
An Evaluation of the TRIPS Computer System
(Extended Technical Report)1

Mark Gebhart Bertrand A. Maher Katherine E. Coons Jeff Diamond Paul Gratz

Mario Marino Nitya Ranganathan Behnam Robatmili Aaron Smith James Burrill

Stephen W. Keckler Doug Burger Kathryn S. McKinley

Computer Architecture and Technology Laboratory

Department of Computer Sciences

Technical Report TR-08-31

The University of Texas at Austin

cart@cs.utexas.edu — www.cs.utexas.edu/users/cart

Abstract

The TRIPS system employs a new instruction set architecture(ISA) called Explicit Data Graph Ex-
ecution (EDGE) that renegotiates the boundary between hardware and software to expose and exploit
concurrency. EDGE ISAs use a block-atomic execution model in which blocks are composed of dataflow
instructions. The goal of the TRIPS design is to mine concurrency for high performance while tolerating
emerging technology scaling challenges, such as increasing wire delays and power consumption. This
paper evaluates how well TRIPS meets this goal through a detailed ISA and performance analysis. We
compare performance, using cycles counts, to commercial processors. On SPEC CPU2000, the Intel Core
2 outperforms compiled TRIPS code in most cases, although TRIPS matches a Pentium 4. On simple
benchmarks, compiled TRIPS code outperforms the Core 2 by 10% and hand-optimized TRIPS code out-
performs it by factor of 3. Compared to conventional ISAs, the block-atomic model provides a larger
instruction window, increases concurrency at a cost of moreinstructions executed, and replaces register
and memory accesses with more efficient direct instruction-to-instruction communication. Our analysis
suggests ISA, microarchitecture, and compiler enhancements for addressing weaknesses in TRIPS and in-
dicates that EDGE architectures have the potential to exploit greater concurrency in future technologies.
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included due to space constraints in ”An Evaluation of the TRIPS Computer System”; Mark Gebhart, Bertrand A. Maher,
Katherine E. Coons, Jeff Diamond, Paul Gratz, Mario Marino, Nitya Ranganathan, Behnam Robatmili, Aaron Smith, James
Burrill, Stephen W. Keckler, Doug Burger, Kathryn S. McKinley; ASP LOS 2009, Washington DC, USA; March 2009.
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Abstract

The TRIPS system employs a new instruction set architecture(ISA) called Explicit Data Graph Ex-
ecution (EDGE) that renegotiates the boundary between hardware and software to expose and exploit
concurrency. EDGE ISAs use a block-atomic execution model in which blocks are composed of dataflow
instructions. The goal of the TRIPS design is to mine concurrency for high performance while tolerating
emerging technology scaling challenges, such as increasing wire delays and power consumption. This
paper evaluates how well TRIPS meets this goal through a detailed ISA and performance analysis. We
compare performance, using cycles counts, to commercial processors. On SPEC CPU2000, the Intel Core
2 outperforms compiled TRIPS code in most cases, although TRIPS matches a Pentium 4. On simple
benchmarks, compiled TRIPS code outperforms the Core 2 by 10% and hand-optimized TRIPS code out-
performs it by factor of 3. Compared to conventional ISAs, the block-atomic model provides a larger
instruction window, increases concurrency at a cost of moreinstructions executed, and replaces register
and memory accesses with more efficient direct instruction-to-instruction communication. Our analysis
suggests ISA, microarchitecture, and compiler enhancements for addressing weaknesses in TRIPS and in-
dicates that EDGE architectures have the potential to exploit greater concurrency in future technologies.

1 Introduction

Growing on-chip wire delays, coupled with complexity and power limitations, have placed severe constraints

on the issue-width scaling of conventional superscalar architectures. Because of these trends, major micro-

processor vendors have abandoned architectures for single-thread performance and turned to the promise of

multiple cores per chip. While many applications can exploit multicore systems, this approach places sub-

stantial burdens on programmers to parallelize their codes. Despite these trends, Amdahl’s law dictates that

single-thread performance will remain key to the future success of computer systems [8].

In response to semiconductor scaling trends, we designed a new architecture and microarchitecture intended

to extend single-thread performance scaling beyond the capabilities of superscalar architectures. TRIPS is

the first instantiation of these research efforts. TRIPS uses a new classof instruction set architectures (ISAs),

called Explicit Data Graph Execution (EDGE), which renegotiate the hardware and software boundary. EDGE

ISAs use a block-atomic execution model, in which EDGE blocks consist of dataflow instructions. This model

preserves sequential memory semantics and exposes greater instruction level concurrency without requiring

explicit software parallelization. We constructed a custom 170 million transistorASIC, an instantiation of

the ISA (TRIPS ISA), TRIPS system circuit boards, a runtime system, performance evaluation tools, and a

compiler that optimizes and translates C and Fortran programs to the TRIPS ISA. The distributed processing

cores of a TRIPS processor issue up to 16 instructions per cycle from an instruction window of up to 1024

instructions contained in 8 blocks. The TRIPS ISA and distributed microarchitecture are designed to exploit

concurrency and reduce the influence of long wire delays by exposingthe spatial nature of the microarchitec-

ture to the compiler for optimization.
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This paper presents a performance analysis that explores how well the TRIPS system meets its goals of

exploiting concurrency, hiding latency, and distributing control. Using the TRIPS hardware and microarchi-

tectural simulators, we use compiled and hand-optimized benchmarks to compare the EDGE ISA, microar-

chitecture, and performance to modern processors. While we measured the power consumed by one TRIPS

processor and the memory system to be 17W (30W for the whole chip with two processors and no clock gat-

ing), a detailed power analysis and an examination of multicore execution is beyond the scope of this paper.

Our microarchitecture analysis shows that TRIPS can fill much of its instruction window; compiled code

shows an average of 400 total instructions in flight (887 peak for the best benchmark) and hand-optimized

code shows an average of 630 (1013 peak). While much higher than conventional processors, the number of

instructions in flight is less than the maximum of 1024 because the compiler does not completely fill blocks

and the hardware experiences pipeline stalls and flushes due to I-cachemisses, branch mispredictions, and

load dependence mispredictions. The EDGE ISA incurs substantial increases in instructions fetched and ex-

ecuted relative to conventional RISC architectures because of predication and instruction overheads required

by the dataflow model. A strength of the EDGE ISA and distributed control is that TRIPS requires less than

half as many register and memory accesses than a RISC ISA (Alpha in this paper) because it converts these

into direct producer to consumer communications. Furthermore, communicatinginstructions are usually on

the same tile or an adjacent tile, which makes them power efficient and minimizes latency.

We compare the performance (measured in cycles) of TRIPS to the Intel Core 2, Pentium III, and Pentium 4

using hardware performance counters on compiled and hand-optimized programs. On EEMBC, the Core 2

executes 30% fewer cycles than TRIPS compiled code. On SPEC2000, TRIPS compiled code executes more

than twice as many cycles than Core 2 on integer benchmarks but the same number of cycles on floating-

point benchmarks. TRIPS executes 3 times fewer cycles than the Core 2 onhand-optimized benchmarks.

These experiments suggest that EDGE processors have the capability to achieve substantial performance im-

provements over conventional microprocessors by exploiting concurrency. However, realizing this potential

relies on the compiler to better expose concurrency and create large blocks of TRIPS instructions, as well as

microarchitectural innovations in control distribution and branch prediction.

2 The TRIPS Processor Architecture

The foundations of the TRIPS system were published in 2001 [15]. Between 2001 and 2004, we refined the

architecture so as to realize it in silicon and began the compiler implementation. TheTRIPS chip taped out

in August 2006 and was fully functional (no known bugs) in the lab in February 2007. The TRIPS chip uses

a 130nm ASIC technology and contains 170 million transistors. One chip contains two processors and the

simplest system consists of four TRIPS chips. Each chip contains two processors and 2GB of local DRAM
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Figure 1: RISC and TRIPS code with dataflow graph.

connected to a motherboard. While we designed the system to scale to eight motherboards (64 processors),

this paper examines a single TRIPS processor using single-threaded codes. We summarize the architecture

and compiler below; details are in prior publications [2, 19, 22].

EDGE ISA: Two defining features of an Explicit Data Graph Execution (EDGE) ISA are block-atomic

execution [13] and direct instruction communication within a block, which together enable efficient hybrid

dataflow execution. An EDGE microarchitecture maps each compiler-generated dataflow graph to a dis-

tributed execution substrate. The ISA was designed to provide high-performance, single-threaded, concurrent,

and distributed execution.

The TRIPS ISA aggregates up to 128 instructions in a block. The block-atomic execution model logically

fetches, executes, and commits each block as a single entity. Blocks amortize per-instruction bookkeeping

and reduce branch predictions, providing latency tolerance to make distributed execution practical. Blocks

communicate through registers and memory. Within a block,direct instruction communicationdelivers re-

sults from producer to consumer instructions in dataflow fashion. This supports distributed execution by

eliminating accesses to a shared register file.

Figure 1 compares RISC and TRIPS EDGE code on an example. The TRIPSregister reads (R0, R1) at the

beginning of the block start dataflow execution by injecting values from the register file into the block. The

block ejects the register write (W0) and writes register$g4 when the block commits. Instruction operands

within the block, such as$t2, are passed directly from producer to consumer without an intervening register

access. Because the instructions encode their targets, rather than a register in a common register file, a 32-bit

instruction encoding has room for at most two targets. When more targets are required, such as the value
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Figure 2: TRIPS die photo with tile overlays.

read in instruction R0, the program needs amov (move) instruction (I0) to replicate the value flowing in the

dataflow graph. The TRIPS code also shows that branch and non-branch instructions can be predicated. To

enable the hardware to detect block completion, the execution model requires that all block outputs (regis-

ter writes and stores) be produced regardless of the predicated path within the block. Thenull instruction

produces a token that when passed through thest (store) indicates that the store output has been produced,

but does not modify memory. In our experiments, we do not classify these dataflow execution helper in-

structions as useful when comparing to conventional ISAs. The dataflowgraph shows the producer/consumer

relationships encoded in the TRIPS binary.

TRIPS Microarchitecture: Because the goals of the TRIPS microarchitecture include scalability and dis-

tributed execution, it has no global wires, reuses a small set of components on routed networks, and can be

extended to a wider-issue implementation without source recompilation or ISA changes. Figure 2 superim-

poses the tile-level block diagram on a TRIPS die photo. Each TRIPS chip contains two processors and a

secondary memory system, each inter-connected by one or more micronetworks. Each processor uses five

types of tiles: one global control tile (GT), 16 execution tiles (ET), four register tiles (RT), four data tiles

(DT), and five instruction tiles (IT). The tiles communicate via six micronetworksthat implement distributed

control and data protocols. The main micronetwork is the operand network (OPN), which replaces a bypass

network in a conventional superscalar. The two-dimensional, wormhole-routed, 5x5 mesh OPN delivers one

64-bit operand per link per cycle [7]. The other networks perform distributed instruction fetch, dispatch,

I-cache refill, and completion/commit.

TRIPS fetches and executes each blocken masse. The GT sends a block address to the ITs which deliver

the block’s computation instructions to the reservation stations in the 16 execution tiles (ETs), 8 per tile as
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specified by the compiler. The ITs also deliver the register read/write instructions to reservation stations in the

RTs. The RTs read values from the global register file and send them to theETs, starting dataflow execution.

The GT instigates the commit protocol once each DT and RT receives all block outputs. The commit protocol

updates the data caches and register file with the speculative state of the block. The GT uses its next block

predictor (branch predictor) to begin fetching and executing the next block while previous blocks are still

executing. The prototype can simultaneously execute up to eight 128-instruction blocks (one non-speculative,

seven speculative) giving it a maximum window size of 1024 instructions.

At 130 nm, each TRIPS processor occupies approximately 92mm
2 of a total chip area of 330mm

2. If

scaled down to 65 nm, a TRIPS core would be approximately 23mm
2, similar to the 29mm

2 of a Core 2

processor. A direct comparison is difficult because TRIPS uses an ASIC technology and lacks some hardware

needed for an operating system. Nonetheless, TRIPS has a greater density of arithmetic units in a similar area

and the architecture provides greater issue width and instruction window scaling.

TRIPS Compiler: The TRIPS compiler first performs conventional optimizations such as inlining, un-

rolling, common subexpression elimination, scalar replacement, and TRIPS-specific optimizations such as

tree-height reduction to expose parallelism. The compiler next translates thecode to the TRIPS Intermediate

Language (TIL), a RISC-like IR, and progressively transforms TILinto blocks that conform to the TRIPS

block constraints: up to 128 instructions, up to 32 register read/writes with 8 per bank, and up to 32 load/store

identifiers [22]. The compiler aggregates basic blocks from multiple controlpaths into optimized TRIPS

blocks using predication, tail duplication, and loop optimizations [23, 12]. This process is similar to hyper-

block formation, but more challenging because of the additional block constraints that simplify the hardware.

The compiler iteratively merges and optimizes blocks until they are as full as possible and then performs

register allocation. This phase produces completed TIL with correct and fully specified blocks, as in Figure 1.

The compiler’s scheduler then transforms TIL to TRIPS assembly language(TASL), which includes a map-

ping of instructions to execution tiles. The scheduler seeks a mapping that exposes instruction concurrency

and minimizes communication overheads (distance and contention) [3]. This mapping optimizes performance

without restricting functional portability as the hardware can remap an EDGEbinary to different hardware

topologies (number of tiles) without recompilation or changes to the binary.

3 Evaluation Methodology

We evaluate the TRIPS system and compare its performance with conventionalarchitectures using perfor-

mance counters on the TRIPS hardware and on commercial platforms. Sections 4 and 5 present TRIPS and

Alpha simulation results to gain insights into the relative strengths and weaknesses of TRIPS. All performance

measurements in Section 6 are from actual hardware.
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Issue Proc Mem Proc/Mem L1 Cap. L2 Mem
System Width Speed Speed Ratio (D/I) Cap. Cap.

(MHz) (MHz) (KB) (MB) (GB)

TRIPS 16 366 200 1.83 32 / 80 1 2
Core 2 4 1600 800 2.00 32 / 32 2 2
Pentium 4 4 3600 533 6.75 16 / 150 2 2
Pentium III 3 450 100 4.50 16 / 16 0.5 0.256

Table 1: Reference platforms.

The TRIPS System: A TRIPS chip consists of two processors that share a 1 MB L2 static NUCA

cache [10] and 2 GB of DDR Memory; we use one processor for all experiments in this study. Each pro-

cessor has a private 32 KB L1 data cache and a private 80 KB L1 instruction cache. We run the processor

core at 366 MHz and the DRAM with 100/200 MHz DDR clocks. TRIPS systemcalls interrupt program

execution, halt the processor, and execute off-chip on a commercial processor running Linux. Because the

TRIPS cycle counters increment only when the processor is not halted, the program performance measure-

ments ignore the time to process system calls. The tools we use to measure cyclesin the commercial systems

also exclude operating system execution time, thus providing a fair comparison.

Simulators: We use functional and cycle-level TRIPS simulators to gather statistics not available from

the hardware [25]. Validation of the TRIPS cycle counters against the TRIPS simulators indicates statistical

differences of less than 5%. We use a customized version of the M5 simulator[1] to produces statistics that

measure loads, stores, and register accesses fromgcc-compiled Alpha-Linux binaries.

Reference Platforms: We compare TRIPS performance to three reference platforms from the Intel x86

product family (Pentium III, Pentium 4, and Core 2). Table 1 shows the platform configurations including

processor and DDR DRAM clock speed and the memory hierarchy capacities. Because each machine is im-

plemented in a different process technology, we compare cycle counts obtained from performance counters,

using PAPI on the Intel processors [16]. Cycle count is an imperfect metric because some architectures, par-

ticularly the Pentium 4, emphasize clock rate over cycle count. However, weexpect that the TRIPS microar-

chitecture, with its partitioned design and no global wires, could be implemented ina clock rate equivalent to

the Core 2, given a custom design and the same process technology. Another pitfall is that the relatively slow

clock rate of TRIPS may make memory accesses less expensive relative to high clock-rate processors. To

counter this effect, we under-clock the Core 2 from 1.8 GHz to 1.6 GHz to make the processor/memory speed

more similar to that of TRIPS. Because the benchmarks are largely L2 cacheresident, the relative memory

speed has little effect on application execution time.

Benchmarks: Table 2 shows our benchmarks, ranging from simple kernels to complex uniprocessor work-

loads, compiled with the TRIPS C and Fortran compiler [22]. The suite labeledsimplerefers to applications
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Suite Count Benchmarks

Kernels 4 transpose (ct), convolution (conv), vector-
add (vadd), matrix multiply (matrix)

VersaBench 3 of 10 bit and stream (fmradio, 802.11a, 8b10b)
EEMBC 28 of 30 Embedded benchmarks
Simple 15 Hand-optimized versions of Kernels,

VersaBench, and 8 EEMBC benchmarks
SPEC 2K Int 9 of 12 All but gap, vortex and C++ benchmarks1

SPEC 2K FP 9 of 14 All but sixtrack and 4 Fortran 90 bench-
marks1

Table 2: Benchmark suites.

with hand-optimizations: 4 application kernels, 3 stream and bit operation benchmarks from the VersaBench

suite [17], and 8 medium-sized benchmarks from the EEMBC benchmarks [5]. We hand-optimized bench-

marks to guide compiler efforts and explore the potential of the system. We performed hand-optimization on

the compiler-generated TIL code and scheduled the result with the compiler.Most of the hand-optimizations

are mechanical, but not yet implemented in the compiler. We more extensively hand-optimized four scientific

kernels on TRIPS: matrix transpose (ct), convolution (conv), vector add (vadd), and matrix multiply (matrix);

further, we hand-scheduledmatrixandvadd.

The most complex benchmarks come from SPEC2000 and include 10 integer and 8 floating-point bench-

marks [24]. Three SPEC programs that currently fail to build correctly withour toolchain are omitted. We

use a consistent set of compiler flags for all benchmarks rather than tuning the flags for performance on a

per-benchmark basis. We use SimPoint simulation regions for our simulation-based evaluation of the SPEC

benchmarks [21].

4 ISA Evaluation

This section uses simulation to examine how well programs map to the TRIPS ISA, characterizing block size,

instruction overheads, and code size. We compare TRIPS and RISC ISA(Alpha) statistics to quantify the

relative overheads of the TRIPS ISA. We present details for the simple benchmarks and means for EEMBC,

SPEC INT, and SPEC FP.

4.1 TRIPS Block Size and Composition

A key parameter for a block-atomic EDGE ISA is the block size. Early experience demonstrated that creating

programs with average block sizes of 20+ instructions was not difficult withstandard compiler transformation

and that larger blocks would increase the instruction window, better amortizeblock overheads, and have the

potential for better performance. Seeking this performance, we chose topush the compiler technology by

selecting 128-instruction block sizes.

1Section 5 omitsammpandparseras they do not execute correctly on the TRIPS microarchitecture simulator.

7



 Fetched Not Executed
 Executed Not Used
 Moves
 Tests
 Control Flow
 Memory
 Arithmetic

Average

  0

  20

  40

  60

  80

  100

  120

C CCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHC

A
ve

ra
ge

 B
lo

ck
 C

om
po

si
tio

n

a2
tim

e

rs
pe

ed
os

pf

ro
ut

elo
ok

up

au
to

co
r

co
nv

en

fb
ita

l
fft

80
2.

11
a

8b
10

b

fm
ra

dio ct
co

nv

m
at

rix
va

dd

EEM
BC

SPEC IN
T

SPEC F
P

Ave
ra

ge

Figure 3: TRIPS block size and composition for compiled (C) and hand-optimized (H) benchmarks.
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Figure 4: TRIPS block size and composition for compiled SPEC benchmarks.

Figure 3 shows the average block size weighted by execution frequencyand broken down by the number of

arithmetic instructions, memory instructions, branch/jump/call/return instructions,test instructions (used for

branches and predication), andmove instructions (used to fan out intermediate operands). The figure does

not include the register read/write instructions, which reside in the block header and not in the 128 instruc-

tions. Fetched Not Executedinstructions in a block are never executed either because they did not receive a

matching predicate or because they did not receive all of their operandsdue to predicated instructions earlier

in the block’s dataflow graph.Executed Not Usedinstructions were fetched and executed speculatively but

their values were unused due to predication later in the dependence graph.

For some programs, such asa2time, mispredicated instructions account for a third of the instructions within

a block. A2timecontains several nestedif/then/else statements. To fill blocks and minimize executed

blocks, the compiler produces code that speculatively executes boththen andelse clauses simultaneously

within one block and predicates to select the correct outputs. Aggressive predication can improve system
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performance by eliminating branch mispredictions and increasing front-endfetch bandwidth.

The remainder of the instruction types, tests, control flow, memory, and arithmetic, are required for correct

execution. The number of useful instructions (excludingmove and mispredicated instructions) varies. Some

programs with complex control have only 10 instructions per block while others with more regular control

have as many as 80 instructions per block. To implement dataflow execution in ablock, the TRIPS ISA uses

move instructions. Because TRIPS instructions have fixed width (32 bits), arithmetic and load instructions

can target at most two consumers. The compiler therefore insertsmove and specialmove3 andmove4

instructions to fanout values consumed by more than two instructions. Predicate merge points may require

predicatedmove instructions. The result is thatmove instructions account for nearly 20% of all instructions,

more than anticipated at the start of the design. Support for wider fanoutmove instructions (multicast) would

substantially reduce this overhead.

Compiled code has an average block utilization of 70 instructions, but with highvariance, ranging from

35 to over 110 instructions. Hand-optimizations execute fewer blocks by increasing block utilization. For

example, the hand-optimized version ofospfhas blocks two times larger than its compiled versions. Hand-

optimizations include eliminating unnecessary instructions and then merging adjacent smaller blocks or in-

creasing unrolling factors to fill blocks. Higher block utilization is correlatedwith higher performance.

Routelookupandautocoractually have smaller block size when hand-optimized but a similar number of useful

instructions. These programs are memory and control bound; larger blocks do not improve performance due

to the predication overhead. Both hand-optimized and compiled code utilize the aggressive 128-instruction

block size to achieve average block sizes ranging from 20 to 128.

Figure 4 shows the block composition for each of the SPEC benchmarks. Wesee that on average the

integer benchmarks both have smaller blocks and rely more heavily on predication than the floating point

benchmarks. This is a due to the control intensive nature of the integer benchmarks which makes forming

large hyperblocks a challenge.

4.2 TRIPS ISA versus Alpha

To quantify the differences between the TRIPS ISA and a RISC ISA, we compare to the Alpha. Figure 5 shows

fetched instruction counts on TRIPS normalized to Alpha, with TRIPS including neither register read/write

instructions from the block header norNOPs in underfull blocks. For both TRIPS and Alpha, the instruction

count omits incorrectly fetched instructions due to branch mispredictions.

The number of useful instructions varies widely by benchmark suite which isa function of the state of the

TRIPS compiler and the gcc Alpha compiler. Figure 6 compares instructions between TRIPS and Alpha for

the SEPC benchmarks. Overall, TRIPS executes half as many useful instructions on the simple benchmarks,
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Figure 5: TRIPS instructions normalized to Alpha for compiled (C) and hand-optimized (H) benchmarks.
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Figure 6: TRIPS instructions normalized to Alpha for compiled SPEC benchmarks.

an equal number on SPEC INT, and twice as many on SPEC FP. On compiled code, TRIPS tends to exe-

cute more instructions due to prototype simplifications, which introduce inefficiencies in constant generation

and sign extension unrelated to its execution model. For hand-optimized benchmarks, TRIPS executes fewer

instructions because its larger register set (128 registers) eliminates store/load pairs and because more aggres-

sive unrolling exposes more opportunities for instruction reduction. The number of fetched but mispredicated

instructions varies across the benchmarks, depending on the degree ofpredication. Overall, TRIPS may need

to fetch as many as 2–4 times more instructions than the Alpha on the simple benchmarks and 2–9 times more

instructions on the SPEC benchmarks, due to aggressive predication.

4.3 Register and Memory Access

TRIPS inter-block communication uses registers and memory while intra-block communication is direct be-

tween instructions, reducing the number of accesses to registers and memory. TRIPS has a total of 128
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Figure 7: Storage accesses normalized to Alpha for compiled (C) and hand-optimized (H) benchmarks.
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Figure 8: Storage accesses normalized to Alpha for compiled SPEC benchmarks.

registers spanning four register banks (32 registers per bank). Each bank has one read and one write port.

The large register file reduces load on the memory system since the compiler can register allocate more of

a program’s variables [14]. Compared to a conventional architecture, TRIPS replaces memory instructions

with less expensive register reads and writes, and replaces register reads and writes with less expensive direct

communication between producing and consuming instructions.

The left bar stack of each pair in Figure 7 shows the number of loads and stores on TRIPS normalized to

loads and stores on the Alpha. TRIPS executes about half as many memory instructions as the Alpha and

as few as 10%, due to its larger register file and direct instruction communication. Several hand-optimized

benchmarks have significantly fewer memory accesses than the compiled versions because they register allo-

cate fields in structures and small arrays, whereas the compiler currently does not. The right bar stack shows

the number of register reads, writes, and operand network communicationson TRIPS normalized to register

reads and writes on the Alpha. Because of direct operand communication,TRIPS accesses the register file
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80–90% less often than the Alpha. The top bar shows direct operand communication that replaces register

accesses on TRIPS.

Compared to their compiled counterparts, hand-optimized benchmarks generally have fewer register ac-

cesses, OPN communications, and memory accesses. The hand-optimized versions aggressively register allo-

cate more memory accesses by using programmer knowledge about pointer aliasing, much of which may be

automated. They also eliminate instructions, such as unnecessary sign extensions, which could be automated

with aggressive peephole optimizations. On average, the sum of register reads, writes, and direct communica-

tions approximates the number of Alpha register reads and writes. Figure 8 shows that on some benchmarks

(SPEC INT), direct communication is large because of the distribution of predicates and communication of

useless values by mispredicated instructions. On SPEC FP the large number of accesses is a result of TRIPS

executing many more instructions than Alpha. In a conventional architecture, the register file broadcasts an

instruction’s result to other instructions. In TRIPS, fanout may require atree ofmove instructions, which

increases communication and the number of instructions.

4.4 Code Size

The TRIPS ISA significantly increases dynamic code size over Alpha. Each block has 128 32-bit instruc-

tions, a 128-bit header, 32 22-bit read instructions, and 32 six-bit writeinstructions. The compiler inserts

NOPs when a block has fewer than 32 reads/writes or fewer than 128 instructions.NOPs consume space in the

L1 I-cache but are not executed. We compared dynamic code size of TRIPS to Alpha by counting the number

of unique instructions that are fetched. Figures 9 and 10 show the incrase in dynamic code size across all of

the benchmarks. On average the dynamic code size of TRIPS, including theoverheads from the block header,

read and write instructions, and nops, averages about 11 times larger than the Alpha, but with a wide variance.

In general we see the largest increase in the memory footprint on the smallerbenchmarks especiallymatrix

andvadd. This is due to the aggresive optimizations done on the TRIPS platform that improve performance

at the expense of code size. For example, onvaddthe Alpha code is a single tight loop with just a few instruc-

tions in the loop body, while on the TRIPS code the loop was unrolled 64 times to simplify address calculation

and reduce the network congestion experienced by cache accesses.Without the block header, read and write

instructions, and the nop overheads, the number of unique instructions for TRIPS is 5 times that of Alpha,

while the number of unique useful instructions for TRIPS (discounting the instructions that are fetched but

not needed) is 2–3 times greater than Alpha. Thus instruction replication dueto TRIPS block optimizations

accounts for about half of the code bloat.

Experiments generally show a low instruction cache miss rate on small and mediumsized benchmarks, but

some SPEC benchmarks have miss rates in the range of 20–40%, indicating that cache pressure is a problem

12
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Figure 9: Increase in dynamic memory footprint for compiled (C) and hand-optimized (H) benchmarks.
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Figure 10: Increase in dynamic memory footprint for compiled SPEC benchmarks.

for some real applications. The TRIPS prototype can compress underfull instruction blocks in memory and

in the L2 cache down to 32, 64, or 96 instructions, depending on block capacity, which reduces the expansion

factor over Alpha from 11 to 6. Block compression in the instruction cache may unduly slow down instruction

fetch or require more complex instruction routing from the instruction cache banks to the execution tiles. The

results indicate that the benefits of variable block sizes warrant this complexity for future designs. Further-

more, increasing the instruction cache size in distributed architectures is relatively easy and will also mitigate

cache pressure.

5 Microarchitecture Evaluation

5.1 Filling a 1K Instruction Window

With up to 128 instructions per block and eight concurrently executing blocks, TRIPS has a maximum dy-

namic instruction window size of 1024 instructions. Figure 11 shows the average number of TRIPS in-
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Figure 11: Average number of in-flight instructions for compiled (C) and hand-optimized (H) benchmarks.

structions in the window. This metric multiplies the average number of blocks in flight (speculative and

non-speculative) and the average number of instructions per block. Compiled codes have on average 400 total

instructions of which more than 170 are useful. The hand-optimized programs with larger blocks achieve a

mean of 630 instructions, more than 380 of which are useful. Compared with issue windows of 64 to 80 on

modern superscalar processors, TRIPS exposes more concurrency at the cost of more communication due to

the distributed window.

The principal speculation mechanisms in TRIPS are predication, load-storedependence prediction, and

next-block prediction. When the load/store queue detects that a speculative load is incorrect, it flushes the

block pipeline and enters the load into the dependence predictor’s partitioned load-wait table. The predictor

is effective in part because the compiler reduces the number of loads andstores (as discussed in Section 4.3).

For the SPEC benchmarks, TRIPS flushes fewer than one block per 2000 useful instructions, without overly

constraining speculative load issue.

The TRIPS next-block predictor selects the next speculative block [19]. It consists of a 5 KB local/global

tournament exit predictor that predicts the exit branch (one of up to eight)from the block and a 5 KB multi-

component target predictor that predicts the target address of this exit. Figure 12 shows the prediction break-

down for four different configurations: (A) shows an Alpha 21264-like conventional tournament branch pre-

dictor (10 KB) predicting TRIPS-compiledbasic blocks; (B) shows the TRIPS block predictor (10 KB) pre-

dicting basic blocks; (H) shows the TRIPS block predictor (10 KB) predicting optimized TRIPS blocks, and

(I) shows a “lessons learned” block predictor (14 KB) that scales up the target predictor component sizes to

9 KB. Each bar is normalized to the total number of predictions made for basic blocks to measure accuracy

and reductions in predictions due to TRIPS blocks. The average MPKI (Mispredictions Per 1000 Instructions,

omitting move and mispredicated instructions) observed for these four configurations on SPEC INT are 14.9,

15.1, 8.6 and 7.3 respectively. SPEC FP applications have an MPKI of 1.6,1.7, 1.5 and 1.3 respectively.
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Figure 12: Block-predictor mispredictions normalized to total predictions madefor basic blocks.

L1 D-Cache L2 to L1 Memory
to Processor to L2

Peak Ops/ 4 - 8byte 3.2 - 16 byte 1 - 64 byte
cycle requests requests request
Peak BW 10.9 17.5 5.6
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Figure 13: TRIPS bandwidths at 366MHz and operand network (OPN) profile with average hops per packet

The accuracy of predicting predicated blocks is neither strictly better nor strictly worse than that of pre-

dicting basic blocks. Predication within TRIPS blocks may improve accuracy by removing hard-to-predict

branches, but may also degrade accuracy by obscuring correlating branches in the history. Although the

TRIPS predictor (H) has a higher misprediction rate (18% higher) than a conventional predictor (A), it has a

lower MPKI because it makes fewer predictions—59% fewer on SPEC INTand 35% fewer on SPEC FP. The

improved TRIPS predictor (I) reduces SPEC INT MPKI by 15.8% and SPEC FP MPKI by 14.2%. Lower

prediction accuracy has a significant effect on the instruction window utilization and has a strong correlation

with performance. However, more aggressive next-block predictors may still fall short of modern branch

prediction accuracies. Increasing the size of the branch target buffer, call target buffer, and history register

does improve accuracy. Advanced multi-component long-history predictors [9, 20] will likely also improve

exit and target accuracy and consequently performance.
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5.2 Feeds and Speeds

In this section, we explore the performance of the banked memory system and operand network, two defining

features of the distributed TRIPS implementation. For the memory system, we developed kernels that saturate

the bandwidth of each of the banks, providing insight into the types of optimizations required for memory-

bound programs. For the operand network, we measure traffic load to determine how well the compiler’s

placement algorithm minimizes the distance between communicating instructions.

Memory System: The TRIPS prototype employs an address-partitioned memory system that divides the

L1 data cache into four 8-KB, single-ported data banks and the L2 cacheinto sixteen 64-KB, single-ported

memory banks. The table in Figure 13 shows the achieved memory bandwidth onthe hardware at a core speed

of 366 MHz for a hand-optimized vector add (vadd) kernel. With careful instruction placement,vaddcan

attain nearly 100% of the core’s peak of four memory operations per cycle(10.5 GB/sec), indicating effective

use of the partitioned L1 data cache. By adjusting the vector size ofvadd, we constructed a microbenchmark

with an access pattern to maximize the consumption of the L2 cache and main memory bandwidth. This

program nearly reached the theoretical peak of the L2 and a majority of themain memory bandwidth provided

by the dual DDR memory controllers. While the benchmark achieves only 57.8%of the maximum interface

bandwidth, the vast majority of the loss is due to the memory controller protocol and not to the TRIPS design

itself. Similar techniques and principles were used to hand-optimize dense matrixkernels [4] and lessons

learned from these case studies were used to improve the compiler’s instruction placement algorithms.

Operand Network: The Operand Network (OPN) connects the TRIPS processor tiles and transmits

operands between execution tiles (ETs), the register file (RTs), and the data cache (DTs) [7]. The TRIPS

scheduler optimizes instruction placement on the tile topology to exploit concurrency and minimize the dis-

tance between dependent instructions along the program’s critical path. The graph in Figure 13 displays the

breakdown of the hop count for OPN traffic. On average, about halfof operands are bypassed locally within

an ET. Of the traffic that must traverse the OPN, about 80% require one or two hops, resulting in an overall

operand hop count of 0.9. Ideally, all operand communication would be bypassed locally (0 hops), but the in-

herent tradeoff between locality and concurrency combined with limited instruction storage per tile demands

that many communicating instructions reside on different tiles. About 60% of the OPN messages stems from

ET–ET operand traffic, with the remaining messages about evenly split between ET–DT and ET–RT traffic.

On the SPEC benchmarks two-thirds of the ET–DT traffic and one half of theET–RT traffic requires three or

more hops because the DTs and RTs lie along the edge of the ET array. Simulations results show that conges-

tion contributes only a 12% performance overhead as the latency due to hops count is more significant. These

results indicate opportunities for on-chip network design innovations to improve performance of distributed
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Figure 14: Instructions per clock (IPC) on compiled (C) and hand-optimized (H) benchmarks.
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Figure 15: IPC for TRIPS and benefits for two idealized EDGE designs.

architectures.

5.3 ILP Evaluation

TRIPS executes up to 16 instructions per cycle, but can only sustain that rate under ideal conditions: 8 blocks

full of executed instructions, perfect next-block prediction, and no instruction stalls due to long-latency in-

structions. Actual IPC is limited to 1/8 of the block size because of block fetch latency. Since the average

block size of our hand-optimized benchmarks is 80 instructions, we could achieve at most an average IPC

of 10 on them. Figure 14 shows the sustained IPC that TRIPS achieves across the benchmarks. While some

applications are intrinsically serial (e.g.,routelookuptraverses a tree data structure serially for an IPC near

1), others reach 6 to 10 IPC, showing that the processor exploits more ILP in these programs. The hand op-

timized codes have an IPC 25% greater on average than their compiled counterparts, mostly due to executing

fewer more densely packed blocks. The SPEC benchmarks have lower IPCs, both because they have smaller
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average block sizes and more flushes due to branch mispredictions and i-cache misses.

To understand the theoretical ILP capability of EDGE architectures, we conducted a limit study using an

idealized EDGE machine with perfect prediction, perfect predication, perfect caches, infinite execution re-

sources, and a zero-cycle delay between tiles. Like TRIPS, we use a 1Kwindow size and limit dispatch

and fetch to one new block every eight cycles. Figure 15 shows that on average this ideal machine only

outperforms the prototype by roughly a factor of 2.5, indicating only moderate room for improvement due

to low inherent application ILP, dispatch cost, and limited window size. Simulating this ideal machine with

a zero-cycle dispatch cost increases the IPC on average by a factor of four. However, eliminating only the

dispatch delay on TRIPS improves performance by only 10%, which indicates that dispatch is not the primary

bottleneck on the hardware. We annotate the top of the SPEC bars with the IPCfor the ideal machine with

a 128K instruction window and a dispatch cost of zero cycles. The SPEC benchmarks have a wide range of

available ILP, with most benchmarks around 50 IPC but some FP benchmarks having IPCs in the hundreds.

The simple benchmarks have a similar range of IPCs. Several, such as802.11aand8b10b, are inherently

serial and do not exceed 15. Others, such asvaddandfmradio, are quite concurrent with IPCs of 1000 and

500 respectively on the ideal machine with a 128K window, but are resource limited on the hardware. This

study reveals that the amount of ILP currently available to TRIPS is limited and that larger window machines

have the potential to further exploit ILP.

6 TRIPS versus Commercial Platforms

This section compares TRIPS to conventional processors using cycle counts from performance counters,

which normalizes for different clock rates. We use hand-optimized benchmarks for TRIPS to show the po-

tential of the system and compiled benchmarks to show the current state of theTRIPS compiler. We compare

to the GNU C compiler (gcc) and the native Intel compiler (icc) on the reference machines to identify the

effect of platform-specific optimizations. The quality of scalar optimization in gcc is more similar to the

TRIPS compiler, since the TRIPS compiler is an academic research compiler. Consequently, we normalized

performance to the Core 2 using the gcc compiler.

Simple Benchmarks:Figure 16 shows relative performance (computed as a ratio of cycles executed rela-

tive to the Core 2 using gcc) for TRIPS hand-optimized code, TRIPS compiled code, icc-compiled code for

the Intel Core 2, and gcc-compiled code for the Intel Core 2, Pentium 4, and Pentium III. The TRIPS compiler

achieves equivalent performance to the Core 2 on average, with better performance on nine benchmarks and

worse performance on six. Benchmarks with smaller speedups (rspeed) employ sequential algorithms that do

not benefit from increased execution bandwidth or deep speculation. The benchmarks that show the largest

speedups (matrix and8b10b) typically have substantial parallelism exposed by the large window on TRIPS.
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Figure 16: Speedup of TRIPS relative to the Core 2 on simple benchmarks.
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Figure 17: Speedup of TRIPS relative to the Core 2 on SPEC benchmarks.

The TRIPS hand-optimized code always outperforms the Core 2, with an average 2.9x cycle count reduction.

The performance differences between TRIPS compiled and hand-optimized code are primarily due to more

aggressive block formation, unrolling, and scalar replacement. For example,8b10bbenefits from unrolling

the innermost loop of the kernel to create a full 128-instruction block and from register allocating a small

lookup table. Infmradio, the hand-optimized code fuses loops that operate on the same vector, anduses

profile information to exclude infrequently taken paths through the kernel.

To show the ability of the TRIPS architecture to exploit a large number of functional units, we compare

a TRIPS hand-optimized and hand-scheduled matrix multiply [4] to the state-of-the-art hand-optimized as-

sembly versions of GotoBLAS Streaming Matrix Multiply Libraries on Intel platforms [6]. We use the best

published results from library implementations for conventional platforms (not the results in Figure 17). The

performance across platforms, measured in terms of FLOPS Per Cycle (FPC), ranges from 1.87 FPC on the

Pentium 4 to 3.58 FPC on the Core 2 using SSE. The TRIPS version achieves5.20 FPC without the benefit

of SSE, which is 40% better than the best Core 2 result.

SPEC CPU2000:Figure 17 compares performance on SPEC2000 using reference data sets. TRIPS per-
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Per 1000 useful instructions
Core 2 TRIPS TRIPS Core 2 TRIPS TRIPS Average

cond. br. cond. br. call/ret I-cache I-cache load useful insts
misses misses misses misses misses flushes in flight

bzip2 1.3 1.6 0.0 0.0 0.0 0.09 342.5
crafty 4.5 3.0 0.5 1.7 17.2 0.35 151.8
gcc 7.4 7.0 1.8 3.1 18.5 0.52 73.0
gzip 4.8 4.3 0.0 0.0 0.0 0.04 206.1
mcf 14.0 6.3 0.0 0.0 0.0 0.13 373.6
parser 2.0 3.2 0.1 0.0 0.6 0.04 —
perlbmk 2.5 0.4 8.3 0.0 13.0 0.19 106.9
twolf 8.5 4.8 0.1 0.0 8.2 0.36 275.2
vpr 0.5 1.4 0.5 0.0 3.2 0.40 221.8

ammp 0.2 1.5 0.1 0.0 1.0 0.05 —
applu 0.0 0.7 0.0 0.0 0.0 0.01 496.6
apsi 0.0 2.4 0.0 0.0 0.0 0.11 249.7
art 0.4 0.0 0.0 0.0 0.0 0.01 692.2
equake 0.2 0.6 0.0 0.0 0.9 0.08 337.9
mesa 1.4 1.6 0.0 0.0 3.5 0.04 199.4
mgrid 0.0 0.1 0.0 0.0 0.0 0.00 519.8
swim 0.0 1.0 0.0 0.0 0.0 0.00 416.1
wupwise 0.0 0.7 0.5 0.0 0.8 0.04 496.9

Table 3: Performance counter statistics for SPEC.

formance is much lower on the SPEC benchmarks than on the simple benchmarks. While floating-point

performance is nearly on par with Core 2-gcc (Core 2-icc achieves a 1.9x speedup over TRIPS), integer per-

formance is less than half that of the Core 2. Table 3 shows several events that have a significant effect on

performance: conditional branch mispredictions, call-return mispredictions, I-cache misses, and load flushes

for TRIPS, normalized to events per 1000 useful TRIPS instructions. Also shown are the branch mispre-

dictions and I-cache misses for the Core 2, normalized to the same 1000 TRIPS instruction-baseline to ease

cross-ISA comparison. The rightmost column shows the average usefulTRIPS instructions in the window,

from Figure 11.

Several of the SPECINT benchmarks have frequent I-cache misses,such ascrafty, gcc, perlbmk, andtwolf.

These benchmarks are known to stress the instruction cache, and the block-based ISA exacerbates the miss

rate because of TRIPS code expansion and the compiler’s inability to fill the fixed-size 128-instruction blocks.

Perlbmkalso has an unusually high number of call/return mispredictions, due to an insufficiently tuned call

and branch target buffer in TRIPS. All of these factors reduce the utilization of the instruction window; for

example,gcchas an average of only 73 useful instructions in flight, out of a possible 121 based on the average

block size. While the TRIPS call/return flushes and I-cache misses cause serious performance losses, branch

mispredictions are competitive with the Core 2 and load dependence violations are infrequent. Benchmarks

that have the most useful instructions in the window compare best to Core 2,such asart andmgrid. These

benchmarks are known to contain parallelism, and show good performancewith little compiler or microar-

chitectural tuning.
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7 Lessons Learned

The prototyping effort’s goals were twofold: to determine the viability of EDGEtechnology and to learn the

right (and wrong) ways to build an EDGE machine. This design and evaluationeffort taught us the following

lessons about how to build this class of architectures.

EDGE ISA: Prototyping has demonstrated that EDGE ISAs can support large-window, out-of-order exe-

cution with less complexity than an equivalent superscalar processor. However, the TRIPS ISA had several

significant weaknesses. Most serious was the limited fanout of themove instructions, which results in far

too many overhead instructions for high-fanout operations. The ISA needs support for limited broadcasts of

high-fanout operands. In addition, the binary overhead of the TRIPSISA is too large. The 128-byte block

header, with the read and write instructions, adds too much per-block overhead. Future EDGE ISAs should

shrink the block header to no more than 32 bytes and support variable-sized blocks in the L1 I-cache to reduce

the NOP bloat, despite the increase in hardware complexity.

Compilation: The TRIPS compiler can generate correct code with reasonable quality for the TRIPS

ISA, despite the new burdens the ISA places on the compiler. We believe thatan industrial production

compiler could achieve code quality similar to our hand-optimized results because the most effective hand-

optimizations are largely mechanical. Because of the challenges presented by block constraints, we moved

structural optimizations, such as loop unrolling and hyperblock formation, tothe back end after code genera-

tion. A remaining challenge is how best to form large blocks in control-intensive code. For example, frequent

function calls that end blocks too early cannot be solved by inlining without substantial re-engineering to

move this optimization from its traditional position in the front end to the back end. Another opportunity is

to allocate more variables in registers, which requires better alias analysis ofpointer data structures; the best

hand-generated code replaced store-load pairs with intra-block temporary communications, producing tighter

code and higher performance.

Microarchitecture: A microarchitecture with distributed protocols is feasible; the fully functional silicon

indicates that the tiled nature of the architecture aided in both design and validation productivity. Another

positive result is that the design eliminates distributed block control protocols(fetch, dispatch, commit, and

flush) from the critical path. However, a number of artifacts in the microarchitecture resulted in significant

performance losses. Most important was traffic on the operand network, which averaged just under one hop

per operand. This communication resulted in both OPN contention and communication cycles on the critical

path. Follow-on microarchitectures must map instructions, in coordination with the compiler, so that most

instruction-to-instruction communication occurs on the same tile. The second most important lesson was

that performance losses due to the evaluation of predicate arcs was occasionally high, since arcs that could

21



have been predicted as branches are deferred until execution. Future EDGE microarchitectures must support

predicate prediction to evaluate the most predictable predicate arcs earlier inthe pipeline. Third, the primary

memory system must be distributed among all of the execution tiles; the cache andregister bandwidth along

one edge of the execution array was insufficient for many bandwidth-intensive codes.

8 Conclusions

At its inception, the TRIPS design and prototyping effort addressed three questions: (1) whether a distributed,

tiled, EDGE-based processor was feasible, (2) whether EDGE ISAs form a manageable compiler target, and

(3) whether an EDGE-based processor can support improved general-purpose, single-threaded performance.

This evaluation shows that the TRIPS ISA and microarchitecture are in factfeasible to build, resulting in a

tiled design that exploits out-of-order execution over a window of many hundreds of instructions. Despite

the inter-tile routing latencies, the combination of the large window, dynamic issue, and highly concurrent

memory system permits TRIPS to sustain up to 10 IPC, showing an average three-fold cycle count speedup

over a Core 2 processor, if hand-optimized kernels are used.

However, the compiled cycle counts on major benchmarks, such as SPECINT and SPECFP, are not com-

petitive with industrial designs, despite the greater computational resources present in TRIPS. On compiled

SPEC2000 benchmarks, measuring cycle counts, the TRIPS prototype achieves 60% of the performance of

a Core 2 running SPEC2000 compiled at full optimization with gcc. Despite the fact that the TRIPS design

was built by fewer than twenty people in an academic environment, this level ofperformance does not support

the hypothesis that EDGE processors could outperform leading industrial designs on large, complex applica-

tions. Even doubling the TRIPS performance would likely result in speedups too small to justify a switch to

a new class of ISAs. These limitations are due partially to inefficiencies in the ISA and microarchitecture, but

may also result from mismatches between certain program features and EDGE ISAs. For example, bench-

marks with many indirect jumps, or unusually complex call graphs with many small functions, are difficult to

compile into large blocks without a debilitating increase in binary size.

Nevertheless, the TRIPS prototype was a first-generation design, beingcompared to an extremely mature

model, and there is much low-hanging fruit remaining in EDGE designs. The prototyping effort taught several

lessons that result in significant improvements in both power and performance. Future EDGE designs should

have support for variable-sized blocks, multicast of operands, predicate prediction, a more distributed/scalable

memory system, smaller block headers, and less distributed mappings of instructions to tiles [18]. Also, since

not all codes have high concurrency, future EDGE-based microarchitectures must allow adaptive granularity,

providing efficient small configurations when larger configurations provide little performance benefit [11]. We

project that these improvements will enable EDGE designs to outperform high-end commodity systems on
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complex integer codes, but not by enough to justify deployment in full-power desktop systems. In the five-to-

ten watt space, however, the performance and potential energy efficiency of EDGE designs may be sufficiently

large to justify adoption in mobile systems or data centers, where high performance at low power is essential.
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