In adding the support for system transactions to Linux,
we have focused on system calls related to the file sys-
tem. Transactions are implemented at the virtual file sys-
tem layer. This approach has the advantage of provid-
ing a transactional interface to non-transactional file sys-
tems. At transaction commit, all of the changes are ex-
posed to the file system at once, maintaining the safety
guarantees of the underlying file system.

System transactions, as described in this work, com-
mit their results to memory—the effects of a successful
system transaction are not necessarily written to stable
storage synchronously and may not survive a reboot if
they haven’t been written to stable storage. Many appli-
cations can benefit from transactional semantics of isola-
tion and atomicity without durability. For instance, a file
writer might want to make several updates to the contents
of a file without concurrent readers seeing any of the in-
dividual writes. However, the writing application might
be satisfied with the durability semantics of the underly-
ing file system and does not require that the file contents
be synced to disk at the conclusion of its update. While
durability would be useful for system transactions, it is
not necessary and thus deferred to future work.

2



Victim Attacker

if(access(’foo’)){
symlink(’secret’,’foo’);

fd=open(’foo’);
read(fd,...);
...

Victim Attacker

symlink(’secret’,’foo’);
sys xbegin();
if(access(’foo’))

fd=open(’foo’);
sys xend();

symlink(’secret’,’foo’);
if(fd >= 0){

read(fd,...);
...

Figure 1: An example of a TOCTTOU attack, and elim-
inating the race with system transactions. The attacker’s
symlink is serialized (ordered) either before or after the
transaction.

Previous research on incorporating transactional se-
mantics into the operating system has focused on com-
mitting file system state atomically with a database
transaction or cleaning up temporary state used in a
computation distributed over a local network [38, 43,
47]. Windows Vista features a transactional file sys-
tem [31], where file system operations can be transac-
tionally grouped. System transactions, by contrast, allow
any group of system calls to be grouped in a transaction
and are therefore a more general mechanism. For in-
stance, TxOS implements file-system transactions in the
Virtual File system layer, allowing a wide range of file
systems to support transactions with minimal change.

2.2 Transactions for security

A classic example of a concurrency vulnerability is the
time-of-check-to-time-of-use (TOCTTOU) attack. Its
most (in)famous instance is the access/open exploit
in the UNIX file system (illustrated in Figure 1) [7], but it
also manifests itself in temporary file creation and other
accesses to system resources. A TOCTTOU condition
occurs whenever there is a change—which may be forced
by a concurrent malicious process—to security-critical
data between the time it is checked as valid for use and
the time it is actually used. This vulnerability occurs
even on single-processor machines running commodity
operating systems due to the interleaved scheduling of
victim and attacker processes, but it is easier to exploit

int res = sys xbegin();
if(res == X OK){

...
invoke plugin
...

sys xend();
} else {

plugin faulted, continue execution
without plugin

}

Figure 2: Wrapping a plugin invocation with a transac-
tion for fault tolerance.

on platforms with multiple processors or cores.
The root cause of file system TOCTTOU races is the

presence of file names in system calls that check resource
permissions (or other attributes like stat()). An at-
tacker can make the same path name refer to different
underlying files in the file system (e.g., by using sym-
bolic links), thereby causing the victim’s check and use
system calls to refer to different files. While there are
many proposed solutions to this problem, Dean and Hu
showed that there is no portable, deterministic solution to
TOCTTOU vulnerabilities without changing the system
call interface [12].

The current best approaches to eliminating TOCT-
TOU races either operate at user level and increase the
probability of detecting the attack [45] or they force the
programmer to perform all checks within a single sys-
tem call (essentially an atomic action), or on an open file
descriptor (whose interpretation will not change like a
path name), or they remove the functionality altogether.
We propose eliminating TOCTTOU races with system
transactions, which provide a deterministic safety guar-
antee and restore a natural programming model (as seen
in Figure 1).

2.3 Isolating applications from libraries and plugins

Applications commonly extend their functionality by al-
lowing third parties to create small extensions consisting
of code and data that are loaded into the application’s
address space. This approach is popular because it sim-
plifies the interfaces between application and extension,
is familiar to programmers, and provides good perfor-
mance.

Unfortunately, loading extensions directly into the ap-
plication’s address space is not necessarily safe. A buggy
extension can corrupt application memory, causing the
entire program to crash, and possibly corrupting its data
on the disk. Transactions are one way to isolate applica-
tions from some failures in extensions or libraries with
minimal effort on the part of the application program-
mer. Transactions provide a straightforward mechanism

3



to checkpoint and roll back application and system state
if a fault is detected.

Figure 2 illustrates how calls to a plugin can be
wrapped inside of a transaction. For many plugins and
libraries, the extension can execute normally, oblivious
to the fact that it is being wrapped in a transaction. If an
error is detected while the plugin is executing, the appli-
cation aborts the transaction and the system roll backs to
the state checkpointed before the transaction began. The
sys xbegin()system call will return an error code,
signaling to the application that it should unload the ex-
tension.

Recovery from detected faults is well explored in the
literature [32, 40, 44, 49]; transactions provide the failure
atomicity that is a building block of these techniques. In
Section 5.3, we use a web browser to demonstrate how
non-critical functionality in a library can be isolated with
low overhead and minimal implementation effort.

2.4 System calls within TM

Transactional memory is an alternative to lock based pro-
gramming that provides a simpler programming model
than locking while maintaining good performance scala-
bility [19,21]. It is generally implemented either in hard-
ware (building on cache coherence) [15, 26] or in soft-
ware (as a library or extension to the JVM or other run-
time system) [13, 25].

One of the most troublesome limitations of transac-
tional memory systems is lack of support for system calls
within transactions. For example, the code in the top half
of Figure 3 will append buf to the end of /foo/bar an
arbitrary number of times when executed on current TM
systems, depending on how often the user-level transac-
tion has to abort and retry. Because transactional seman-
tics do not extend to the system call, there is no way to
rollback previous appends when the transactions retries.

The frequency and necessity of system calls in user
programs make it unlikely that excluding them from all
critical sections will ever yield a reasonable program-
ming model. A few TM systems allow the program-
mer to attempt to undo the results of system calls her-
self [27, 50]. In earlier work, we argue that the side ef-
fects of some system calls are far-flung and very difficult
to undo at the user level [20].

System transactions provide a mechanism that trans-
actional memory systems can use to safely allow sys-
tem calls within a transaction. When a TM application
performs an operation that makes a system call, the run-
time will begin a system transaction. Figure 3 provides
pseudo-code a software transactional memory system
might generate to incorporate system transactions into
user-level memory transactions and coordinate commit.
In this example, the transactional memory system han-
dles buffering and possibly rolling back the user’s mem-

x = 0;
atomic {

x = 5;
fd = open("/foo/bar", O APPEND);
write(fd, buf, n);
...

}

x = 0;
while(!committed) {

beginSTM Tx();
x = 5;
sys xbegin();
fd = open("/foo/bar", O APPEND);
write(fd, buf, n);
...
if prepareSTM Tx fails {

abort STM Tx;
sys xabort();
continue;

} else {
committed = sys xend();
if committed

commit STM Tx;
else

abort STM Tx;
}

}

Figure 3: An example to show how user and system
transactions are coordinated. The example code contains
system calls within a transactional memory critical re-
gion that an application developer might write, followed
by pseudocode for how an STM system could expand
the code to coordinate the user and system transactions.
sys xbegin() and sys xend() are system calls to
begin and end system transactions.

ory state, and the operating system buffers updates to the
file system. The updates to the file system are commit-
ted or aborted by the kernel atomically with the commit
or abort of the user-level transaction. The programmer
is freed from the complexity of implementation and need
only reason about transactions.

System transactions thus expand the transactional pro-
gramming model, enabling a larger class of applications
to use transactional memory. In Section 5, we evaluate
the use of system calls within a transactional web server
running on a Java STM system [35].

3 TxOS Design

This section outlines the design of system transactions in
TxOS, which is inspired by recent advances in software

4



Function Name Description
int sys xbegin (int
recover user)

Begin a transaction. If recover user is
true, OS saves user memory state and
automatically rolls back and restarts on
conflict.

int sys xend() End of transaction. Returns whether
commit succeeded.

void sys xabort
(int no restart)

Aborts a transaction. If the transaction
was started with recover user, setting
no restart rolls the transaction back but
does not restart it.

Table 1: TxOS API

transactional memory systems [5, 17, 21, 24]. In particu-
lar, we describe the user-level API for system transac-
tions, how isolation is preserved on kernel data struc-
tures, the mechanisms for conflict detection and resolu-
tion, and the coordination of user-level transactions with
system-level transactions.

3.1 Overview

A key design goal of TxOS is to expose system trans-
actions to the user without major modifications to ex-
isting code, allowing easy adoption by a variety of ap-
plications. TxOS achieves this by adding three sim-
ple but powerful system calls that manage transactional
state, shown in Table 1. sys xbegin() starts a system
transaction and sys xend() commits the transaction.
sys xabort() ends the transaction without commit-
ting the updates.

All system calls made within a transaction retain their
current interface. The only change required to use trans-
actions is enclosing the relevant code region with calls to
sys xbegin(), sys xabort(), and sys xend().
Placing system calls within a transaction changes the se-
mantics of when and how their results are published to
the rest of the system. Outside of a transaction, actions
on system resources are visible as soon as the relevant in-
ternal kernel locks are released. Within a transaction, all
updates are kept isolated until commit time, when they
are atomically published to the rest of the system.

Example. As an example, consider the TOCTTOU
race between the access() and the open() from Fig-
ure 1. System transactions eliminate this race if the pro-
grammer encloses these system calls in a transaction. By
starting a transaction, the user requires the kernel to force
conflicting operations to occur either before or after the
work within the transaction. The attacker’s attempt to in-
ject a symlink modifies a directory entry and inode that
the transaction is reading, and is a conflicting operation.
The symlink, therefore, must execute either before or af-
ter the (former) victim’s code.

3.2 Maintaining isolation

System transactions isolate the effects of system calls un-
til the transaction commits, and they undo the effects of
a transaction if it cannot complete. Specifically, system
transactions isolate the effects of system calls by isolat-
ing the effected kernel data structures directly. This iso-
lation is performed by adding a level of indirection in the
form of shadow or private copies of kernel data struc-
tures that are read or written within a transaction. The
technique of using shadow objects (called lazy version
management) is different from the traditional database
approach of updating in place and using undo logs to pro-
vide transactional semantics (called eager version man-
agement). For example, the first time a kernel object is
encountered within a transaction, a shadow copy is cre-
ated for the transaction. For the rest of the transaction,
this shadow object is used in place of the stable object.
This ensures that the transaction has a consistent view of
system state. When the transaction commits, updates to
shadow objects are copied to their stable counterpart.

In the rare case of a conflict, transactions must abort
and retry because they cannot be serialized with updates
made by other processes. If a transaction aborts, the
shadow copies of the kernel objects are simply discarded.
This is enough to ensure that the system is in a consistent
state. For the user program, TxOS provides the option to
roll back the user’s memory state, using the page tables to
save and restore the user’s virtual address space. How-
ever, user programs can be more efficient managers of
their state. For simple cases like Figure 1, the program-
mer can make a critical region whose memory state does
not need to be restored on a rollback. For multi-threaded
programs, a transactional memory system is a more natu-
ral fit for managing application state because it works at
a finer granularity (objects or memory stripes) than the
OS page tables.

Lazy version management is appropriate for the Linux
kernel because eager version management has two major
problems. First, the kernel must support real-time pro-
cesses and interrupt handlers that should not be forced
to wait on a failed transaction to undo its eager changes
to system state (recall that eager version management
writes the old data in an undo log). Second, maintain-
ing isolation on eager updates requires holding locks for
the duration of the transaction; system locks would need
to be held after a return from a system call but before the
transaction ends. Holding system locks while a thread
executes at user level can deadlock the kernel.

A key limitation of this approach is that all buffered
updates to kernel data structures must fit in memory.
In our prototype implementation, transactions that per-
form very large file writes, for instance, will determin-
istically fail if they overflow the available buffer space.
We believe that this can be ameliorated in most cases by

5



spilling the data to swap space or unallocated blocks of
the file system.

TxOS currently ensures isolation only within a sin-
gle system. Correctly isolating updates to a shared, dis-
tributed filesystem (e.g., NFS) would require extensions
to the protocol, which we defer to future work. Currently,
TxOS can buffer updates and send them to the server at
commit time, but cannot guarantee that they will be com-
mitted atomically or arbitrate conflicts with other servers.

3.3 Conflict detection and resolution

Transactions can conflict with other transactions or non-
transactional operations. For example, a process execut-
ing a transaction, which we call a transactional process or
transactional (kernel) thread, could be reading a file that
another, non-transactional process is trying to write. If
the write succeeds before the reader commits, the reader
no longer has a consistent view of system state and hence
cannot safely commit. Such conflicting situations must
be detected and resolved by the system. As we discuss
in the implementation section, TxOS detects conflicts by
having transactions register objects that they access in
a global hash table that is checked by transactional and
non-transactional threads.

Unlike most software transactional memory systems,
TxOS guarantees strong isolation1 which means that
not only are transactions serialized with each other,
they are also serialized with respect to non-transactional
operations. Strong isolation adds overhead to non-
transactional execution paths but is easier to reason about
if data is ever touched by both transactional and non-
transactional operations [25, 41]. For instance, strong
isolation prevents the roll back of a transaction from
overwriting a non-transactional update. The complexity
of execution paths within Linux makes strong isolation
necessary for a kernel developer to have any hope of rea-
soning about the system.

3.3.1 Contention Management

Once a conflict is detected between two transactions,
TxOS invokes the Contention Management module to
resolve the conflict. This module implements a policy
to arbitrate conflicts among transactions, dictating which
of the conflicting transactions may proceed to commit.
All other conflicting transactions must abort.

As a default policy, TxOS adopts the osprio policy
used in TxLinux [36], though there it was used for hard-
ware transactional memory rather than system transac-
tions. Osprio always selects the higher priority process
as the winner of a conflict, eliminating priority and policy
inversion in transactional conflicts. When processes with
the same priority conflict, the older transaction wins [33],
guaranteeing liveness within a given priority level.

1Also called strong atomicity.

3.3.2 Asymmetric conflicts

A conflict between a transactional and non-transactional
thread is called an asymmetric conflict [34]. Unlike
transactional threads, non-transactional threads cannot
be rolled back, so the system has fewer options when
dealing with these conflicts. However, it is important
for TxOS to have the freedom to resolve an asymmet-
ric conflict in favor of either the transactional or non-
transactional thread (most of the time); otherwise asym-
metric conflicts will undermine fairness in the system,
perhaps starving transactions.

While non-transactional threads cannot be rolled back,
they can (often) be preempted, which allows them to lose
conflicts with transactional threads. Kernel preemption
is a recent feature of Linux that allows processes to be
preemptively descheduled while executing system calls
inside the kernel, unless they are inside of certain crit-
ical regions. In TxOS, non-transactional threads detect
conflicts with transactional threads before they actually
update state, usually when they grab a lock for a ker-
nel data structure. A non-transactional thread can sim-
ply deschedule itself if it loses a conflict and is in a pre-
emptible state. If a non-transactional, non-preemptible
process aborts a transaction too many times, the kernel
can still prevent it from starving the transaction. The ker-
nel places the non-transactional process on a wait queue
the next time it makes a system call and only wakes it up
after the transaction commits.

Within Linux, a kernel thread can be preempted if it
is not holding a spinlock and it is not in an interrupt
handler. TxOS has the additional restriction that it will
not preempt a thread that holds one or more mutexes (or
semaphores) because that risks deadlock with the com-
mitting transaction which might need that lock to com-
mit. By using kernel preemption and lazy version man-
agement, TxOS has more flexibility to coordinate trans-
actional and non-transactional threads than was possible
in previous transaction systems.

3.4 Coordinating User and System
Transactions

When a user-level TM uses system transactions, some
care is required to ensure that the two transactions com-
mit atomically: either they both commit at a single seri-
alization point or they both roll back.

3.4.1 Lock-based STM requirements

For a lock-based STM to coordinate commit with TxOS,
we use a simplified variant of the two-phase commit pro-
tocol (2PC) [14]. The TxOS commit consists of the fol-
lowing steps (also depicted in Figure 3).

1. the user prepares a transaction
2. the user requests that the system commit the trans-

action through the sys xend()system call

6



3. the system commits or aborts, and
4. communicates the outcome to the user through the

sys xend()return code
5. the user commits or aborts in accordance with the

outcome of the system transaction
This protocol naturally follows the flow of control be-

tween the user and kernel, but requires the user trans-
action system to support the prepared state. We define
a prepared transaction as being finished (it will add no
more data to its working set), safe to commit (it has not
currently lost any conflicts with other threads), and guar-
anteed to remain able to commit (it will win all future
conflicts). In other words, once a transaction is prepared,
another thread must stall or rollback if it tries to per-
form a conflicting operation. In a system that uses locks
to protect commit, prepare is accomplished by simply
holding all of the locks required for commit during the
sys xend()call. On a successful commit, the system
commits its state before the user, but any competing ac-
cesses to the shared state is serialized after the user com-
mit.

Alternatively, the kernel could prepare first. TxOS
does not do this because it incurs the overhead of ad-
ditional kernel crossings, and would require the kernel to
exclude all other processes from prepared resources un-
til the user releases them. Such exclusion is untenable
from a security perspective, as it could lead to buggy or
malicious users monopolizing system resources.

3.4.2 HTM and obstruction-free STM requirements

Hardware transactional memory (HTM) and obstruction-
free STM systems [18] use a single instruction (xend
and compare-and-swap, respectively), to perform their
commits. For these systems, a prepare stage is unnec-
essary. A more appropriate commit protocol is for the
kernel to issue the commit instruction on behalf of the
user once the kernel has validated its workset. Both the
system and user level transaction now commit or abort
depending upon the result of this specific commit instruc-
tion.

For hardware transactional memory support, TxOS
also requires that the hardware allow the kernel to sus-
pend user-initialized transactions. Every HTM proposal
that supports an OS [26, 36, 50] contains the ability to
suspend user-initiated transactions so that user and ker-
nel addresses do not enter the same hardware transaction
(doing so would create a security vulnerability in most
HTM proposals).

TxOS runs on commodity hardware and does not re-
quire any special HTM support. It is plausible that per-
formance could be improved using hardware assistance
similar to recent proposals [11, 42]. We leave this ques-
tion for future work.

Data Structure Description
Transaction Pointed to by user area

(task struct), it stores transac-
tional metadata and statistics.

ConflictTable Stores entries for all kernel objects that
are in any transaction’s working set.
Used for conflict detection.

Table 2: Main data structures used by TxOS to manage
kernel transactions.

4 Implementation

System transactions in Linux add roughly 2,600 lines of
code for transaction management, 4,000 lines for object
management, and 500 lines for checkpointing user state.
TxOS also requires about 2,500 lines of changes to redi-
rect pointers to shadow objects when executing within a
transaction and to insert checks for asymmetric conflicts
when executing non-transactionally. The changes were
largely in the virtual file system, memory management,
and scheduling code.

TxOS modified the following Linux data structures
to be able to participate in transactions (described in
more detail by Bovet and Cesati [9]): inode, dentry,
super block, file, vfsmount, list head, and
hlist head. These are file system data structures, the
kernel linked list and hash table implementations. These
data structures are modified during essential file sys-
tem operations such as open(), read(), write(),
link(), unlink(), and close().

4.1 Managing transaction state

In order to manage transactional state, we added two ma-
jor data structures, the transaction object and the Con-
flictTable (see Table 2). The transaction object (shown
in Figure 4) is pointed to by the kernel thread’s control
block (the task struct in Linux). A process can have
at most one active transaction, though transactions can
flat nest (all nested transactions are rolled into the en-
closing transaction).

The fields of the transaction object are summarized
in Figure 4. The transaction includes a status word
(tx status) that can be atomically updated by another
thread that wins a conflict with it. The status word is
checked by the transaction when attempting to add a new
shadow object to its workset and checked before commit.
The workset hashtable tracks the transaction’s shadow
objects.

The transaction stores a start timestamp
(tx start time) that is used to arbitrate con-
flicts in favor of the older transaction. Non-transactional
system calls also acquire a timestamp for fair con-
tention with transactions. The retry count field

7



struct transaction {
// live, aborted, inactive
atomic_t tx_status;
// timestamp for contention management
uint64 tx_start_time;
uint32 retry_count;
//register state at beginning of tx
struct pt_regs *checkpointed_registers;
// If recover_user is true, make addr.
// space copy-on-write and save
// writeable page table entries.
pte_list *checkpointed_ptes;
// Used for conflict detection

workset_hlist *workset_hashtable;
// operations deferred until commit

deferred_ops;
// ops that must be undone at abort

undo_ops;
}

Figure 4: Data contained in a system transaction object,
which is pointed to by the user area (task struct).

stores the number of times the transaction has aborted.
The checkpointed registers field stores the
register state on the stack at the beginning of the
sys xbegin()(if recover user is selected), or the
beginning of the current system call otherwise.

The checkpointed ptes field stores a check-
point of the user’s memory state, if requested. If the
recover user option is selected, the user’s address
space is set to copy-on-write and all page faults place
a copy of the page in an undo log. These fields allow
the kernel to restore user state after a transaction abort.
In order to minimize page faults, we pre-copy the user’s
stack when the transaction starts, and restore the write
bits where appropriate upon commit.

There are certain operations that a transaction must de-
fer until it commits, such as freeing memory and deliver-
ing dnotify events. The deferred ops field stores
these events in a representation optimized for the small
number of these events that are common in our work-
loads. Similarly, there are operations that must be un-
done if a transaction is aborted, such as releasing locks it
holds and freeing memory it allocates. These are stored
in the undo ops field.

The workset of a transaction is a private hashtable that
stores references to all of the objects for which the trans-
action has private copies. Each entry in the workset con-
tains a pointer to the stable object, the shadow copy,
whether the object is read-only or read-write, and a set
of type-specific methods (commit, abort, lock, unlock,
release). When a transaction adds an object to its work-
set, it increments the reference count on the stable copy.

This prevents the object from being unexpectedly freed
while the transaction still has an active reference to it.

4.2 Conflict detection

The second major data structure in TxOS is the Conflict-
Table, a global hash table of object references, which is
used to detect conflicts. Each entry in the table stores a
reference to a stable object as well as a list of non-aborted
transactions that are using the object.

TxOS adds code to every system call processing path
to check the ConflictTable. Both transactional and non-
transaction threads must check the table to detect con-
flicts and asymmetric conflicts, respectively. Sometimes
TxOS adds checks of the ConflictTable to calls that al-
ready exist (like those that lock objects for update), and
some calls were added manually (like those in the list
manipulation routines). Buckets in the ConflictTable
must be locked by both conflict detection and transac-
tion commit to maintain data structure consistency, so
the ConflictTable must have enough hash buckets and a
good hash function to avoid becoming a central bottle-
neck. For our workloads, we found 512 buckets to be a
reasonable balance between space efficiency and concur-
rency.

When a process wishes to access a kernel object for
the first time, it hashes the pointer, locks the appropriate
ConflictTable bucket and checks for a corresponding en-
try. If an entry is found with a conflicting mode (i.e. it
is being written by the transaction or the current thread
wishes to write it), there is a conflict and the thread calls
the contention manager to arbitrate the conflict. The con-
tention manager updates the tx status field of the los-
ing transaction to ABORTED.

4.3 Leveraging semantics

Most transaction implementations (including most trans-
actional memory proposals) serialize transactions on the
basis of simple read/write conflicts. A datum cannot be
accessed by multiple transactions if at least one of the
accesses is a write. However, many kernel data struc-
tures have lax semantics where multiple writes are not
conflicts.

TxOS contains special cases where writes are not con-
sidered conflicts or they are deferred to increase concur-
rency on kernel objects. Modifying a reference count
does not cause a transaction to be considered a writer of
an object. Similarly, there are fields in common file sys-
tem objects used by threads in the kernel memory man-
agement system (kswapd) to reclaim memory used to
cache file system data. We allow kswapd to freely mod-
ify these fields when they do not interfere with a trans-
action (e.g., moving a dentry to the back of an LRU list).
Finally, the access time on an inode is updated at commit
time instead of when the access occurs.

8



4.4 Lock ordering

Transactional systems that update in place (eager version
management), like most databases, implement transac-
tional isolation by simply retaining all acquired locks
until the end of the transaction. Deadlock avoidance is
difficult for these systems because independent opera-
tions are composed to form a transaction. Each opera-
tion needs its own set of locks. When the first opera-
tion acquires a lock, it does not know if a later opera-
tion will need a lock that precedes it in the global lock
order. Database implementations typically do not order
all locks; instead they handle deadlocks by timing out
transactions, which are then aborted, randomly backed-
off, and retried.

TxOS uses lazy versioning, so it releases locks on ob-
jects as soon as it makes a private copy. Because the
system retains a consistent, private copy of the object,
it elides all subsequent lock acquires on the object, off-
setting some synchronization costs. However, all objects
must be locked during commit. Because TxOS knows
the objects present in the committing transaction’s work-
ing set, it can lock them in an order consistent with
the kernel’s locking discipline (i.e., by kernel virtual ad-
dress).

4.5 Commit protocol

When a system transaction calls sys xend(), it is
ready to begin the commit protocol. The first step is to
acquire all of the locks protecting objects in its workset
and the conflict detection table, performed in the follow-
ing order:

1. Sorts the workset in accordance with the locking
discipline (kernel virtual address).

2. Acquires all blocking locks on written objects in its
workset.

3. Acquires any needed global locks (e.g., the
dcache lock).

4. Acquires all non-blocking locks on written objects
in its workset.

5. Acquires the appropriate bucket locks on the Con-
flictTable.

After acquiring all locks, the transaction does a fi-
nal check of its status word. If it has not been set to
ABORTED by any transaction at this point, then the
transaction can successfully commit. It holds all relevant
locks in the ConflictTable, thereby excluding any trans-
actional or non-transactional threads that would compete
for the same objects. TxOS only locks written objects,
as it does not need to update state in most read objects
(except for states with loose consistency requirements,
discussed in Section 4.3).

The flow of the commit protocol is shown in Fig-
ure 5. After acquiring all necessary locks, the transaction
copies its updates to the stable objects. The locks are then

released in the opposite order they were acquired. Be-
tween releasing spinlocks and mutexes, the transaction
performs deferred operations.

Note that TxOS is careful to acquire blocking locks
before spinlocks. This is because acquiring (or releasing)
a mutex or semaphore can cause a process to sleep, and
sleeping with a held spinlock can deadlock the system.

4.6 Abort Protocol

If a transaction detects that it loses a conflict, either by
checking its status word while trying to commit or add
an object to its workset, or by losing a conflict that it de-
tected, it must abort. The abort protocol is similar to the
commit protocol, but simpler because it does not update
stable objects; it only acquires the appropriate bucket
locks on the ConflictTable.

If the transaction is holding any locks, it first releases
them to avoid stalling other processes. The transaction
then removes its remaining entries from the conflict ta-
ble, allowing other transactions to access those objects.
It then frees its shadow objects and decrements the refer-
ence count on their stable counterparts. The transaction
then walks its undo log to release any other resources,
such as memory allocated within the transaction. If the
transaction is responsible for recovering user memory, it
restores the user-level checkpoint.

If the transaction is aborted midway through a system
call, it restores the register state and jumps back to the
top of the stack (like the C library function longjmp).
Initially we attempted to unwind the stack by returning
from each frame and checking return codes, but this was
difficult to program. There are simply too many places to
check for invalid objects or error conditions, and missing
any of them compromises the correctness of the system.
Because a transaction can be holding a lock or other re-
sources when it aborts, supporting the longjmp-style
abort involves a small overhead to track certain events
within a transaction so that they can be cleaned up on
abort.

5 Evaluation

This section evaluates the performance and behavior of
TxOS for our case studies: eliminating TOCTTOU races,
scalable atomic operations, tolerating library crashes,
and integration with software transactional memory.

All of our experiments were performed on a Dell Pow-
erEdge 2900 server with 2 quadcore Intel X5355 proces-
sors (total of 8 cores) running at 2.66 GHz. The machine
has 4 GB of RAM and a 300 GB SAS drive running
at 10,000 RPM. TxOS is compared against an unmod-
ified Linux kernel, version 2.6.22.6—the same version
extended to create TxOS .

9



Conflict Table

...

57

Stable
Inode

Workset Hash Table

Workset Entry

Tx A

57
Shadow
Inode

...

Conflict Table

...

57

Stable
Inode

Workset Hash Table

Workset Entry

Tx A

57
Shadow
Inode

...

Lock Objects and 
TxHash Entries

Copy Updates to 
Stable Objects

Conflict Table

...

57

Stable
Inode

Workset Hash Table

Tx A

...

Unlock and Free
Tx Objects

Figure 5: The major steps involved in committing Transaction A with inode 57 in its workset. The commit code first
locks the inode and the ConflictTable bucket that the inode’s pointer hashes to. It then copies the updates from the
shadow inode to the stable inode. Finally, Transaction A frees the resources used for the transactional bookkeeping
and unlocks the inode and ConflictTable bucket.

5.1 Withstanding TOCTTOU attacks

Tsafrir et al. provide the current best solution for with-
standing TOCTTOU attacks by resolving pathnames in
userspace and stat-ing each component of the path k
times [45]. This technique increases the probability of
safe execution, whereas transactions provide a determin-
istic safety guarantee.

Figure 6 shows the time required to perform an
access/open check as the number of directories in the
path name increase. Because of the extra work involved
in checking each portion of the path in Tsafrir’s tech-
nique, performance does not scale well with path length.
TxOS has better absolute performance than the Tsafrir
technique, and it has better scaling behavior. Its perfor-
mance is statistically identical to unmodified Linux. In
this case, the user pays nothing to guarantee the elimina-
tion of TOCTTOU races.

To simulate an attack, we downloaded the attacker
used by Borisov et al. [8] to defeat Dean and Hu’s prob-
abilistic countermeasure [12]. This attack code creates
memory pressure on the file system cache to force the
victim to deschedule for disk I/O, thereby lengthening
the amount of time spent between checking the path
name and using it, which allows the attacker to win
nearly every time. The attacker uses the access time
(atime) on a long maze of symbolic links to infer the
progress of the victim.

Both TxOS and Tsafrir’s technique successfully re-
sist the attacker. Tsafrir’s technique detects an inconsis-
tent stat before it completes the check and exits early.
The attack is foiled, but the victim is unable to proceed.
TxOS reads a consistent view of the directory structure

and opens the correct file. Because the attacker’s attempt
to interpose a symbolic link creates a conflicting update
that occurs after the transactional access check starts,
TxOS puts the attacker to sleep on the asymmetric con-
flict. The execution time under attack for the Tsafrir
countermeasure is 3.00 seconds, whereas the transac-
tional access/open takes 4.33 seconds. These num-
bers are skewed in Tsafrir’s favor because Tsafrir’s tech-
nique simply stops once it detects an attack, whereas
TxOS correctly completes the operation and thus per-
forms more work.

Transactions provide deterministic safety guarantees
and better performance in the common, non-attack case
than the current best solution for withstanding TOCT-
TOU attacks.

5.2 Scalable System Calls

Over the years, system calls like rename and open
have been used as ad hoc solutions for the lack of a
general-purpose atomic actions. As a result of these sys-
tem calls becoming semantically heavy, the implemen-
tations become complex and don’t scale. In particular,
rename has to serialize all cross-directory renames on
a file system mutex because finer-grained locking would
be complex and would risk deadlock.

Transactions allow simpler, semantically lighter sys-
tem calls to be combined to perform heavier weight op-
erations. Figure 7 compares the unmodified Linux im-
plementation of rename to calling sys xbegin(),
link, unlink, and sys xend()in TxOS. In this
microbenchmark, we divide 500,000 cross-directory re-
names across a number of threads. Although our trans-
actional link/unlink has a higher single-thread over-

10



Figure 6: Time to run a simple program that performs
an access/open check for increasing path length (lower is
better). We present unmodified Linux as a baseline (de-
spite not withstanding a TOCTTOU attack), which over-
laps with the line for TxOS . TxOS provides determin-
istic safety against TOCTTOU, whereas Tsafrir’s tech-
nique provides only increased probability of success.

head than rename (due largely to an immature im-
plementation), we quickly recover the performance at
higher CPU counts, out-performing rename by 14%.

The performance of link and unlink in a system
transaction indicates that combining semantically light
system calls within a transaction can yield better perfor-
mance scalability and a simpler implementation.

5.3 Tolerating Faults

In order to demonstrate how an application can use sys-
tem transactions to detect a fault and recover, we added
transactions to Lynx 2.8.6 [2], a console-based web
browser. Like most other browsers, Lynx allows web-
sites to send compressed html to save bandwidth, calling
a third party library, zlib [4], to unzip the html. But li-
braries can have vulnerabilities, and zlib has a double
free corruption bug in version 1.1.3 [10]. If Lynx is
linked with zlib 1.1.3, a malicious web server can send
a gzipped html file exploiting the zlib bug, causing Lynx
to crash.

Fortunately, by simply wrapping calls to zlib inside
a transaction (see Figure 2), Lynx can tolerate faults in
zlib. Lynx writes gzipped web pages to a temporary file
and then unzips the file and renders it. Before the un-
zip call, we add code to start a user transaction and also
install a SIGABRT signal handler. The libc malloc im-
plementation raises a SIGABRT when it detects mem-
ory corruption. If the user visits a compressed webpage
that triggers the zlib bug, the signal handler simply aborts
the transaction which uses TxOS’ recover user copy-on-

Figure 7: Time to perform 500,000 renames divided
across a number of threads (lower is better). TxOS im-
plements its renames as calls to sys xbegin(), link,
unlink, and sys xend(), using 4 system calls for ev-
ery Linux rename call. Despite higher single-threaded
overhead, due in large part to an immature implemen-
tation, TxOS provides better scalability, outperforming
Linux by 14% at 8 processors.

write mechanism to roll back the application state to be-
fore the unzip began. The browser can then display an
error message rather than crashing. The user can then
continue to run the same instance of Lynx, and since all
transactional state is rolled back, does not need to worry
about corruptions to the underlying file system or other
system state.

System transactions are necessary for Lynx because
the zlib library makes the system calls to read the file be-
ing unzipped. The zlib library changes both application
and system state. In this case TxOS manages the rollback
for both.

In our test case, the overall cost of isolation is
quite small. Table 3 shows that when reading small
files (2KB), wrapping the decompression code in a
transaction incurs a 7% performance overhead com-
pared with the unprotected version. This difference
is approximately equal to executing an empty transac-
tion (an sys xbegin()followed immediately by an
sys xend(), which takes 243K cycles). When open-
ing larger files (190KB), the transactional overhead of
the unzip shrinks to 1%. As Lynx performs many oper-
ations other than decompression to display a web page,
the end-to-end latency increase for displaying both web
pages is less than 1%.

This level of performance overhead demonstrates that
isolating a library in transactions is a simple and practical
way to tolerate common faults.

11



Operation Non-TX TX Over-
head

End to
end

unzip 2KB 3.80M 4.07M 7.37% <1%
unzip 190KB 138M 140M 1.03% <1%

Table 3: Cycle cost of wrapping an unzip operation in
a transaction for a file containing html text. End to end
is the increase vs the cost of fetching, unzipping, and
loading a webpage. All values are the average of 8 runs.

5.4 STM with system calls

In this section we evaluate the integration of a Java based
software transactional memory system (DATM-J [35]),
with system transactions. We extended DATM-J to use
the system call API provided by TxOS. The only mod-
ification to the STM is to follow the commit protocol
as outlined in Section 3.4 when committing a user level
transaction that invokes a system call.

We use Tornado, a multi-threaded web server publicly
available on sourceforge, to show the benefits of using
system transactions in conjunction with an STM. In Tor-
nado, clients connect to the server and make requests to
read or write data to files hosted on the server. Tornado
has front end threads that listen to ports and puts incom-
ing connections in a work list. The work list is serviced
by backend threads from a thread pool. Accesses to this
list can be made thread safe by either using an STM or
by using locks.

Since multiple clients may be reading or writing to the
same file, file access must be serialized. Serialization
prevents a read that is concurrent with a write from see-
ing garbled data in the file, and prevents multiple writers
from corrupting a file. A coarse-grained locking strat-
egy would acquire a read-write lock on the directory that
contains these files (a read-write lock allows concurrent
readers). A single lock is simple but may restrict con-
currency and hinder performance. Fine-grained locking
may perform better by using a read-write lock for each
file. Multiple locks is more complex and requires lock
ordering to avoid deadlock, but should improve perfor-
mance.

System transactions on the other hand are able to pro-
vide good performance without the subtleties of fine-
grained locking. Current STMs cannot be used in this
scenario as it requires making system calls within a user
level transaction to read and write file data.

In our experiments we compare a version of Tornado
that uses locks to the one that uses DATM-J and system
transactions. The coarse-grained locking case uses a sin-
gle reader-writer lock on the directory serving the files,
while the fine-grained case uses per-file locks. Both these
variants run on unmodified Linux. Requests are random,

1 2 3 4 5 6 7
0

500

1000

1500

2000

2500

3000

Number of Server Threads

R
eq

ue
st

s 
S

er
ve

d 
pe

r 
se

c.

 

 

STM+ System Tx
Fine Grained Locking
Coarse Locking

Figure 8: Requests served by the Tornado server when
using DATM-J with system transactions versus locks.

System Call Baseline Transaction Overhead
access 2,005 8,572 327%
open 665 781 17%
read 373 427 14%
write 375 431 17%
link 3,270 12,964 296%

Table 4: Execution time in processor cycles of common
system calls on unmodified Linux and on TxOS within a
transaction.

with 80% of them reads and the remaining 20% writes.
Each client makes a request for one of the four files in a
single directory. Figure 8 shows that the STM version
outperforms locks as the number of server threads in-
crease. While fine-grained locking outperforms coarse-
grained locking, neither scale performance with more
processors.

In terms of absolute performance, transactions scale
better than locks because they allow more threads to con-
currently access the file system than locks safely can.
The STM version performs up to 4.5× better than coarse
grained locking and up to 2× better than fine-grained
locking. As the number of server threads increase, the
STM version incurs more aborts. For example, the sys-
tem transaction aborts rise from 5 to 49 as the number of
threads is increased from 2 to 7. These aborts represent
points where concurrent accesses must be serialized by
the runtime system.

5.5 Transaction Overhead

Table 4 shows the average execution times of common
file system operations, both alone and within a transac-
tion. For these experiments, we disabled user-level re-

12



covery to focus on the cost overhead for a single system
call. Overheads are variable, but quite acceptable on the
lower end (13% for read and 16% for write). The
higher overhead on calls such as link reflects the fact
that less tuning effort has been applied to these system
calls, there is nothing inherent that prevents the over-
heads for all of the system call from being less than
∼25%.

A key performance concern for TxOS is the perfor-
mance overhead of detecting asymmetric conflicts that is
imposed upon non-conflicting, non-transactional appli-
cations. In our experience, this has not been a problem
because ConflictTable lookups can be elided if the ob-
ject has no transactional references. We measured the
performance overhead of these checks on a microbench-
mark which searches /etc (containing 1,887 files and
8.9MB data) for a string which is not found. On unmodi-
fied Linux, this takes 2.200s, whereas on TxOS this takes
2.429s, an overhead of 10%.

6 Related Work

We distinguish system transactions from previous re-
search in OS transactions, journaling file systems, trans-
actional file systems, Speculator, and transactional mem-
ory.
OS transactions. Locus [47] and QuickSilver [16, 38]
are historical systems that provide some system support
for transactions. The primary goal of these systems is
committing file writes atomically with distributed trans-
actions. To get good performance, however, they com-
promise their isolation semantics. Neither system re-
tains locks on directories, allowing directory contents to
change during a transaction. This introduces the pos-
sibility of a time-of-check-to-time-of-use (TOCTTOU)
race condition. Coordination with user-level transactions
(Section 3.4) is another TxOS feature that requires full
isolation, which is not provided by either historical sys-
tem.

These systems also use two phase locking and eager
version management. Locking kernel data structures for
the duration of a user transaction can deadlock: two
transactions simply acquire the same resources in op-
posite order. Locus does not detect deadlock (but does
allow pluggable detection mechanisms), and Quicksilver
times out long-running transactions. Timeouts can starve
long-running transactions. TxOS does not have to resort
to timing out because it uses lazy version management,
thus it does not hold locks across system calls. It only
holds locks long enough to copy objects and always ac-
quires them in an ordered fashion.

Finally, Quicksilver does not support strong isola-
tion (Section 3.3), and hence does not necessarily se-
rialize non-transactional operations with transactional

operations. Locus allows for transactional and non-
transactional applications to access the same data, but
requires an explicit commit by the non-transactional
thread. Uncommitted, non-transactional records are
committed by the next transaction to access the data. It is
unclear what happens to such a record if the subsequent
transaction aborts. The current STM literature shows a
number of situations that lead to data structure corruption
when strong isolation is not provided [25, 41]. Because
TxOS allows transactional and non-transactional updates
to kernel data structures, it must provide strong isolation
lest the kernel data structures become corrupted.
Journaling file systems. Journaling file systems like
ext3 [46] ensure that individual file system actions, like
rename, are atomic. A rename failure on ext2 can leave
evidence of the new file name. The journal ensures that
there are no partial results for individual operations. Sys-
tem transactions allow multiple operations on system re-
sources (not just files).
Transactional file systems. Microsoft Windows Vista
has TxF [31], a transactional file system, and transac-
tional file systems have been suggested for Linux, like
Amino [48]. These systems allow the grouping of mul-
tiple operations on files into transactions, unlike journal-
ing file systems, and both should be able to eliminate
TOCTTOU races. However, Amino presupposes a con-
ventional file system that lies outside of the transaction
system. The OS boots on a traditional file system which
also stores the database which provides Amino’s trans-
actional file system. Updates made by system daemons
to system directories are not seen by Amino. TxOS pro-
vides transactions at the VFS layer, which enables our
implementation to work for ext2, proc and tmpfs. TxF
is part of NTFS, and would not enable transactions on
e.g., a FAT file system. System transactions allow the
grouping of non-file system system calls in a transaction
so a program could e.g., write a log record and send a
signal atomically. Such a facility is not possible with a
transactional file system.
Distributed transactions. A number of systems, in-
cluding TABS [43], Argus [22,23], and Sinfonia [6] pro-
vide support for distributed transactional applications at
the language or library level. These papers make im-
portant contributions to developing the transactional pro-
gramming model. Because transactions are implemented
at user-level, however, they cannot isolate system re-
sources, whereas TxOS can.
Speculator. Speculator applies to the operating sys-
tem an isolation and rollback mechanism very simi-
lar to transactions, allowing the system to speculate
past high-latency remote file system operations [28, 29].
Speculator only buffers speculative state in the ker-
nel, whereas TxOS provides transactional semantics to
users. TxOS arbitrates among transactional and non-

13



transactional threads and integrates with user-level trans-
actions, both of which are not part of Speculator.
Transactional memory. System transactions borrow
implementation techniques from software transactional
memory systems. TxOS is orthogonal to our previous
work on TxLinux, which used hardware transactional
memory (HTM) as a synchronization technique within
the Linux kernel [34,36]. TxOS could use HTM for syn-
chronization, but the point of the system is to expose
transactions in the system call API. TxOS runs on cur-
rently available hardware, though future work might im-
prove performance by using hybrid transactional mem-
ory mechanisms [11, 42].

6.1 Future work

This paper focuses on transactional support for system
calls that operate on the file system, as this is one of the
more natural fits for the transaction programming model.
There are portions of the system such as the networking
and graphical display utilities where interaction with an
external entity (e.g., another server or the desktop user)
may be required within a transaction. The correct se-
mantics for system transactions is unclear. Deferring all
output until commit is a classic approach to this problem,
yet some systems have allowed these round-trip commu-
nications within transactions [38, 43], with the require-
ment that the other end be able to tolerate inconsistencies
introduced by a transaction restarting. We plan to investi-
gate this issue in future work as we gain more experience
with transactional programming in TxOS.

We also plan to explore several additional target appli-
cations in future work, including the interaction of trans-
actions and scheduling to support multi-process transac-
tions for applications such as shell scripts. We also be-
lieve the latency hiding techniques from Speculator [28]
and xsyncfs [29] will directly apply to TxOS, allowing
TxOS to mask the cost of the synchronous writes re-
quired to support durability. Finally, transactions can be
used to enforce system security policies by inspecting the
working set of a transaction at commit time to insure that
it has not inadvertently accessed a protected resource.

The object versioning, rollback, and isolation mech-
anisms used to implement system transactions also pro-
vide a useful platform for OS research. At a high level,
many good ideas from recent systems conferences re-
quire custom variants of these mechanisms, including
Speculator [28] and Rx [32]. We believe that generaliz-
ing TxOS to reimplement some of these ideas will make
it a strong platform for future systems research.

7 Conclusion

This paper demonstrates that system transactions pro-
vide a powerful abstraction by efficiently addressing a

wide range of programming challenges. Adding effi-
cient transactions to the Linux system call API makes
programming easier, more secure, and increases perfor-
mance.

References
[1] Gnu emacs. http://www.gnu.org/software/emacs.
[2] Lynx web browser. http://lynx.isc.org.
[3] Subversion. http://subversion.tigris.org.
[4] zlib compression library. http://www.zlib.net.
[5] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy,

B. Saha, and T. Shpeisman. Compiler and runtime support for
efficient software transactional memory. In PLDI, pages 26–37,
Jun 2006.

[6] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Kara-
manolis. Sinfonia: a new paradigm for building scalable dis-
tributed systems. In SOSP ’07: Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles, pages 159–
174, New York, NY, USA, 2007. ACM.

[7] M. Bishop and M. Dilger. Checking for race conditions in file
accesses. Computing Systems, 9(2):131–152, Spring 1996.

[8] N. Borisov, R. Johnson, N. Sastry, and D. Wagner. Fixing races
for fun and profit: How to abuse atime. In USENIX Security
2005, August 2005.

[9] D. Bovet and M. Cesati. Understanding the Linux Kernel.
O’Reilly Media, Inc., 3rd edition, 2005.

[10] CERT Vulnerability Database. Double free bug in zlib compres-
sion library. 2002. http://www.cert.org/advisories/CA-2002-
07.html.

[11] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum. Hybrid transactional memory. In ASPLOS, pages
336–346, 2006.

[12] D. Dean and A. J. Hu. Fixing races for fun and profit: how to
use access(2). In USENIX Security, pages 14–26. USENIX As-
sociation, 2004.

[13] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In
DISC, pages 194–208, 2006.

[14] J. Gray. Notes on data base operating systems. In Operating
Systems, An Advanced Course, pages 393–481, London, UK,
1978. Springer-Verlag.

[15] L. Hammond, V. Wong, M. Chen, B. Carlstrom, J. Davis,
B. Hertzberg, M. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun. Transactional memory coherence and consistency. In ISCA,
page 102, June 2004.

[16] R. Haskin, Y. Malachi, and G. Chan. Recovery management in
QuickSilver. ACM Trans. Comput. Syst., 6(1):82–108, 1988.

[17] M. Herlihy and E. Koskinen. Transactional boosting: A method-
ology for highly-concurrent transactional objects. In PPoPP,
pages 207–216. ACM, 2008.

[18] M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scherer.
Software transactional memory for dynamic-sized data struc-
tures. In PODC, pages 92–101. ACM, 2003.

[19] M. Herlihy and J. E. Moss. Transactional memory: Architectural
support for lock-free data structures. In ISCA, May 1993.

[20] O. S. Hofmann, D. E. Porter, C. J. Rossbach, H. E. Ramadan,
and E. Witchel. Solving difficult HTM problems without diffi-
cult hardware. In ACM TRANSACT Workshop, 2007.

[21] J. Larus and R. Rajwar. Transactional Memory. Morgan &
Claypool, 2006.

[22] B. Liskov. Distributed programming in Argus. Commun. ACM,
31(3):300–312, 1988.

[23] B. Liskov, D. Curtis, P. Johnson, and R. Scheifer. Implementa-
tion of Argus. SOSP, 1987.

[24] V. Marathe, M. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. S.
III, and M. Scott. Lowering the overhead of nonblocking soft-
ware transactional memory. In TRANSACT, 2006.

14



[25] V. Menon, S. Balensiefer, T. Shpeisma, A. Tabatabai, R. Hudson,
B. Saha, and A. Welc. Single global lock semantics in a weakly
atomic STM. In TRANSACT, 2008.

[26] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-based transactional memory. In HPCA,
2006.

[27] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Li-
blit, M. M. Swift, and D. A. Wood. Supporting nested transac-
tional memory in LogTM. In ASPLOS, 2006.

[28] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative execu-
tion in a distributed file system. In SOSP, pages 191–205, 2005.

[29] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and J. Flinn.
Rethink the sync. In OSDI. USENIX Association, 2006.

[30] NIST. National Vulnerability Database. http://nvd.
nist.gov/, 2008.

[31] J. Olson. Enhance your apps with file system transactions.
MSDN Magazine, July 2007. http://msdn2.microsoft.com/en-
us/magazine/cc163388.aspx.

[32] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating
bugs as allergies—A safe method to survive software failures. In
SOSP, Oct 2005.

[33] R. Rajwar and J. R. Goodman. Transactional lock-free execu-
tion of lock-based programs. SIGARCH Comput. Archit. News,
30(5):5–17, 2002.

[34] H. Ramadan, C. Rossbach, D. Porter, O. Hofmann, A. Bhandari,
and E. Witchel. MetaTM/TxLinux: Transactional memory for
an operating system. In ISCA, 2007.

[35] H. Ramadan, I. Roy, M. Herlihy, and E. Witchel. Dependence-
aware transactional memory. Technical Report TR-08-21, Uni-
versity of Texas at Austin, Computer Sciences Department, 2008.

[36] C. Rossbach, O. Hofmann, D. Porter, H. Ramadan, A. Bhandari,
and E. Witchel. TxLinux: Using and managing transactional
memory in an operating system. In SOSP, 2007.

[37] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere,
and J. J. Kistler. Lightweight recoverable virtual memory. ACM
Transactions on Computer Systems, 12(1):33–57, 1994.

[38] F. Schmuck and J. Wylie. Experience with transactions in Quick-
Silver. In SOSP. ACM, 1991.

[39] R. Sears and E. Brewer. Stasis: Flexible transactional storage.
In OSDI, 2006.

[40] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing
with disaster: Surviving misbehaved kernel extensions. In OSDI,
1996.

[41] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. F. Moore, and B. Saha. Enforc-
ing isolation and ordering in STM. PLDI, 42(6):78–88, 2007.

[42] A. Shriram, V. J. Marathe, S. Dwarkadas, M. L. Scott, D. Eisen-
stat, C. Heriot, W. N. Scherer III, and M. F. Spear. Hardware
acceleration of software transactional memory. In TRANSACT,
2006.

[43] A. Z. Spector, D. Daniels, D. Duchamp, J. L. Eppinger, and
R. Pausch. Distributed transactions for reliable systems. In
SOSP, pages 127–146, 1985.

[44] M. Swift, M. Annamalai, B. Bershad, and H. Levy. Recovering
device drivers. In OSDI, 2004.

[45] D. Tsafrir, T. Hertz, D. Wagner, and D. D. Silva. Portably solv-
ing file TOCTTOU races with hardness amplification. In FAST,
pages 189–206, 2008. Best paper award winner.

[46] S. Tweedie. Ext3, journaling filesystem. http:
//olstrans.sourceforge.net/release/
OLS2000-ext3/OLS2000-ext3.html.

[47] M. J. Weinstein, J. Thomas W. Page, B. K. Livezey, and G. J.
Popek. Transactions and synchronization in a distributed operat-
ing system. In SOSP, pages 115–126, 1985.

[48] C. P. Wright, R. Spillane, G. Sivathanu, and E. Zadok. Extending
ACID semantics to the file system. Trans. Storage, 3(2):4, 2007.

[49] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Har-
ren, G. Necula, and E. Brewer. SafeDrive: Safe and recoverable
extensions using language-based techniques. In OSDI, 2006.

[50] C. Zilles and L. Baugh. Extending hardware transactional mem-
ory to support non-busy waiting and non-transactional actions.
In TRANSACT, Jun 2006.

15


