Copyright
by
Jiandan Zheng

2008

The Dissertation Committee for Jiandan Zheng

certifies that this is the approved version of the following dissertation:

URA: A Universal Data Replication Architecture

Committee:

Mike Dabhlin, Supervisor

Lorenzo Alvisi

James C. Browne

Arun lyengar

Lili Qiu

Emmett Witchel

URA: A Universal Data Replication Architecture

by

Jiandan Zheng, B.S.; M.A.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2008

Dedicated to my beloved husband,
my caring parents,

and my wonderful brothers.

Acknowledgments

Thanks to Mike Dahlin, my research adviser, who offered me the opportunity to work in

the LASR lab with a group of talented and energetic people. Mike showed me the art
and science in research in computer systems. | am really impressed by Mike’s intuition,
thoughtfulness, and quick comprehension capability. His valuable suggestions and the dis-
cussions on research ideas lead me towards better and clearer understanding of my research
subject. | greatly cherished his advice on research, coding, writing, presentation, and time
management and | drew a great inspiration and learned a lot from articles that he occa-
sionally distributed to all his students on career and general advice, and on programming
standards. Without Mike’s encouragement and help during the difficult times in my PhD
study, this dissertation would not have been possible.

| am also thankful to professor Lorenzo Alvisi for his encouragement and valuable
advice. | really enjoyed several chats with him regarding career and research and really
appreciate his help on my thesis, my presentations, and job hunting etc.. | learned a lot
from Lorenzo’s Distributed Systems class; that is the best class | have ever had.

I would like to thank J. C. Browne, Arun lyengar, Lili Qiu and Emmett Witchel for
serving on my PhD committee. | have a deeper understanding of the subject thanks to their
insight and suggestions. | also appreciate their patience to reschedule my defense due to
family reason.

| owe a great deal to all of the LASR group. In particular, | must extend my thanks

to Sara D Strandtman for her wonderful administrative support, especially for her help in

arranging my final oral examination while | was in China. | would like also thank my col-
leagues Amol Nayate, Lei Gao, Ramakrishna Kotla, Yin Jian, J.P. Martin, Harry Li, Ami-
tanand Aiyer, Edmund L. Wong, Prince Mahajan, Sangmin Li, Nalini Balaramani, Ravi
Kokku, Taylor Riche, Allen Clement, Jeff Naper, Arun Venkataramani, Praveen Yalagan-
dula, Upendra Shevade, and Navendu Jain, not only for their cooperative works and helping
hands during these school years, but also for the friendly and relaxing working environment
created by them.

Last, but not the least, | would like to extend my appreciation to my family and all
my friends for their long-term caring and support. In particular, | want to thank my beloved
mother who always taught me since | was a little girl to work hard, never give up, never be

satisfied with past achievements, always look ahead and set bigger goals.

JIANDAN ZHENG

The University of Texas at Austin

August 2008

Vi

URA: A Universal Data Replication Architecture

Publication No

Jiandan Zheng, Ph.D.
The University of Texas at Austin, 2008

Supervisor: Mike Dahlin

Data replication is a key building block for large-scale distributed systems to improve
availability, performance, and scalability. Because there is a fundamental trade-off between
performance and consistency as well as between availability and consistency, systems must
make trade-offs among these factors based on the demands and technologies of their target
environments and workloads.

Unfortunately, existing replication protocols and mechanisms are intrinsically en-
tangled with specific policy assumptions. Therefore, to accommodate new trade-offs for
new policy requirements, developers have to either build a new replication system from
scratch or modify existing mechanisms.

This dissertation presents a universal data replication architecture (URA) that cleanly
separates mechanism and policy and supports Partial Replication (PR), Any Consistency
(AC), and Topology Independence (TI) simultaneously. Our architecture yields two signif-
icant advantages. First, by providing a single set of mechanisms that capture the common
underlying abstractions for data replication, URA can serve as a common substrate for
building and deploying new replication systems. It therefore can significantly reduce the

effort required to construct or modify a replication system. Second, by providing a set of

Vil

general and flexible mechanisms independent of any specific policy, URA enables better
trade-offs than any current system can provide. In particular, URA can simultaneously pro-
vide the three PRACTI properties while any existing system can provide at most two of
them. Our experimental results and case-study systems confirm that universal data repli-
cation architecture is a way to builgktterreplication systems and lzetter wayto build

replication systems.

viii

Contents

Acknowledgments
Abstract

List of Tables

List of Figures

Chapter 1 Introduction
1.1 Challenges.,
1.2 Approaches
1.2.1 CR-Repl: Coarse-grain PRACTI Replication

1.2.2 UR-Repl: Universal Replication Mechanisms

1.2.3 Case-Study Systems
1.3 Contributions

Chapter2 PRACTI Taxonomy, Challenges and Scope

2.1 PRACTIProperties
2.2 PRACTITaxonomy
2.3 WhylIsPRACTIHard?
2.4 Scope and Excluded Properties

2.4.1 Excluded properties

Vii

Xiii

Xiv

Chapter 3 Architecture Overview 20

3.1 Replication Abstractions 20
3. 1.1 Storage 22
3.1.2 Communication 27

3.2 Requirements 30

Chapter 4 CR-Repl: Coarse-grain PRACTI Replication 31

4.1 Implementation Overview 33

4.2 Separation of InvalidationsandBodies 35
421 Rationale 36
422 Designlssues 37

4.3 Partial Replication of Invalidations 38
4.3.1 Forming Imprecise Invalidations 39
4.3.2 Applying Imprecise Invalidations 41

4.4 lLogMaintenance 48

4.5 Additional Features 53
45.1 Self-tuning Body Propagation 53
4.5.2 Conflict Detection and Resolution 53
4.5.3 Incremental Log Propagation. 55
4.5.4 Simple Commit Implementation 55

46 Evaluation 56
4.6.1 Partial Replication, 57
4.6.2 TopologyIndependence 62
46.3 AnyCoONnSIStENCY 66

Chapter 5 UR-Repl: Universal Replication Mechanisms 70

5.1 UR-ReplInvalidation Subscription 72

5.1.1 Forming Invalidation Streams 74

5.1.2 Applying Invalidation Streams 77

5.2 CheckpointCatchup. 82
5.2.1 Incremental Checkpoint Transfer Protocol 83
5.2.2 DIiSCUSSION 84

5.3 Flexible Commit Mechanism 85

5.4 ConflictDetection 87
541 DesignChoices e 87
5.4.2 Dependency Summary Vectors 89

55 Evaluation 91
5.5.1 Costfor Subscriptions 91
5.5.2 Costfor Conflict Detection 100

Chapter 6 Flexibility 101

6.1 Flexible Consistency 101
6.1.1 Providing Flexible Guarantees. 102
6.1.2 CostsofConsistency 114

6.2 Callbacks AndLeases. i 115
6.2.1 Callbacks 115
6.2.2 Leases. 118

6.3 QUONUMS e e 119
6.3.1 ImplementatononURA 120

6.4 OtherFeatures. 122

Chapter 7 Case-study Systems 124

7.1 EvaluationCriteria 125
7.1.1 Equivalence 126

7.2 Client-server Systems e 128
721 U-Coda 128

Xi

722 U-TRIP . . . 133

7.3 Server Replication Systems 134

7.31 U-Bayou 134

7.3.2 U-ChainReplication 136

7.4 ObjectReplication Systems 137

741 U-TierStore e 137

742 U-Pangaea it 138
Chapter 8 Related work 142

8.1 Replication Mechanisms 142

8.2 Replication Framework o 143

8.3 ConflictDetection 144
Chapter 9 Conclusions 145
Bibliography 149
Vita 161

Xii

List of Tables

Xiii

11
1.2
1.3

21
2.2

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

List of Figures

URAWVISION. e 2
Systems built on URA and the features they implemented. 3
Synchronization time between palmtop and laptop. 4
Replication system classification in the PRACTI taxonomy. 14
Naive addition of PRtOAC-TIL. o 17
One node replication abstractions. 22
Conditions available for defining consistency policies. 25
Local storage access interface for policy writers. 26
Communication interface for policy writers. 28
Events exposed to policy writers. 29
Coredatastructures. 33
Imprecise invalidationexample. 38
Invalidation streams with imprecise invalidations. 40
Algorithm for processing a CR-Repl invalidation stream. 43
Utility functions forProcessinvalStream 44

Summary of cases for updating interest set PRECISE/IMPRECISE status. . 45
Example of maintaining interestsetstate. 48

Logexchangeexample. 49

Xiv

4.9 lllustration of imprecise invalidation mechanismspiit-join scenario. . . 51

4.10 Impact of locality on replicationcost. 58
4.11 Bandwidth costvswriteratio. 60
4.12 Read response time vs available bandwidth. 61
4.13 Configuration for mobile storage experiments. 62

4.14 Synchronization time among devices for different network topologies and

protocols. 63
4.15 Execution time for the WAN-Experiment benchmark. 65
4.16 Consistency trade-offs. 67
4.17 Bandwidth cost of consistency information. 69
5.1 Invalidation subscriptioncost. 72
5.2 UR-Replinvalidationstream. 74
5.3 Multiplexing invalidation subscriptions. 76
5.4 Algorithm for processing a UR-Repl invalidation stream. 80
5.5 Invalidation stream messages andtheirDSVs. 90
5.6 Network overheads breakdown. 92

5.7 Bandwidth for subscribing to varying number of 1-object interest sets for

UR-Repland CR-Repl. 94
5.8 Network bandwidth cost to synchronize 1000 10KB files, 100 of which are
modified. 94

5.9 Invalidation overheads breakdown to synchronize 1000 10KB files, 100 of
which are modified. 95
5.10 Bandwidth for establishing invalidation subscriptions. 97

5.11 Number of bytes per relevant update sent over an invalidation stream for

differentworkloads. L 98
5.12 Read/write performance for 1KB objects/filesinms. 98
5.13 Read/write performance for 100KB objects/filesinms. 99

XV

5.14 Performance for Andrew benchmark., 99

5.15 Storage and communication overhead lower and upper bounds comparison

6.1
6.2
6.3

7.1
7.2
7.3
7.4

of existing approaches. 99
Sequential consistency violationexample 1. 107
Sequential consistency violationexample2. 107
Linearizability violationexample. 112
Features covered by case-study systems. 125
Average read latency of U-Coda and U-Coda with co-operative caching. . . 131
Anti-Entropy bandwidthon U-Bayou. 135
Read miss latency for U-Pangaea and alternatives. 140

XVi

Chapter 1

Introduction

Data replication is a fundamental technique for improving the performance [8, 10, 24, 27,
68, 73, 77, 94, 28], availability [18, 27, 50, 102, 21], ubiquity [48, 72, 23], persistence [61,
49], and managability [1, 69, 71] of a broad range of large-scale distributed systems such as
mobile file systems [48, 69, 72, 23], web services [24, 27, 94], enterprise file systems [42,
77, 29], and grid replication systems [5, 73].

Despite decades of research on data replication, we lack a single “perfect replication
system” for all environments. The fundamental technical reason behind this problem is that
any replication system must make trade-offs between availability, consistency, performance,
and partition-resilience based on the demands and technologies of their target environments
and workloads. For example, the well-known CAP (Consistency/Availability/Partition-
resiliance) dilemma [13, 31, 84] proves that systems cannot simultaneously achieve both
sequential consistency and high availability if there are network partitions. Similarly, Lip-
ton and Sandburg [54] prove that there is a fundamental trade-off between performance and
consistency when data are shared by multiple nodes. As a result, most existing replication
systems are built for specific environments or workloads.

Therefore, as technologies and workloads evolve, it is safe to presume that just as

many replication systems have been built for different environments in the past [48, 69, 72,

Personal | | Enterprise Polici
Fs FS 0l1C1€S
Replication Microkernel Mechanisms

Figure 1.1: URA vision.

42,77, 29, 23], we will continue to need to develop new replication systems to meet current
and future application challenges.

Unfortunately, the state of the art for constructing new replication systems for new
environments is lacking. New systems are typically built from the ground up and co-mingle
new mechanisms and new policies in their design. This ad-hoc approach makes it hard to
construct and deploy new systems because each system must be built from scratch, makes
it hard to evolve systems because the existing implementation is based on specific policy
assumptions, makes it hard to teach the principles of replication because we are forced to
teach a series of case studies rather than a set of basic principles, and makes it hard to focus
the community research agenda because it is difficult to identify the open questions or to
isolate the contributions of a newly-proposed system.

We believe that, many existing systems are “special cases” of a more fundamental
underlying protocol. This dissertation therefore investigatesigersal data replication
architecture(URA) over which a broad range of replication systems can be constructed
with dramatically less effort than current approaches.

As indicated in Figure 1.1, the goal of thumiversal data replication architecture
is to build areplication microkernethat cleanly separates mechanisms and policies so that
different replication systems can be built on the same set of mechanisms, and they only
differentiate from each other by policies.

URA vyields two significant advantages compared to existing approaches. First, it

is abetter wayto build replication systems. By providing a single set of mechanisms that

U-Bayou[72] | U-Chain | U-Coda [48] U-Tier
+Small Repl +Coop U-Pangaeal Store U-TRIP
Device [91] Cache [77] [23]+CC [66]+Hier
Consistency Causal Lin. Open/close | Coherence| Coherence Seq.
— Causal
Topology Ad- Chains Client/ Ad- Tree Client/Server
Hoc Server Hoc — Tree
Partial
Replication v v VA v
Prefetching/
Replication 4 v 4 v 4 4
Cooperative
Caching v v
Disconnected
operation v v v
Callbacks v Vi v
Leases v
All reads
served locally Vv VA Vv
Crash recovery v v Vv v Vv v
Object store interface Vv Vi Vv Vi Vv Vv
File system interface v Vi v Vi v v

Figure 1.2: Systems built on URA and the features they implemented.

capture the common underlying abstractions for data replication, URA can serve as a com-
mon substrate for building and deploying replication systems. It therefore can significantly
reduce the effort required to construct or modify a replication system.

As illustrated in Figure 1.2, to test whether we succeed in building a universal “mi-
crokernel”, we have built a broad range of replication systems that covers a large design
space using URA. These systems demonstrate the power of URA: (If)dkiislein that
we are able to construct systems with a wide range of architectures and features; (2) URA is
efficientin that we are able to build systems that are comparable to hand-built systems from
literature with respect to the central properties of a replication architecture;and (3) URA
facilitates innovatiorby exposing new design space and making it much easier to add new
features in existing systems.

Although we do not argue that our URA implementationsidemticalto the orig-
inal systems on which they are based, we do believe that they capture all important fea-

tures relating to how these systems maximize performance, availability, and consistency.

75} 66 '

Sync Time(s)
)
o
1

1.7

0 —

URA Client-Server Server Repl
(e.g. Coda) (e.g. Bayou)

Figure 1.3: Synchronization time between palmtop and laptop.

Figure 1.2 enumerates many of the key features included in our implementations. In Sec-
tion 7.1.1, we more formally define a notion i@plication equivalencand argue that our
URA implementations areeplication equivalento the systems they model.

Second, itis a way to builbetter replication system8y providing a set of general
and flexible mechanisms independent of any specific policy, URA enables better trade-
offs than any current system can provide. In particular, URA can simultaneously provide
PRACTI properties, i.e., Partial Replication (PR), Any Consistency (AC), and Topology
Independence (TI) while existing systems [96, 50, 103, 68, 48, 65, 20, 25, 4, 89, 76, 17, 75,
72, 36, 77, 60] can only simultaneously provide at most two of them. As a result, PRACTI
allows us to construct systems whose performance is at least comparable to and sometimes
much better than systems constructed using existing replication protocols.

Notably, by providing PRACTI simultaneously, URA replication can yield signif-
icant practical advantages over existing approaches. For example, Figure 1.3 summarizes
an experiment that we will describe in more detail in Chapter 4. It shows the time re-
quired to synchronize updates between a palmtop and a laptop when the connection be-
tween these two devices is good, but when the connection to the rest of the Internet is lim-

ited. As indicated in the graph, the URA architecturenigre than an order of magnitude

betterthan two of the three major classes of existing replication architectures—traditional
hierarchical/client-server [65, 68, 48] and server-replication architectures [96, 72]. Because
URA can adapt to the network conditions (TI), it dominates the restricted topology PR-AC
client-server approach; because URA can exploit locality to send just the information of
interest to the palmtop (PR), it dominates the full-replication (AC-TI) server replication ap-
proach. Although the third major class of existing replication architectures—PR-TI object
replication architectures [36, 77, 60]—are capable of having performance comparable to
URA, these systems give up URA's ability to provide cross-object consistency guarantees
(AC), which can increase complexity and errors for applications and users. By providing

all these PRACTI properties, URA dominates most of existing approaches.

1.1 Challenges

The challenges to constructing such a universal data replication architecture mainly come

from the need to meet three requirements.

e First, the architecture must bkexible Because replication systems cover a large
design space, to serve as a common substrate for developing different systems, the
architecture must be capable of implementing a wide range of systems including
client-server systems [65, 68, 48], server-replication systems [96, 72], object replica-
tion systems [36, 77, 60], systems that use callbacks [65, 68, 48], systems that use
polling [79, 11], systems that use leases [33, 101], systems that subscribe to groups

of objects [23, 48], systems that fetch individual objects on demand [65], and so on.

e Second, the architecture mustdfécient It should not only be able to support a wide
variety of systems but also ensure that the cost a specific system implementation pays
is proportional to the demands it has, i.e., resulting in systems that are comparable to

hand-built systems.
e Finally, the architecture interface exposed to system designers mgghpke On

5

one hand the architecture should support as many replication policy choices as pos-
sible to cover the large design space. On the other hand, it must make it easy for
system designers to specify replication policies and reason about replication cost and

consistency semantics.

Meeting those requirements in a single framework is challenging because the com-
bination of some of the requirements make it difficult to support other requirements. In
particular, as we will illustrate in more details in Chapter 2, supporting flexible consistency
(to be flexible and simple) requires careful ordering of how updates propagate through the
system, but consistent ordering becomes more difficult if nodes communicate in ad-hoc
patterns (to be efficient) or if some nodes only know about updates to some objects but not

those to other objects (to be efficient).

1.2 Approaches

To address these challenges, the URA design strictly follows one prinaipparation of
mechanisms and policie$he mechanisms define the abstractions for storage, communica-
tion, and consistency that automatically handle the bookkeeping needed to allow policies to
distribute data however they want. Policies specify system-specific choices such as what to
synchronize, who to synchronize with, and when to synchronize. The URA implementation
defines acore that embodies these mechanisms and leaves policy definition to a separate
controllerso that different deployments may use different controllers to implement different

policies. This thesis focuses on the core mechanisms.

1.2.1 CR-Repl: Coarse-grain PRACTI Replication

As a first step to meet the above three requirements, the tliR&implements acoarse-
grain replication protocol (CR-Rephhat supports three vital properties simultaneously:

Partial Replication(PR)—for flexibility and efficiency any data can be replicated on any

device; Any ConsistencyAC)—for flexibility and simplicity the architecture supports a
range of consistency guarantees; dogology Independend@l)—for flexibility and sim-
plicity information can flow between any pair of nodes.

To implement these three vital properties, CR-Repl draws on key ideas of existing
protocols but recasts them to remove the deeply-embedded policy assumptions that prevent
one or more properties. In particular, our design begins with log exchange mechanisms
that support a range of consistency guarantees and ad-hoc communication topology but
that fundamentally assume full replication [72, 96, 103]. To support partial replication, we

extend the mechanisms in two simple but fundamental ways.

1. In order to allow partial replication of data, our desiggparates the control path
from the data patlvy separating invalidation messages that identify what has changed
from body messages that encode the changes to the contents of objects. Distinct inval-
idation messages are widely used in hierarchical caching systems [65, 48, 12], but we
demonstrate how to use them in topology-independent systems: we develop explicit
synchronization rules to enforce consistency despite multiple streams of information,

and we introduce general mechanisms for handling demand read misses.

2. In order to allow partial replication of update metadata, we introdimgeecise in-
validations which allow a single invalidation to conservatively summarize a set of
invalidations. Imprecise invalidations allow us to provide cross-object consistency
in a scalable manner in which each node incurs storage and bandwidth costs propor-

tional to the size of the requested data sets.

To support imprecise invalidations, we define a protocol that allows nodes to compose
precise invalidations into imprecise ones, to incrementally exchange logs of mixed
precise and imprecise invalidations, to allow precise reads (thatamessstentiew

of the data) or imprecise reads (that see onlyoherentview of the data), and to

recover precision for objects that have become imprecise.

1.2.2 UR-Repl: Universal Replication Mechanisms

Although the basic CR-Repl protocol covers a large design space and is efficient for some
scenarios, it incurs significant overhead when it comes to implementing single object call-
backs [42, 68], which are fundamental to many caching protocols, or supporting workloads
where checkpoint exchange is a more efficient way for synchronization. To generalize the
PRACTI mechanisms to a universal architecture, we extend the CR-Repl protocol in three

fundamental ways to address these limitations:

1. In order to efficiently support both coarse-grained and fine-grained subscriptions, we
multiplex invalidation subscriptiongver a single network stream. By maintaining a
shared state for multiple subscriptions and allowing one imprecise invalidation to be
used across all active subscriptions, UR-Repl allows a node to dynamically subscribe
or unsubscribe for invalidations to a large set of objects or to individual objects with

the cost proportional to the total number of updates to the subscribed objects.

2. In order to support fast resynchronization of different type of workloads, UR-Repl
introduces a novahcremental checkpoint exchangad smoothly integrates it with
CR-Repl’s log exchange protocol. Instead of freezing the receiver and sender’s states
as required in most existing checkpoint exchange protocols [72], UR-Repl allows the
receiver to receive an incremental checkpoint for a small portion of its ID space and
then either prefetch checkpoints of other interest sets or fault them in on demand.
Therefore, UR-Repl is more efficient to support bandwidth-limited network environ-

ment than existing approaches.

3. In order to support efficient conflict detection for both log exchange and checkpoint
exchange, we use novdependency summary vectors (D3&detect write-write
conflicts. This new write-write conflict detection algorithm yields three advantages.
First, by having multiple objects to share the same version vector to detect conflicts,

UR-Repl avoids sending and storing per-object version vector, thus saving network

bandwidth and storage space. Second, this conflict detection mechanism not only
works for the log exchange protocol but also works for the checkpoint exchange
protocol. Finally, we show how to efficiently implement the DSV using the state
already required by the consistency maintenance algorithm—one version vector per

interest set plus one version vector per network connection.

1.2.3 Case-Study Systems

A core hypothesis of URA is that a single framework can cleanly support a broad range of
systems. To test whether our mechanisms capture the right abstractions and simplify the
understanding and construction of replication systems, we first explain how to map a broad
range of existing technologies such as callbacks, leases, and quorums. onto our underlying
mechanisms and then combine a subset building blocks into series of case-study systems
inspired by systems from the literature spanning a significant portion of the design space.

These case-study systems include:

e Two client-server systems modeled on Coda [48] and TRIP [66] which illustrate how
to map existing techniques suchalbacks leaseshoarding list sequential consis-

tency anddisconnected operaticio URA;

e Two server replication systems modeled on Bayou [72] and Chain Replication [91]
which demonstrate how to map existing techniques sugfriasary server commit

(CSN) [72],anti-entropy andcheckpoint exchange URA,

e Two object replication systems modeled on Pangaea [77] and TierStore [23] which
show how to map existing techniques or features sucolisnodeg77], best-effort

coherenceandDTN supporto URA.

We also demonstrate how URA facilitates rapid evolution by adding significant fea-
tures to several of these systems. For example, we add cooperative caching to U-Coda, our

version of Coda, so that a clique of devices can share data even when disconnected from

9

the server; we add support for small devices to U-Bayou so that a limited-storage device
can participate in Bayou replication without storing all of the system’s data; and we add
cooperative caching to U-TierStore so that once one user in a developing region downloads
data across an expensive modem link, nearby users can retrieve that data using their local

wireless network; and we add hierarchy to U-TRIP to improve scalability.

1.3 Contributions

This dissertation makes the following contributions:

e It defines the PRACTI paradigm and provides a taxonomy for replication systems

that explains why existing replication architectures fall short of ideal.

o It describes the first replication protocol architecture to simultaneously provide all

three PRACTI properties.

¢ Itdefines common abstractions of data replication systems that cleanly separate mech-
anism from policy and thereby simplify the understanding and construction of repli-

cation systems.

e It demonstrates that URA replication offers decisive practical advantages compared

to existing approaches.

¢ |tdemonstrates the usefulness of URA by building several key case study applications

and mapping existing techniques on URA.

e It proposes novel incremental checkpoint exchange, flexible commit primitive, and

efficient conflict detection algorithms.

The rest of this dissertation is organized as follows: Chapter 2 defines the PRACTI prop-

erties and taxonomy to understand data replication design space, and it illustrates why it

10

is challenging to provide PRACTI properties in one single framework. This chapter closes
with a discussion of the scope of URA and some issues that URA does not attempt to
address. Chapter 3 gives an overview of the architecture and describes the simple abstrac-
tions URA exposes to system designers. Chapter 4 shows how to implement CR-Repl
mechanisms and demonstrates the experiment results. Chapter 5 presents how to make
CR-Repl mechanisms efficient bygultiplexing subscriptionsaddingincremental check-

point exchangeand usingdependency summary vectdos conflict detection. Chapter 6
describes how to map existing techniques to URA, and then Chapter 7 illustrates how to
combine some of them to build a broad range of case-study systems. Chapter 8 summarizes

related work. Finally, Chapter 9 concludes the dissertation.

11

Chapter 2

PRACTI Taxonomy, Challenges and

Scope

In order to put the URA approach in perspective, this section defines the PRACTI prop-
erties, examines existing replication architectures, and considers why years of research
exploring many different replication protocols have failed to realize PRACTI properties
simultaneously. Finally we define the scope of the PRACTI paradigm and identify aspects
of replication system design that are not within the scope of the PRACTI taxonomy on the

URA protocol.

2.1 PRACTI Properties

Replication systems cover a large design space. Some cache objects on demand [42, 68],
while others replicate all data to all nodes [72, 96]; some guarantee strong consistency [48,
91, 66] while others sacrifice consistency for higher availability [77, 23, 36]; some invali-
date stale objects [42, 68], while others push updates [37]; some disseminate updates among
nodes via a tree structure [23], while others synchronize data in an ad-hoc fashion [72]; and

SO on.

12

Informally, we can categorize replication policies into three familipacement
policiessuch as demand-caching [42, 68], prefetching [35], push-caching [37], or replicate-
all [72, 96] define which nodes store local copies of which dedasistency policiesuch as
sequential [52] or causal [43] define which reads must see which wiitestogy policies
such as client-server [42, 68], hierarchy [12, 65], or ad-hoc [36, 50, 72] define the paths
along which updates flow.

To cover the large design space of replication systems, any universal data replication

architecture should provide all three PRACTI properties:

e Partial replication (PR)which allows any node to replicate any subset of data so that
replication systems that make use of locality to improve performance [48] or that

control placement to improve reliability [77] can be supported.

e Any consistency (AGyhich allows a variety of consistency guarantees to be imple-
mented so that systems that require weaker consistency like best-effort coherence and

those which require stronger consistency like linearizability [40] can be supported.

e Topology independence (Twhich allows any node to synchronize with any other
node so that systems with fixed update propagation topologies as well as those with

dynamic, ad-hoc update topologies can be supported.

Although many existing systems can each provide two of these properties, we are
aware of no system that provides all three. As a result, systems give up the ability to exploit
locality, support a broad range of applications, or dynamically adapt to network topology.

Note that the requirements for supporting flexible consistency guarantees are sub-
tle, and Chapter 6 discusses the full range of flexibility our protocol provides. URA should
support both the weak coherence-only guarantees acceptable to some applications and the
stronger consistency guarantees required by others. Notedhaistencysemantics con-

strain the order that updates acrasaltiple objectsbecome observable to nodes in the

13

system whilecoherencesemantics are less restrictive in that they only constrain the or-
der that updates tosingle objecbecome observable but do not additionally constrain the
ordering of updates across multiple locations. (Hennessy and Patterson discusses the dis-
tinction between consistency and coherence in more detail [39].) For example, if ahode
updates objecH and then objecB and another node2 reads the new version @&, most
consistency semantics would ensure that any subsequent readsseg the new version

of A, while most coherence semantics would permit a read tf return either the new or

old version.

2.2 PRACTI Taxonomy

The PRACTI paradigm defines a taxonomy for understanding the design space for replica-
tion systems as illustrated in Figure 2.1. As the figure indicates, many existing replication

systems can be viewed as belonging to one of four protocol families, each of which provides
at most two of the PRACTI properties.

Server replicatiorsystems like Replicated Dictionary [96] and Bayou [72] provide
log-based peer-to-peer update exchange that allows any node to send updates to any other
node (TI) and that consistently orders writes across all objects. Lazy Replication [50] and
TACT [103] use this approach to provide a wide range of tunable consistency guarantees
(AC). Unfortunately, these protocols fundamentally assume full replication: all nodes store
all data from any volume they export and all nodes receive all updates. As a result, these
systems are unable to exploit workload locality to efficiently use networks and storage, and
they may be unsuitable for devices with limited resources.

Client-serversystems like Sprite [68] and Coda [48] ahigrarchical caching sys-
tems like hierarchical AFS [65] permit nodes to cache arbitrary subsets of data (PR). Al-
though specific systems generally enforce a set consistency policy, a broad range of con-
sistency guarantees are provided by variations of the basic architecture (AC) [99]. How-

ever, these protocols fundamentally require communication to flow between a child and

14

Partial
Replication

DHT
(e.g., BH,
OceanStore

PAST, CFS)

Hierarchy,
Client/Server,
(e.g., Sprite,
Coda,

Hier-AFS)

Object
Replication
(e.g., Ficus,
Pangaea,

WinFS)

Arbitrary

_ Topology
Consistency

Independence

Server Replication
(e.g., Replicated Dictionary)
Bayou, Lazy Replication,
TACT)

Figure 2.1: Replication system classification in the PRACTI taxonomy.

its parent. Even when systems permit limited client-client communication for cooperative
caching [20, 25, 4], they must still serialize control messages at a central server for consis-
tency [14]. These restricted communication patterns (1) hurt performance when network
topologies do not match the fixed communication topology or when network costs change
over time (e.g., in environments with mobile nodes), (2) hurt availability when a network
path or node failure disrupts a fixed communication topology, and (3) limit sharing during
disconnected operation when a set of nhodes can communicate with one another but not with
the rest of the system.

DHT-based storage systermmgch as BH [89], PAST [76], and CFS [17] implement
a specific—if sophisticated—topology and replication policy: they can be viewed as gener-
alizations of client-server systems where the server is split across a large number of nodes
on a per-object or per-block basis for scalability and replicated to multiple nodes for avail-

ability and reliability. This division and replication, however, introduce new challenges for

15

providing consistency. For example, the Pond OceanStore prototype assigns each object to
a set of primary replicas that receive all updates for the object, uses an agreement proto-
col to coordinate these servers for per-object coherence, and does not attempt to provide
cross-object consistency guarantees [75].

Object replicatiorsystems such as Ficus [36], Pangaea [77], and WinFS [60] allow
nodes to choose arbitrary subsets of data to store (PR) and arbitrary peers with whom to
communicate (TI). But, these protocols enforce no ordering constraints on updates across
multiple objects, so they can provide coherence but not consistency guarantees. Unfortu-
nately, reasoning about the corner cases of consistency protocols is complex, so systems
that provide only weak consistency or coherence guarantees can complicate constructing,
debugging, and using the applications built over them. Furthermore, support for only weak

consistency may prevent deployment of applications with more stringent requirements.

2.3 Why Is PRACTI Hard?

It is surprising that despite the disadvantages of omitting any of the PRACTI properties,
no system provides all three. Our analysis suggests that these limitations are fundamental
to these existing protocol families: the assumption of full replication is deeply embedded
in the core of server replication protocols; the assumption of hierarchical communication
is fundamental to client-server consistency protocols; careful assignment of key ranges to
nodes is central to the properties of DHTSs; and the lack of consistency is a key factor in the
flexibility of object replication systems.

To understand why it is difficult for existing architectures to provide all three PRACTI
properties, consider Figure 2.2’s illustration of a naive attempt to add PR to a AC-TI server
replication protocol like Bayou. Suppose a user’s desktop node stores all of the user’s files,
including filesA and B, but the user’s palmtop only stores a small subset that inclBdes
but notA. Then, the desktop issues a series of writes, including a write telf(lmaking

it A’) followed by a write to fileB (making it B’). When the desktop and palmtop syn-

16

(i
2l

445111!1‘“““

writeA’ A B B
—
WriteB’ A’ B
HA’ B’ SyncB’ v
RAALLSS B,mB,
A B’Read B’
——
Read A
—

Figure 2.2: Naive addition of PR to AC-TI.

chronize, for PR, the desktop sends the writeBobut not the write ofA. At this point,
everything is OK: the palmtop and desktop have exactly the data they want, and reads of lo-
cal data provide a consistent view of the order that writes occurred. But for TI, we not only
have to worry about local reads but also propagation of data to other nodes. For instance,
suppose that the user’s laptop, which also stores all of the user’s files including lawith

B, synchronizes with the palmtop: the palmtop can send the wrife béit not the write

of A. Unfortunately, the laptop now can present an inconsistent view of data to a user or
application. In particular, a sequence of reads at the laptop can return the new verBion of
and then return the old version df, which is inconsistent with the writes that occurred at

the desktop under causal [43] or even the weaker FIFO consistency [54].

This example illustrates the broader, fundamental challenge: supporting flexible
consistency (AC) requires careful ordering of how updates propagate through the system,
but consistent ordering becomes more difficult if nodes communicate in ad-hoc patterns
(TN or if some nodes know about updates to some objects but not other objects (PR).

Existing systems resolve this dilemma in one of three ways. The full replication of
AC-TI replicated server systems ensures that all nodes have enough information to order
all updates. Restricted communication in PR-AC client-server and hierarchical systems en-
sures that the root server of a subtree can track what information is cached by descendants;

the server can then determine which invalidations it needs to propagate down and which it

17

can safely omit. Finally, PR-TI object replication systems simply give up ability to consis-
tently order writes to different objects and instead allow inconsistencies such as the one just

illustrated.

2.4 Scope and Excluded Properties

A deeper challenge to designing a replication architecture is how to identify the essential
characteristics of replication systems the architecture should encompass. Research papers
discuss many features of their systems, and prototype implementations often include even
more features not mentioned in papers. However, not all features are crucial to the archi-
tecture being advocated. Spending the time to create “bug compatible” implementations
would detract from the central thrust of our research effort and would also likely confuse
rather than clarify our results.

URA therefore focuses on supporting key features that relating to how replication
systems maximize the performance, availability, and consistency to address the CAP [31]
and PC [54] trade-offs. In particular, in Section 7.1.1, we formally defimepéication

equivalencenotion based onverheagconsistencyandavailable local data

2.4.1 Excluded properties

These definitions restrict the scope of our architecture. Several excluded properties warrant
discussion: security, interface, conflict resolution, and configuration.

First, we do not address security. We believe that ultimately our replication archi-
tecture should also define flexible security mechanisms and make specifying a system’s
security a policy choice. Providing this ability is important future work, but it is outside the
scope of this paper, which can be regarded as focusing on the architectural problem of al-
lowing systems to define their replication, consistency, and topology policies [9] to address
the CAP [31] and PC [54] trade-offs. Mahajan et al. explore security issues for a simple

protocol elsewhere [56].

18

Second, we do not systematically address the local interface a system exposes (e.g.,
file system [48, 77, 66], object store [22], tuple store [72], etc.) because we do not regard
these differences as fundamental. URA currently implements a object store and we have
constructed several file systems over it; future work is needed to extend it to support tuple-
stores.

Third, we do not attempt to support all possible conflict resolution algorithms [48,
88, 47, 83, 22]. URA logs all write-write conflicts in a way that is data-preserving and
consistent across nodes to support a broad range of application-level resolvers. We be-
lieve it is possible to extend our mechanisms to support Bayou’s more flexible application-
specified conflict detection and reconciliation programs, but supporting this additional flex-
ibility would increase the cost of applying updates to a node’s storage because it would
requires a node’s state to be rolled back to the logical time of an update in order to run the
conflict detection and resolution programs in an appropriate context [88].

Finally, we do not attempt to duplicate how systems are configured (e.g., specifying
lists of peers or replication policy with configuration files [48] or symbolic links [62, 22]).

We rely on some configuration files and provide hooks for our liveness policies to access

the object store, but we do not claim that our arrangement is optimal.

19

Chapter 3

Architecture Overview

Given the PRACTI properties, URA's mechanisms can expose very simple abstractions for
system designers to implement a broad range of systems. Before we describe how to address
the challenge of providing the PRACTI properties, this chapter first gives an overview of
the URA architecture by defining the basic replication abstractions URA expose to system
designers and then describes the requirements to implement such abstractions. Chapter 4
and Chapter 5 describe how to implement these abstractions efficiently and correctly. Chap-
ter 6 discusses how to map existing features to these abstractions and Chapter 7 describes

how to build more sophisticated case-study systems.

3.1 Replication Abstractions

Figure 3.1 provides a high-level view of the URA architecture. To separate the mechanism
and policy, the architecture is divided into two separate layers. The mechanisncdager

is composed of a set of basic mechanisms that support PRACTI features. The policy layer
controllerimplements specific system policies using the underlying common mechanisms
through a set of replication interfaces. System designers can build different replication

systems in the policy layer by constructing different controller instances.

20

The controller's major task is to allow system designers to specify replication poli-
cies to trigger the right communication between the right cores at the right time to do such
things as satisfying a read miss, prefetching data to improve performance. In particular, to

build a replication system, a system designer must specify two sets of replication policies.

¢ Policies for storage. This set of policies specify the consistency requirements and the
data placement strategies of a system. For example, they answer questions such as
“what consistency semantics” to enforce and “what objects to store locally on each

node”.

¢ Policies for communication. This set of policies specify the update distribution strate-
gies including where to send invalidations, when to send bodies, and where to go for

body etc.

As Figure 3.1 illustrates, to implement those replication policies, the URA core
exposes two basic abstractions: storage and communication. A controller instance works
with the core to construct a replication system throughldical APl and communication
APl to implement the storage and communication policies: a core informs the controller of
important local events like message arrival or read miss, a controller calls a remote core’s
communication APto trigger transmissions of invalidation streams or bodies and calls a
local core’sLocal APIto enforce consistency guarantees. Additionally, a set of controllers
implementing a specific distributed policy may communicate with one another using policy-
specific interfaces.

To illustrate how the system works, let's look at how to deal with a read miss.
When a core can not satisfy a local read request because the data is INVALID, it informs
the controller and blocks the read thread until the data is VALID. The controller responses
to theinform call by invoking a core demand read request to fetch the data from the core of
a remote node it selects. When the body arrives, the local core applies it to make it VALID,
unblocks the waiting read, and informs the controller so that the controller does not have

to retry. Chapter 7 has more concrete illustration of the interactions between the controller

21

Client read/
write/delete

Mechanisms

Communicaiion API Local API Commu‘nicat.ion API
s T
Invalidation Invalidation
subscriptions subscriptions
———

state
S ——
Object store

Core

Body subscriptions Body subscriptions

Body fetches

Body fetches

Figure 3.1: One node replication abstractions.

and the core.

3.1.1 Storage

The storage abstraction is simple and has two main parts: (jant storeo store a subset
of the system’s data locally selected by the policy for serving local read/write requests and

(2) consistency statds track and expose the dependencies among updates.

Object store. For simplicity, URA exposes a bare object-store interface for local reads
and writes. It is straightforward to build other sophisticated higher-level interfaces such
as a file system on top of it. For example, Chapter 6 will describe an NFS interface we
implement using the basic object-store interface.

In order to support replication and caching, each node has an object store that con-

tains a subset of the system’s data. Every object has an object ID and byte-addressable data.

22

An interest se{lS) identifies an individual object or a group of objects (e.g., /a/b/*) and a
policy can specify and update a list of interest sets for which a node should store per-object
state. This per-object state includes consistency state information related to the object and
may include the data stored in each byte-range if that data has been received by the node.
A node need not store per-object state for objects outside of the interest sets specified by
the policy. A node also tracks per-1S state that contains sufficient information to derive the

consistency state for all objects covered by an interest set.

Consistency state. To be universal, URA’s consistency state must meet two requirements.
First, it must be flexible to support a wide range of constraints. Second, it must be simple.
The underlying system should handle details to maintain sufficient consistency bookkeeping
information to make it easy for policy writers to specify high-level requirements.

URA defines two sets of primitives to implement the consistency state. First, it
maintains a per-node logical vector clock and a per-node real-time vector clock to track
the overall state of each node. These version vectors are updated when invalidations or
heartbeats are received from other nodes. The logical vector clock is used to track the
updates a node has learned of and is useful for supporting TACT's {08 error (OE);
the real-time vector clock is used to track objects’ staleness and is useful for enforcing to
support TACT’s tunabléemporal error(TE) and leases. We will discuss how to support
those mechanisms in more detail in Chapter 6.

Second, by maintaining the per-object state and per-1S state, a node tracks 3 basic

consistency states for each object that is included in its interest sets:

1. VALID tracks whether the node has data corresponding to the highest received in-
validation for the target object. It is useful for enforcing coherence by blocking each
read when the target object is invalid and for maximizing availability by ensuring that
invalidations received from other nodes are not applied until they can be applied with

their corresponding data [23, 66].

23

2. PRECISEracks whether the object’s local state reflects all updates before the node’s
current logical time. It is useful for enforcing cross object consistency. For example,
to enforce causal consistency, a node blocks a read until the targeted objattis
and PRECISE This combination ensures that each read returns the newest update
of its target object up to the node’s current logical time, therefore they provide a

consistent view across different objects.

When an object is imprecise, it means that the node may not receive all updates tar-
geting this object, which might lead to inconsistency. For example, suppose there are
four updated¥0 andWW2 onol andW1 andW 3 on o2 that are causally ordered as

W1 < W2 < W3 < W4. Suppose a nhode only receivedV 0 andW 3, thena sees

the old value ob1 and the new value af2, which violates the causal consistency.

3. SEQUENCEDracks whether the current local version of the target object has been
placed in a total order. It is useful for enforcing strong consistency semantics such
as sequential consistency and linearizability that require commit protocols. For ex-
ample, to support a primary commit protocol [72], the primary server can commit
updates by setting tfeEQUENCEDstatus in the order invalidations arrive, and then
each client blocks each read until the target objeSHQUENCED

Local APl. Given the range of consistency policies enabled by the basic object store and
consistency state mechanisms, URA allows system designers to specify a consistency policy
via a node’docal API. As Figure 3.1 indicates, the local APl operates on the local object
store and consistency state and allows clients to read/write objects. A consistency policy
defines the circumstances under which it is safe to process a read/write request or to return
aresponse. In particular, enforcing consistency semantics generally requires blocking reads
until a sufficient set of updates are reflected in the locally accessible state, blocking writes
until the resulting updates make it to some or all of the system’s nodes, or both.

URAS local API therefore allowslocking predicateto block a read request, a write

24

isValid Block until node has body corresponding to highestre-
ceived invalidation for the target object, i.e., the target
per-object state VALID igrue.
isComplete Block until object’s consistency state reflects all up-
dates before the node’s current logical time, i.e., the
target object state PRECISEtisue.

isSequenced Block until object’s total order is established

propagated Block until count nodes innodes have received my
nodes, count, p| pth most recent write
maxStale Block until | have received all writes up to

nodes, count, t | (operationStart — t) from count nodes innodes.
tupletuple-spec| Block until receiving a message matchitugple-spec

Figure 3.2: Conditions available for defining consistency policies.

request, or application of received updates until a predicate is satisfied. The predicates
specify conditions based on the consistency bookkeeping information maintained by the

persistent storage or they can wait for the arrival of a specific message generated by the
liveness policy. Basing the predicates on these inputs suffices to specify any order-error or
staleness error constraint in Yu and Vahdat's TACT model [103] and thereby implement a

broad range of consistency models from best effort coherence to delta coherence [85] to
causal consistency [51] to sequential consistency [52] to linearizability [103].

URA defines 5 points for which a policy can supply a predicate and a timeout value
that blocks a request until the predicate is satisfied or the timeout is reaReadNow-
Blockblocks a read until it will return data from a moment that satisfies the predicate, and
WriteBeforeBloclblocks a write before it modifies the underlying local stoReadEnd-
BlockandWriteEndBlockblock read and write requests after they have accessed the local
store but before they returApplyUpdateBlocklocks an update received from the network
before it is applied to the local store.

Figure 3.2 lists the conditions available to consistency prediceteéglid if settrue
blocks a read/write request until the per-object staté 4.7 D. It is useful for enforcing
coherenceisCompleteandisSequencedre useful for enforcing consistency semantics like

causal, sequential, or linearizablPropagatedand maxStalenesare based on the status

25

| Local Operations

Read obj, off, len, blockUntilVALID, blockUntil PRECISE, blockUntiISEQUENCED
Write obij[l, offf], len[], time, blockUntil_.PRECISE, blockUntiISEQUENCED

Delete obj, time

AssignSequence obj, version, time

Figure 3.3: Local storage access interface for policy writers.

of the per-node logical vector clock and real-time vector clock; they are useful for enforc-
ing TACT order error and temporal error tunable consistency guarantees fitogagated

is also useful for enforcing some durability invariants. Cases not handled by these predi-
cates are handled hyple Tuplebecomes true when the liveness policies produce a tuple
matching a specified pattern.

For maximum flexibility, each read/write operation includes parameters to specify
the consistency state semantics. Figure 3.3 lists the basic local read/write interfaces URA
core exposes. Th&ockUntil_X parameters if specified will block the operations until
the consistency state of the target objectXis Note that thelVrite interface allows a
write operation to atomically update one or more objects which is useful for implementing
a file system interface andssignSequence interface is useful for implementing commit
protocols such as Bayou’s primary commit (CSN) protocol [72]. System designers typically
insulate applications and users from the full interface by adding a simple wrapper that
exposes a standard read/write APl and that adds the appropriate parameters before passing
the requests through to URA. For example, to enforce causal consistency, a system designer
can add a wrapper that calls the basic read interface by settinépttié/ntil_V ALID and
blockUntil_PRECISF to betrue, i.e., put thasValid andisPrecisepredicate to the read
interface. Chapter 6 explains how to use these basic API and predicates to write wrappers

for different consistency semantics.

26

3.1.2 Communication

Each update is distributed by two types of messagednalidation message that sum-
marizes which object the update targets and when the update occurs &odyamessage

that contains the actual contents of the update. These messages are distributed in the sys-
tem by setting up uni-directional invalidation subscriptions and body subscriptions/fetches

between nodes.

Invalidation subscriptions. An invalidation subscription has two parameters: a start time
startVV (a version vector) and a subscription &%(a collection of object IDs) that to-
gether define the request: “send all invalidations for objects in SS that have occurred since
startVV". Besides sending the invalidations for subscribed objects, the invalidation stream
also delivers sufficient metadata information for objects outside the subscription set to allow
the receiver to track dependencies among all updates.

If the start time for a subscription is earlier than the sender’s current logical time,
then the sender can transmit eithdog of the events that occurred between the start time
and the current time or eéheckpointhat includes just the most recent update to each byte
range since the start time. Sending a log is more efficient when the number of recent
changes is small compared to the number of objects covered by the subscription. Con-
versely, a checkpoint is more efficient if (a) the start time is in the distant past (so the log of
events is long) or (b) the subscription is for only a few objects (so the size of the checkpoint
is small). Note that once a subscription catches up with the sender’s current logical time,
updates are sent as they arrive, effectively putting all active subscriptions into a mode of
continuous and incremental log transfer.

Invalidation subscriptions can be used for coarse-grained replication of directory
trees or volumes. For example, in a departmental file system, a user, Alice, can subscribe

the subdirectory alusers/Aliceso as to get only the information about her files. Invalidation

1Our prototype API allows atomic multi-object write; for simplicity, we only describe the single-object
invalidations.

27

| Updates Distribution Interface |
Add Inval Sub srcld, destld, objs, LO&P/CP+Body
Remove Inval Sub| srcld, destld, objects

Add Body Sub srcld, destld, objs

Remove Body Suly srcld, destld, objs

Send Body srcld, destld, objld, off, len, time

Figure 3.4: Communication interface for policy writers.

subscriptions can also be used to support fine-graiatidacksmechanism commonly used
in caching systems [48, 42, 68, 12, 65, 100]. For example, by creating an invalidation
subscription with a subscription set composed of anlg client can create a callback for

objecto on the server so that the server will notify the client whenever an updatedours.

Body subscriptions and body fetches. Whereas invalidation subscriptions make nodes
aware of the remote updates that have occurred, body messages deliver the contents of
these updates. Each body message identifies the invalidation with which it is associated and
carries the contents of the corresponding update. Each node can request an individual body
message or specify a subscription S&and a start timstartVVto subscribe for receiving

the body messages f&Sthat have occurred sinaartVVfrom any other node.

Discussion. These simple communication abstractions are sufficient to cover the large de-
sign space summarized in [78]. In particular, they can be used to support arfistaityu-

tion topologyincluding client-server structures like Coda, chain structures like Chain Repli-
cation, and Bayou style ad hoc topologies by simply setting up invalidation subscriptions
and body subscriptions between nodes to form any desired structure. Arbitrextyroniza-

tion schedulesan be enforced simply by orchestrating the start and stop of invalidation or
body subscriptions. Regarding tegnchronization contentsalthough the subscription ab-
straction separates the distribution of invalidation and body, distributiemntife update

can be supported simply by setting up the invalidation stream the same way as the body

28

| Connection Events

Inval subscription start srcld, destld, objs
Inval subscription caught-up srcld, destld, objs
Inval subscription end srcld, destld, objs, reason
Body subscription start srcld, objs, destld
Body subscription end srcld, destld, objs, reason

| Local Operation Events

Read blocks| obj, off, len, EXISTVALID |PRECISESEQUENCED
Write obj, off, len, time

Delete obj, time

| Message Arrival events

Inval arrives | sender, obj, off, len, time

Fetch success sender, obj, off, len, time

Fetch failed | sender, receiver, obj, offset, length, time

Figure 3.5: Events exposed to policy writers.

stream and delaying applying an invalidation until the corresponding body arrives. Arbi-
trary data placementan be enforced by setting the subscription sets of invalidation streams

and body streams.

Communication API. Figure 3.4 lists the communication APIs URA exposes for policy
writers to set up subscriptions for any subset of updates between any pair of nodes at any
time.

In order to provide sufficient information for policy writers to build sophisticated
policies, besides the storage APl and communication API, URA also exposes a set of event
notification interface to the controller. As listed in Figure 3.5, these events include local
operation events such as local read blocked and local write issued, connection events such
as body subscription start and invalidation subscription failed, and message arrival events

such as invalidation arrived or body fetch failed.

29

3.2 Requirements

To be a universal substrate for building different replication systems for different workloads
or environments, the protocol should not only be able to support a wide variety of systems
but also ensure that the cost a specific system implementation pays is proportional to the
demands it has, i.e., it should limit the cost for generality. In particular, the implementation

of the above abstractions needs to meet the following correctness and cost requirements:

e To support flexible consistency guarantees, the local storage and invalidation streams
should at least preserve the causality of updates. As demonstrated in Chapter 6,
maintaining causality is almost as cheap as coherence, and causality can be used as
a basic building block for stronger consistency guarantees such as sequential consis-
tency [51] and linearizability [40] and also for tunable consistency guarantees like

TACT [103].

e To support small devices with limited storage capacity, a node’s storage requirement
should be proportional to the number of and size of the objects that the node is inter-

ested in.

e To support bandwidth-limited network connections, the overall bandwidth consump-
tion for an invalidation stream should be proportional to the total number of updates

to the objects subscribed.

Although the basic abstractions are simple, the challenge is how to implement them
to meet the correctness and cost requirements. For example, to support traditional per-object
callbacks, the network bandwidth cost should be proportional to the number of updates to
these objects that have callbacks, therefore the protocol must omit the information about
other updates. However to support causal consistency, we have to send sufficient metadata
information about updates to other objects as well. In the next two chapters, we present

protocols that implement these abstractions and meet these goals.

30

Chapter 4

CR-Repl: Coarse-grain PRACTI

Replication

We implement the replication abstractions described in the previous chapter in two steps.
First, we implement a novel peer-to-peer replication protocol CR-Repl that realizes
the invalidation/body subscription abstractions and the storage abstractions. In particular,

this protocol provides the following key properties:

e It provides all the three PRACTI properties described in Chapter Pgtjal Replication—
it allows any node to replicate any subset of data and metadatanyA}onsistency-
it provides both strong and weak consistency guarantees so that only applications that
require strong guarantees pay for them; andT@&ology Independeneeit allows

any node to exchange updates with any other node.

¢ Itimplements a novel log maintenance algorithm to efficiently store and form impre-

cise invalidations.
¢ It enablesself-tuning body propagatiofor efficient prefetching.

e It providesincremental log exchang® allow systems to minimize the window for

conflicting updates.

31

e It provides a conflict detection mechanism based on a per-updateus stamp

The CR-Repl protocol has three key limitations. First, although the use of im-
precise invalidations enables efficient coarse-grain invalidation subscriptions, it falls short
to support dynamic fine-grained invalidation subscriptions. Second, the incremental log
exchange protocol is inefficient for some workloads where checkpoint exchange is more
efficient. Finally, although it supports a simple write-write conflict detection mechanism,
doing so adds an extra per-update stamp overhead for both storage and network bandwidth,
and the conflict detection protocol may not work properly when the log is truncated.

Therefore, at the second step, we implement a universal replication protocol UR-
Repl to fix these limitations. This protocol supports four key featuresin(@gmental log
exchange and checkpoint exchangeich allows a node to receive an incremental prefix
of updates or an incremental checkpoint to support fast resynchronization of subsets of
data and incremental progress despite network disruptiongfij2jent support for both
coarse-grained and fine-grained invalidation subscriptiargch allows a node to dynam-
ically subscribe or unsubscribe for invalidations to a large set of objects or to individual
objects from any other node with the cost proportional to the total number of updates to the
subscribed objects; (Bfficient conflict detectiowhich allows nodes to accurately detect
conflicting writes during either log exchange or checkpoint exchange with reasonable over-
heads so that it can support large-scale data replication systems. ; dlei@l® commit
mechanismsvhich implement theSsEQUENCEDconsistency state without requiring any
rollback as is required in Bayou [72] and enable a range of commit protocols by allowing
system designers to control when and under what circumstances to commit a write.

This chapter focuses on the description of the CR-Repl protocol, and we leave the
description of the UR-Repl protocol in the next Chapter. The rest of this chapter first gives
an overview of the basic data structures and key ideas of CR-Repl, and then describes the
key ideas in more details in Section 4.2 and Section 4.3. After that, Section 4.4 presents

the special log maintenance algorithm and Section 4.5 describes other novel features of

32

Locall API

[]
Core
Local
Interface
PR ——
! '
1
b Bo.d%. | Body
subscriptions : Random subscriptions
Apply | Send
Body fetches Body S Acsess Body Body fetches
1 State
_____ L=
! 1
! 1
! 1
! |
| v
Invalidation | Invalidation
subscriptions_> Apply L L | Send || subscriptions
——————— -- lo] Fm—————————- ——————
Inval 9 Inval
A
Inform Subscription/Fetch API

Figure 4.1: Core data structures.

our prototype that enable it to support the broadest range of policies. Finally, Section 4.6

experimentally evaluates the prototype.

4.1 Implementation Overview

Figure 4.1 illustrates the main local data structures of each node’s core to implement the
abstractions described in Chapter 3. Each core maintding and aRandom Access State
(RAS). The log is used to store updates for future potential update exchange. The RAS
implements the storage abstractions includingdbgct storeand theconsistency state
Applications access data stored in the local core via the per-hod& APIfor creating,
reading, writing, deleting, and sequencing objects. These functions operate the local node’s
log and RAS: modifications are appended to the log and then update the RAS, and reads
access the RAS. To support partial replication policies, the mechanisms allow each node
to select an arbitrary subset of the system’s objects to store locally, and nodes are free
to change this subset at any time (e.g., to implement caching, prefetching, hoarding, or

replicate-all).

33

As described in Chapter 3, to handle read misses and to exchange updates between
nodes, URA cores use two types of communication—causally ord&redms of Invalida-
tionsand unordere@odymessages. To implement these communication abstractions, the
URA core includes four communication modules as illustrated in the figApptyBodyand
Applylnvalmodules for processing incoming messagandBodynd Sendinvamodules
for assembling and transmitting outgoing messages.

The protocol for sending streams of invalidations is similar to Bayou’s [72] log
exchange protocol, and it ensures that each node’s log and RAS always reflect a causally
consistent view of the system’s data. But it differs from existing log exchange protocols in

two key ways:

1. Separation of invalidations and bodiesnvalidation streams notify a receiver that
writes have occurred, but separate body messages contain the contents of the writes.
A core coordinates these separate sources of information to maintain local consis-
tency invariants. This separation supports partial replication of data—a node only

needs to receive and store bodies of objects that interest it.

2. Imprecise invalidationsAlthough the invalidation streams each logically contain a
causally consistent record of all writes known to the sender but not the receiver, nodes
can omit sending groups of invalidations by instead senulingecise invalidations
Whereas traditionaprecise invalidationdescribe the target and logical time of a
single write, an imprecise invalidation can concisely summarize a set of writes over an
interval of time across a set of target objects. Thus, a single imprecise invalidation can
replace a large number of precise invalidations and thereby support partial replication
of metadata—a node only needs to receive traditional precise invalidations and store

per-object metadata for objects that interest it.

Imprecise invalidations allow nodes to maintain consistency invariants despite partial
replication of metadata and despite topology independence. In particular, they serve

as placeholders in a receiver’s log to ensure that there are no causal gaps in the log

34

a node stores and transmits to other nodes. Similarly, just as a node tracks which
objects ardNVALID so it can block a read to an object that has been invalidated
but for which the corresponding body message has not been received, a node tracks
which sets of objects altPRECISEso it can block a read to an object that has been
targeted by an imprecise invalidation and for which the node therefore may not know

about the most recent write.

In the next two subsections we first detail how the protocol separates invalidations

and bodies and then describe how it implements imprecise invalidations.

4.2 Separation of Invalidations and Bodies

As just described, nodes maintain their local state by exchanging two types of updates: or-
dered streams of invalidations and unordered body messagedidationsare metadata

that describe writes; each contains an object4Rd logical time of a write (a.k.a. accept
stamp). A write’s logical timeacceptStam|is assigned at the local interface that first re-
ceives the write, and it contains the current value of the node’s Lamport clock [51] and the
node’s ID. Like invalidationshody messageontain the write’s object ID and logical time,

but they also contain the actual contents of the write.

The protocol for exchanging updates is simple.

e As illustrated in Figure 4.1, each node maintainkb@ of the invalidations it has
received sorted by logical time. And, for random access, each node stores bodies in
the RAS indexed by object ID.

¢ Invalidations from a log are sent via a causally-ordered stream that logically contains

all invalidations known to the sender but not to the receiver. As in Bayou, nodes use

For simplicity, we describe the protocol in terms of full-object writes. For efficiency, our implementation
actually tracks per-object state, invalidations, and bodies on arbitrary byte ranges.

35

version vectors to summarize the contents of their logs in order to efficiently identify

which updates in a sender’s log are needed by a receiver [72].

e Areceiver of an invalidation inserts the invalidation into its sorted log and updates its
RAS. RAS update of the entry for object ID entails marking the eliyALID and
recording the logical time of the invalidation. Note that RAS update for an incoming
invalidation is skipped if the RAS entry already stores a logical time that is at least as

high as the logical time of the incoming invalidation.

¢ A node can send any body from its RAS to any other node at any time. When a node
receives a body, it updates its RAS entry by first checking to see if the entry’s logical
time matches the body’s logical time and, if so, storing the body in the entry and

marking the entry?ALID.

4.2.1 Rationale

Separating invalidations from bodies provides topology-independent protocol that supports
both arbitrary consistency and partial replication.

Supporting arbitrary consistency requires a node to be able to consistently order all
writes. Log-based invalidation exchange meets this need by ensuring three crucial proper-
ties [72]. First theprefix propertyensures that a node’s state always reflects a prefix of the
sequence of invalidations by each node in the system, i.e., if a node’s state reflatts the
invalidation by some nodein the system, then the node’s state reflects all earlier invalida-
tions byn. Second, each node’s local state always reflecsusally consisteri3] view
of all invalidations that have occurred. This property follows from the prefix property and
from the use of Lamport clocks to ensure that once a node has observed the invalidation
for write w, all of its subsequent local writes’ logical timestamps will exceéd Third,
the system ensure&ventual consistencyll connected nodes eventually agree on the same
total order of all invalidations. This combination of properties provides the basis for a broad

range of tunable consistency semantics using standard techniques [103].

36

At the same time, this design supports partial replication by allowing bodies to
be sent to or stored on any node at any time. It supports arbitrary body replication poli-
cies including demand caching, push-caching [37, 77, 94], prefetching [35], hoarding, pre-

positioning bodies according to a global placement policy [93], or push-all [72].

4.2.2 Design Issues

The basic protocol adapts well-understood log exchange mechanisms [72, 96]. But, the sep-
aration of invalidations and bodies raises two new issues: (1) coordinating disjoint streams
of invalidations and bodies and (2) handling reads of invalid objects.

The first issue is how to coordinate the separate body messages and invalidation
streams to ensure that the arrival of out-of-order bodies does not break the consistency
invariants established by the carefully ordered invalidation log exchange protocol. The
solution is simple: when a node receives a body message, it does not apply that message
to its RAS until the corresponding invalidation has been applied. A node therefore buffers
body messages that arrive “early.” As a result, the RAS is always consistent with the log,
and the flexible consistency properties of the log [103] extend naturally to the RAS despite
its partial replication.

The second issue is how to handle demand reads at nodes that replicate only a subset
of the system’s data. The core mechanism supports a wide range of policies: by default, the
system blocks a local read request until the requested object’s stAtA&liS. Of course,
to ensure liveness, when aNVALID object is read, an implementation should arrange
for someone to send the body. Therefore, when a local read blocks, the core notifies the
controller. The controller can then implement any policy for locating and retrieving the
missing data such as sending the request up a static hierarchy (i.e., ask your parent [12]
or a central server [42]), querying a separate centralized [26] or DHT-based [89] directory,
using a hint-based search strategy [81], or relying on a push-all strategy [72, 96] (i.e., just

wait and the data will come.)

37

<objld, time>
</foola, 10@nodel>
</foo/b, 1ll@nodel> <targetSet, dtart, end>

</foola, 12@nodel>

10@nodel 16@nodel
</foola, 15@node2> —> </fool*, , >
<ffoola. 16@nodel> 15@node2 ' 17@node2

</foo/b, 16@node2>
</foolc, 17@node2>

Precise Invalidations Imprecise Invalidation
Figure 4.2: Imprecise invalidation example.

4.3 Partial Replication of Invalidations

Although separation of invalidations from bodies supports partial replication of bodies, for
true partial replication the system must not require all nodes to see all invalidations or to
store metadata for each object. Exploiting locality is fundamental to replication in large-
scale systems, and requiring full replication of metadata would prevent deployment of a
replication system for a wide range of environments, workloads, and devices. For example,
consider palmtops caching data from an enterprise file system with 10,000 users and 10,000
files per user: if each palmtop were required to store 100 bytes of per-object metadata,
then 10GB of storage would be consumed on each device. Similarly, if the palmtops were
required to receive every invalidation during log exchange and if an average user issued just
100 updates per day, then invalidations would consume 100MB/day of bandwidth to each
device.

The implementation of invalidation subscriptions is complicated by the following
two restrictions. On one hand, an invalidation stre@, startV'V') is supposed to only
send updates for objects #S. Therefore the cost needs to be proportional to the number
of invalidations to those objects. On the other hand, to maintain cross-object causal consis-
tency, invalidation streams need to send information for updates to objects outside of
Even if a node never looks at objects outsideS¢f and can tolerate not seeing those up-

dates, it could relay to another node updates aSéuUbut not updates about objects outside

38

of S.S on which those updates depend and thereby lead to violations of consistency.
To support true partial replication and meet the efficiency and consistency require-
ments, CR-Repl invalidation streanogjically contain all invalidations as described in Sec-

tion 4.2, but inreality they omit some by replacing them wiitmprecise invalidations.

Imprecise invalidations. As Figure 4.2 illustrates, an imprecise invalidation is a conser-
vative summary of several standardmecise invalidations.Each imprecise invalidation
has atargetSebf objects startlogical time, and amndlogical time, and it means “one or
more objects inargetSetwere updated betweestartandend” An imprecise invalidation
must beconservativeeach precise invalidation that it replaces must havelijl included
in targetSetand must have its logicéimeincluded betweestartandend but for efficient
encodingtargetSetmay include additional objects. In our prototype, thegetSetis en-
coded as a list of subdirectories and #tartandendtimes are partial version vectors with
an entry for each node whose writes are summarized by the imprecise invalidation. Finally,
note that a standard precise invalidation is simply a special case of an imprecise invalidation
with a single-objectargetSetsingle-entrystart andendtimes, ancstart = end.

A node reduces its bandwidth requirements by subscribing to receive precise inval-
idations only for desired subsets of data and receiving imprecise invalidations for the rest.
And a node saves storage by tracking per-object state only for desired subsets of data and

tracking coarse-grained bookkeeping information for the rest.

4.3.1 Forming Imprecise Invalidations

URA forms an imprecise invalidatioh by combining generalized invalidatiordg/; and
G1I,. I hasstartandendarrays with entries for every nodgin eitherGI; or GI,’s start,
and!.start,, = min(G1I;.start,, Gls.starty), andl.end, = max(G1;.end,, Glz.end,).
Finally, I.targetSet encompasses all objects encompasse@ hyandG1,'s targetSes.
When a controller asks node to send a stream of invalidations to nodethe

controller specifies two parameters that each filter the transmitted information: a start time

39

Invalidation Stream for Invalidation Stream for

SS=/A/* startVV=<-1@q, -1@B> a SS=/B/* startVV=<-1@q, -1@B>
R R AR —m s e T T T T
: : </A1, 0@o> :
<1 0G0 : <BA, 1@a> : <A1, 0@cc>
 opp, 1@ 2@a </B/2, 1@PB> i <B/1, 1@ o>
(@ 1@’ 3@ " | (1) <BAH,2@0> : </B/2, 1@B>
: <BA,3@F> | </Bt, 2@o>
<IA2, 4@B> </AI2, 4@B> </B1, 3@B>
<IAR2, 5@0> <IA2, 5@a> - ar 5@x 6@
<IN3, 6@0c> ; <IN3, 6@o> ' 4@B ' 4@B
| 7@x 9@a _ | B 100 : <BH, 7@
L prcr. @a x </B/2, 8@0> ; s 10>
<BICT, gp 1908 /B2, 800> % B2, 8@
: <IA2, 20@0> { | <icn, 9@p, 19@B> | </B/2,9@a>
<A, 21@0c> <IN2,20@ 0> L A op 0@ 2@«
TN 22@0e : <A, 21@0> (AR 9@B 19@B T
; <A, 22@0> : :
</Bl*, 23@0, 100@a> | </B/1, 23@oc> </B/1, 23@a>
AT 101@0> | | </B/2,100@a> </B/2, 100@ >
i <AM, 101@a> |
SAL0R@a> L leas | | <A 101@0, 102@a>
Stream 1 Log Stream 2

Figure 4.3: Invalidation streams with imprecise invalidations.

startV'V to provide a filter on logical time and a subscription S&t to provide a filter

on the ID spaceq« replies with a causally consistent stream of all invalidations it knows
about that logically occurred aftetartV' V. Invalidations whose target interse&s are

sent as is (typically they are precise, but some may be imprecise); bombines other
invalidations into imprecise summaries as just described. This process is incremental and
continuous—as new invalidations arrivecgta: sends them on t6 once all causally prior

invalidations have been sent.

Examples. Figure 4.3 gives two examples of invalidation streams. Notias received a

list of causally ordered invalidations as indicated in the second box. When a node subscribes
for /A/x from startVV = (—1Qa, —1@Qf3), the invalidation stream consists of precise
invalidations for/A/* and imprecise invalidations fotB /« and /C'/+ and they are sentin
causal order as indicated8tream 1 For example, the list of precise invalidations fds /x

in @are replaced by one imprecise invalidati@nSimilarly, when the node subscribes for

/B/x, a sends all invalidations of B/« as they are and combines invalidations fdr/

40

and/C/x into imprecise invalidations as indicated$tream 2

4.3.2 Applying Imprecise Invalidations

In the previous section, we define how a node creates and sends an invalidation stream;
the rest of this section details how our implementation copes with maintaining local state
as nodes receive invalidation streams by (a) applying invalidations in causal order despite
the multiple start and end times in imprecise invalidations and despite concurrency across
streams and (b) maximizing the information extracted and stored from each invalidation in
a stream to minimize the amountidPRECISEdata a node stores locally and to minimize
the scope of imprecise invalidations propagated to other nodes.

When a node receives an imprecise invalidatianinsertsl into its log and updates
its RAS. For the log, imprecise invalidations act as placeholders to ensure that the omitted
precise invalidations do not introduce causal gaps in the log that a node stores locally or in

the streams of invalidations that a node transmits to other nodes.

Design issues. Tracking the effects of imprecise invalidations on a node’s RAS must ad-

dress four related problems:

1. For consistency, a node mustjically mark all objects targeted by a new imprecise
invalidation asINVALID. This action ensures that if a node tries to read data that
may have been updated by an omitted write, the node can detect that information is

missing and block the read until the missing information has been received.

2. For liveness, a node must be able to unblock reads for an object once the per-object
state is brought up to date (e.g., when a node receives the precise invalidations that

were summarized by an imprecise invalidation.)

3. For space efficiency, a node should not have to store per-object state for all objects.

As the example at the start of this subsection illustrates, doing so would significantly

41

restrict the range of replication policies, devices, and workloads that can be accom-

modated.

4. For processing efficiency, a node should not have to iterate across all objects encom-

passed byargetSeto apply an imprecise invalidation.

Interest set status. To meet these requirements, rather than track the effects of impre-
cise invalidations on individual objects, nodes keep bookkeeping information on groups
of objects callednterest Setsin particular, each node independently partitions the object

ID space into one or more interest sets and decides whether to store per-object state on a
per-interest set basis. A node tracks whether each interestBREEISHper-object state
reflects all invalidations) ofMPRECISE(per-object state is not stored or may not reflect

all precise invalidations) by maintaining two pieces of state.

e Each node maintains a global variallerrentVV, which is a version vector encom-
passing the highest timestamp of any invalidation (precise or imprecise) applied to

any interest set.

e Each node maintains for each interestiSahe variabldS.IpVV, which is the latest

version vector for whichSis known to bePRECISE

If 1IS.IpVV = currentVVthen interest sd€ has not missed any invalidations and iPRE-
CISE Otherwise, the interest set may have missed on or more precise invalidations, and we
regard the interest set {dPRECISE

In this arrangement, applying an imprecise invalidatitman interest sd& merely
involves updating two variables—the glolzairrentVVVand the interest setipVV. In partic-
ular, a node that receives imprecise invalidati@aways advancesurrentVVto includel’s
endlogical time because after applyimgthe system’s state may reflect events upéad
Conversely, the node only advand&slpVVto the latest time for whichS has missed no

invalidations.

42

: I/ Global state:

2 Il currentVV —node’s current version vector

: [l IS.pVV —1S’s last precise version vector

Il RAS.; — per-object state

Il log —replay log

. Il Per-stream state:

Il stream = startVV,GI,GlIs, ...

Il GI —next generalized invalidation to apply

Il prevV'V —logical time before next Gl applied

10: /I pending — set of GI's whose end time has not passed

ecoNaRrONME

12: Procedure ProcessInvalStream(IS, stream)

13: prevV'V = stream.readObj()

14: if lincludes¢urrentVV, prevV' V)

15: return; //[Reject streams that do not preserve prefix property

16: pending = new Set()

17: GI = stream.readObj()

18: while (GI # EOF) do

19: nextStartVV =advanceTolncludgrevV'V, GI.start)

20: if I(3bufferednval € pending |includegnextStartV V,bufferednval.end))
21: log.insertGI, prevV'V)

22: //Update interest set status

23: currentV'V =advanceTolncludeurrentV'V, GI.end) // update (1)—see text
24: if includegS.lpV'V, prevVV') [l If no gaps, update IpVV

25: if GI1.isPrecise() I/ Advance to include precise inval

26: I1S.lpV'V =advanceTolncludd S.lpV'V, GI.start) I/l update (2)
27: else// Advance to just before imprecise inval

28: 1S8.lpV'V =advanceNolncludd S.lpV'V, GI.start) Il update (3)
29: //Update per-object state

30: if GI.isPrecise()

31: RASGI,Obj[d.’UalZ'd = INVALID

32: RASGr.obj1a-accept = GI.start

33: pending.inser{GI) /| Apply to non-overlapping later

34: prevV'V = nextStartV'V I/ Update stream logical time

35: GI = stream.readObj()
36: else/l Apply non-overlappingpuffered nval from pending at end time

37: if !(buffered nval.target intersectd S)

38: if includegipV'V, prevV'V)

39: 1S8.lpV'V =advanceTolncludd S.lpV'V,buffered nval.endV' V') Il update (4)
40: pending.removebuffered nval)

Figure 4.4: Stream processing algorithm for interesf Sawith stream = {startVV, GI,,
Gls, ...}

43

: ProcedureadvanceT oInclude(VV1,VV2)

: for all nodeld do

retVViodera = max(VVlnoderd, VV2noderd)
. returnretVV

: Procedureadvance NoInclude(VV1,VV2)

. for all nodeld do

Tetv‘/nodeld - ma'x(VVITLOdEId) VV27LodeId - 1)
9: returnretVV

11: Procedureincludes(VV1,VV2) /I Does VV1 include VV2?
12: for all nodeld do

13: if VV2n0de1da > VV1noderd

14: return false

15: return true

Figure 4.5: Utility functions foilProcessinvalStream

Algorithm details. One of the most intellectually challenging parts of our effort in de-
veloping the CR-Repl prototype was to get the imprecise invalidation processing precisely
right. Figure 4.4 and Figure 4.5 detail the algorithm for processing an incoming stream of
invalidations. As indicated in Figure 4.4 line 7, each incoming invalidation stream consists
of a logical start timestartV'V followed by a series of general invalidatio6d,, G1o, . ..

such that any invalidation whose start time logically occurs aftertV'V and on which

G1I; causally depends appears bef6i€. A generalized invalidatioi=/; can be either a
precise invalidation or an imprecise invalidation.

For each general invalidatiad !, the log, the per-object state, and the interest set
status must be updated. Updating the per-object state (lines 29 to 32) was described in
Section 4.2, and we will discuss updating the log (line 21) in Section 4.4. The remaining
issue is updating the per-interest BRECISEstate (lines 22 to 24 and lines 37 to 40), i.e.,
updatingcurrentVV and one or morépV'V's.

At the core of the algorithm is a simple idea: an interest Se(RECISETf it has
missed no precise invalidations. To track an interest/ &t state, besides the two vari-
ablescurrentVV andIS.lpV'V as described above, the receiver also tragherestream

version vectoprevV'V that always holds the logical time juséforethe next invalidation

44

Update | Code 1S state GI type GI Action
Number | Line When intersectd S
1) 23 GI.start ANY ANY ANY AdvancecV'V to includeGI.end
2) 26 GI.start PRECISE| PRECISE ANY Advancel S.[pV'V to includeG1I.end
(= GI.end) (= GI.start)
3) 28 GI.start PRECISE | IMPRECISE ANY Advancel S.ipV'V to just beforeG1.start
4) 39 GI.end PRECISE | IMPRECISE NO Advancel S.lpV'V to includeGI.end

Figure 4.6: Summary of cases for updating interest set PRECISE/IMPRECISE status.

in the stream is applied. Each invalidati6fY is processed in the context of the logical

time stream.prevV'V at which it was applied to determined@/ can advancdS.lpV' V.

stream.prevV'V is initialized to the stream’startV'V (line 13) and advanced to include

gi.end as eachG1 is processed (line 19 and line 34).

The interest set status information is updated in four places as summarized in Fig-

ure 4.6. The first three updates occur wiiehis first encountered in the stream, i.e., when

it is known that there is no event that is causally afteeam.prevV'V and causally before

G1. The fourth occurs at'/.end, i.e., when it is known that no remainidg/; in the stream

contains any event that causally occurs befefeend.

When G1 is first encountered in the stream, we always advangeentV'V to

include theend timeof GI because the system now reflects informatiorGih (update

number 1 in the table, line 23 in the pseudo-code). Further, due to the prefix prapEsty,

presence in the causal invalidation stream means that any interest set tHAREG$SE

before GI is still PRECISEto GI.start. So, if interest sef S was PRECISEat time

stream.prevV'V, then we advanceéS.ipV'V.

We advancd S.ipV'V differently depending on whethé&#! is a precise or impre-

cise invalidation. IfGI is precise, then there have been no imprecise invalidations be-

tweenstream.prevV'V andG1.start, and we advanceS.ipV'V to includeGI.end (note:

Gl.start = Gl.end if GI is precise.) That case is update number 2 in the table and line

26 in the pseudo-code. Conversely@f is imprecise, we can only advanés.ipV'V to

just beforeG1.start (i.e.,Ya : IS.IpV'V, = max(I1S.lpV'V,, GI.start, — 1)). That case

45

is update number 3 in the table and line 28 in the pseudo-code.

Two points should be emphasized:

¢ Notice that when there is a gap in the logical time sequence for a given@ddgqrt
may exceed S.lpV'V even though no invalidations were skipped. This is why we
maintainprevV'V for each stream and why line 24 compafédpV'V againsprevV'V
rather than againgt/.start when deciding whether it is safe to advadceipV' V.

e Notice that an imprecise invalidati@r/ will always advanceurrentV'V to include
G1I's endtime but can at most advandé.startV'V to just beforeGI's starttime.
It is this difference that causes imprecise invalidations to make interediHeERE-

CISE

If we stopped here, an imprecise invalidation would make both interest sets it over-
laps and interest sets it does not ovelle®RECISE The algorithm addresses this issue
by buffering each imprecise invalidation after it is first applied at its start time and apply-
ing a buffered invalidatiobufferedinvalagain oncestream.prevV'V includesbufferedin-
val's end time (i.e., once all:/s whose start times precetafferedinvab end time have
been processed.) Applyifwufferedinvaladvanced S.ipV'V' to includebufferedinvalend
for any interest sel S that (a)bufferedinvalkargetSet doesnot intersect and that (b) is
PRECISEas of logical timestream.prevV V. This case is update number 4 in the ta-
ble and line 39 in the code. Notice that by waiting uiiifferedinvak end time before
advancing “nonoverlapping” invalidations to the end time, we avoid erroneously advanc-
ing [pV'V for an interest set that becomBdPRECISEbetweenbufferedinvalstart and
bufferedinvalend.

Finally notice that the algorithm above ensures that if an interest$éecomes
IMPRECISE it can be made precise by receiving a stream that contains all precise invali-

dations that occurred betweéS.IpV'V andcurrentV'V and that target$s.

Summary. This algorithm meets the four requirements listed above.

46

1. By default, a read request blocks until the interest set in which the object h&Es
CISEand the object i¥ALID. This blocking ensures that reads only observe the RAS
state they would have observed if all invalidations were precise and therefore allows
nodes to enforce the same consistency guarantees as protocols without imprecise in-

validations.

2. For liveness, the system must eventually unblock waiting reads. The core signals
the controller when a read of dMPRECISEinterest set blocks, and the controller
is responsible for arranging for the missing precise invalidations to be sent. When
the missing invalidations arrive, they advan8dpV\V. The algorithm for processing
invalidations as described above guarantees that any interéStsetbe mad®RE-
CISEDby receiving a sequencgof invalidations fromlIS.lpVVto currentVVif Sis

causally sorted and includes all precise invalidations targé8mgthat interval.

3. Storage is limited: each node only needs to store per-object state for data currently
of interest to that node. Thus, the total metadata state at a node is proportional to
the number of objects of interest plus the number of interest sets. Note that our
implementation allows a node to dynamically repartition its data across interest sets

as its locality patterns change.

4. Imprecise invalidations are efficient to apply, requiring work that is proportional to
the number of interest sets at the receiver rather than the number of summarized

invalidations.

Example. The example in Figure 4.7 illustrates the maintenance of interest set state. Ini-
tially, (1) interest setS is PRECISEand objectsA, B, andC are VALID. Then, (2) an
imprecise invalidation arrives. | (3) advancesurrentVVbut notlS.IpVV, makingIS IM-

PRECISE But then (4) precise invalidatiorBl1 and PI2 arrive on a single invalidation

47

Global State: currentVV[nodel] = 100
. Per-IS State: lastPreciseVV[nodel] = 100
Initial State per_opj State: A VALID 98@nodel
ISisPRECISE B VALID 99@nodel
C VALID 100@nodel

Imprecise |=(target={A,B,C}, start=101@node1, end=103@node!
Inval Arrives

. Global State: currentVV[nodel] = 103
3 ISisnow Per-IS State: lastPreciseVV[nodel] = 100
IMPRECISE per-Obj State:A VALID 98@nodel
B VALID 99@nodel
C VALID 100@nodel

Missing

@ Precise Invals \L PI1=(A, 101@nodel), PI12=(B, 103@nodel)
Arrive
) Global State: currentVV[nodel] = 103
Final State . : —
|Sis PRECISE Per-IS State: lastPreciseVV[nodel] = 103

Per-Obj State:A INVALID 101@nodel
B INVALID 103@nodel
C VALID 100@nodel

Figure 4.7: Example of maintaining interest set state. For clarity, we only shdeal’s
elements oturrentVVandIpVV.

channel from another node. (5) These adva&pVV, and in the final statéS is PRE-
CISE A andB arelNVALID, andC is VALID.

Notice that although the node never receives a precise invalidation witi@2@node;L
the fact that a single incoming stream contains invalidations with tib@ds@nodeland
103@nodeahllows it to infer by the prefix property that no invalidation at ti@2 @nodel
occurred, and therefore it is able to advatgdpVVto makelS PRECISE

4.4 Log Maintenance

Each node stores the invalidations it generates or receives from other nodes in a log for
future potential invalidation subscriptions with other nodes. One of the main goals of log
maintenance is to maximize the information extracted and stored from each invalidation in
a stream to minimize the amountidPRECISEdata a node stores locally and to minimize

the scope of imprecise invalidations propagated to other nodes.

Imprecise invalidations complicate log updates. For example, amatky receive

48

StartVV[{: 0

gi: <y Iy A>

gi:<l & (A,B)> 6

i: B,C

9 <y & BOp curVV[=8

IMPRECISE AlpVV[}=1 | IMPRECISE
/ PRECISE BIpVV[] = 3 | IMPRECISE
SartvV[y: 0 IMPRECISE IMPRECISE
[S gi:<y I A> PRECISE PRECISE
gi: <4 8 (B,C)>
(a) Naive log exchange.
startVV[: 0
gi: <y ly A>
gi:<4 5 B>
< >
curVVlyj =8 9 <& & B
AlpVV[} =8 | PRECISE PRECISE
/ B.IpVV[yl = 3 | IMPRECISE IMPRECISE
fartVV[}:0 | ClpVV] =5 | IMPRECISE IMPRECISE
[@ g:<ly ¥ A> | plpvv|y =8 PRECISE PRECISE

git <4/ & (BO)>

(b) Log exchange with gap-filling and intersection.

Figure 4.8: Log exchange example. Nog#rst receives a log fromy, then receives a log
from 3, and then sends the combined logstolmprecise invalidations have three fields:
(start, end, targetSet). Note that all writes were issued by nogeand, for clarity, we
show only~y’s component for all version vectors.

different subsets of information from different peerandS. n must ensure that imprecise
invalidations received fromx do not “mask” precise invalidations received frghand vice
versa. Notice that the algorithm just described updates a node’s local state by interpreting
each invalidation relative to the per-streamev V'V, which allows the algorithm to infer
that there are no missing invalidations betweeteam.prevV V' and the invalidation. But,
if 7 were simply to store each invalidation in its log, some of this valuable “no missing
invalidations” information could be lost. Then, as Figure 4.8-(a) illustrates,wkre to
send its log to some other nodethen even ifs receives the same invalidations @so
could end uplMPRECISEwheren is PRECISE(e.qg., for objectA) as indicated in the
colored boxes in Figure 4.8-(a). Another problem with the naive approach is that it sends
redundant invalidations which overlap some time intervals.

In order to ensure that a node can transmit all information received including both

the generalized invalidations and the information implicit in the incoming invalidation

49

stream and only sends one invalidation for each time point, we augment our logs in three
ways.

First, each node maintains a single on-disk append-only replay log in which invali-
dations are stored in the order they are received. Additionally each node maintains separate
per-writer logs when a node inserts an imprecise invalidatidnnto its log, it first appends
11 to the on-disk log and decomposEsinto per-writer general invalidations and then in-
serts the per-writer pieces into separate logs. Decompd@dgiingo per-writer general inval-
idationsI I, is simple: for each serverin I1.start, generatd I, with start = I1.start,,
end = I1.end,, andtarget = I1.target. Note that precise invalidatioRI can be treated
as an imprecise invalidation widtart = PI.acceptStamp andend = PI.acceptStamp,
and it is already a per-writer invalidation.

Second, each per-writer log usgap filling to explicitly encode the knowledge that
each incoming stream is causally consistent and is therefore FIFO consistent for each writer.
In particular, each per-writer log maintains the invariant that there is no gap between the end
time of an element and the start time of the next element. When a node ih&entgo its
per-writer log fore, if 11, is newer than the newest element in the log, it fills any gap
betweenl I,.start and the existing element by inserting a new gap-filling invalidation with
a start stamp one larger than the highest existing end stamp, an end stamp one smaller than
11,.start, and an empty target.

Third, each per-writer log uséstersectionto combine information received across
multiple streams. In particular, we maintain the invariant that there is at most one inval-
idation that covers any moment in time in a per-writer log. We intersect two per-writer
invalidationsa andb by replacing them with up to three per-writer invalidations: the first
covers the time from the earlier start to the later start and targets the objects targeted by
the earlier start; the second covers the time from the later start to the earlier end and covers
targets represented by the intersectiomm@ndb's targets; and the third covers the time

from the earlier end to the later end and covers the targets of the later end.

50

write(10,10,b) N\
0

write(12,12,c)
12

Node Beta

stream IS={a} 1S={bc} Node Delta
S s.prevwWV cVV IS.cVV IS.IpvV stream stream 1S={al 1S={b 1S={c
\(S;fégTag‘ 0 0 0 s S'S.prevWV s'.prevWV cwW IS.I{p\}/V |s.|;{3\}v |s.|§; %
Node Alpha pees 2 2 2 2 ISEIE0 0 0 0 0 0
IS={a,b,c} (46.c) | (@28 5 o 5 5)
WV ISIW gy 6 6 6 2 el (4,6,60) |
— - 8 8 8 2 T 6 6 6 2 2
2 2 (10.12,00) B8 g s 0 8 8 2 2
- 12 12 12 2 [2% 2b)
4 4 I | 8 8 2 4
- | ‘[G,G.C) |
b °© Node Gamma | (8.10,a) 8 Eml 5
8 & stream IS={ab} 1S={c} 7 10 10 8 2 10
SPEWY cyy ISIpw ISIpVY L7 2120
1 10 N\ ~gii= ¢ -Ip ALY - \12,22,C
Star=01 0 0 0 0 ~1 | 12 12 8 2 12
I(2,4,ab), _ 7 (10,12,bg)
1z, 4 4 1 4 B 12 12 122 12
(6.6,c) | -
| 6 6 1 6 _ - Delta’s final per-writer log for alpha:
| (8v10vab? - - 1 10 0,1,-), (2.2,8), (33,-), (4:4.b), (55,7, (6,6.C), (7.7,-), (8:8,a), (9,9,-), (10,10,b), (11,11,-), (12,12,c)
1(12,12,¢)
=== 12 12 1 12

Figure 4.9: lllustration of imprecise invalidation mechanismspiit-join scenario. Nodes

«, B, v, andd share objects a, b, and c. At each node, we show the per-interest-set in-
formation (last precise version vectggl'V and current version vectarl’V), the per-
invalidation-stream informations{artV'V and a series of generalized invalidations), and
the per-interest-set per-stream informatipnep V'V as it is updated as each generalized
invalidation is applied.) For clarity, we show onlys component for all version vectors
and omit the node ID) in accept stamps.

As Figure 4.8-(b) illustrates, when a node sends a stream of invalidations to an-
other node, it discards gap-filling invalidations and it combines per-writer invalidations into
multi-writer invalidations. Notice that now is precise ord.

Nodes can garbage collect any prefix of their logs, which allows each node to bound
the amount local storage used for the log to any desired fraction of its total disk space. The

truncated prefix can be summarized by a version vematVV([72].

Split-join example. The following example is a bit involved, but we have found that
working through it step by step sheds considerable light on the purpose of the rules for
updating the interest set status and d¢@g filling andintersectionjust described.

Figure 4.9 illustrates these mechanisms in action. Noeeites objects a, b, and
C; nodes cares about object a and receives framprecise invalidations about a and impre-
cise invalidations about b and c. Nogecares about object ¢ and receives frarprecise

invalidations about ¢ and imprecise invalidations about a and b. Finally, hodees about

51

a and c and receives fromprecise invalidations about a (but imprecise invalidations about
b and ¢ due tg3's imprecision) and fromy precise invalidations about ¢ (but imprecise
invalidations about a and b.) First, sends a stream of invalidations (precise for a and
imprecise for b and c) t@. As illustrated in the figure, each invalidation advangés
per-invalidation-stream, per-interest-getvV'V value as well ag's per-interest-set last
precise version vectoi{V'V') and current version vectoe{'V') for interest se{a}. How-
ever, because the second invalidatidn6(bc) intersects interest séb,c}, that message
causes that interest set to become imprecise and subsequent invalidations fail to advance
that interest set'gpV' V. After processing all four invalidations in that streanis precise

for interest sefa}, but imprecise for interest s¢b,c}. v’s behavior processing the stream
of precise invalidations for ¢ and imprecise invalidations for a and b is similar.

Then, wheng and~ send their log contents & we show the case wherepro-
cessey’s first three invalidations, thef's four invalidations, and finally’s fourth invali-
dation. As the figure shows, after processing the first three invalidationsidréns precise
for {a}, but imprecise fofb} and{c}. The next four messages (fromymakeo precise for
{c} but imprecise fo{a} and{b}. Finally, the last message (frof) brings¢ to the state
one would desire: after seeing all precise invalidations for objects a and @recise for
both interest sefa} and{c} despite the fact that these precise messages were mixed with
some imprecise invalidations for objects a, b, and c. Finally, one may verify that because
of the d’s gap filling and intersection operationss log contains sufficient information so
that a nodec that receives)’s log contents could get precise updates for objects a or c.
Conversely, note that if were simply to interleave the messages it received fnoamd 3
without gap filling and intersection and then send ther toformation would be lost and

e would be left imprecise for interest sefta}, {b}, and{c}.

52

45 Additional Features

Three novel aspects of our implementation further our goal of constructing a flexible frame-
work that can accommodate the broadest range of policies. First, our implementation uses
self-tuning body propagatioto enable prefetching policies that are simultaneously aggres-
sive and safe. Second, our CR-Repl implementation adus\eAccepstate to support a
simple and flexible conflict detection and resolution mechanism. Third, our implementation
providesincremental log exchange allow systems to minimize the window for conflicting

updates. Finally, we use Golding’s algorithm [32] to implementig#g&=quencegredicate.

4.5.1 Self-tuning Body Propagation

In addition to supporting demand-fetch of particular objects, our prototype provides a novel
self-tuning prefetching mechanism. A nodé subscribes to updates from a nau2by
sending a list. of directories of interest along withstartVVversion vector.n2 will then
sendnl any bodies it sees that are inand that are newer thastartVV. To do this,n2
maintains a priority queue of pending sends: when a new eligible body amiZeleletes

any pending sends of older versions of the same object and then inserts a reference to the
updated object. This priority queue drainsrib via a low-priority network connection

that ensures that prefetch traffic does not consume network resources that regular TCP
connections could use [92]. When a lot of spare bandwidth is available, the queue drains
quickly and nearly all bodies are sent as soon as they are inserted. But, when little spare
bandwidth is available, the buffer sends only high priority updates and absorbs repeated

writes to the same object.

4. 5.2 Conflict Detection and Resolution

The log exchange protocol just described last-writer-wins conflict resolution with global
eventual consistency in the case of concurrent writes. However, it is useful to not only

resolve conflicts in a globally consistent way but also to flag them and provide informa-

53

tion about conflicting writes to a more flexible manual or programmatic conflict resolution
procedure.

To support more flexible conflict detection and resolution, we augment the algo-
rithm described above by adding a fieftfevAccepto both invalidation messages and to
per-object state. When a node receives an invalidaidand applieg 1 to the local store
of an objectobj (with GI.acceptStamp # obj.acceptStamp), there are three cases to
consider. First, itG1.prevAccept == obj.acceptStamp, there is no write-write conflict.

The second casé&;l.prevAccept > obj.acceptStamp, is impossible by the prefix prop-

erty. The third caseZI.prevAccept < obj.acceptStamp and Gi.acceptStamp iS not
included inobj.IpV'V, represents a write-write conflict, which is resolved by updading

with eitherGI or obj depending on which has a higher accept stamp and by storing the
losing entry to disk in a local (non-shared) per-objamnflict file bodies that match stored
losing writes are also stored. CR-Repl implementations can provide a local interface for
reading and deleting these “losing” conflicting writes, which allows higher-level code to
resolve conflicts using application-specific rules by generating compensating transactions.

Note that although different nodes can see different series of “losing” writes, all
nodes that make an interest set precise are guaranteed to see the “final” write to each
causally—independent series. For example, consider the case of two causal chains of writes
to one object by the nodes 3, andv: (1) 0@Q«, 1Q43, 2Q43, 3Q4 and (2)0Qa, 4@Q-~y. The
protocol guarantees that eventually any precise node will agree that the final state of the
write is the result ofy’s write at time 4 and that there was a write-write conflict thais
lost, and but different nodes may see different subsefsagf, 2@3, 3@3, which seems
acceptable in that neither causal chain regards elthegr or 2@3 as important values for

the final state of the system.

54

4.5.3 Incremental Log Propagation

The prototype implements a novel variation on existing batch log exchange protocols. In
particular, in the batch log exchange used in Bayou, a node first receives a batch of updates
comprising a start timstartVVand a series of writes, it then rolls back its checkpoint to
beforestartVVusing an undo log, and finally it rolls forward, merging the newly received
batch of writes with its existing redo log and applying updates to the checkpoint. In contrast,
our incremental log exchange applies each incoming write to the current RAS state without
requiring roll-back and roll-forward of existing writes.

The advantages of the incremental approach are efficiency (each write is only ap-
plied to the RAS once), concurrency (a node can process information from multiple contin-
uous streams), and consistency (connected nodes can stay continuously synchronized which
reduces the window for conflicting writes.)

The disadvantage is that it only supports simple conflict detection logic: for our in-
cremental algorithm, a node detects a write/write conflict when an invalidapaev#\ccept
logical time (set by the original writer to equal the logical time of the overwritten value)
differs from the logical time the invalidation overwrites in the node’s RAS. Conversely,
batch log exchange supports more flexible conflict detection: Bayou writes comtajrea-
dencycheckprocedure that can read any object to determine if a conflict has occurred [88];
this approach works in a batch system because rollback takes all of the system’s state to a
logical moment in time at which these checks can be re-executed. Note that this variation
is orthogonal to the CR-Repl approach: a full replication system such as Bayou could be
modified to use our incremental log propagation mechanism, and a PRACTI system could

use batch log exchange with roll-back and roll-forward.

4.5.4 Simple Commit Implementation

As described in Chapter 3, URA exposesisBequencegredicate that blocks requests

according to write commit status. It is useful for implementing the stronger consistency

55

semantics such aequential consisten@ndlinearizability that require aommitprotocol

to establish a total order. A write mommitted locallyif a node sees all preceding writes

in the final total order. The state of the art has different commit protocols including Gold-
ing’s algorithm [32], primary commit [72], and quorum-based commit protocol [90]. For
simplicity, here we use Golding’s algoritfrto implement thésSequencegredicate.

It is straightforward to implement Golding’s commit algorithm in CR-Repl. Each
node uses itsurrentVVto determine whether or not it has seen all writes with logical time
less than or equal to and thus makes sure that all writes with logical stamp less than
are committed. For example,df currentVV equals(3Qa, 5@3) and the system only has
two nodesy and (3, then we can derive that any write with an accept stamp less3tlaas
committed. Note that for liveness, we need to put heartbeats at some nodes to bring the
last write 6@ in the above example) committed if there are no other updates at the other

nodes.

4.6 Evaluation

In this section we evaluate the properties of CR-Repl protocol. We use the prototype both
(1) to evaluate the PRACTI mechanisms in several environments such as web service repli-
cation, data access for mobile users, and grid scientific computing and (2) to characterize
PRACTI’s properties across a range of key metrics.

Our experiments seek to answer three questions.

1. Can protocols implemented on CR-Repl match/approximate wide range of existing
protocols?We find that our system performance can match most of existing systems
such as the PR-AC and AC-TI systems and approximate the performance of PR-TI

object replication systems that gives up cross-object consistency.

2. Do CR-Repl offer significant advantages over existing replication architectures for at

2\We have also implemented a sequential consistency library based on the primary commit protocol

56

least some environment¥¥e find that our system can dominate existing approaches
by providing more than an order of magnitude better bandwidth and storage effi-
ciency than AC-TI replicated server systems, as much as an order of magnitude bet-
ter synchronization delay compared to PR-AC hierarchical systems, and consistency
guarantees not achievable by PR-TI per-object replication systems for some environ-

ments.

3. What are the costs of CR-Repl’'s generali@®en that a flexible CR-Repl protocol
can subsume existing approaches, is it significantly more expensive to implement
a given system using URA than to implement it using narrowly-focused specialized
mechanisms? We find that the primary “extra” cost of CR-Repl's generality is that our
system can transmit more consistency information than a customized system might
require. But, our implementation reduces this cost compared to past systems via
separating invalidations and bodies and via imprecise invalidations, so these costs

appear to be minor.

To provide a framework for exploring these issues, we compare our system with
the three major classes of replication architectures defined by the PRACTI taxonomy as
we described in Chapter 2. In particular, we first focus on partial replication by comparing
our protocol with AC-TI systems in 4.6.1. We then compare our protocol with PR-AC and
AC-TI systems in 4.6.2. Finally, we examine the costs of flexible consistency by comparing

our protocol with PR-TI in 4.6.3.

4.6.1 Partial Replication

When comparing to the AC-TI full replication protocols from which our CR-Repl system
descends, we find that support for partial replication can dramatically improve performance

for three reasons:

57

1e+07 _...........AQ:..T..I...(..F...U.I.I.R..e.pl.I.t.:..:'.:1.t.|.c.>.r.1).........,.........,,,,,,,,,,,,,,,,,;‘,‘,'d
..::“’s‘“
k5 o
2 CR-Repl (Separate Invalg..« -
Q le+06 | from Data) ... o
o
|_
[}
@ 100000 f
w-“‘f‘,‘R-RepI (Imprecise Invalidations)
10000 & . .
0.1 1 10 100

Files of Interest (%)

Figure 4.10: Impact of locality on replication cost.

1. Locality of Referencepartial replication of bodies and invalidations aachreduce
storage and bandwidth costs by an order of magnitude for nodes that care about only

a subset of the system’s data.

2. Bytes Die Youngpartial replication of bodies can significantly reduce bandwidth

costs when “bytes die young” [7].

3. Self-tuning prefetchingself-tuning prefetching minimizes response time for a given

bandwidth budget.

It is not a surprise that partial replication can yield significant performance advantages
over existing server replication systems. What is significant is that (1) our experiments
provide evidence that despite the good properties of server replication systems (e.g., support
for disconnected operation, flexible consistency, and dynamic network topologies) these
systems may be impractical for many environments; and (2) they demonstrate that these
trade-offs are not fundamental—a CR-Repl system can support PR while retaining the good

AC-TI properties of server replication systems.

58

Locality of reference. Different devices in a distributed system often access different
subsets of the system'’s data because of locality and different hardware capabilities. In such
environments, some nodes may access 10%, 1%, or less of the system’s data, and patrtial
replication may yield significant improvements in both bandwidth to distribute updates and
space to store data.

Figure 4.10 examines the impact of locality on replication cost for three systems
implemented on our CR-Repl core using different controllers: a full replication system
similar to Bayou, a partial-body replication system that sends all precise invalidations to
each node but that only sends some bodies to a node, and a partial-replication system that
sends some bodies and some precise invalidations to a node but that summarizes other
invalidations using imprecise invalidations. In this benchmark, we overwrite a collection of
1000 files of 10KB each. A node subscribes to invalidations and body updates for subset of
the files that are of interest to that node. Thi@xis shows the fraction of files that belong to
a node’s subset, and the y axis shows the total bandwidth required to transmit these updates
to the node.

The results show that partial replication of both bodies and invalidations is crucial
when nodes exhibit locality. Partial replication of bodies yields up to an order of magni-
tude improvement, but it is then limited by full replication of metadata. Using imprecise
invalidations to provide true partial replication can gain over another order of magnitude as
locality increases.

Note that Figure 4.10 shows bandwidth costs. Partial replication provides similar

improvements for space requirements (graph omitted).

Bytes die young. Bytes are often overwritten or deleted soon after creation [7]. AC-
TI Full replication systems send all writes to all servers, even if some of the writes are
quickly made obsolete. In contrast, CR-Repl replication can send invalidations separately
from bodies: if a file is written multiple times on one node before being read on another,

overwritten bodies need never be sent.

59

le+07 | AC-TI (Full Replication)

1e+06

Bytes Transferred

CR-Rep‘I‘,

1 10 100

Write/Read Ratio

Figure 4.11: Bandwidth cost of distributing updates as the number of writes to a file between
reads varies.

To examine this effect, we randomly write a set of files on one node and randomly
read the files on another node. As Figure 4.11 shows, CR-Repl’s gains are significant when
bytes die young. For example, when the write to read ratio is 2, CR-Repl uses 55% of
the bandwidth of full replication, and when the ratio is 5, CR-Repl uses 24%. At ratios

exceeding 20, CR-Repl’s gains exceed an order of magnitude.

Self-tuning prefetching. Separation of invalidations from bodies enables a novel self-
tuning data prefetching mechanism described in Section 4.5. As a result, systems can repli-
cate bodies aggressively when network capacity is plentiful and replicate less aggressively
when network capacity is scarce.

Figure 4.12 illustrates the benefits of this approach by evaluating three systems that
replicate a web service from a single origin server to multiple edge servers. disgem-
ination serviceg66] we examine, all updates occur at the origin server and all client reads
are processed at edge servers, which serve both static and dynamic content. We compare
the read response time observed by the edge server when accessing the database to service

client requests for three replication polici€&emand Fetclfiollows a standard client-server

60

1000

Demand Fetch

=
S
3

Self Tuning

Mean response time (ms)
o
s
T

Replicate All — ><
| L L

1

0 1 2 3
Bandwidth Factor

Figure 4.12: Read response time when available bandwidth varies for full replication, de-
mand fetching, and self-tuning prefetching.

HTTP caching model by replicating precise invalidations to all nodes but sending new bod-
ies only in response tdemand reackquestsReplicate Allfollows a Bayou-like approach

and replicates both precise invalidations and all bodies to all nodeS§eth@uningexploits
CR-Repl to replicate precise invalidations to all nodes and to have all nodes subscribe for all
new bodies via the self-tuning prefetching mechanism. We use a synthetic workload where
the read:write ratio is 1:1, reads are Zipf distributed across files {.1), and writes are
uniformly distributed across files. We use Dummynet to vary the available network band-
width from 0.75 to 5.0 times the system’s average write throughput. In addition to prototype
benchmark experiment reported here, we also simulate performance under a range of other
parameters, which yields expected results: increasimgproves the read hit rate when not

all bodies are prefetched, decreasing the read to write ratio for a given write rate hurts the
read response time f@emand Fetchand increasing the write rate shifts the curves to the
right.

As Figure 4.12 shows, when spare bandwidth is available, self-tuning prefetch-
ing improves response time by up to a factor of 20 comparedamand-Fetch A key
challenge, however, is preventing prefetching from overloading the system. Whereas our
self-tuning approach adapts bandwidth consumption to available resoRegs;ate All

sends all updates regardless of workload or environment. This niReqgcate Alla poor

61

[| Storage [Dirty Data [Wireless [Internet |

Office server | 1000GB 100MB 10Mb/s 100Mb/s
Home desktop| 10GB 10MB 10Mb/s 1Mb/s

Laptop 10GB 10MB 10Mb/s 50Kb/s
1Mb/s Hotel only
Palmtop 100MB 100KB 1Mb/s N/A

Figure 4.13: Configuration for mobile storage experiments.

neighbor—it consumes prefetching bandwidth corresponding to the current write rate even

if other applications could make better use of the network.

4.6.2 Topology Independence

We examine topology independence by considering two environments: a mobile data access
system distributed across multiple devices and a wide-area-network file system designed to
make it easy for PlanetLab and Grid researchers to run experiments that rely on distributed
state. In both cases, CR-Repl's combined partial replication and topology independence
allows our design to dominate PR-AC topology-restricted hierarchical approaches by doing

two things:

1. Adapt to changing topologiesa CR-Repl system can make use of the best paths

among nodes.

2. Adapt to changing workloadst CR-Repl system can optimize communication paths
to, for example, use direct node-to-node transfers for some objects and distribution

trees for others.

We primarily compare against standard PR-AC restricted-topology client-server systems
like Coda and IMAP. For completeness, our graphs also compare against AC-TI topology-

independent, full replication systems like Bayou.

Mobile storage. We first consider a mobile storage system that distributes data across

palmtop, laptop, home desktop, and office server machines. We compare a CR-Repl sys-

62

100

2000
=}
& EEEE
IERERE
80 1 1600 =
Iy
~| ~ 0
=0 -0<
60 - ; o 1 1200 ':) xS
o) I g z IR
] v o= o Lo O
E x g £ x5 =
Eotes F Leg
40 - = g 1 800 = % 14
o o @ L
@t e
x 2 x5
20p © 0O — a0t © OO
i << < << < << < ~ 8 88
o hal zZzz 2z z zZzZz 0
Palm<->Lap Palm<->Home Lap->Home Office->All Palm<->Lap Palm<->Home Lap->Home Office->All
(a) Plane (b) Hotel
T T T T 100 T T T
~ 9
= z 2283
[8}
250 <
= 80
S
200f & O]
=08 =2
<3 60 & o
@ oEx o) La
TI0F & & 0 T T =
£ o5 2 E g
e rge = >
Eeg wF = @
wlsd? g %
L L8 @ g
xc y O
g g &5
s © O 20 -
< 0
<38 58
0 Palm<->Lap Palm<->Home Lap->Home Office->All 0 Palm<->Lap Palm<->Home Lap->Home Office->All
(c) Home (d) Office

Figure 4.14: Synchronization time among devices for different network topologies and

protocols.

63

tem to a client-server Coda- or IMAP-like system that supports partial replication but that

distributes updates via a central server and to a full-replication Bayou-like system that can
distribute updates directly between any nodes but that requires full replication. All three

systems are realized by implementing different controllers with different policies.

As summarized in Figure 4.13, our workload models a department file system that
supports mobility: an office server stores data for 100 users, a user’s home machine and
laptop each store one user’s data, and a user’s palmtop stores 1% of a user’s data. Note that
due to resource limitations, we store only the “dirty data” on our test machines, and we use
desktop-class machines for all nodes. We control the network bandwidth of each scenario
using a library that throttles transmission.

Figure 4.14 shows the time to synchronize dirty data among machines in four sce-
narios: (a)Plane the user is on a plane with no Internet connection Hbdel: the user’s
laptop has a 50Kb/s modem connection to the Internet¢ehe the user's home machine
has a 1Mb/s connection to the Internet, and@ffice the office desktop has a 100Mb/s
connection to the Internet. The user carries her laptop and palmtop to each of these lo-
cations and co-located machines communicate via wireless network at speeds indicated in
Figure 4.13. For each location, we measure time for machines to exchange updates: (1)
Palm—Lap: the palmtop and laptop exchange updates, (2) Pdltome: the palmtop and
home machine exchange updates, (3)-L&fome: the laptop sends updates to the home
machine, (4) Office~All: the office server sends updates to all nodes.

In comparing the CR-Repl system to a client-server system, topology independence
has significant gains when the machines that need to synchronize are near one another
but far from the server: in the isolatdelane location, the palmtop and laptop can not
synchronize at all in a client-server system; in thetel location, direct synchronization
between these two co-located devices is an order of magnitude faster than synchronizing
via the server (1.7s v. 66s); and in th®melocation, directly synchronizing co-located

devices is between 3 and 20 times faster than synchronization via the server.

64

1000 250

J221

800 - 1 200 -

600 - 4 150

475

Time(s)
Time(s)

400 - 4 100
Disseminate

ssssss

200 - 50 - |

= =

PLFS Server Repl Coop Client/Server PLFS Server Repl Coop Client/Server

177
.
2 2
g 5
5
2

0

(a) 50 distributed nodes + remote server (b) 50 cluster nodes + remote server

Figure 4.15: Execution time for the WAN-Experiment benchmark.

Conversely, as the “Full Replication” lines show, although existing server-replication
systems provide topology independence, full-replication limits their effectiveness. For ex-
ample, even if a palmtop is only interested in 100MB of the system’s data and in 100KB
of the laptops’ updates, full replication would require it to store 100GB of data and receive
10MB of updates when synchronizing with the laptop. Such a configuration appears infea-
sible, so if such an existing “full replication” system were used, it would likely manually
partition data into volumes and configure the system so that different devices store differ-
ent subsets of volumes. In principle, careful volume configuration could approximate the
performance of CR-Repl in this experiment, but it is not clear how to configure or manage
such a system. Also note that partitioning data into separate replication volumes would
sacrifice causal consistency across volumes and would likely prevent conflict detection and

reconciliation rules [88] whose inputs or outputs span volumes.

WAN-FS for Researchers. Figure 4.15 evaluates a wide-area-network file system called
PLFS designed for PlanetLab and Grid researchers. The controller for PLFS is simple: for
invalidations, PLFS forms a multicast tree to distribute all precise invalidations to all nodes.
And, when ariINVALID file is read, PLFS uses a DHT-based system [97] to find the nearest

copy of the file; not only does this approach minimize transfer latency, it effectively forms

65

a multicast tree when multiple concurrent reads of a file occur [5, 89].

We examine a 3-phase benchmark that represents running an experiment: in phase
1 Disseminatgeach node fetches 10MB of new executables and input data from the user’s
home node; in phase Rrocess each node writes 10 files each of 100KB and then reads
10 files from randomly selected peers; in phas@d@st-processeach node writes a 1MB
output file and the home node reads all of these output files. We compare PLFS to three sys-
tems: a client-server system, client-server with cooperative caching of read-only data [5],
and server-replication [72]. All 4 systems are implemented via CR-Repl using different
controllers.

The figures show performance for an experiment running on 50 distributed nodes
each with a 5.6Mb/s connection to the Internet (we emulate this case by throttling band-
width) and 50 cluster nodes at the University of Texas with a switched 100Mb/s network
among them and a shared path via Internet2 to the origin server at the University of Utah.

The speedups range from 1.5 to 9.2, demonstrating the significant advantages en-
abled by the CR-Repl architecture. Compared to client/server, it is faster in both the Dis-
semination and Process phases due to its multicast dissemination and direct peer-to-peer
data transfer. Compared to full replication, it is faster in the Process and Post-process
phases because it only sends the required data. And compared to cooperative caching of
read only data, it is faster in the Process phase because data is transferred directly between

nodes.
4.6.3 Any Consistency
This subsection first examines the benefits and then examines the costs of supporting flexi-

ble consistency.

Improved consistency trade-offs. CR-Repl improves the range of consistency trade-offs
available for replication. Gray [34] and Yu and Vahdat [102] show a trade-off: aggressive

propagation of updates improves consistency and availability but can also increase system

66

1000 —— 1 —
P - e PETIOMIC.(5008)..,
§ a0Periodic (500s).............. y
i 2 01t
£ 3 3
G 600 [P
%‘; TACT Aggressive § 0.01 | EéTACT Aggressive
& 400} 2 o
5 ; g f
> 2 oooif CR-Repl Demand
4 200 | | ,CR-Repl Demand ROy xR e
@ | //CR-Repl Prefetch = CR-Repl Prefetch
0 5 - + 0.0001 + + +
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Available Bandwidth/Write Bandwidth Available Bandwidth/Write Bandwidth
(a) Best consistency (order error) (b) Best unavailability achievable
achievable for a given bandwidth while meeting a required order
Cost. error of 100.

Figure 4.16: Consistency trade-offs.

load. Yu's study finds an order of magnitude improvement in reducing unavailability for
some workloads when using aggressive propagation of updates compared to lazy propaga-
tion and Gray shows that the number of conflicts can rise with the square of propagation
delay for some workloads [34].

We examine a range of consistency requirements and network failure scenarios via
simulation (all other experiments in this paper are prototype measurements.) We use a
synthetic read/write workload with the same parameters as the workload used in Fig 4.12.
We use an average network path unavailability of 0.1% with Pareto distributed repair time
R(t) =1 — 15¢798 [19].

In Figure 4.16-a we measure the best order error that can be maintained for a
given bandwidth budget. Order error constrains the number of outstanding uncommitted
writes [103]. We compare th€ACT Aggressiv@olicy [102] to aPRACTI Prefetctpol-
icy that aggressively distributes invalidations as in TACT'’s policy but that distributes bod-
ies using the self-tuning approach. CR-Repl reduces the bandwidth needed to maintain

reasonable consistency by a factor of 3 comparetiAGT Aggressivand improves the

67

consistency bounds attainable for some bandwidth budgets by orders of magnitude.
Figure 4.16-b plots system unavailability for an order error bound of 100 as band-
width varies. Following Yu and Vahdat’'s methodology [102], we say that the system is
availableto a read or write request if the request can issue without blocking and the system
is unavailableif the request must block in order to meet the consistency target(i.e, the cur-
rent total order error is less than 100). When bandwidth is limited, CR-Repl dramatically

improves system availability under consistency constraints compared to full replication.

Consistency overheads. Our protocol ensures that requests pay only the latency and
availability costs of the consistency they require. But, distributing sufficient bookkeeping
information to support a wide range of per-request semantics does impose a bandwidth cost.
If all applications in a system only care about coherence guarantees, a customized protocol
for that system could omit imprecise invalidations and thereby reduce network overheads.

Three features of our protocol minimize this cost. First, transmitting invalidations
separately from bodies allows nodes to maintain a consistent view of data without receiving
all bodies. Second, transmitting imprecise invalidations in place of some precise invali-
dations allows nodes to maintain a consistent view of data without receiving all precise
invalidations. Third, self-tuning prefetch of bodies allows a node to maximize the amount
of local, valid data in a checkpoint for a given bandwidth budget.

Figure 4.17 quantifies the remaining cost to distribute both precise and imprecise
invalidations (in order to support consistency) versus the cost to distribute only precise
invalidations for the subset of data of interest and omitting the imprecise invalidations (and
thus only supporting coherence.) We vary the fraction of data of interest to a node on the
x axis and show the invalidation bytes received per write on the y axis. Our workload is
a series of writes by remote nodes in which all objects are equally likely to be written.
Note that the cost of imprecise invalidations depends on the workload’s locality: if there
is no locality and writers tend to alternate between writing objects of interest and objects

not of interest, then the imprecise invalidations between the precise invalidations will cover

68

60

All precise
50 |

CR-Repl
40t CR-Repl (burst:10)
(no locality) .+ l

30t \ <

20 }

=" Coherence (best case)

Inval Bytes Per Write

10

0 0.2 0.4 0.6 0.8 1
Interest Set Fraction

Figure 4.17: Bandwidth cost of consistency information.

relatively few updates and save relatively little overhead. Conversely, if writes to different
interest sets arrive in bursts, then the system will generally be able to accumulate large
numbers of updates into imprecise invalidations. We show two casebtathecalityline

shows the worst case scenario, with no locality across writes, arsutbe=10line shows

the case when a write is ten times more likely to hit the same interest set as the previous
write than to hit a new interest set.

When there is significant locality for writes, the cost of distributing imprecise inval-
idations is small: imprecise invalidations to support consistency never add more than 20%
to the bandwidth cost of supporting only coherence. When there is no locality, the cost is
higher, but in the worst case imprecise invalidations add under 50 bytes per precise invali-
dation received. Overall, the difference in invalidation cost is likely to be small relative to

the total bandwidth consumed by the system to distribute bodies.

69

Chapter 5

UR-Repl: Universal Replication

Mechanisms

The CR-Repl protocol just described in previous chapter is only a first step towards a uni-
versal data replication architecture. Although it implements the replication abstractions by
supporting PRACTI properties simultaneously, it does fall short of our eventual goal of pro-
viding a unified architecture in four significant ways. First, it does not efficiently support
dynamic fine-grained invalidation subscriptions that are needed for many caching protocols
that support single object callbacks [42, 68]. In particular, the processing cost is propor-
tional to the number of interest sets, which is reasonable for coarse-grain subscriptions, but
not for per-object fine-grain subscriptions. Second, the invalidation subscription is ineffi-
cient for some workloads where checkpoint exchange is more efficient. Third, although it
supports a simple commit, it lacks a general commit mechanism to efficiently support com-
mit protocols such as the primary commit CSN [72]. Finally, although the CR-Repl protocol
supports a simple write-write conflict detection mechanism, it adds extra per-update stamp
overhead for both storage and network bandwidth, and it could not work properly when the
log is truncated.

To complete the CR-Repl mechanisms to serve as a replication “microkernel”, this

70

chapter presents a novel replication protocol UR-Repl that addresses these limitations via

four key ideas:

1. In order to efficiently support both coarse-grained and fine-grained subscriptions, we
multiplex invalidation subscriptionsver a single stream. By maintaining a shared
state for multiple subscriptions and allowing one imprecise invalidation to be used
across all active subscriptions, the processing overhead to handle each invalidation is
reduced fromO (number of activeinterestsets) to update each interest set'’s state

to O(1) to update the per-stream'’s state.

2. In order to support fast resynchronization of different type of workloads, besides
incremental log exchange, UR-Repl introduces a navelemental checkpoint ex-
changeand smoothly integrates it with CR-Repl log exchange protocol. Instead of
freezing the receiver and sender’s states as required in most of existing checkpoint
exchange protocols such as that in [72], UR-Repl allows the receiver to receive an
incremental checkpoint for a small portion of its ID space and then either prefetch

checkpoints of other interest sets or fault them in “on demand”.

3. In order to support flexible commit protocols, we introduce a novel mechanism that
makes use of a special primitive and a special messagenit invalidatiorto allow
system designers to explicitly specify when and under what circumstances to commit

a write.

4. In order to support efficient conflict detection for both log exchange and checkpoint
exchange, we use novéépendency summary vecttosdetect write-write conflicts.
UR-Repl allows multiple objects to share the same version vector to detect conflict
S0 as not to incur additional costs for conflict detection other than that already being

paid for consistency maintenance.

In the rest of this chapter, we first describe the enhanced invalidation subscription

protocol by multiplexing subscriptions in one stream in Section 5.1. Then Section 5.2 de-

71

\ UR-Repl \ CR-Repl |

NetWOfk NSub* (SSetup"'NPre*SPre+NImp*SImp) NSub * (SSetup"'NP're*SPre) + Nlmp*SImp
bandwidth

Inv Processing O(number of interest sets) 0(1)

overhead

Read Overhead o(1) O(number of connections)

Figure 5.1: Invalidation subscription cost. Here, for simplicity, we assume each subscrip-
tion request although subscribes a different subscription set, it requires the same number of
precise invalidations and imprecise invalidation$g,,;, is the number of subscription re-
questsNp,.cise aNAS precise are the number of updates targeting objects in the subscription
set from the subscription start time to the current logical time and the size of one precise
invalidation; Similarly,Nr,precise ANASrmprecise are the number of imprecise invalidations

in one subscription and the size of an imprecise invalidatin;,,, is the size of setup a
subscription.

scribes the novel incremental checkpoint exchange protocol, Section 5.3 details the general
commit mechanism. and Section 5.4 presentsdiggendency summary vectarsnflict

detection algorithm. Finally, Section 5.5 evaluates the UR-Repl prototype.

5.1 UR-Repl Invalidation Subscription

As we described in Section 3.1.2, the invalidation subscription abstraction is a natural way

to implement callbacks. To create a callback for a single ohjext the server so that it

will be notified of any new updates toby the server, a client simply sets up an invalidation

subscription with a subscription set composed of aréyd a start time a.acceptStamp.

Thecallback brealcan be implemented simply by stopping the corresponding subscription.
Unfortunately, the invalidation subscription protocol described in the previous chap-

ter makes it expensive to implement such fine-grained dynamic callbacks for two reasons.
First, althoughmprecise invalidationalone significantly reduce the bandwidth cost

of a single invalidation stream [9], the total bandwidth cost could still be significant for

serving multiple dynamic fine-grained subscription requests. For multiple subscription re-

72

guests, the same set of updates are sent multiple times for consistency although in different
compact formats. For example, comparBgeam land Stream 2in Figure 4.3, to serve

two subscription requests from the same nedegeds to send two different streams each

of which must include precise or imprecise invalidations to cover all the updates issued af-
ter startVV. When the number of objects included in one subscription set is small and the
number of subscription requests is large, the total bandwidth cost will be much more than
the cost that is actually demanded for the subscribed workload.

Similarly, as the processing overhead to handle each invalidation is proportional to
the number of interest sets, the total processing overhead of multiple subscriptions might
be huge. Upon receiving an invalidation, a node must iterate across all interest sets twice to
update the consistency state as indicated in Figure 4.4.

UR-Repl addresses these issuesrytiplexing subscriptionsRecall that the key
subscription invariant is that the sender sends all updates as precise invalidations or impre-
cise invalidations from the subscription start time to its current time. Instead of sending a
stream of invalidations for one subscription, UR-Repl multiplexes all invalidation subscrip-
tions from one node to another onto a single underlying invalidation stream. It thus reduces
the network bandwidth overhead for adding a new subscription by allowing one imprecise
invalidation to be used across all active subscriptions.

In addition, by allowing multiple interest sets to share a sirgjfeam stateUR-

Repl reduces the processing overhead to handle each invalidation to update each interest
set’s state fromO(number of interest sets) to O(1). The disadvantage is that the read
performance may increase frad(1) to O(number of connections).

Figure 5.1 summarizes the invalidation subscription cost of CR-Repl and UR-Repl
in terms of network bandwidth and processing cost. UR-Repl thus makes the protocol
efficient for both coarse-grained callbacks and dynamically-created, fine-grained callbacks.

In the rest of this section, we first explain how to form an invalidation stream when

multiplexing subscriptions and describe the steps to form such a stream in Section 5.1.1. We

73

InvalStream = StreamStart + [[LogCatchup|C PCatchup|* + [preciseInv|impreciseInv]™ |*
LogCatchup = CatchupStart + [preciseInv|impreciseInv|* + CatchupEnd
CPCatchup = CatchupStart + (/*, r.cov, s.cov) + SS.IpV'V + [perobject states of SS| + CatchupEnd

Figure 5.2: UR-Repl invalidation stream.

then explain how to process the stream to maintain the consistency state in Section 5.1.2.

5.1.1 Forming Invalidation Streams

Given the CR-Repl protocol, the basic idea to implement UR-Repl is simple. Similar to
the CR-Repl replication, UR-Repl separates the distribution of updates into invalidations
and bodies for partial replication of data and usaprecise invalidationgo reduce the
bandwidth overhead of a single invalidation subscription to be proportional to the updates
of subscribed objects. Then to reduce the overall invalidation stream bandwidth between
two nodes, imultiplexessubscriptions to allow a node to dynamically add objects or remove
objects from the subscription set on a single stream.

Figure 5.2 defines a UR-Repl invalidation stream. Similar to a CR-Repl invalida-
tion stream, it has &treamStart to indicate the start point of the stream followed by a
sequence of causally ordered precise or imprecise invalidations. The only difference from
a CR-Repl invalidation stream is that a UR-Repl invalidation stream may include some
catchup streamshat are needed for adding new invalidation subscriptions to an existing
stream.

As the separation of invalidations and bodies and the formirighpfecise invali-
dationare exactly the same as described in Section 4.2 and Section 4.3 respectively, here

we focus on explaining how to add/remove subscriptions to/from an existing stream.

Multiplexing subscriptions. In order to multiplex invalidation subscriptions, each node
«a maintains a per-receiver outgoing stream shared by all active subscriptions between the

receiver andv. A stream tracks aubscription set S® identify which objects are currently

74

subscribed and gersion vector streamCV¥ summarize all the previous updates sent by
the stream.

To implement the subscription abstraction, a stream promises that it will send all
invalidations afteistreamCVMn causal order. In particular, it will send all invalidations
to objects inSSas they are and combine invalidations about objects outsid&Safito
imprecise invalidations.

As indicated in Figure 5.2, to add a new subscription wWitbwSS, startVMp a
stream, a node must first senctatchup streanbetweenstartVV and streamCVVWhefore
addingnewSSo the stream’s current subscription 8 The catchupstream is needed to
implement the semantics of the invalidation subscription abstraction as described in Chap-
ter 3: “send all precise invalidations to objects in newSS after startVV”. BecaewSS
is not included inSS the stream might have sent invalidations to objectsewSSas im-
precise invalidations. Therefore, we need the catchup stream to send the omitted precise
information abounewSSrom startVVto streamCVV

Note that the receiver must already have received imprecise or precise invalidations
for all objects up testreamCVVY so the sender is free to send this information about past
updates tmmnewSSwithout violating consistency.

Note that instead of sending an ordered sequence of invalidations betteet/
andstreamCVMo catchupnewSSa node can alternatively send the checkpoint of all the
objects innewSShat were updated betwestartVVandnewSSAs a result, as indicated in
Figure 5.2 an invalidation stream is composed of a version vector to indicate where it starts,
a series of precise invalidations and imprecise invalidations sent in causal order, and a set
of catchup invalidations or checkpoints for adding new objects to the stream. We focus on
describing the invalidation catchup here and defer the description of the checkpoint catchup

to Section 5.2.

Sending an invalidation stream. Figure 5.3 illustrates the sender’s invalidation subscrip-

tion protocol in action. The protocol is simple and includes 4 parts: initialization, adding

75

(x OutgoingConnection _....Create a stream
SS streamCVV Y

<1@Q,-1@B> — — = — 4 ,3-——>

@Add subscription (A, <-1@ (X, -1@B>)
<A, 0@0> YA <A@, -1@Bs — = = = <A, 0@oc> -
</BA, 1@0> :
</B2, 1@B> . </B/", 1%‘; : ggg >
</BM, 2@0a> ?
</B/1, 3@B> <IA2, 4@B> “
</A2, 4@B> @ Add subscription (/B/*, <1@(, -1 @B>)_ >

AR 2@, 4@ > - = = =7 CatchupStart(sr, <t@x, -1@ps)
</A2, 5@0> </BA, 1@c>
<IA3, 6@a> </BI2, 1@B>
<BN,7@x> </BN, 2@0>
</B/2, 8@0n> </BN, 3@B>
CatchupEnd
</B/2, 9@ > </A2, 5@ 0>
</C/1,9@B, 19@B> </A/3, 6@ x>
</A2, 20@0> </BA1,7@a>
</AN, 21@a> { </B/2, 8@0>
</ANl, 22@ 0> @ Remove subscription (/A/*)

"B <8@Q, 4@B >— — — T </BJ2,9@0> P>
e 9@ 22@«
</A/*:IC/*, 9@p 19@B>
Log ’

Figure 5.3: Multiplexing invalidation subscriptions.

a catchup stream, removing a set of objects from a stream, sending regular invalidation
streams. As illustrated itp of Figure 5.3, initially the sender sets i&Sto empty and
streamCVMo its currentVVand sends &treamStariessage that includes itsirrentVVv
so that the receiver knows where the stream starts.

When there is no pending subscription requests, the sender sends precise invalida-
tions and imprecise invalidations accumulated according to the stresaécription set
as described in Section 4.3 and updatesstreamCVVaccordingly. For example, in Fig-
ure 5.3 step3) a sends all the precise invalidations targeting directofyand sends an
imprecise invalidation to summarize all the updates targeting any object in diredBory
because the stream&ibscription sets /A/x during this period. Whereas in stef as
the subscription sets / B/, the stream sends precise invalidations targeting any object in
directory /B and summarizes all the other invalidations in imprecise invalidations.

As indicated in ste whenever a new subscription request comes, the sender

sends arinvalidation catchup strearthat includes all the precise invalidations targeting

76

any object imewSJetweerstartVVandstreamCV\as shown in the grey box. datchup
streamstarts with aCatchupStarimessage that includeswSSandstartVVand ends with
aCatchupEndnessage so that the receiver knows how to process the catchup stream. Note
that the catchup stream can safely omit all invalidations not targeting objectsw8S
because the stream has already logically sent information about every updates from stream
start time up testreamCVV

To remove a subscription seemoveSSrom a stream, the sender only needs to
remove theemoveS$om SSso that the sender will replace future invalidations targeting
removeSdy imprecise invalidations. As indicated in Figure 5.3 s@pafter theSSis

updated tg/ B/, the invalidation stream combines invalidationg 1o/« thereafter.

5.1.2 Applying Invalidation Streams

In the previous subsection, we define how a sender creates an invalidation stream; in this
subsection, we explain how to efficiently maintain the local state when receiving an invali-
dation stream.

Note that the processing ofiprecise invalidationss different here due to thaul-
tiplexing of subscriptionsin particular, where CR-Repl applies each invalidation to each
interest set for which it tracks consistency state for, UR-Repl only applies the invalidation
to a stream shared by multiple interest sets and therefore reduces the processing cost from

O (number of invalidationsxnumber of interest sets) to O(number of invalidations).

Consistency state. Like the CR-Repl replication, UR-Repl needs to track the per-object
state and per-interest set state. For completeness, here we give a brief overview of main-
taining these states.

First, because updates are distributed separately by invalidation subscriptions and
body subscriptions, each node needs to track if the object it is interested in has received an
invalidation with or without the corresponding body. In particular, it maintains a per-object

state that includes an object ID, taeceptStampf the last known invalidation to the object,

77

a flagVALID that if true indicates that the corresponding data associatecceptStamgs
available. When applying a newer invalidation, the per-object siateptStamjs updated
and theVALID is markedfalse. When receiving a body message, if theceptStamp
matches with the one in per-object statdLID is marked tarue. Sometimes we also say
the object is marketNVALID.

Second, due to imprecise invalidations, a node also needs to traolethsenessf
each object, i.e., whether an object has missed any invalidations. To save the storage space,
we usean interest seto track theprecisenes®f a group of objects. In particular, each
interest setS maintains a version vectdpVV to identify the latest time at which a node
is known to have seen all invalidations that could affect any objet®.i®\ node tracks
whether each interest si&is PRECISE (per-object state reflects all precise invalidations)
or IMPRECISE (per-object state is not stored or may not reflect all precise invalidations)
by comparindS.lpVV and the node’'surrentVV, If I1S.IpVVequalscurrentVV, thenlS has

not missed any invalidations and it is precise.

Stream state. To avoid applying each invalidation to each interest set for maintaining the
per-interest sdpVV, a receiver maintains a per-stream stiteamCV\shared by multiple
interest sets. AtreamCV\Vsummarizes all the invalidations sent in the stream and is ad-
vanced whenever the node receives a new invalidation from the stream. UR-Repl leverages
the per-streanstreamCV\Mo track thelpVV efficiently by attachingmultiple interest sets
to an active stream.

In order to derivepVV by streamCVYVY UR-Repl enforces an invariant whet-
tachingany interest sef S to any streamS: IS can beattachedto S if and only if 1.5
has received all precise invalidations to objectd fhup to streamCVV. Therefore, a
node mustletachan interest sef.S from a streant whenever the node misses any precise
invalidation to7.S up to S.streamCV'V. Note that a streany might omit some precise
invalidations tol .S, but a node might have learned those precise invalidations from other

streams, thereford,S might still be able to be attached £ A node can attach an interest

78

set to multiple streams from different senders.

In this arrangement, to track thpVV, each interest sd6 stores a list of refer-
encesattachedStream® the active streams to whidl is currently attached andlast-
KnownLPVWto record the last knowlpVV when it is detached from a stream. When the
node needs to calculate ti&IpVV, it only needs to take the maximumI&.lastKknownLPVV

and thestreamCV\bf every stream included its.attachedStreams

Processing an invalidation stream. A node must ensure two things when applying an

invalidation stream to guarantee thgachinvariant,
e |t cannot attach an interest 48tto a streanBuntil ISis precise up t&.streamCVV

e It mustdetachthe interest sdS from a stream if it receives an imprecise invalidation
Il overlapping withlS andISis not made precise up tbendbecause after applying

Il, S.streamCVWill be advanced to includg.end.

BesidesstreamCVVa node also maintains attachedS$or each active incoming

stream to track which interest sets are attached so that it knows whom to detach when

receiving an imprecise invalidation.

Processing an invalidation stream merely involves updating these data structures to

implement theattach semantics described above. In the rest of this section, we describe
how to apply messages received from a str&uom a nodex.

Figure 5.4 details the algorithm for processing an incoming invalidation stream.

e As indicated in Figure 5.4 from Line 42 to Line 46, upon receiving a precise inval-
idation PI, o advancesS.streamCV\Mo include Pl and updates the corresponding
per-object state iPl.targetSeis one of the objects that it is interested in. Because
any invalidation stream preserves the prefix property [72], the arrivRl ahplies
that there are no updates betwestreamCV\AndPl.acceptStampTherefore any

attachedS can remain attached wh&wadvances itstreamCVV

79

./l Global state:

2l IS.lastKnownLPVV —1S’s last known precise version vector

. Il IS.attachedStreams — streams to which IS is currently attached
. Il Per-stream state:

Il streamCV'V — stream current version vector

. Il attachedSS — attached subscription set

2 Il pendingCV'V — current version vector of the catchup stream

: Il pendingSS — pending subscription set to be attached

Bom~NouswNE

: Procedure ProcessU RInval Stream(stream)
. /lnitialization
. attachedSS = empty
: streamCV'V = stream.readObj()
»if lincludesturrentV'V, streamCV'V)
applyInv(new ImpreciseInv(currentVV, streamCV'V, “/"")) Il Cover the gap
: NextM SG = stream.readObj()
: while (NextM SG # EOF') do
if NextMSG instanceof Generallnv Wormal invalidation stream
applyInval(Next M SG, streamCV'V, attachedSS)
else// Catchup stream starts
I/ Apply catchup stream
pendingSS = NextM SG.catchupSS, pendingCVV = NextM SG.catchupStartV'V
IgnoreCatchup =! includespendingCV'V, pendingSS.get LPV'V ())
while (NextM SG # CatchupEnd) do
NextMSG = stream.readObj()
if ! IgnoreCatchup
applyInval(NextM SG, pendingCV'V, pendingS.S)
if ! lgnoreCatchup /Attach pendingSS
attachedSS.add(pendingsSS)
pendingSS.attachedStreams.add(S)
NextMSG = stream.readObj()

WWWWRNRNRNNNNNNNNRE R R R R R R PR
WNPRPQOUONIORWNPEPOQOONOORWNR

: ProcedureapplyInval(GI,CVV,SS)

. currentV'V =advanceTolncludeurrentVV, GI.end)

: log.insertG1)

. if G1.isImprecise() andGI.targetSetoverlapsSS Il If imprecise, remove overlapped subscription set
and advance Ipvv to just before imprecise inval

37: KickedSet = GI.targetSet.getintersectio(S.s)

38: KickedSet.lastKnownLPVV =advanceNolnclud&€' V'V, GI.start))

39: KickedSet.attachedStreams.remove(S)

40: SS.remove(KickedSet)

41: //Advance CVV to include Gl

42: CVV = advanceTolncludg' V'V, GI.end)

43: //Update per-object state

44: if GI.isPrecise() andGI.targetSet € attachedSS

45: RASG[AObde.valid =INVALID

46: RASGr.0bj1a-accept = GI.start

W W w
o 01 b

Figure 5.4: Stream processing algorithm faream = {startVV, [[CatchupStart,
[preciseInv]impreciseInv]*, CatchupEnd]*, [preciseInv|impreciseInv]* |*}

80

e As indicated in Figure 5.4 from Line 36 to Line 40, upon receiving an imprecise in-
validationll, to ensure that every attached interest set is still precise after apfllying
a needs to detach any interest set that is made imprecie Syppose the overlap-
ping interest set dii.targetandS.attachedSES KickedSetif KickedSets not precise

up toll.end, o must detacltKickedSefrom the streans.

In particular, the stream needs to do three things before it advancaseisnCVV
to ll.,end (1) updatesS.attachedS$® excludeKickedSet(Line 40); (2) removes
its reference fronKickedSet.attachedStrear(isne 39); and (3) advancasicked-
Set.lastkKnownLPVY6 includestreamCV\and(II.start — 1)* (Line 38.)

Note because of the stream’s prefix property, the arrivdl aghplies that there are
no updates betweeB.streamCV\ndll’s start, therefore it is safe to updakdcked-

Set.lastKnownLPVYb includelI.start — 1.

e Upon receiving a catchup stream for interest cathupSStarting fromcatchup-
StartVV, if catchupStartVVas any component larger theatchupSS.IpV\ ignores
the catchup stream because the gap might hide some precise invalidations (Line 23).
Otherwise needs to track the status of the catchup stream and decide at the end of

the catchup stream if it can attachtchupS$o S

A node maintains the status for a catchup stream for two reasons. First, the catchup
stream might still contain imprecise invalidations fmtchupS®ecause the sender
might do not have all of the precise invalidations either. Therefore it might not be able
to attach thecatchupSSit the end of the catchup stream. Second, even if a catchup
stream fails to attacbatchupS&it the end, it might still make some progress for the

catchupSS.IpV¥efore receiving the imprecise invalidation.

To track the status for a catchup streaBmaintains apendingSSo identify the

objects expecting to joi® and apendingCVMo summarize the catchup progress.

For simplicity, we usé’V — 1 to represent the version vector of whom each entry’s timestamp is one less
than VV’s.

81

As described in Section 5.1.1, a catchup stream starts wWititehupStarmessage,
which includes a subscription sedtchupS$o identify which objects to catchup and

acatchupStartV\o indicate the start time of the catchup stream.

The processing of a catchup stream is similar to the processing of a normal in-
validation stream. It mainly involves updating tpendingSSpendingCVYV and
catchupSS.lastknownLPV\A particular, it handles four cases: (1) as indicated in
Figure 5.4 line 22, whem receives a&atchupStarimessage, it updates tipend-
ingSSandpendingCV\Mo catchupS@ndcatchupStartVVespectively; (2) similar to
applying invalidations from the normal stream as described ahowlvances the
pendingCV\and updates per-object state when receiving precise invalidations in the
catchup stream (from Line 42 to Line 46); (3) whemeceives an imprecise invali-
dationll in the catchup stream, it removiégargetSetfrom pendingS@&nd advances

the removed set’s per-interest set sthtargetSet.lastKnownLPVY6 include both
(I1.start — 1) andpendingCV\before advancing theendingCV\o includell.end

(from Line 36 to Line 40); (4)finally, whem receives theCatchupEndmessage,

« attaches the remainingendingSSo S because it must have received all precise

invalidations toS.streamCV\Line 29 and Line 30).

5.2 Checkpoint Catchup

As indicated in Figure 5.2, to share the same stream, a new subscription régBest
startVV) must catch up with the current status of the stream first. One way to catch up
is to send the log fronstartVVto streamCVVas described in Section 5.1. An alternative
is to send checkpoints—the status of objectS8that were updated aftestartVVas of
streamCVV

Checkpoint catchup is needed for two reasons. First, it is needed for log garbage
collection. Nodes can garbage collect any prefix of their logs, which allows each node to

bound the amount local storage used for the log to any desired fraction of its total disk

82

space. If a noder garbage collects all log entries older thawmitV'V and another node
[requests a subscription catchup wstartVVolder thanx.omitV'V, thena can not bring
£ up by sending a catchup invalidation stream. Insteadjust send a checkpoint of its
per-object state and interest §avV.

Second, checkpoint catchup is more efficient than log catchup in some cases. Send-
ing a log is more efficient when the number of recent changes is small compared to the
number of objects covered by the subscription. Conversely, a checkpoint is more efficient if
(a) the start time is in the distant past (so the log of events is long) or (b) the subscription is
for only a few objects (so the size of the checkpoint is small). Note that once a subscription
catches up with the sender’s current logical time, updates are sent as they arrive, effectively
putting all active subscriptions into a mode of continuous, incremental log transfer.

In existing server replication protocols [72], in order to ensure consistency, such a
checkpoint exchange must atomically update receiver’'s state for all objects in the system.
Otherwise, the prefix property and causal consistency invariants could be violated. Tradi-
tional checkpoint exchanges, therefore, may block interactive requests while the checkpoint
is atomically assembled at the sender or applied at receiver, and they may waste system re-
sources if a checkpoint transfer is started but fails to complete.

Imprecise invalidations yield an unexpected benefit: incremental checkpoint trans-
fer. Rather than transferring information about all objects, an incremental checkpoint up-

dates a subset of checkpoint.

5.2.1 Incremental Checkpoint Transfer Protocol

As indicated in Figure 5.2, a checkpoint catchup(®8, startVVincludes (1) an imprecise
invalidation that covers all objects in the system from the receingentVVup to the

sender'currentVV, (2) SS.lastPreciseVN newer tharstartVV, and (3) the per-object state
for any object inSSwhoseacceptStamexceedsstartVV. The purpose of (1) is to ensure

the consistency o§Sand other interest sets, which is the key to enable updating partial

83

checkpoint consistently. The receiver first applies (1) as a normal imprecise invalidation as
described in Section 5.1.2. Then the receiver applies (2) to its corresponding per-interest
set states and applies (3) to the corresponding per-object states. Thus, the receiver’s state
for SSis brought up to include the updates known to the sender, but other interest sets may
becomdMPRECISEo enforce consistency.

This checkpoint catchup algorithm yields three advantages over traditional check-
point exchange algorithms [72]. First, it is incremental. Whereas existing checkpoint ex-
change must either give up causal consistency across objects like in WinFS [70] or atomi-
cally update the receiver’s state for all objects in the system (otherwise, the prefix property
and causal consistency invariants could be violated), our protocol can incrementally send
subset of the checkpoint with an imprecise invalidation for the rest of the objects to ensure
consistency when full replication of checkpoint is less likely succeed. Second, as illustrated
in Figure 5.2, by simply adding theatchupStarandCatchupEndnessages, this approach
enables UR-Repl subscription protocol to smoothly integrate the checkpoint catchup option
to implement the subscription abstraction as the checkpoint catchup is semantically equiv-
alent to log catchup. Finally, the processing of checkpoints has less impact on local access
performance. The receiver does not need to freeze the local read/write while it is uploading

the checkpoint.

5.2.2 Discussion

Informally, most existing peer-to-peer consistent replica synchronization protocols fall into
two families: log-based [72, 103] and state-based [70]. However, neither is perfect. Al-
though the log-based approach can continuously synchronize updates and thereby provide
stronger consistency and fewer conflicts, it adds additional storage overhead and needs
a careful garbage-collection protocol [3, 32, 80]. State-based protocols require no extra
storage, but there is no easy way to summarize the local state if the synchronization is in-

terrupted, and they have to either give up consistency across objects [70] or require full

84

replication and blocking for checkpoint exchange [72].

UR-Repl seamlessly combines both worlds by using imprecise invalidations and
multiplexing subscriptions. Policies can make the tradeoffs between the local extra log
storage overhead and extra checkpoint network bandwidth. When both catchup options are
available, policies can optimize the cost of an invalidation subscription by selecting either

of the two semantically-equivalent catchup options.

5.3 Flexible Commit Mechanism

As a universal data replication architecture, simply implementing a single commit proto-
col is not sufficient since any of the state of the art commit protocol has limitations. For
example, the Golding’s algorithm [32] as described in Chapter 4 requires periodical heart-
beat messages for liveness which might hurt availability when some nodes are disconnected
and which may incur additional network bandwidth overhead. Although Bayou’s primary
server commit protocol [72] mitigates the availability issue and does not require heartbeat
messages for liveness, it requires the primary server to issue a new sequence number to each
update and thereby leads to write reordering, which complicates the protocol. In particular,
it requires each node to rollback all uncommitted updates and remove the corresponding
uncommitted update to insert each newly committed update.

To facilitate the implementation of different commit protocols, UR-Repl imple-
ments a flexible commit primitive via alissignSequendsterface to allow system designer
to explicitly control when to commit an update and then leave the propagation of the com-
mit operation to a special invalidati@equence invalidatianThisAssignSequendeterface
has two parameters:targetSethat specifies the target object(s) andugetAShat identi-
fies the accept stamp of the write to be sequenced. When this operation is called, similar to
processing a write operation, the node generates an accept stamgegliedceStangnd
a special invalidation callesequence invalidatiorLike a general invalidation, sequence

invalidation has atargetSetand an accept stamp which is teequenceStamprhe only

85

difference between sequence invalidatioand a precise invalidation is that the sequence
invalidation includes another accept statagetASto identify the sequenced write.

Once generated, sequence invalidatiois propagated and processed in the sys-
tem exactly the same way as a precise invalidation. For example, it can also be accumu-
lated in an imprecise invalidation. The post condition of applyirsgquence invalidation
is that if thetargetSets per-object state is not marked 8&&QU ENCED and the ac-
cept stamp of the per-object statetdsgetAS then the per-object state will be marked as
SEQUENCED. Note that initially all per-object states are marked/d§SEQU ENCED.

This commit primitive is flexible to implement different commit protocols for the
isSequencegredicate. To demonstrate the flexibility and elegance of this mechanism, in
the rest of this section, we explain how to implement the primary server commit protocol

using this primitive.

Primary server commit. Besides Golding’s algorithm [32] as described in Chapter 4,
Bayou’s primary commit protocol [72] is another useful commit protocol in server repli-
cation systems. By forcing all writes committed by one primary server, this protocol does
not slow down the commit process due to lengthy disconnections of some replicas. In this
protocol, one node is designated as the “primary” server that assigns a monotonically in-
creasing commit sequence number (CSN) to each write. The CSN defines a total commit
order for all writes. The other nodes send their updates in the partial causal order to the
primary, and then the committed writes are propagated back among nodes in the committed
total order after getting the CSNs from the “primary” server.

With the AssignSequendaterface, implementing Bayou's CSN commit protocol
is straightforward. First, a server commits writes when it sees them AsisignSequence
Second, all clients only read committed writes by settingReadNowBIloclpredicate to
isValid, isCompleteandisSequencedBecause alsequence invalidatiorsre generated by
one server and all writes are sequenced in the order they arriveetjuence invalidations

preserves the partial causal order among writes. By blocking a read until an object is pre-

86

cise, valid, and sequenced, each client sees the same view that is consistent to the sequenced
order.

Note that our implementation of the primary server commit protocol does not re-
order any updates because the invalidation subscription protocol arsStguencepred-
icate for read naturally guarantee that every node’s reads reflect the same view as if all

updates are ordered by the commit sequences issued by the primary server.

5.4 Conflict Detection

Integrating theéncremental checkpoint catchummto the invalidation log exchange protocol
raises an issue for thi&revAcceptonflict detection mechanism described in Chapter 4. This
detection algorithm requires a node to receive all the precise invalidations of the object it is
interested in. When falling back to checkpoint catchup, it could have false positives due to
some missing old updates. This section first gives a brief survey of existing design choices
of conflict detection mechanisms and then introduces a novel efficient conflict detection
mechanismslependency summary vectangat works efficiently for both log catchup and

checkpoint catchup.

5.4.1 Design Choices

UR-Repl focuses on syntactic conflict detection based on the causal relationship [51] rather
than relying on any application-specific semantics. In particular, any two updates to the
same object that do not have any causality relationship are consictaméitting

The state of art to detect conflicting writes defined by causality includes three main

families:

1. Previous stampsThis approach [34] includes in each write the version just overwrit-
tenprevious stam@and stores thprevious stamjin the local per-object state. When

receiving a write, a node compares the writg’evious stampo the per-object state

87

current time. If they mismatch, then a conflict is detected.

This approach can accurately detect all conflicts in any log exchange protocol that
ensures the prefix property as we described in section 4.5, but it adds extra per-update
stamp overhead for both storage and network bandwidth. More importantly, in the
case when the log is truncated and a node falls back to checkpoint exchange, it could

have false positives due to some missing old updates.

. Hash historiesKang et. al. [45] us@ash historieso detect conflicts. Whenever the

local state changes, a node creates a new hash summarizing the current entire state.
Each node keeps a list of hashes ordered by generating times. Whenever@a node
synchronizes its state with another ngeldat looks up’s last hash in its own hash
history. If the hash exists, thews version is a newer version. Similarly, if finds

a’s last hash ind’s hash history, thef¥’s version is a newer version. If neither of the

last hashes exists in the other’s history, then it is a conflict.

Although the size of a hash history is independent of the number of replicas, it grows
proportionally to the total number of updates. More importantly, because the hashes
summarize the entire local state, it could have false negatives due to concurrent up-
dates to different objects. Therefore, it requires complicated commit protocol to care-
fully garbage collect stable updates’ hashes. More importantly, in the case when there
are concurrent updates on two different nodes to two different objects, the last hash of

either node will not be found in the other node’s history, then it has a false negative.

. Version vectors Using version vectorss the most well-known and popular alter-
native [48, 74]. A version vector [44] accurately captures the causality relationship
between updates. Two writes are conflicting if and only if neither of their version

vectors dominates the other.

Although this approach can accurately detect conflicts, it is expensive to maintain the

per-object version vectors, especially in large-scale systems. In order to reduce the

88

version vector overhead, WinFSsedecessor vectors with exceptigid/E) [60]

uses one globabersion vector with a list of exception stamosreplace the per-

object version vectors. But when a synchronization process is interrupted frequently,
the exception list might grow indefinitely. To address this issue, a later approach [57]
vector setdounds the worst case cost to per-object version vector by grouping mul-
tiple objects and represents their state in a single version vector. Note that neither of
these two approaches can provide causal consistency when a synchronization process
is interrupted prematurely because a node might only receive subset of all changed

objects.

5.4.2 Dependency Summary Vectors

UR-Repl conflict detection algorithm extends WinF&tor setslgorithm to detect con-

flicts dynamically while processing invalidation streams.

Definition. A write W’s dependency summary vector (D$8/x version vector that sum-
marizes all the updates on whig depends on. In particular, any version vector that satis-
fies the following two conditions is calldd’s DSV: (1) includes all the writes oW.target

that precedeB’” and (2) excludes any writes 6fi.target that are causally ordered aféf.

For example, suppose all the causally ordered updates on egeet Qa, 3Qa, 10Q%5.
Regarding a writd? with acceptStamp = 3Qq, (1Qa, 9Q73) is W’s DSV, while both
(0Qa, 9@Q3) and(3Qcq, 10Q(3) are not because the first one does not include the causally
preceding writel Qo and the second one does not exclude the causally neweri@tg.

An object version can have multiple DSVs. For the same example described above,
both (1Q«, 9@3) and (2Q«, 6@3) can belW’s DSVs. Thereforedependency summary
vectors (DSVEan make conflict detection efficient by finding a common DSV for multiple
objects to save the storage space and bandwidth cost.

If we know theDS\5s of any two writesw1 andw? that update the same object, we

can detect conflicts according to the following three rules:

89

| Message in an invalidation strea$n | DSV |

Normal precise invalidatiomv S.streamCVV
Precise invalidatiorinv in log catchup| S.pendingCV'V
Checkpoint catchup € IS 1S.LastPreciseVV

Figure 5.5: Invalidation stream messages and their DSVs.

rl If wl.acceptStamis included byw2.DSV thenwl causally precedes2.
r2 Similarly, if w2.acceptStamis included byw1.DSV thenw?2 causally precedesLl..

r3 If neitherw2.DSVincludeswl.acceptStampor wl.DSVincludesw2.acceptStamp

andwl andw?2 are not equal, them1 andw2 conflict.

The key challenge is how to maintain tRSV in the local state efficiently and

deliver this information in the invalidation stream efficiently.

Conflict detection in applying invalidation stream. UR-Repl leverages the cost already
paid for maintaining causal consistency, iper-interest set IpVMo augment the protocol

to detect conflicts without any additional cost. To ensure thatL MV of an object can

be used as the current object versidnSV, UR-Repl enforces two rules: (1) only apply a
precise invalidation to the per-object state when the targeted object is precise and (2) block
a local write until the object is precise.

By ensuring (1) and (2), the local stored newest version is guaranteed to be the
newest version up to the object’s curremVV. If any of these two rules is violated, the
node might miss some updates betweplVand the version just applied.

Figure 5.5 summarizes tl#SVof any update version received from an invalidation
stream. For a checkpoint catchup stre@if?, because the sendeds.LpV'V is part of
the checkpoint, by comparing the senddi&P[IS].LpVV, CP[o].acceptStampyith the
receiver's(IS.LpVV, o.acceptStampgcording to the rules [r1] [r2] [r3], we can accurately

detect any conflicts.

90

By taking advantage of the prefix property of invalidation streams, a node can de-
rive theDSVfor any arriving invalidation without the sender explicitly sending any vectors
except the initiaStreamStartin particular, a stream'streamCV\summarizes all previous
writes of the current sending invalidatiomv, and any newer invalidations to the same ob-
ject should not be sent befoiv by the prefix property. ThereforefreamCV\tan serve
as theDSVof inv. When receiving a normal precise invalidatiom from the stream, the re-
ceiver simply compargstreamCVV, inv.acceptStang)d((inv.targetSet).LpVV, per-object
state[inv.targetSet].acceptStamp) detect conflicts. Similarly, when receiving a catchup

precise invalidatiorinv, the receiver uses thipendingCV\as theDSVof inv.

5.5 Evaluation

As a unified replication protocol, UR-Repl should fhexibleenough to construct a broad
range of systems arefficientso that the costs associated with building a system with UR-
Repl is proportional to the demands of the system, i.e. the extra cost for generality is
minimal. We will demonstrate the flexibility of UR-Repl in the next two chapters. In this
section, we focus on the efficiency of UR-Repl. In particular, we quantify the efficiency of

subscriptions and conflict detection.

5.5.1 Cost for Subscriptions

Experimental environment. The prototype implementation is written in Java. Except
where noted, all experiments are carried out on machines with single-core 3GHz Intel
Pentium-IV Xeon processors, 1GB of memory, and 1Gb/s Ethernet. We use Fedora Core 6,
BEA JRocket JVM, and Berkeley DB Java Edition 3.2.23.

Our primary performance goal is to minimize network overheads. We focus on
network costs for two reasons. First, we want UR-Repl to be useful for network-limited
environments. Second, if network costs are close to the ideal, it would be evidence that

UR-Repl captures the right abstractions for constructing replication systems.

91

| [Best Case [UR-Repl Prototype |

Start conn. 0 Nyodes * (Sia + St)
Inval subw/ | (Nprew + Nnew) * Sinvat | (Nprev + Nnew) * Sinvai
LOG catchup +Ssub +Nimpr * Simp'r‘ + Ssub
Inval sub W/ | (Nomoao + Noew) * Sinvat | (Nmodo + Nnew) * Sinvat
CP catchup +Ssub +Nimpr * S’mm + Ssub
Body sub (Nmodo + Nnew) * Svody | (Nmodo + Nnew) * Shody
Single body Shody Shody

Figure 5.6: Network overheads breakdown. Hé¥g, . is the number of nodesy,,., and

Nmodo are the number of updates and the number of updated objects from a subscription
start time to the current logical timé,,.., is the number of updates sent on a subscription
after it has caught up to the sender’s logical time until it ends; &g, is the number

of imprecise invalidations sent on a subscriptidq, S, Sinvat, Simprs Ssub @NA Spody

are the sizes to encode a node ID, logical timestamp, invalidation, imprecise invalidation,
subscription setup, or body messagg; are the sizes of ideal encodings afigl are the

sizes realized in the prototype.

Network Efficiency

Figure 5.5.1 shows the cost model of our implementation of UR-Repl’'s communication
abstractions and compares these costs to the costs of hypothetical best-case implementa-
tions. Note that these best-case implementation costs are optimistic and may not always be
achievable.

Two things should be noted. First, the best case costs of the primitives are propor-
tional to the useful information sent, so they capture the idea that a designer should be able
to send just the right data to just the right place. Second, the overhead of our implementation
over the ideal is generally small.

In particular, there are three ways in which our prototype may send more informa-
tion than a hand-crafted implementation of some systems.

First, UR-Repl invalidation subscriptions are multiplexed onto a single network
connection per pair of communicating nodes, and establishment of such a connection re-

quires transmission of a version vector [105]. Note that in our prototype this cost is amor-

92

tized across all of the subscriptions and invalidations multiplexed on a network connection.
A best-case implementation might avoid or reduce this communication, so we assume a
best-case cost of 0.

Our use of connections allows us to avoid sending per-update version vectors or
storing per-object version vectors. Instead, each invalidation and stored object includes an
acceptStampr2] comprising a 64-bit nodelD and a 64-bit Lamport clock.

Second, invalidation subscriptions carry bpticise invalidationshat indicate the
logical time of each update of an object targeted by a subscriptiorninamekcise invali-
dationsthat summarize updates to other objects. The number of imprecise invalidations
sent is never more than the number of precise invalidations sent (at worst, the system al-
ternates between the two), and it can be much less if writes arrive in bursts with locality
as we demonstrated in Section 4.6. The size of an imprecise invalidation depends on the
locality of the workload, which determines the extent to which the target set for imprecise
invalidations can be compactly encoded. A best-case implementation might avoid sending
imprecise invalidations in some systems, so we assume a best-case invalidation subscription
cost of only sending precise invalidations.

Third, our Java-serialization of specific messages may fall short of the ideal encod-

ings.

UR-Repl vs. CR-Repl. We first compare the cost of establishing callbacks on UR-Repl
and on the implementation of CR-Repl described in previous chapter. We approximate
ideal callbacks by establishing single-object subscriptions over both protocols. Figure 5.7
shows the cost for synchronizing the updates to 1000 object in a 100-node system (1) using
single-object interest sets and (2) using a single interest set spanning all 1000 objects. We
consider the ideal cost of a callback in a client-server system as sending an object Id and
receiving the object and the timestamp.

As Figure 5.7 shows, when fine-grained callbacks are established, UR-Repl ap-

proximates callbacks and is an order of magnitude cheaper than the CR-Repl replication.

93

2e+06
1.8e+06 / CR-Repl (1 obj/SS)
1.6e+06
1.4e+06
1.2e+06

1e+06
800000
600000
400000
200000 F

Sync BW (Bytes)

UR-Repl (1 obj/SS)

Ideal (1 obj/SS)
CR-Repl (1K 0bj/SS)
2ZUR-Repl (1K ohj/SS)

0 200 400 600 800 1000 1200 1400 1600
Files

Figure 5.7: Bandwidth for subscribing to varying number of 1-object interest sets for UR-
Repl and CR-Repl .

1400

1200
1000 -
800 [

Body+Setup 7

600 [

Total Bandwidth (KB)

400 -

200
Inv+Setup

0
Coarse Seq Coarse Random Fine Seq Fine Random

Figure 5.8: Network bandwidth cost to synchronize 1000 10KB files, 100 of which are
modified.

The CR-Repl replication pays a higher cost because every subscription establishes a new,
independent connection which involves sending a version vector summarizing the current
state of IS and then receiving an imprecise invalidation describing all invalidations to ob-
jects not in IS. In addition, coarse-grained subscriptions have much less overhead than
fine-grained subscriptions because version vectors are only transmitted once when estab-
lishing the coarse-grained subscription instead of each time a fine-grained subscription is

established.

Figure 5.8 and Figure 5.10 shows the impact of the size of a subscription set on

94

300

Imprecise Inv

T T T T

240 Precise Inv

180 [4

120 Sub Setup]

60 [4
o || Q Conn Setup

Coarse Seq Coarse Random Fine Seq Fine Random

Total Bandwidth (KB)

Figure 5.9: Invalidation overheads breakdown to synchronize 1000 10KB files, 100 of
which are modified.

the subscription cost. By varying the size of a subscription set, i.e. the number of objects
included in one subscription, invalidation subscriptions provide trade-offs between the cost
of setting up subscriptions and the cost of sending invalidations for objects in a large sub-
scription set that are not of immediate interest. Given the same total number of objects
that need to create callbacks, the size of one subscription set affects the overall bandwidth
overhead because the larger the size, the less information needed to send for objects outside

of the subscription set on one subscription.

Subscription cost breakdown. Figure 5.8 illustrates the overall synchronization cost and
Figure 5.9 illustrates the breakdown of invalidation cost for a simple scenario. In this ex-
periment, there are 10,000 objects in the system organized into 10 groups of 1,000 objects
each, and each object’s size is 10KB. The reader registers to receive invalidations for one of
these groups. Then, the writer updates 100 of the objects in each group. Finally, the reader
reads all of the objects.

We look at four scenarios representing combinations of coarse-grained vs. fine-
grained synchronization and of writes with locality vs. random writes. For coarse-grained
synchronization, the reader creates a single invalidation subscription and a single body sub-

scription spanning all 1000 objects in the group of interest and receives 100 updated objects.

95

For fine-grained synchronization, the reader creates 1000 invalidation subscriptions, each
for one object, and fetches each of the 100 updated bodies. For writes with locality, the
writer updates 100 objects in thith group before updating any in ther 1st group. For
random writes, the writer intermixes writes to different groups in random order.

Four things should be noted. First, the synchronization overheads are small com-
pared to the body data transferred. Second, the “extra” overhead of UR-Repl over the
best-case due to connection setup and imprecise invalidations is a small fraction of the total
overhead in all cases. Third, when writes have locality, the overhead of imprecise invalida-
tions falls further because larger numbers of precise invalidations are combined into each
imprecise invalidation. Fourth, coarse-grained synchronization has lower overhead than
fine-grained synchronization because they avoid per-object setup costs. In particular, for
this example, setting up a single-object callback requires transmission of 333 bytes, so set-
ting up 1000 callbacks costs 333,000 bytes, and setting up a single subscription of all 1000
objects in a group costs 97,236 bytes.

Log catchup vs. checkpoint catchup. More generally, our implementation efficiently
implements both fine-grained and coarse-grained subscriptions by taking advantage of both
log catchup and checkpoint catchup. As discussed in Section 5.1 an ideal implementation
of an invalidation subscription will sendatchupStartnessage when it is established, and
aCatchupEndnessage once the past invalidations or the checkpoint has been sent. Each of
these messages can be as small as a single byte. In UR-Repl, since multiple subscriptions
are multiplexed on a single stream, tBatchupStarandCatchupEndnessages contain the
encoding of the associated subscription set.

Figure 5.10 quantifies the network bandwidth required to establish an invalidation
subscription. 500 objects were updated and the x-axis corresponds to the number of objects
for which subscriptions were established. The three lines correspond to the cost when a
separate subscription for each object was established, like traditional callbacks [42].

The figure demonstrates that the cost of establishing subscriptions for the log catchup

96

200000

cp catcriup 1 obj'/IS) -

150000 _
" Log catcfup (1 obj/1S)

100000

N Ideal (1 obj/lS)

50000 |

Subscription BW (Bytes)

Log/CP catchup (500 obj/IS)

L L W L

0 100 200 300 400 500 600 700
Number of Objects

Figure 5.10: Bandwidth for establishing invalidation subscriptions.

and the checkpoint catchup is within a factor of the ideal implementation. The overhead
can be attributable to the size of tatchupStarinessage. The checkpoint catchup does
worse than the log catchup because the size of the invalidation meta-data for each object is
bigger than an actual invalidation sent during the log catchup.

We also quantify the cost of establishing a single coarse-grained subscription for all
objects. The cost of a coarse-grained log and checkpoint catchup is almost the same. Both
fairly better than the ideal because tBatchupStartand CatchupEndmessages are only

sent once instead of 500 times.

Consistency overhead. Invalidation subscriptions also have the additional overhead of
imprecise invalidationsent to maintain consistency information. Figure 5.11 quantifies
this overhead when compared to a system that does not send any consistency ordering
information. We compared the overheads under three workloads. As we can see from
Figure 5.11, even in the worst case, the overhead for maintaining consistency is at most 2x

the number of invalidations sent over the subscription.

97

| | Coherence-only| UR-Repl |

1-in-1 update 26 26
1-in-10 updates| 26 30
1-in-2 updates 26 52

Figure 5.11: Number of bytes per relevant update sent over an invalidation stream for dif-
ferent workloads. 1-in-10 represents a workload in which every 1 out of 10 updates happen
to objects in the subscription set.

Write | Write | Read | Read
(sync) | (async)| (cold) | (warm)

ext3 6.64 0.02 0.04 0.02
BerkeleyDB 8.01 0.06 0.06 0.01
Local NFS 8.61 0.14 0.10 0.05

UR-Repl object store 8.47 1.27 0.25 0.16

Figure 5.12: Read/write performance for 1KB objects/files in ms.

Performance Overheads

This section examines the performance of the UR-Repl prototype. Our goal is to provide
sufficient performance for the system to be useful, but we expect to pay some overheads
relative to a local file system for three reasons. First, UR-Repl is a relatively untuned
prototype rather than well-tuned production code. Second,our implementation emphasizes
portability and simplicity, so UR-Repl is written in Java and stores data using BerkeleyDB
rather than running on bare metal. Third, UR-Repl provides additional functionality such
as tracking consistency metadata not required by a local file system.

Figures 5.12 and 5.13 summarize the performance for reading or writing 1KB or
100KB objects stored locally in UR-Repl compared to the performance to read or write
a file on the local ext3 file system. In each run, we read/write 100 randomly selected
objects/files from a collection of 10,000 objects/files. The values reported are averages of 5
runs. Overheads are significant, but the prototype still provides sufficient performance for

a wide range of systems.

98

Write | Write | Read | Read
(sync) | (async)| (cold) | (warm)

ext3 19.08 0.13 0.20 0.19
BerkeleyDB 14.43 | 4.08 0.77 0.18
Local NFS 21.21 1.37 0.26 0.22

UR-Repl object store 52.43 | 43.08 | 0.90 0.35

Figure 5.13: Read/write performance for 100KB objects/files in ms.

100

90 -

80

70

60 |

50 f

Running time (ms)

40

30 -

20 -

10 |

(E\IFS (Client-Server) UR-Repl (Local) UR-Repl (Client-Server)
Figure 5.14: Performance for Andrew benchmark.

Figure 5.14 depicts the time required to run the Andrew benchmark [42] over the
UR-Repl prototype via the Java NFS wrapper that we will describe in Chapter 6. UR-Repl

successfully runs the benchmark, but it is slower than a well-tuned local file system.

| Previous stamps| Version vectors] PVE [Vector sets | DSV |
Storage overhead lower bound O(N+g+R) O(N x R) ON+R) | OON+R) | O(N+R)
Storage overhead upper bound ON+Q+R) O(N x R) unbounded| O(N x R) | O(N x R)
Communication overhead lower bound O(q + R) O(g X R) O(g+ R) O(g X R) O(g+ R)
Communication overhead upper bound O(g + R) O(N x R) unbounded| O(N x R) | O(g X R)

Figure 5.15: Storage and communication overhead lower and upper bounds comparison of
existing approaches.

99

5.5.2 Cost for Conflict Detection

Figure 5.15 compares the storage and communication overhead of the various conflict de-
tection approaches in terms &fobjects,R replicas, and recent updates. It compares CR-
Repl’'s previous stamp approach, traditional version vectors, WinFS’s predecessor vectors
with exceptions (PVE), WinFS’s vector sets and UR-Regépendency summary vectors
(DSV).

Under normal low-fault situations, in which synchronization occurs in one go, DSV,
like the vector sets and concise version vectors, maintains and communicates as little as a
single version vector to summarize all previous updates for all objects. Therefore, the
storage cost lower bound of these approaches is one version vector plus one acceptStamp
per object, i.e.O(N + R), and the communication cost lower bound is per update stamp
plus one version vector, i.€ (R + q).

Under severe communication disruptions, there is extra network and storage costs
for some approaches because of the increase in size of book-keeping information. The
worst case storage cost for both DSV and vector sets is a per-object version vector which is
no worse than traditional version vectors. However, DSV’s network cost is better than the
vector sets and traditional version vectors because it takes advantage of the prefix properties
of invalidation subscriptions and only needs to send the per update version vector instead of
per-object version vector. The upper bounds of both storage and communication overhead
for the concise version vector approach are unbounded because of the size of a concise
version vector can be unbounded due to exceptions. Note that although, analytically, the
previous stamp approach could outperform DSV, practically, it is unable to detect conflicts

during checkpoint catchup whereas all other approaches can.

100

Chapter 6
Flexibility

A core hypothesis of our work is that most of existing systems are “special cases” of a set
of underlying mechanisms and that UR-Repl is the set of mechanisms for such a replication
microkernel. We study this question in two steps. First we study this question “in the small”
and demonstrate the flexibility of URA by mapping a range of existing protocols in terms of
our lower-level mechanism abstractions. Second, we study this question “in the large” by
explaining how to put those existing protocols together to build a few case-study systems
on top of URA.

We defer the description of case-study systems to the next chapter. This chapter
focuses on explaining how to mapping existing techniques to URA abstractions. In partic-
ular, Section 6.1 discusses how to implement a range of consistency semantics using URA
local API. Then Section 6.2 explains how to use the subscription abstractions to implement

callbacks leases. Finally Section 6.3 demonstrates how to support quorums over URA.

6.1 Flexible Consistency

This section discusses the crosscutting issue of how to provide flexible consistency that (a)

supports strong consistency semantics for those applications that require them and (b) does

101

not introduce unnecessary overhead for applications that do not.

Enforcing cache consistency entails fundamental trade-offs. For example the CAP
dilemma states that a replication system that provides sequ€wtigistency cannot simul-
taneously provide 100%.vailability in an environment that can Heartitioned [31, 84].
Similarly, Lipton and Sandberg describe fundamental consistency v. performance trade-
offs [54].

A system that seeks to support flexible consistency must therefore do two things.
First, it must allow a range of consistency guarantees to be enforced. Second, it must ensure
that workloads only pay for the consistency guarantees they actually need.

This section first describes the range of consistency guarantees that URA provides
and proves the correctness. It then discusses how URA provides these guarantees without

introducing unnecessary overhead.

6.1.1 Providing Flexible Guarantees.

Discussing the semantic guarantees of large-scale replication systems requires careful dis-
tinctions along several dimension§onsistencyconstrains the order that updates across
multiple memory locations become observable to nodes in the system, edfiegence
constrains the order that updates to a single location become observable but does not ad-
ditionally constrain the ordering of updates across multiple locations [B@{lenesgon-

strains the real-time delay from when a write completes until it becomes observable.

Our protocol provides considerable flexibility along all three of these dimensions.

Causal Coherence

With respect to coherence, although our default read interface enforces causal consistency,
the interface allows programs that do not demand cross-object consistency toripsete
cise readdy setting theReadNowBIloclpredicate tdasValid. Imprecise reads may achieve

higher availability and performance than precise reads because they can return without wait-

102

ing for an interest set to becolRECISE Imprecise reads thus observe causal coherence
(causally coherent ordering of reads and writes for any individual item) rather than causal
consistency (causally consistent ordering of reads and writes across all items.)

With respect to consistency and staleness, URA provides a range of traditional
guarantees such as the relatively weak constraints of causal consistency [43, 51] or delta
coherence [85], to the stronger constraints of sequential consistency [52] or linearizabil-
ity [40]. Further, it provides a continuous range of guarantees between causal consistency,
sequential consistency, and linearizability by supporting TACT'’s order error for bounding
inconsistency and temporal error for bounding staleness [103].

The read/write interface provides best-effort coherence and causal consistency by
setting the read interface parameters. The stronger guarantees of sequential consistency and

linearizability make use of “wrapper” interfaces over the default interface.

Causal Consistency

We enforce the causal consistency defined by Hutto and Ahamad [43]: “causal memory that
requires all processors to agree on the order of causally related effects (writes) but allows
events not related by potential causality to be observed in differing orders.”

URA provides causal consistency by simply setting BeadNowBloclpredicate
to isValid andisComplete By blocking the read until the target objectfPRECISE and

VALID, URA provides causal consistency by enforcing three constraints.

e (C1)Use of Lamport logical clockUR-Repl uses Lamport logical clock to capture

the causal relationship between writes.

e (C2)Prefix property of invalidation propagatiof.he invalidation propagation proto-
col maintains an invariant: if a node’s state reflectsittieinvalidation by some node

n, then the node’s state reflects all earlier invalidations lpyecisely or imprecisely.

e (C3)Body apply rule A body can not be applied until the corresponding invalidation

103

has arrived. Any older body is overwritten by a newer body for the same object.
The “newer” and “older” are defined by the corresponding lamport logical clock and

breaking ties by the original writer's node ID.
We now prove that the default interface provides causal consistency.

Lemma 1. An objecto on nodex is preciseonly if o’s local state ofo has reflected all the

precise invalidations related te covered byy’s current version vectoturrentV'V.

Proof. We prove lemma 1 in two steps. First, we prove the simple case where there is no
checkpoint catchup. Supposeés precise, and there is a missing precise invalidgtiosit.
pi's acceptStampas@p) is included incurrentVV. It's obvious that3 # «. By C2, a
must have received at least an imprecise invalidaticsuch thati; coverspi. Sincepi is
missing, every invalidation received bythat overlapgi’s logical time region is imprecise
and itstargetoverlapso. According to the per-interest set state update rules as described
in Section 4.3 or Section 5.1.2,/pV'V will never advance to include:§@Q(3). Therefore,
currentVV > o.lpV' V. e.g.o is IMPRECISE which contradicts the assumption.

Now consider the case where a checkpoint relatediscsent for the first time, be-
cause the checkpoint ofreflects all precise invalidations taup to the checkpoint&g V'V,
the receiver’s state also reflects the same set of invalidations after applying the checkpoint.
After the catchup, the normal invalidation exchange protocol follows. Therefore, it is not

hard to derive that Lemma 1 still holds in the presence of checkpoint catchup. [
Theorem 1. Blocking reads of INVALID and IMPRECISE ensures causal view of writes.

Proof. We can prove this theorem by contradiction. In particular, we prove that the fol-
lowing scenario would never happen if we block reads of INVALID and IMPRECISE:
suppose for some writd’1 (as1@nl, o1) causally precedes writd’2 (as2@n2, 02), i.e.
W1 — W2, there exists a node4 such that its first readk1 of 02 returnsiW2 and its

following read R2 of o1 returnsiW3 (as3@n3, o1) whereas3@n3 < asl@nl.

104

By C1, we haveis1@nl < as2@n2. Now we prove that there is no such node in

both of the following two cases.

1. ol = 02.

By C3, R2 always returns a value which is at least as new as the previousiead
value, i.e.as3@n3 > as2@n2, thereforens3@n3 > asl@Qalpha which contradicts

with the assumption.

2. 0l # 02.

Since W1 causally precedeB’2, either (1)W1 happens beforél/’2 at the same
node; or (2)IW1 has been propagated to the node whéf2 is first issued; or (3)
there existdVi s.t. W1 — WiandWi — W2.

In the first two cased}/1 is already im2'’s log whenWW 2 is inserted to the same log.
By C2, we can easily derive that this property still holds in the third case. Héfice
will always be the prefix o172 in any stream, i.e. whenever a node learnB8df, the
node must have also learned1dfl. Therefore, when the first read retufi&2, the
currentV'V should have already includé#f 1. By lemma 1, when the second read
returns, the node should have reflected all the precise invalidations reladédipo
to currentVV' > currentVV which includeg¥ 1. Thereforegs3@n3 > asl@nl

which contradicts with the assumption.

Therefore blocking reads of INVALID and IMPRECISE reflects the causal order of

writes.

Sequential Consistency

Lamport [52] defines sequential consistency as follows: “the result of any execution is the

same as if the [read and write] operations by all processes were executed in some sequential

105

order and the operations of each processor appear in this sequence in the order specified by
its program.”

In this section, we describe how to implemeetuential consistenon URA.

For simplicity, here we use Golding’s algorithm as described in Chapter 4 to im-
plement consistency semantics discussed in this Chapter. Recall that the accept stamps
assigned to each write and the commit protocol define a total order on all writes that is
consistent with the program order of writes. Further recall the commit protocol ensures that
eventually all nodes agree on this total order for a prefix of all writes [88]. We can thus
enforce sequential consistency by ensuring (1) that reads only observe committed writes
and (2) that any reads by a program appears after all preceding writes by that program in a

total order.

Implementation. The SequentialLocallnterfacerapper may delay completion of reads
and writes in order to meet the constraints of sequential consistency. It ensures the above
two conditions as follows.

After the wrapper issues a write to the URA default local interface, the wrapper
stores thexcceptStampssigned to that write in the variabdbestLocalWrite

Then, a read via the wrapper proceeds as follows:
e (ReadBlock)] The wrapper blocks until thastLocalWriteis committed.

e The wrapper issues a read using URAs default causal consistency read interface
which returns a&odyand the accept stamgbservedAcceptStangd the write that

was just observed.
¢ (ReadBlock?2The wrapper blocks untdbservedAcceptStangpcommitted.

Note: the first block makes sure that the read is ordered after any preceding local
write in the global serialization order. As illustrated in Figure 6.1, if it does not block until

all the previous local writes (e.g., WiI@n2) commit, it is possible that some writes (e.g.,

106

---Time --%

W1i(1@n2, o1) R1(02)

n2
-~
-~
-~
P
P
send W2
-~
~
”~
w2(1@n1, 02)
nl —o :

Figure 6.1: Sequential consistency violation example 1. The committed ordER isc
W1. However,R1 < W2 becausd?l returns older value than W2. Therefafd < W1
which contradicts the program order.

---Time --%»

WO(0@n2, 02) W2(1@n2,01) R1(o1) R2(02)
n2 —o— O

-
-
-
-
-

_ -
send W1
-

-
-
-

Wi(1@ni, o2)
e

ni

Figure 6.2: Sequential consistency violation example 2. The committed ordEnd is<
W2 < R1. However,R2 < W1 asR2 reads an older value tha#'1. ThereforeR2 < R1
which contradicts with their program order.

W2 1@n1) ordered before the last local write (e.g., W1) in the global order defined by the
accept stamps have not arrived yet. Then the read R1 returns an value older than W2 since
W2 arrives after the read. Therefore in the corresponding sequential order, the read should
be ordered before the writes which precedes the last local writeRi.eg W2. Then
becausdV2 < W1, by transitiveness we havel < W1, i.e., the read is ordered before
the last local write which is inconsistent with the program order.

Similarly, the third block makes sure that the order between reads across multiple

objects are preserved as defined in the program. Otherwise, as illustrated in in Figure 6.2,

107

the sequential order of reads (ordered by the read values) might violate the program order.
In this example, the first realt1 on objectol observed¥ 2 while W2 is not committed
locally. Becausél'2 is not committed, W1 which precede$V2 in the committed order
might have not arrived to node3 yet. If R1 returnsiW2 without waiting forW2 to be
committed, the following read?2 on 02 will return an older valudV 0 instead ofiW1.
Therefore, we hav&2 < W1. SinceW1 < W2 andW2 < R1, we haveR2 < R1 which

is inconsistent with the program order.

Correctness. Inorder to prove that thBequentialLocallnterfac@rapper ensures sequen-

tial consistency, we first define a four-member tuple for each operation.
e Mark a WRITE with an acceptStanipime, nodeld) as(time, nodeld, —oo, —00).

e Mark a READ that is issued on nodeadNodeat real timet, and that returns at
the moment when the maximum committed timestampeatiNodeis (maxStamp,

maxNodeldas(maxStamp, maxNodeld, readNode, t)

We define the order between the four-member tuples as:
(asl,nidl,rndl,rnol) < (as2,nid2,rnd2,rno2)
iff (asl < as2)
or ((asl = as2) and Qidl < nid2))
or ((asl = as2) and Qidl = nid2) and ¢ndl < rnd2))
or ((asl = as2) and Qidl =nid2) and ¢ndl = rnd2)) and (nol < rno2))
These tuples give a global serialization ordefor all reads and writes. Note that
we use feadN ode, t) to distinguish reads with the same last committed write. The order
of those reads does not affect the read results. We-use, (oo) for writes so that writes

can always order before the corresponding reads in the sequential order.

Lemma 2. The reads and writes issued through SexjuentialLocallnterfacare consistent

with the global sequential order ¢f.

108

Proof. First, it is obvious that this serialization order preserves the total order defined by
the write accept stamps and the write commit protocol, therefore the writes are consistent
with this sequential order.

Now let us prove that the read throu@equentialLocallnterfacerrapper returns
the same value as executing it at one node accordisg to

Suppose at node, a SequentialLocallnterfaceead on objecb returns when the
write with the maximum commit accept stamp on nedes maxCommittedW rite. By
ReadBlocklandReadBlock2the value returned to the read is the last whiteissued taw
that precedes or equalstoazCommittedW rite.

Now let us simulate the sequential order accordin§ tae., execute all the opera-
tions at one node in the order 8f As this read is ordered right afteraxCommittedW rite
(there might be some other reads in between, but they will not affect the value this read
returns), it is executed right aftetiaxCommittedWrite. Since the writes irb are con-
sistent with the order defined by their accept stamps, the Write the last executed after
all the other writes that updatebefore the read. Therefore the read returns the same value

as the read through tf&equentialLocallnterfacerapper. O

Lemma 3. This global serialization ordef§ is consistent with each node’s program order
P.

Proof. For any two writed¥V1(asl,nl — co, —o0), W2(as2,nl, —oo, —c0), and any two
readsR1(as3,n3,nlrno3), R2(as4,n4, nlrnod) in a programP running at node:1, we

consider the following four cases:

1. W1 precedesV2in P
= asl < as2, by lamport logical clock
= (asl,nl) < (as2,nl)
= (asl,nl — oo, —00) < (as2,nl — 0o, —00)

= W1 precedes¥2in S

109

2. W1 preceded?l in P
= (asl,nl) < (as3,n3), by ReadBlocklW1 must have committed beforB1
returns
= (asl,nl — oo, —00) < (as3,n3,nlrno3)

= W1 precedef?l in S

3. R1 precede$¥1in P
= (asl,nl) > (as3,n3), By ReadBlock2write (as3,n3) must have been commit-
ted atn1 before issuing?’1
= (asl,nl — oo, —o0) > (as3,n3,nlrno3)

= R1 preceded¥1in S

4. R1 precedesk2in P
= rno3 < rno4 and(as3,n3) < (as4,n4), because the maximum committed
accept stamp at one node is monotonically increasing.
= (as3,n3,nlrnold) < (as4,n4,nlrnod)

= R1 precedesR2in S

Therefore the order of each individual program’s operatiorispneserves the order

specified by the program. O

Theorem 2. The reads through th8equentialLocallnterfacerapper observe sequential

consistency of all writes issued.

Proof. From Lemma 2 and Lemma 3, by the definition of sequential consistency in [52],

we can conclude that the above algorithm can support sequential consistency. [

Linearizability

Herliny and Wing define Linearizability as follows [40]: an concurrent execution is lin-

earizable if it satisfies: (1) “processes act as if they were interleaved at the granularity of

110

complete operations” and (2) “ this apparent sequential interleaving respects the real-time
precedence ordering of operations”.

The aboveSequentialLocallnterfacensures the first condition. In order to ensure
the second condition, we must make sure the write/read order preserves the real-time prece-
dence. Especially, we must make sure that (1) any Wiitethat finishes before another
write W2 is started in real time appears befd#€ in the committed order; (2) any read
appears in the total order after all writes that finish before the read is started and (3) any
read R2 that is requested after another red returns in another node must observe the

same or newer view.

Implementation. TheLinearizableLocallnterfacevrapper may delay completion of reads

and writes in order to ensure these conditions as follows.

e (WriteBlock) each write blocks until the write is visible at all nodes. A node
determines that its write is visible at another node2 by issuing asynchronization
requesto n2 and waiting for the requested acknowledgement to arrieawill send

back an acknowledgementtd as soon as itsurrentVVincludesw.acceptStamp.

A read via the wrapper proceeds as follows:

¢ (ReadBlock}lthe wrapper blocks until the newest write a node leamasgKnown-

Write is committed locally;

e The wrapper issues a read using URAs default causal consistency interface that re-
turns abodyand the accept stammbservedAcceptStangd the write that was just

observed;

¢ (ReadBlockblocks untilobservedAcceptStanmpvisible at all nodes.

Note that thaVriteBlocklandReadBlockls necessary to ensure that read happens

after all real-time preceding writd®’. As illustrated in Figure 6.3, 72 does not wait for

111

---Time --%»

n3 W1(1@n3, o1) Wireturn
y
N A A
Inv1 / /
\ M. Ackt 7
vt/ / R1(02)
n2 Py ‘l ~
\ O
Learn W1 7
\ /
\ ,
\ A?k‘]
/
i _W(i@nt, 2) Yy,
Learn W1

Figure 6.3: Linearizability violation example. The committed ordetti@ < W1, but
R1 < W2 becauseRl returns an value older thaW2. ThereforeR1 < W1 which
violates the real-time order.

n2 to get the invalidationsR1 will return a value ofo2 older thani’2. SincelV1 returns
earlier thanR1, R1 should not return a value older th. Therefore the scenario in
Figure 6.3 violates the semanticsliofearizability.

Note thatReadBlock2s necessary to make sure that reads at different nodes returns
values consistent to their real-time order. When a read returns a value, the following read

should returns a value which relates to the same or newer committed point.

Correctness. Similar to the proof osequential consistencye also assign each read/write
operation a four-member tuple and prove the theorem in two steps. First, we prove that the
effects of any read/write operation through thirearizableLocallnterfacerapper is con-
sistent with the global serialization order “S” defined by the four-member tuple. Second,
we prove that the global serialization order “S” is consistent with the real-time precedence

order.

Lemma 4. TheLinearizableLocallnterfacerrapper is consistent with the global serializa-

tion order defined by “S”.

We skip the proof which is similar to the proof of lemma 2.

112

Lemma 5. The global serialization order “S” is consistent with the real-time precedence

order.

Proof. For any two writed¥1 : (asl,nl, —oco, —o0), W2 : (as2,n2, —oo, —00), and any
two readsR1 : (as3,n3,rn3,rno3), R2 : (as4,n4,rnd, rnod), we consider the following

four cases:

1. W1 precededV2 in real-time
= asl < as2, by WriteBlockl W1 returns beford? 2, thereforen2 knows W1
before issuing the accept stamphi
= (asl,nl — oo, —00) < (as2,nl — oo, —00)

= W1 preceded¥V2in S

2. W1 precedes1 in real-time
= (asl,nl) < (as3,n3), by WriteBlockl W1 should have been known ah3
when W1 returns, therefore bjreadBlock1iW1 must have committed beforg1
returns
= (asl,nl, —oo, —o0) < (as3,n3,nr3,rno3)

= W1 precedef?l in S

3. R1 preceded¥1 in real-time
= asl > as3, by ReadBlock2write (as3,n3) is known atn1 when1 is issued
= (asl,nl, —oo, —00) > (as3,n3,rn3,rno3)

= R1 preceded¥1in S

4. R1 precededk?2 in real-time
= (as3,n3) is known atn4 when R2 is issued byReadBlock?2
= (as4,n4) > (as3,n3)
= (as3,n3,mn3,rn03) < (asd,nd,rnd,rnod)

= R1 precedesk2in S

113

O]

Theorem 3. Each read/write operation through thenearizableLocallnterfacerapper is

linearizable with respect to all other reads and writes through the same interface.

Proof. From Lemma 4 and Lemma 5, we can conclude that the above algorithm can support

linearizability. O

Order Error Bound and Temporal Error Bound

Besides the above commonly-used consistency wrappers, URA also support TACT'’s [103]
tunable temporal error (TE) bound and order error (OE) bound. The read interface has a
TE parametetto restrict staleness by specifying the maximum real time delay between a
remote update and a read. To support TE, every node maintains a real-time version vector
currentTime that is updated when an invalidation is received. A read is blocked if any
component of the real-time version vector is older tharventTime — T E. A node sends
periodic heartbeats to its peers when there are no updates to prevent reads from blocking
unnecessarily.

Similarly, UR-Repl’s write interface has &DE parameter that specifies the maxi-
mum number of outstanding, uncommitted local writes. We employ Golding’s algorithm [32]
for write commit. As described in Chapter 4, every node usesLiteentVVto determine
how many writes have not been committed, providing a means to block a write if the number
is greater than that specified by &€& parameter.

We generalize the TE interface to support thaxStale(nodes, count, gyedicate
and generalize the OE interface to support phepagated(nodes, count, pyedicate as

listed in Figure 3.2.

6.1.2 Costs of Consistency

URA protocols should ensure that workloads only pay for the semantic guarantees they

need. Our protocol does so by distinguishing the availability and response time costs paid

114

by read and write requests from the bandwidth overhead paid by invalidation propagation.

The read interface allows each read to specify its consistency and staleness require-
ments. Therefore, a read does not block unteas readrequires the local node to gather
more recent invalidations and updates than it already has. Similarly, most writes complete
locally, and a write only blocks to synchronize with other nodethdtt write requires it.
Therefore, as in TACT [103], the performance/availability versus consistency dilemmas are
resolved on a per-read, per-write basis.

Conversely, all invalidations that propagate through the system carry sufficient in-
formation that a later read can determine what missing updates must be fetched to ensure
the consistency or staleness level the read demands. Therefore, the system may pay an ex-
tra cost: if a deployment never needs strong consistency, then our protocol may propagate
some bookkeeping information that is never used. We believe this cost is acceptable for
two reasons: (1) other features of the design—separation of invalidations from bodies and
imprecise invalidations—minimize the amount of extra data transferred; and (2) we believe
the bandwidth costs of consistency are less important than the availability and response time
costs. Experiments in Section 4.6 quantify these bandwidth costs, and we argue that they

are not significant.

6.2 Callbacks And Leases

Callbacks and leases are important techniques widely used in a range of client-server caching
systems [48, 42, 68, 12, 65, 100]. In this section, we discuss how to map these techniques

to URA.

6.2.1 Callbacks

Callbacks have long been studied for distributed file systems [48, 42, 68, 12]. In tradi-
tional callback algorithms, servers (or parents in hierarchical systems) keep track of which

clients (or children) are caching what objects and promise to notify the clients whenever

115

an update to the cached object occurs. Callbacks save network bandwidth by only sending
invalidations of the objects that a client currently caches.

URA generalizes “callbacks” to ad-hoc communication topologies. But without the
client-server or hierarchy topology assumption, it is a challenge to save network bandwidth.
For example, in the client-server systems, the server (or parent) does not need to send
invalidations of updates to other objects that a client does not currently cache while still
maintaining cross-object consistency because it has all the newest objects and the client
only renews the invalidated object from the server. As another example, in the client-server
systems, once the server sends an invalidation for an object to the client, it does not have
to send other invalidations about that object because it knows that the client no longer has
the data, i.e., a “callback break”. However, in an arbitrary topology, a hode can not decide
if the other node’s cache is still marked as “INVALID” because the destination may have

gotten the new version from someone else between the last invalidation and “now”.

Implementation on URA

URA generalizes the notion of establishing a callback with a server to adding (attaching)
an interest set to a stream and the “callback break” as removing (detaching) an interest set
from a stream.

For example, on a read miss for objecta client takes two actions. First, it issues
a single-object fetch for the current body®fSecond, it creates a “callback” on the server
by setting up an invalidation subscription for objedtarting fromo.lpV'V from the server
so that the server will notify the clientifis updated. As a result of these actions, the client
will receive the current version af, receive previous updates framipV' V' up to server's
current time, and receive an invalidation wheis next modified; the server will block any
new update until the client with callbacks receives the corresponding invalidation.

The invalidation subscription invariant—sending precise invalidations for subscribed

objects and imprecise invalidations for other objects simplifies the implementation of “call-

116

back break”. In particular, once a cliemtremoveso from the stream, the server will send
imprecise invalidations whemis updated later. Once receives an imprecise invalidation
for o, the next read od with isValid andisComplete predicates om will trigger a read
miss because is imprecise. As a result, a callback feas described above will be estab-
lished. Therefore, to break a callback, the server only needs to resrfome the outgoing
stream to the client.

As illustrated in Chapter 5, URA minimizes tlallbackscost by using two tech-
niques. First, it employs imprecise invalidations to concisely summarize missing infor-
mation. Second, it multiplexes multiple subscriptions over the same network connection
so as to only send information relating to any update once per connection rather than re-
peatedly sending this bookkeeping information once per subscription. As demonstrated in
Section 5.5, it is an order of magnitude more efficient than the CR-Repl replication, and
performs close to traditional callbacks or even outperforms traditional callbacks when the

workload exhibits high predictability and locality.

Callback recovery. Using UR-Repl’s invalidation subscriptions to implemeatibacks

yields a significant advantage: it makes “recovery” a natural implication of UR-Repl mech-
anisms, especially when compared to traditional protocols where “recovery” is treated as
a special case. Recovery in most systems simply entails restoring lost connections and
the re-establishment of the invalidation subscription andsBempleteredicate on reads
automatically ensures that local state reflects any updates that were missed.

In particular, after a subscription carrying updates from a client to the server breaks,
the server periodically attempts to reestablish the connection. Because the server always
restarts a subscription from where it left off, once a local write is applied to a client’s local
state, it eventually must be applied to the server’s state.

Additionally, after a connection carrying invalidations from the server to the client
breaks and is reestablished, URA's invalidation subscription protocol advances the client’s

consistency state only for objects whose subscriptions have been added to the new connec-

117

tion, i.e. remainPRECISE Other objects are then treated|BPRECISEas soon as the
first invalidation arrives on the new connection. As a result, no special actions are needed

to resynchronize a client’s state during recovery.

6.2.2 Leases

Leases [33, 98] are another important mechanism for maintaining strong consistency for
client-server systems. An object lease represents permission to access an object until spec-
ified time [33]. It introduces a tradeoff between the availability of write and the availability

of read. With thecallbacksmechanisms, when a client with a valid callback is disconnected
from the server, the server can not make progress for updates. This problem is addressed
by using leases which specify a length of time during which servers notify clients of mod-
ifications to cached objects. After the lease expires, a client must renew it before it access
any cached object. Therefore, the server could still modify the object even if any client with
callbacks is disconnected.

URA supports Yin et al.'s volume lease [101] to expire callbacks from unreachable
clients. The volume leases protocol is a variation of leases protocol that generalize leases
to work efficiently with WAN workloads. A volume lease is a lease on a group of objects
(volume). Under the volume leases protocol, a client may access a cached object if it holds
valid leases on both the object and the object’'s volume, and a server can modify data as

soon as either lease expires.

Implementation. Implementing volume leases mainly involves how to expire/renew the
corresponding callbacks. To implement leases, URA needs to extend the basic callback
implementation in three ways. First, clients maintain incoming subscriptions to a specific
volume lease object from the server. Second, in order to renew the lease automatically if
connected, the server keeps the client’s view up-to-date by sending periodic heartbeats via
a volume lease object, i.e., periodically updates the volume lease object. As a result of the

subscription, the clients will receive the precise invalidations of the volume lease object

118

and all other precise invalidations of any subscribed object. Note thag#fiEmeaccept
stamp in each precise invalidation updates the clients’ notion of server’s real time so that
the clients can check for expired leases.

Finally, to realize the lease expiration effect, it need to do two things for handling

reads and writes.

e We need an additional condition to tReeadNowBloclpredicate besides thgValid
and isCompletecondition variables if the client’s view of the server’s state is too
stale. It turns out that the TACTS E parameter is the right interface to implement
this block. If we sefl'E to be the lease period, the read will be blocked if the client
is disconnected from the server for more tiah or the object has not renewed the

lease from the server.

e The server must maintain the lease status of all clients who have callbacks so that a
write can proceed once all callbacks either break or the corresponding leases expire.
We can do this by splitting the callback list into two ligtallback 1 andcallback 2.

When a callback for a clier? is established, the server adddo callback 1. When

a callback for a client is broken, the server removés from either list where it
exists. Suppose the lease period.iseconds, in order to expire the lease, the server
periodically emptiesallback 2, removes the corresponding subscriptions, and then
moves nodes inallback 1 to callback 2 in every L /2 seconds. The server can return

a write whenever both of the list are empty.

Note that by transporting heartbeats via a URA object, we ensure that a client ob-
serves a heartbeat only after it has observed all causally preceding events, which greatly

simplifies reasoning about consistency.

119

6.3 Quorums

Another important class of replication protocols is the quorum-based (a.k.a. voting) ap-
proaches [90, 30]. In the quorum-based protocols, any write/read operation only requires
a subset of nodes (write/read quorum) to be available to process it. The intersection of
read/write quorums invariant guarantees regular semantics [53] in the presence of network
partitions and node failures. There are a number of variations of quorum-based protocols
that address different workloads and failure models. For example, Grid quorums [15], tree
guorums [2] etc. reduce the quorum size by imposing a logical structure on the set of
replicas. Byzantine quorum systems [58] use quorum systems to tolerate arbitrary failures.

In addition, the quorum method is also a powerful framework that can address a
broad range of other replication systems. For example, server replication systems such
as Bayou are fundamentally Read-One-Write-All-Asynchronous (ROWAA) systems. A
ROWAA system can be viewed as a special quorum system with read quorum of 1 and
write quorum of all. In this “quorum” system, instead of waiting for voting from all nodes,
the write operation returns immediately after one node applies it and propagates it to the
other nodes asynchronously.

Client-server replication systems are also related to quorum systems. In particular,
dual-quorum [28] generalizes client-server systems by separating the read/write quorums
into two independent quorum systems. The output quorum system caches/prefetches data
from the input quorum system. The input quorum system acts as servers and grants volume
leases [101] to the output quorum system, and the output quorum system renews the leases

from the input quorum system.

6.3.1 Implementation on URA

To facilitate implementing a range of quorum systems on URA, we proviQa@umLo-
callnterfacewrapper over the basic local operation interface. TumrumLocalinterface

wrapper provides primitives similar to Q-RPC [59] so that the controller layer can freely

120

implement different styles of guorum systems ranging from those that number a simple ma-
jority, to explicit enumeration of the membership of each possible quorum. The complete
description of policy implementation of those quorum systems is beyond the scope of this
dissertation. In the following paragraphs, we discuss how to extend URA's local interface
to implement the building blocks, i.e., ti@iorumLocallnterfacevrapper that includes two

basic operationgguorum reacandquorum write

Quorum read. In order to providaegular semanticsthe quorum read must ensure that
the read value is the newest value among all local values stored at all of the nodes in a read
quorum. Therefore a quorum read issued at a nodé&h a read quorum of),...q includes

two steps.

e First, the wrapper blocks until has an active incoming invalidation stream from each
node inQ,...q. This block makes sure thafs state reflects all updates processed at

any node inQ,...q before this read is issued.

e Then the wrapper issues a URA local reachvatith the ReadNowBIloclpredicate
set toisValid andisCompleteand finally returns the read value to the quorum read
client. These two blocks ensure that the read returns the newest value among all

values stored in all of the nodes@...4.

Note that because of separation of invalidation and body, in the second step, if the
read is blocked because 6NV ALID, the controller can specify any policy to bring the
matching or newer body to unblock the read. The sender does not have to be one member
of the Q,..q. Therefore the wrapper can offer a range of policies to optimize the quorum

read latency and reduce network bandwidth overhead.

Quorum write. In order to providaegular semanticsthe quorum writdd” must ensure
that any following quroum read aftéy” returns a value at least as newl&s Therefore a

guorum write issued at a nodewith a write quorum ofQ,,.;z includes three steps.

121

e First, the wrapper blocks untit has an incoming invalidation subscription from each
node in a read quorum. These subscriptions btihg.a.currentV'V up to include
each node'surrentVV in a read quorum. Since any read quorum intersects any
write quorum, this block and the lamport clock ensures that the current pending quo-

rum write is ordered after any previous completed writes.
e Then the wrapper issues a local writé through the URA local write interface.

e Finally, the wrapper sends aynchronization requesd each node Q. and
returns the write after it receives an acknowledgement from each no@e,,if..
This block ensures that at least all nodeg)ig.i;. is aware of the new update so that

any following read will return a value as new 8s.

The QuorumLocalinterfacevrapper enforcesegular semanticsf the Q,..q and
Qurite has intersections. Note that in the third step, the controller can specify any policy to
distribute the invalidation of the quorum write €,,-;:. and specify any reliability policy
to distribute the body to any node while the wrapper can still enforceethdar semantics

We can implement different controllers for different quorum systems using the basic

QuorumLocallnterfacevrapper.

6.4 Other Features

There are additional features that are useful for implementing replication systems. Here we

briefly list some of them.

Atomic writes. Besides the traditional strong consistency semantics described above, we
also provideatomic multi-object writes This write interface allows an update targeting

to multiple objects and assigns the updates to multiple objects with one logical stamp and
thus propagates them atomically as one invalidate in the system, i.e., either all the objects

are updated/invalidated or non of the objects are updated/invalidated. Note that the only

122

difference between the multi-object invalidation and the normal precise invalidation is the
targetSet We can treat a multi-object invalidation as a normal precise invalidation to be
inserted in the log or be accumulated in an imprecise invalidation or to be applied to local
storage state as described in chapter 5.

This interface is very useful in implementing file system interface on top of our raw

object store as described in the next paragraph.

NFS interface. To demonstrate the feasibility of supporting useful applications built on
URA, we implement an NFS interface wrapper over URA object interface. The NFS in-
terface wrapper serves as a bi-directional translation between the NFS client calls and the
URA local interface calls. The wrapper implements a user-level loop-back NFS server that
listens on the NFS port, parses RPC requests, translates calls to URA local interface calls,
and finally puts up corresponding responses to the requests.

The major complexity comes from translating the file and directory concepts into
the raw object access interface. We implement each file as two URA objects, one for the
content and the other for the metadata information like file size etc. We also implement
a directory as a normal file except that the corresponding metadata object is marked as a
directory type, which enables the read to parse the object correctly.

Although the NFS specification provides only loose requirements on the consis-
tency of the files that are exposed to users, NFS requires that each operatomigi.e,
the system should never be visible in a state where a particular operation has only partly
completed. Because each file or directory is composed of two URA objects, any translated
URA object update operations must atomically change both objects. We simply use the
atomic multi-object write described above to implement this semantics.

Detailed description of the implementation of our NFS interface can be found in

[67].

123

Chapter 7

Case-study Systems

To examine the claim that URA islgetter wayto build replication systems by providing
a common substrate, this chapter evaluates URA with a series of case-study systems that
span a significant portion of the design space.

Figure 7.1 summarizes the features covered by 6 case-study systems and 4 addi-
tional variations we implemented using URA. The systems include a wide range of ap-
proaches for balancing consistency, availability, partition resilience, performance, reliabil-
ity, and resource consumption, including demand caching and prefetching; coarse- and fine-
grained invalidation subscriptions; structured and unstructured topologies; client-server, co-
operative caching, and peer-to-peer replication; full and partial replication; and weak and
strong consistency. The figure details the range of features we implement from the papers
describing the original systems.

Except where noted in the figure all of the systems implement important features
like well-defined consistency semantics, crash recovery, and support for both the object
store interface and an NFS wrapper.

In the rest of this chapter, we first describe the evaluation criteria to compare our
prototype systems to systems from the literature. Then Section 7.2 describes how to im-

plementclient-server systenmike Coda [48] and TRIP [66] and then compares these URA

124

U-Bayou[72] | U-Chain | U-Coda [48] U-Tier
+Small Repl +Coop U-Pangaeal Store U-TRIP
Device [91] Cache [77] [23]+CC [66]+Hier
Consistency Causal Lin. Open/close | Coherence| Coherence Seq.
— Causal
Topology Ad- Chains Client/ Ad- Tree Client/Server
Hoc Server Hoc — Tree
Partial
Replication v v V4 v
Prefetching/
Replication 4 v 4 v 4 4
Cooperative
Caching v v
Disconnected
operation v v v
Callbacks v VA v
Leases v
All reads
served locally Vv VA Vv
Crash recovery Vv v/ v v Vv v
Object store interface Vv v Vv v Vv Vv
File system interface v VA v VA v v

Figure 7.1: Features covered by case-study systéhiste that the original implementa-
tions of some of these systems provide interfaces that differ from the object store or file
system interfaces we provide in our prototypes.

implementations with existing systems, Section 7.3 details the implementatseradr-
replication systemkke Bayou [72] and Chain Replication [91], and finally Section 7.4 ex-

plain how to implement thebject replication systenie Pangaea [77] and TierStore [23].

7.1 Evaluation Criteria

The reader should be a bit concerned at this point. We claim that URA simplifies the task
of developing replication systems, but how can such a claim be judged? Our evaluation
compares prototype systems to systems from the literature, but constructing perfect, “bug
compatible” duplicates of such systems on URA is probably not a realistic (or useful) goal.
On the other hand, if we are free to pick and choose arbitrary subsets of features to exclude,
then the bar for evaluating our framework is too low: we can claim to have built any system

by simply excluding any features our architecture has difficulty supporting.

125

This issue reflects a deeper challenge to designing a replication architecture: we
must identify the essential characteristics of replication systems the architecture should
encompass. Published replication systems have many features; some are fundamental to
their design and some are peripheral. However, to be useful, an architectureestrst
the choices of a designer: an architecture that allows every possible variation of every
possible design decision is not an architecture at all.

In this section, we therefore define a workieguivalencerelationship between

replication systems that defines both the scope of and requirements on URA.

7.1.1 Equivalence

We define equivalence in terms of three properties:

E1l. Equivalent overheadSystemA’s cumulative network bandwidth between any pair
of nodes and local storage at any node are within a small constant factor of system
B’s. “Small constant factor” sounds weak but appropriate because we believe that
although there exists no meaningful way to check what “small” means in all possible
workloads, we can and will show empirically that our system does perform well in

many real-life scenarios.

E2. Equivalent consistencySystemA provides consistency, coherence, and staleness
properties that are at least as strong as sygt&m

E3. Equivalent local data.The set of data that may be accessed from systé&mocal
state without network communication is a super-set of the set of data that may be

accessed from system's local state for any workload.

Notice that property E3 encompasses several factors including latency, availability, and
durability.

There is a principled reason for believing that these properties capture something
about the essence of a replication system: they highlight how a system resolves the funda-

mental CAP (Consistency v. Availability v. Partition-resilience) [31] and PC (Performance

126

v. Consistency) [54] trade-offs that any replication system must make. More specifically,
omitting any of these properties could allow a system to significantly cut corners. For
example, one can improve read performance by increasing network and storage resource
consumption to speculatively replicate more data to each node and weakening consistency
by delaying invalidations until the corresponding body has been prefetched [66]. Similarly,
one can improve the availability a system offers for a given level of consistency by using
more network bandwidth to synchronize more often [103], or one can reduce the resources
consumed by replication by delaying propagation of updates and weakening consistency [7]
or by reducing the amount of data cached at a node.

We define different levels of equivalence specifying when E1-E3 must hold.

Definition. SystemA is S-equivalen{strongly equivalent) to systei if at any time for
any workload E1, E2, and E3 hold.

Unfortunately, though appealing, the S-equivalence relation is too strong in practice—
it can exclude systems that are “equivalent enough.” For example, if two systems (or even
two runs of the same system) make different non-deterministic choices about the order of
two concurrent writes to an object, different nodes could end up with a copy of the ob-
ject, making the system fail the third test. We therefore define a useful, weaker form of

equivalence.

Definition. SystemA is Q-equivalent(quiescent equivalent) to system if for a Q-
workload consisting of a series of requests with a quiescent period after regoagbletes
execution before requestt 1 begins execution, properties E1 and E3 hold at the start of
each quiescent period and property E2 holds for all requests.

Although the workload defined in Q-equivalence is unrealistic, it makes comparison
of systems tractable by removing the non-determinism concurrency can introduce. Further-
more, we believe that if a system can meet the Q-equivalent requirements, it is likely the

system will be “equivalent enough” for most realistic workloads.

127

More broadly, systems may target specific workloads, and their behavior for other

workloads may not be of interest.

Definition. SystemA is W-equivalentfworkload equivalent) to syster® if properties
E1 through E3 hold at specified times for a specified subset of workloads. Obviously, one
must judge whether a W-equivalent system is interesting based on the specific subset of
workloads included.

All of the six systems we build and discuss in this paper are designed to be Q-

equivalent with their original systems.

7.2 Client-server Systems

As described in Chapter Zlient-serversystems like Sprite [68] and Coda [48] ahnigrar-
chicalcaching systems like hierarchical AFS [65] permit nodes to cache arbitrary subsets of
data (PR) and ensure certain consistency semantics. However, these protocols fundamen-
tally require communication to flow between a child and its parent, which hurts performance
and availability under certain environments.

In this section, we discuss how to implement such systems and how URA enables
better performance by removing the topology restriction of those systems by detailing two

case-study systems: U-Coda [48] and U-Chain Replication [66].

7.2.1 U-Coda

Coda [48] is a typical client-server system. All data is located at the server whereas the
client caches some files locally. The server maintains a list of clients who cache valid
copies of files and naotifies the clients once it learns a new update (callbacks). Every client
has a list of files, the “hoard set”, that it will prefetch from the server and store it in its local

cache whenever it is connected to the server.

128

We discuss in detail U-Coda, a system inspired by the version of Coda. U-Coda sup-
ports disconnected operation, reintegration, crash recovery, whole-file caching, open/close
consistency (when connected), causal consistency (when disconnected), and hoarding. We
know of one feature from this version that we are missing: we do not support cache re-
placement prioritization. In Coda, some files and directories can be given a lower pri-
ority and will be discarded from cache before others. Coda is long-running project with
many papers worth of ideas. We omit features discussed in other papers like server replica-
tion [82], trickle reintegration [63], and variable granularity cache coherence [64]. We see
no fundamental barriers to adding them in U-Coda. We also illustrate the ease with which

co-operative caching can be added to U-Coda.

Implementing consistency policies. Coda provides open/close semantics which means
that when a file is opened at a client, the client will return the local valid copy or retrieve
the newest version from the server. A close on a client will block until all updates have
been propagated to the server and the server has made sure that all copies cached on other
clients have been invalidated. When a client is disconnected from the server, the client only
accesses locally cached files that are valid.

We employ an open/close wrapper library that buffers writes in the library until
close, at which point it will make the writes to URA's storage. A file “open” is implemented
as a read of an object. The causal consistency read interface is used, i.e. all reads will block
until the local objectis” ALID andPRECISE before the object is accessed. All writes
to file are buffered until the file is closed at which point, the object is written. If the client is
connected to the server, an object write will be blocked until the server gathers invalidation
acknowledgements from all clients that have callbacks and reports “done.” Otherwise, the
write is simply stored in log and will be transferred to the server when connected later. This

standard open/close library is usable by different systems.

129

Implementing topology policies. U-coda topology policies can be divided into 7 main
groups: configuration, connectivity, demand read, write propagation, recovery, hoarding,
and safety enforcement. Note the safety enforcement are part of the consistency library, we
include them here for completeness.

Note that because the configuration and connectivity are similar for most of case-
study systems, we discuss these implementation here and skip them in the other case-study

system description.

Configuration and connectivity. A configuration file stores the server’s identity
and another configuration file provides the hoard list. Each cliemeriodically pings
the serverS to check whether the servéris currently reachable. We base on an imple-
mentation of Narada [55] to track connectivity information and genered_iveNeighbor
anddeclareDeadNodevents, which invoke different subscription actions respectively as

specified by the topology policies.

Handling read blocks. When a read of object is blocked at a connected client
C'. C subscribes fron¥ for o’s invalidations using a checkpoint catchup for efficiency, and
fetches the body fron§. Eventually,o is no longer inconsistent, ardd unblocks the read.

The invalidation subscription ensures that if another node updaiewill become invalid.

Write propagation and callbacks. To propagate client writes to the server, an
invalidation and a body subscription from the client to the server are triggered when the
client connects to the server.

The invalidation subscriptions created by clients when they read objects from the
server ensure that our underlying mechanisms transmit invalidations. To avoid sending re-
peated invalidations to a client, U-coda removes an object from the invalidation subscription

when a client receives an invalidation.

130

500

N w N
=} =} o
S S S

Average read latency (ms)

=
o
S

I\ 3
U-Coda U-Coda + Cooperative Caching

Figure 7.2: Average read latency of U-Coda and U-Coda with co-operative caching.

Recovery. When a client reconnects to a server, it establish an invalidation sub-
scription for an empty subscription set from the server. This action makes all the locally
cached objects M PRECISFE if server has any update during the disconnected period.

Therefore, it breaks all callbacks and hence enforce the consistency.

Hoarding. Asin Coda, we prefetch objects in a user-defihedrd set The hoard
set is stored in a local configuration file which is read when the server becomes connected.
The client then subscribes to receive invalidations and bodies for subscription sets listed in

the hoard file.

Safety enforcement. The bulk of the safety enforcement is done at the server. The
client sends an acknowledgement to the server whenever it receives an invalidation. Once
the server has collected the required acknowledgements from other clients, it sends “done”
acknowledgement to the client. The arrival of this acknowledgement unblocks the blocked

write.

Adding cooperative caching We add co-operative caching to U-Coda so that discon-

nected clients can fetch valid files from their peers. This allows a disconnected client to

131

access files it previously couldn't.

To provide a way for disconnected clients to fetch data from their peers, we augment
the node list configuration file to include a list of peers; when a client reads the configuration
file, it generates a list of peers and keeps track of connectivity to peers. A client triggers a
fetch attempt from reachable peers if the server is not reachable.

Cooperative caching allows a clique of connected devices to share data without
relying on the server. Figure 7.2 demonstrates the significant improvement by adding co-
operative caching to U-Coda. For the experiment, the latency between two clients is 10ms,
whereas the latency between a client and server is 500ms. Without cooperative caching, a
client is restricted to retrieving data from the server. However, with cooperative caching,
the client can retrieve data from a nearby client, greatly improving read performance. More
importantly, with this new capability, clients can share data even when disconnected from

the server.

Equivalence. U-Coda is Q-equivalent to Coda if the number of writes at each node be-
tween disconnections exceeds the number of nodes and if the initial state, the number of

clients, the hoard set at each client, and the workload is the same.

E1l. Overhead.Both systems issue and process the same writes, invalidations, and lo-
cal/remote reads. Establishing or breaking each callback has a constant cost that is
near the cost of ideal callbacks (see Fig. 5.10). Similarly, demand read requests are
of constant size and demand read replies have the data plus a constant overhead.
Establishing one body update subscription to propagate updates to the server and es-
tablishing the first invalidation connection to/from the server each entail sending a
version vector, so U-Coda is only Q-equivalent to Coda if the number of invalidation
and body messages sent to/from the server exceeds the number of entries in a version

vector so that network bandwidth is within a constant factor.

132

E2. ConsistencyBoth systems enforce open/close semantics when connected and causal

when disconnected.

E3. Available local data.For both systems, on each client, only the objects that have an
established callback are available during connected operation and only the objects

that areconsistentire available during disconnected operation.

7.2.2 U-TRIP

TRIP [66] seeks to provide transparent replication for web edge servers of dynamic content.
All nodes enforce sequential consistency and a limit on staleness.
With the detailed description of Coda, here we give a brief overview of the U-TRIP

implementation.

Implementing consistency and topology policy. U-TRIP uses the standard causal con-
sistency library with the maxStaleness predicate set. Note that a causal consistency library
also enforces sequential consistency if, as in TRIP, there is a single writer. The topology

policies are simple: clients subscribe to receive all invalidations and bodies from the server.

Extending U-TRIP. What is perhaps most interesting about this example is the extent
to which URA facilitates evolution. For example, the TRIP implementation assumes a
single server and a star topology. By implementing on URA, we can improve scalability by
changing the topology from a star to a static tree simply by changing a node’s configuration
file to list a different node as its parent—invalidations and bodies flow as intended and
sequential consistency is still maintained. Better still, if one writes a topology policy that
dynamically reconfigures a tree when nodes become available or unavailable [55], a few
additional rules to subscribe/unsubscribe produce a dynamic-tree version of TRIP that still

enforces sequential consistency.

133

7.3 Server Replication Systems

As described in Chapter 2, server replication systems like Dictionary [96], Bayou [72] pro-
vide log-based peer-to-peer update exchange that allows any node to send updates to any
other node (TI) and that consistently orders writes across all objects. However, these sys-
tems are unable to exploit workload locality to efficiently use networks and storage, and
they may be unsuitable for devices with limited resources because their protocols funda-
mentally requires all nodes store all data from and all nodes receive all updates.

In this section, we discuss how to implement such systems and how URA enables to
add new features to those systems which would be difficult in the original implementations

by detailing two case-study systems: U-Bayou [72] and U-Chain Replication [91].

7.3.1 U-Bayou

Bayou is a server replication system that uses anti-entropy to exchange updates between any
pair of servers at any time. We implement a server replication system over URA modeled
on the version of Bayou described by Petersen et. al. [72]. In particular, we implement log-
based peer-to-peer anti-entropy protocol, log truncation to limit state, checkpoint exchange

in case of log truncation, primary commit, causal consistency, and eventual consistency.

Implementing consistency semantics. Implementing the consistency policy of Bayou on
URA is simple. Since Bayou provides causal consistency and eventual consistency, as we
described in Chapter 6, U-Bayou simply uses the default causal consistency interface pro-
vided by URA, i.e, sets thReadNowBlockredicate tasValid andisComplete To provide

100% availability as the original Bayou does, U-Bayou delays applying an invalidation to

a node until the node has received the corresponding body, i.e., sépphygpdateBlock

predicate tasValid.

134

1600

1400 |

1200 } :
1000 } ~“Ideal Bayou
800 |

600 |

Data Transfered (KB)

400 |

200f Enhanced U-Bayou ...

0 100 200 300 400 500
Number of Writes

Figure 7.3: Anti-Entropy bandwidth on U-Bayou.

Implementing update distribution policies. The topology policy of Bayou is mainly
about carrying out anti-entropy sessions. Anti-entropy sessions can be easily implemented
by establishing invalidation and body subscriptions between nodes for “/*"(means all ob-
jects) and removing the subscriptions once all updates have been transferred. Note, as in
Bayou, by default the catchup sending invalidations instead of checkpoint. If the log at the
sender is truncated to a point after subscription’s start time, the invalidation subscription

will automatically send a checkpoint.

Small-device support. In standard Bayou, each node must store all objects in all volumes
it exports and must receive all updates in these volumes. It is difficult for a small device
(e.g, a phone) to share some objects with a large device (e.g, a server hosting my home
directory). By building on URA, we can easily support small devices. Instead of storing
the whole database, a node can specify the set of objects or directories it cares about by
changing the subscription set for anti-entropy.

As Figure 7.3 indicates, the overhead for anti-entropy in U-Bayou is relatively small

compared to “ideal” anti-entropy. In addition, if a node requires only 10% of the data, the

135

small device enhancement in U-Bayou greatly reduces the bandwidth required for anti-

entropy.

Equivalence. U-Bayou is Q-Equivalent to the original Bayou implementation assuming
that nodes execute anti-entropy with the same peers during the same quiescent periods in
the workload. The network overhead is the information transferred during anti-entropy.
For both systems, the number of bytes transferred during anti-entropy is proportional to the
number of updates which the sender has but the receiver doesn't and the size of the updates.
Or if checkpoints are sent, the size of checkpoint is directory proportional to the size of
changed objects. Both systems store all objects locally. As for the log, both garbage collect
old log entries to keep the log to a specified maximum size. Additionally, both systems
enforces casual and eventual consistency. Finally, for both systems, 100% of the data is

always locally available at every node.

7.3.2 U-Chain Replication

Chain Replication [91] is another server replication protocol in which the nodes are ar-
ranged as a chain to provide high availability and linearizability. To implement linearizabil-
ity, all updates are introduced at the head of the chain and queries are handled by the tail.
An update does not complete until all live nodes in the chain have received it.

U-Chain Replication implements this protocol with support for volumes, node fail-
ure and recovery, and the addition of new nodes to the chain.

Our implementation is Q-equivalent to the published system. We omit detailed

discussion of this unsurprising result.

Implementing consistency and topology policies Although we could use our standard
linearizability consistency wrapper as described in Chapter 6, to gain performance and
availability comparable to the original Chain Replication system we implement a cus-

tomized consistency wrapper that exploits the chain topology and simply blocks a write

136

until it receives an acknowledgement from the tail.

U-Chain-Replication implements each link in the chain as an invalidation and a
body subscription. When an update occurs at the head, the update flows down the chain via
subscriptions. Chain management is carried out by a master, as in the original system.

Note that most of the complexity in the original chain replication algorithm stems
from the need to track which updates have been received by a node’s successors so as
to handle node failure and recovery. URA makes recovery simple because of the seman-
tics guaranteed by subscriptions. When subscriptions are established, all updates that the
successor is missing are automatically sent during catchup, making it unnecessary for pre-

decessors to track the flow of updates.

7.4 Object Replication Systems

As described in Chapter B)bject replicatiorsystems such as Ficus [36], Pangaea [77], and
WinFS [60] allow nodes to choose arbitrary subsets of data to store (PR) and arbitrary peers
with whom to communicate (TI). But, these protocols enforce no ordering constraints on
updates across multiple objects, so they can provide coherence but not consistency guaran-
tees and therefore their applications are restricted to those with less stringent semantics.

In this section, we discuss how to implement such systems by detailing two case-

study systems: U-TierStore [23] and U-Pangaea [77].

7.4.1 U-TierStore

TierStore [23] is an object based hierarchical replication system for developing regions that
provides eventual consistency and per-object coherence in the face of intermittent connec-

tivity. It employs a “pub/sub” approach to distribute updates among nodes.

Implementing consistency and topology policies U-TierStore uses the standard best-

effort coherence interface by setting tReadNowBloclpredicate taisValid. For 100%

137

availability, it sets thé\pplyUpdateBloclpredicate tasValid to delay applying an invalida-
tion to a node until the node has received the corresponding body.

To implement TierStore’s tree-based topology, we make use of configuration files,
as in the original protocol. Every node has configuration files which specify its parent node,
its children, and the “publication”, i.e. data subtree, that it is interested in. On initialization,
as these files are read, the corresponding subscriptions between parents and children are
established as follows: (1) from a parent to child, invalidation and body subscriptions for
each of the publications a child is interested in are established and (2) from a child to parent,

invalidation and body subscriptions for “/*” are established.

Extending U-TierStore. Just like U-Coda, cooperative caching is easily added to U-
TierStore by adding a few lines of code. This addition enables users in a developing region
to retrieve data using local wireless links from nearby peers who have already downloaded

data across an expensive modem link.

7.4.2 U-Pangaea

Pangaea [77] is a wide-area file system that supports high degrees of replication and high
availability. Replicas of a file are arranged inianconnected graph, with a clique gfyold

nodes. The location of the gold nodes for each file is stored in the file’s directory entry.
Updates flood harbingers in the graph. On receipt of a harbinger, a node requests the body
from the sender of the harbinger with the fastest link. Pangaea enforces weak, best-effort
coherence.

U-Pangaea implements object creation, replica creation, update propagation, gold
nodes and m-connected graph maintenance, temporary failure rerouting and permanent fail-
ure recovery. We do not implement the “red button” feature, which provides applications
confirmation of update delivery or a list of unavailable replicas, but do not see any difficulty

in integrating it.

138

Implementing consistency and topology policies. Similar to U-TierStore, U-Pangaea

uses a standard coherence-only wrapper, which does not block any reads or writes. Addi-
tionally, if an individual node wishes to enforce stronger consistency, that node may instan-
tiate the causal or TE wrapper to block reads and thereby enforce causal consistency or a
bound on staleness (temporal error.)

The topology policy for Pangaea is pretty complex. Most of the complexity stems
from (1) constructing the required per-object invalidation graph across gold and bronze
replicas, (2) updating the invalidation graph when nodes become unreachable, and (3) cre-
ating new gold replicas for objects when an existing gold replica fails. We do not go into
details due to space constraints, but provide overview of the different aspects.

U-Pangaea considers harbingers as invalidations, and hence each edge of a Pangaea
graph is an invalidation subscription. U-Pangaea’s liveness policy sets up and maintains
the m-connected graph for each object among the nodes. In particular, (1) it maintains m-
connectedness for each replica; (2) it makes sure that a replica is connected to at least one
gold node; and (3) it makes sure that there are at lpgstd nodes which are connected in
a clique.

In case of a read miss, U-Pangaea will try to identify if the object exists in the
network or if it is a new object. If the object exists, it creates a new local replica by finding
the closest replica and adding an invalidation subscription from it for the object with catchup
policy set tocheckpointso that it can quickly retrieve the object. Then it integrates itself
into the replica graph by setting up subscriptions with- 1 other neighbors. In case of
a new object, it will create the object, locaje- 1 other nodes to be gold nodes, create
replicas on them and establish subscriptions among each other.

In case of an update, invalidations are automatically flooded along the subscriptions.
When a node receives an invalidation, it will demand read for the body from the sender it
receives the first invalidation. If it does not receive the body within a certain timeout, it will

find another neighbor to retrieve the body from.

139

4000

3500

3000 -

N N
o (a2
8 8
| Nw(1000ms)

Read miss latency(ms)
&
o
o

1000

NW(200ms)

500 [

\W(20ms)

"

|-

.
Fixed Random U-Pangaea

Figure 7.4: Read miss latency for U-Pangaea and alternatives.

Figure 7.4 illustrates one aspect of U-Pangaea’s performance: its ability to dynam-
ically choose the best replica from which to fetch data. In this experiment, a simplified
version of the experiment presented in Saito et al.'s Figure 11 [77], we measure the time
to satisfy a cache miss from one of three replicas. We compare three policies: (1) Pangaea
(locality-based), (2) Random, and (3) Static. For the Static policy, we show results for each
of the three possible choices. Our results are consistent with Saito et al.'s experiment: not

surprisingly, fetching data from a nearby node is a good policy.

Equivalence. URA propagates sufficient information for any node to enforce causal con-
sistency using local information. U-Pangaea does not use this information, so it retains the
high availability, partition-resilience, and performance [54, 31] available to weak-consistency
systems. Furthermore, the overhead of propagating this information is modest for several
reasons. First, as Figure 5.11 indicates, once a connection between a pair of nodes is es-
tablished, URA sends at most two invalidation messages for every one sent by a coherence-
only algorithm—at worst an URA node alternates sending an invalidation requested by the
receiver and an imprecise invalidation summarizing updates the receiver has not requested.
Furthermore, as long as there is locality workload’s updates in the object ID space, im-

precise invalidations are comparable in size to regular invalidations. Finally, as the figure

140

indicates, if there are bursts of load to objects of interest, the ratio of invalidations to im-
precise invalidations improves. As a result, network bandwidth remains within a constant
factor of a coherence-only protocol if the workload has sufficient locality in the object ID

space for imprecise invalidations to achieve good compression.

141

Chapter 8

Related work

Decades of research on data replication yield a number of replication techniques and frame-
works for different environments or workloads in different perspectives. This chapter sur-

veys the related work.

8.1 Replication Mechanisms

State of the art mechanisms allow a designer to retain full flexibility along at most two of
the three dimensions of replication, consistency, or topology policy. Chapter 2 examines
existing PR-AC [42, 48, 68, 4, 12, 20], AC-TI [32, 46, 50, 72, 96, 103], and PR-TI [36, 77]
approaches. These systems can be seen as special case “projections” of the more gen-
eral URA mechanisms. Ideas relating to URA's mechanisms can be seen in these systems.
For example, the separation of invalidations from bodies is standard in client-server sys-
tems [42][68], and imprecise invalidations are closely related to messages sent by client-
server systems during callback-state recovery [6][99]. Several systems have noted the value
of separating data and metadata paths [4][77][89].

Some recent work extends server replication systems towards supporting partial

replication. Holliday et al.'s protocol allows nodes to store subsets of data but still requires

142

all nodes to receive updates for all objects [41]. Published descriptions of Shapiro et al.’s
consistency constraint framework focus on full replication, but the authors have sketched

an approach for generalizing the algorithms to support partial replication [83].

8.2 Replication Framework

A number of other efforts have defined frameworks for constructing replication systems for
different environments. Like URA, the Deceit file system [84] provides a flexible substrate
that subsumes a range of replication systems. Deceit, however, focuses on replication across
a handful of well-connected servers, and it therefore makes very different design decisions
than PRACTI. For example, each Deceit server maintains a list of all files and of all nodes
replicating each file, and all nodes replicating a file receive all bodies for all writes to the file.
Zhang et. al. [104] define an object storage system with flexible consistency and replication
policies in a cluster environment. As opposed to these efforts for cluster file systems, URA
focuses on systems in which nodes can be partitioned from one another, which changes the
set of mechanisms and policies it must support. Stackable file systems [38] seek to provide
a way to add features and compose file systems, but it focuses on adding features to local
file systems.

WInFS [70] employs a peer-to-peer state-based exchange algorithm to synchronize
nodes but exchanges stored state rather than logs. Although it preemi#egy indepen-
dence partial replication eventual consistencgnd efficient conflict detection usimgctor
sets it can not provide causal consistency when synchronization is interrupted.

URA incorporates the order error and staleness abstractions of TACT tunable con-
sistency [103]; we do not currently support numeric error. Like URA, Swarm [87] provides
a set of mechanisms that seek to make it easy to implement a range of TACT guarantees;
Swarm, however, implements its coherence algorithm independently for each file, so it does
not attempt to enforce cross-object consistency guarantees like causal, sequential, or lin-

earizability. IceCube [47] and actions/constraints [83] provide frameworks for specifying

143

general consistency constraints and scheduling reconciliation to minimize conflicts. Fluid
replication [16] provides a menu of consistency policies, but it is restricted to hierarchical

caching.

8.3 Conflict Detection

As described in Section 5.4, there are three main approaches for conflict detgu#en:
vious stamp$34, 9], hash historieg45], andversion vector$48, 74, 95]. Bothprevious
stampsandhash historiesmposes per-update storage overhead and might have false nega-
tives under certain scenariogersion vectorgan accurately detect conflicts but it imposes
one vector per object overhead which is prohibitive when the number of replicas is large.
predecessor vectors with exceptions (PY&)] andvector set457] are variations of the
version vectorapproach employed by WinFS [70] to reduce the total number of version
vectors each node maintain.

Although some existing systems provide conflict resolution mechanisms that take
into account the semantics of the data being resolved - for e.g. Bayou [72], TACT [102], and
Coda [48] - URA provides a simpler interface that allows users to vieardlict logand
take appropriate action (e.g. perform a compensating write). Although we do not provide
additional facilities to help conflict resolution such as log roll back [72] or conflict-handling
procedures [88], we speculate that such features can be added to our system without diffi-

culty.

144

Chapter 9

Conclusions

The central thesis of this dissertation is that there is a set of flexible common replication
mechanisms that capture the right abstractions for replication and therefore can serve as
a replication “micro-kernel” for building and deploying replication systems for different
environments and workloads by simply defining the right policies on top of the mechanism
layer.

To answer this question, this dissertation presentechigersal data replication
architecture(URA) that cleanly separates mechanism from policy to simplify the devel-
opment of new replication systems, subsumes most of existing replication protocols, and
enables better trade-offs for some environments than are currently available.

As we have shown in the dissertation, we presented the architecture in two steps.
First, we presented the PRACTI replication mechanisms that for the first time provide
three vital features simultaneouslifartial Replication,Any Consistency, and opology
Independence. Through prototype experiments, our conclusion is that by providing all
three PRACTI properties, PRACTI replication enables better trade-offs than existing mech-
anisms that support at most two of the three properties: it dominates existing families of
architectures by providing order of magnitude performance improvements for some key

environments and workloads and matching their performance for most other environments

145

and workloads.

Second, we described the UR-Repl protocol that extends the PRACTI mechanisms
to support efficient callbacks, incremental checkpoint exchange and efficient conflict de-
tection. Our micro-benchmark experiments demonstrated that the UR-Repl protocol is an
order of magnitude more efficient than the PRACTI replication protocol for supporting call-
backs, and its conflict detection algorithm is more efficient than existing approaches in most
cases.

To demonstrate the flexibility of URA, we described how to map most of existing
techniques and consistency semantics over URA and presented the results of a set of case-
study systems that cover a significant portion of the design space. Overall, our experience
suggests that (1) URA iexiblein that we are able to implement a broad range of systems;
(2) URA is efficientin that we are able to build systems that are comparable to hand-built
systems from literature with respect to the central properties of a replication architecture;
and (3) URAfacilitates innovatiorby exposing new design space and making it much easier
to add new features in existing systems.

In summary, this dissertation makes the following key contributions:

e It defines the PRACTI paradigm and provides a taxonomy for replication systems

that explains why existing replication architectures fall short of ideal.

e It describes the first replication protocol architecture to simultaneously provide all

three PRACTI properties.

¢ Itdefines common abstractions of data replication systems that cleanly separate mech-
anism from policy and thereby simplify the understanding and construction of repli-

cation systems.

¢ It demonstrates that URA replication offers decisive practical advantages compared

to existing approaches.

146

¢ It demonstrates the usefulness of URA by building several key case study applications

and mapping existing techniques on URA.

e |t proposes novel incremental checkpoint exchange, flexible commit primitive, and

efficient conflict detection algorithms.

Limitations and future work. The current URA prototype focuses on getting the archi-

tecture right and has the following limitations and potential future work:

e Scalability. The version vector limits the architecture scaling to a large number of
nodes. A possible future work is to add/remove ids from an interest set’s version
vector on the fly (a la Bayou’s adding and removing servers on the fly). Essentially,
one could insert a “remove X from VV for interest set I” into the log that instructs
anyone receiving the write that it is OK to stop tracking nodéor interest sef; this
“write” would get serialized in the log according to the normal rules an¥ ifater
does a write td, it gets added back into the version vector starting at the time that it

does the write.

If this dynamic version vector algorithm works, then the version vector length for an
interest set is proportional to the number of “active writers” in that interest set rather

than proportional to the number of nodes in the system.

e Performance. As indicated in Section 4.6, we have a lot of room for performance-
tuning as our prototype is implemented in Java and the local storage implementation
is based on the BerkeleyDB JE [86]. For example, we have not spent time parameters

of the BerkeleyDB JE for our workload.

e Local storage management. Currently, we leave all of the local storage management
work to BerkeleyDB. In the future, it will be interesting to use RAID and play with
disk layout and data replacement etc..

e Policies for splitting/joining interest sets. As indicated in Chapter 4, the size of an

interest set affects the URA's storage and performance for tracking per-IS consistency

147

state. Although currently, URA makes static configuration of the structure of interest
sets, URA allows system designers to dynamically split an interest set or join different
interest sets so as to make different tradeoffs for different workloads. In the future,

we may be able to build applications that take advantage of this mechanism.

148

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Bibliography

Tivoli data exchange data sheethttp://www.tivoli.com/products/

documents/datasheets/data_exchange_ds.pd%f , 2002.

D. Agrawal and A. Abbadi. The Tree Quorum Protocol: An Efficient Approach for
Managing Replicated Data. 1990.

D. Agrawal and A. Malpani. Efficient dissemination of information in computer

networks.The Computer JournaB4(6):534-541, 1991.

T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang. Server-
less Network File SystemACM Transactions on Computer Systei(1):41-79,
February 1996.

S. Annapureddy, M. Freedman, and D. Ma&s. Shark: Scaling file servers via co-
operative caching. IRroceedings of the Second USENIX Symposium on Networked

Systems Design and Implementatibtay 2005.

M. Baker. Fast Crash Recovery in Distributed File SysterR&D thesis, University
of California at Berkeley, 1994.

M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Seltzer. Non-Volatile Memory
for Fast, Reliable File Systems. Rroceedings of the Fifth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems

(ASPLOS-V)pages 1022, September 1992,

149

[8] M. Beck and B. Dempsey. 12-DSI overview. #th Intl. Web Caching Workshop
March 1999.

[9] N. Belaramani, M. Dabhlin, L. Gao, A. Nayate, A. Venkataramani, P. Yalagandula,
and J. Zheng. PRACTI replication. Rroceedings of the Third USENIX Symposium
on Networked Systems Design and Implementakitay 2006.

[10] Bent and Voelker. Whole page performance. Workshop on Web Caching and
Content Distribution September 2002.

[11] T. Berners-Lee, R. Fielding, and H. Frystyk Nielsen. Hypertext Transfer Protocol
— HTTP/1.0. Internet Draft draft-ietf-http-v10-spec-00, Internet Engineering Task
Force, March 1995.

[12] M. Blaze and R. Alonso. Dynamic Hierarchical Caching in Large-Scale Distributed
File Systems. IrProceedings of the 12th International Conference on Distributed

Computing Systemgune 1992.

[13] E. Brewer. Lessons from giant-scale services. IEEE Internet Computing

July/August 2001.

[14] S. Chandra, M. Dahlin, B. Richards, R. Wang, T. Anderson, and J. Larus. Experi-
ence with a Language for Writing Coherence ProtocoldJ8ENIX Conference on

Domain-Specific Language®ctober 1997.

[15] S. Cheung, M. Ahamad, and M. Ammar. The grid protocol: a high performance
scheme for maintaining replicated data. pages 438-445, 1990.

[16] L. Cox and B. Noble. Fast reconciliations in fluid replication. Piroceedings of the

21st International Conference on Distributed Computing Syst2oGil.

[17] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and |. Stoica. Wide-area cooperative

150

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

storage with CFS. IProceedings of the Eightteenth ACM Symposium on Operating
Systems Principle®©ctober 2001.

M. Dahlin, B. Chandra, L. Gao, and A. Nayate. End-to-end wan service availability.

IEEE/ACM Transactions on Networking003.

M. Dahlin, B. Chandra, L. Gao, and A. Nayate. End-to-end WAN service availability.
ACM/IEEE Transactions on Networkingi1(2), April 2003.

M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Cooperative Caching: Using
Remote Client Memory to Improve File System Performancérbceedings of the
First Symposium on Operating Systems Design and Implementpéigas 267-280,
November 1994,

G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon'’s highly avail-
able key-value store. IRroceedings of the 21th ACM Symposium on Operating

Systems Principle2007.

M. Demmer, B. Du, and E. Brewer. TierStore: a distributed storage system for chal-
lenged networks. http:/itier.cs.berkeley.edu/docs/projects/

tierstore.pdf , December 2006.

M. Demmer, B. Du, and E. Brewer. TierStore: a distributed storage system for
challenged networks. IRroceedings of the 7th USENIX Conference on File and
Storage TechnologieEebruary 2008.

B. Duska, D. Marwood, and M. Feeley. The Measured Access Characteristics of
World-Wide-Web Client Proxy Caches. Rroceedings of the USENIX Symposium

on Internet Technologies and Systelscember 1997.

M. Feeley, W. Morgan, F. Pighin, A. Karlin, H. Levy, and C. Thekkath. Implementing

Global Memory Management in a Workstation Cluster.Phoceedings of the Fif-

151

teenth ACMSymposium on Operating Systems Pringipégges 201-212, December
1995.

[26] S. Gadde, J. Chase, and M. Rabinovich. A taste of crispy squidVoirkshop on

Internet Server Performancdune 1998.

[27] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. lyengar. Application specific data
replication for edge services. Imternational World Wide Web Conferendday

2003.

[28] L. Gao, M. Dahlin, J. Zheng, L. Alvisi, and A. lyengar. Dual-quorum replication for
edge services. IRroceedings of the ACM/IFIP/USENIX 6th International Middle-

ware ConferenceNovember 2005.

[29] S. Ghemawat, H. Gobioff, and S. Leung. The Google file systerRrdoeedings of
the 19th ACM Symposium on Operating Systems PrinGipRas3.

[30] D. Gifford. Weighted voting for replicated data. Tith ACM Symposium on Operat-
ing Systems Principlepages 150-162, April 1979.

[31] S. Gilbertand N. Lynch. Brewer’s conjecture and the feasibility of Consistent, Avail-

able, Partition-tolerant web services. ACM SIGACT News, 33(2Jun 2002.

[32] R. Golding. A weak-consistency architecture for distributed information services.

Computing System5(4):379-405, 1992.

[33] C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant Mechanism for Dis-
tributed File Cache Consistency. Rioceedings of the Twelfth ACM Symposium on
Operating Systems Principlgsages 202—-210, 1989.

[34] J. Gray, P.Helland, P. E. O'Neil, and D. Shasha. Dangers of replication and a solution.
In Proc. SIGMOD pages 173-182, 1996.

152

[35] J. Griffioen and R. Appleton. Reducing File System Latency Using A Predictive
Approach. InProceedings of the Summer 1994 USENIX Conferehage 1994.

[36] R. Guy, J. Heidemann, W. Mak, T. Page, Gerald J. Popek, and D. Rothmeier. Imple-
mentation of the Ficus Replicated File SystemPhoceedings of the Summer 1990

USENIX Conferenggages 63—71, June 1990.

[37] J. Gwertzman and M. Seltzer. The case for geographical pushcachid@T@®S95
pages 51-55, May 1995.

[38] J. Heidemann and G. Popek. File-system development with stackable |&y&vé.
Transactions on Computer Systerh(1):58—-89, February 1994.

[39] J. Hennessy and D. Patters@omputer Architecture A Quantitative Approadior-

gan Kaufmann, Inc., 2nd edition, 1996.

[40] M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent

objects.ACM Trans. Prog. Lang. Sysl2(3), 1990.

[41] J. Holliday, D. Agrawal, and A. El Abbadi. Partial database replication using epi-
demic communication. IRroceedings of the 22nd International Conference on Dis-

tributed Computing Systemiuly 2002.

[42] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham,
and M. West. Scale and Performance in a Distributed File Sy#&l Transactions

on Computer System@(1):51-81, February 1988.

[43] P. Hutto and M. Ahamad. Slow memory: Weakening consistency to enhance con-
currency in distributed shared memories.1Bth International Conference on Dis-

tributed Computing Systensages 302-311, 1990.

[44] D. S. Parker (Jr.), G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton,

J. M. Chow, S. Kiser, D. Edwards, and C. Kline. Detection of Mutual Inconsistency

153

in Distributed SystemslEEE Transactions on Software Engineeri@E-9(3):240—
247, May 1983.

[45] B. Kang, R. Wilensky, and J. Kubiatowicz. Hash history approach for reconciling
mutual inconsistency in optimistic replication. Rroceedings of the 23rd Interna-

tional Conference on Distributed Computing Syste2@93.

[46] P. Keleher. Decentralized replicated-object protocolsPioceedings of the 18th
Symposium on the Principles of Distributed Computjpaiges 143-151, 1999.

[47] A. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel. The IceCube aproach to
the reconciliation of divergent replicas. Rroceedings of the 20th Symposium on

the Principles of Distributed Computing001.

[48] J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System.

ACM Transactions on Computer Systet®¥(1):3-25, February 1992.

[49] R. Kotla, L. Alvisi, and M. Dahlin. SafeStore: A durable and practical storage
system. InProceedings of the 2007 USENIX Annual Technical Conferehoee
2007.

[50] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high availability using
lazy replication.ACM Transactions on Computer Systef3(4):360-391, 1992.

[51] L. Lamport. Time, clocks, and the ordering of events in a distributed systam-
munications of the ACM21(7), July 1978.

[52] L. Lamport. How to make a multiprocessor computer that correctly executes multi-
process programdEEE Transactions on Computer8-28(9):690—691, September
1979.

[53] L. Lamport. On interprocess communicatioriBistributed Computingpages 77—
101, 1986.

154

[54] R. Lipton and J. Sandberg. PRAM: A scalable shared memory. Technical Report
CS-TR-180-88, Princeton, 1988.

[55] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscoe, and |. Stoica. Implementing
declarative overlays. IfProceedings of the 20th ACM Symposium on Operating

Systems Principle®©ctober 2005.

[56] P. Mahajan, S. Lee, J. Zheng, and M. Dahlin. SADDR: Secure autonomous dis-
tributed data replication, May 200&ttp://www.cs.utexas.edu/users/

Zjiandan/papers/saddr08.pdf

[57] D. Malkhi, L. Novik, and C. Purcell. P2P Replica Synchronization with Vector Sets.
ACM SIGOPS Operating Systems Reyié¥(2):68—74, 2007.

[58] D. Malkhi and M. Reiter. Byzantine quorum systerféstributed Computingpages
203-213, 1998.

[59] D. Malkhi and M. Reiter. An Architecture for Survivable Coordination in Large
Distributed System3EEE Transactions on Knowledge and Data Engineerpages
187-202, March 2000.

[60] D. Malkhi and D. Terry. Concise version vectors in WinFS.20th Symposium on
Distributed Computing (DISCR005.

[61] P. Maniatis, M. Roussopoulos, TJ Giuli, D. Rosenthal, M. Baker, and Y. Muliadi.
Preserving peer replicas by rate-limited sampled voting?roceedings of the 19th

ACM Symposium on Operating Systems Princjpletober 2003.

[62] D.Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key manage-
ment from file system security. IRroceedings of the Seventeenth ACM Symposium

on Operating Systems Principld3ecember 1999.

155

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

L. Mummert, M. Ebling, and M. Satyanarayanan. Exploiting Weak Connectivity for
Mobile File Access. IrProceedings of the Fifteenth ACMSymposium on Operating
Systems Principlepages 143-155, December 1995.

L. Mummert and M. Satyanarayanan. Large Granularity Cache Coherence for Inter-
mittent Connectivity. IriProceedings of the Summer 1994 USENIX Conferehase
1994,

D. Muntz and P. Honeyman. Multi-level Caching in Distributed File Systems or Your
cache ain’t nuthin’ but trash. IRroceedings of the Winter 1992 USENIX Conference
pages 305-313, January 1992.

A. Nayate, M. Dahlin, and A. lyengar. Transparent information dissemination. In
Proceedings of the ACM/IFIP/USENIX 5th International Middleware Conference
October 2004.

Amol Nayate.Transparent ReplicatianUT Austin, Austin, Texas, 2006.

M. Nelson, B. Welch, and J. Ousterhout. Caching in the Sprite Network File System.
ACM Transactions on Computer SysteB(d.), February 1988.

E. Nightingale and J. Flinn. Energy-efficiency and storage flexibility in the blue file
system. InProceedings of the Sixth Symposium on Operating Systems Design and

ImplementationDecember 2004.

L. Novik, I. Hudis, D. Terry, S. Anand, V. Jhaveri, A. Shah, and Y. Wu. Peer-to-peer
replication in winfs. Technical Report MSR-TR-2006-78, Microsoft Research, June
2006.

D. Peek and J. Flinn. Ensemblue: Integrating distributed storage and consumer elec-
tronics. InProceedings of the Seventh Symposium on Operating Systems Design and

Implementation2006.

156

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers. Flexible Update
Propagation for Weakly Consistent ReplicationPheceedings of the Sixteenth ACM
Symposium on Operating Systems Princip@stober 1997.

A. Rajasekar, M. Wan, and R. Moore. MySRB and SRB - components of a data grid.
In The 11th International Symposium on High Performance Distributed Computing

July 2002.

P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and G. Popek. Resolving File Con-
flicts in the Ficus File System. IRroceedings of the Summer 1994 USENIX Confer-
ence 1994,

S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond:
the OceanStore prototype. Rroceedings of the 2nd USENIX Conference on File
and Storage Technologiedlarch 2003.

A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utilityPtaceedings of the Eightteenth ACM

Symposium on Operating Systems Principk&91.

Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Taming aggressive
replication in the Pangaea wide-area file systenPrivceedings of the Fifth Sympo-

sium on Operating Systems Design and Implementablecember 2002.

Y. Saito and M. Shapiro. Optimistic replicatioACM Computing Survey87(1):42—
81, 2005.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and im-
plementation of the Sun network filesystem. Rroceedings of the Summer 1985

USENIX Conferencgages 119-130, June 1985.

S. Sarin and N. A. Lynch. Discarding Obsolete Information in a Replicated Database

157

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

System. |IEEE Transactions on Software EngineeringE-13(1):39-47, January
1987.

P. Sarkar and J. Hartman. Efficient Cooperative Caching using HinBobeedings
of the Second Symposium on Operating Systems Design and Impleme pagies

35-46, October 1996.

M. Satyanarayanan. Scalable, Secure, and Highly Available Distributed File Access.

IEEE Computer23(5):9-21, May 1990.

M. Shapiro, K. Bhargavan, and N. Krishna. A constraint-based formalism for con-
sistency in replicated systems. Rroceedings of the 8th International Conference

on the Principles of Distributed Systenicember 2004.

A. Siegel. Performance in Flexible Distributed File Systeni3hD thesis, Cornell,
1992.

A. Singla, U. Ramachandran, and J. Hodgins. Temporal notions of synchronization
and consistency in Beehive. Proceedings of the Ninth Annual ACM Symposium

on Parallel Algorithms and Architecture$997.
Sleepycat SoftwareGetting Started with BerkeleyDB for Jav@eptember 2004.

S. Susarla and J. Carter. Flexible consistency for wide area peer replicati®ro-In
ceedings of the 25th International Conference on Distributed Computing Systems

June 2005.

D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser. Man-

aging Update Conflicts in Bayou, a Weakly Connected Replicated Storage System.
In Proceedings of the Fifteenth ACMSymposium on Operating Systems Principles
December 1995.

158

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

R. Tewari, M. Dahlin, H. Vin, and J. Kay. Beyond Hierarchies: Design Consid-
erations for Distributed Caching on the Internet. Aroceedings of the Nineteenth

International Conference on Distributed Computing Systdvias/ 1999.

R. Thomas. A majority consensus approach to concurrency control for multiple copy

databasedDatabase Systemé(2):180-209, 1979.

R. van Renesse and F. B. Schneider. Chain replication for supporting high through-
put and availability. InProceedings of the Sixth Symposium on Operating Systems

Design and Implementatipecember 2004.

A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: A mechanism for back-
ground transfers. IRroceedings of the Fifth Symposium on Operating Systems De-

sign and Implementatigibecember 2002.

A. Venkataramani, P. Weidmann, and M. Dahlin. Bandwidth constrained placement
in a wan. InProceedings of the 20th Symposium on the Principles of Distributed

Computing August 2001.

A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and M. Dahlin. Potential
costs and benefits of long-term prefetching for content-distributielsevier Com-

puter Communication®5(4):367-375, March 2002.

B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The LOCUS distributed op-
erating system. IiProceedings of the Ninth ACM Symposium on Operating Systems

Principles pages 49-69, October 1983.

G. Wuu and A. Berstein. Efficient solutions to the replicated log and dictionary
problem. InProceedings of the Third Symposium on the Principles of Distributed

Computing pages 233242, 1984.

P. Yalagandula and M. Dahlin. A scalable distributed information management sys-

tem. INACM SIGCOMM 2004 ConferencAugust 2004.

159

[98] J.Yin, L. Alvisi, M. Dahlin, and A. lyengar. Engineering server-driven consistency
for large scale dynamic web services Aroceedings of the 2001 International World

Wide Web Confereng®lay 2001.

[99] J. Yin, L. Alvisi, M. Dahlin, and A. lyengar. Engineering web cache consistency.

ACM Transactions on Internet Technologi2g3), 2002.

[100] J.Yin, L. Alvisi, M. Dahlin, and C. Lin. Hierarchical Cache Consistency in a WAN.
In Proceedings of the Second USENIX Symposium on Internet Technologies and Sys-

tems October 1999.

[101] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Volume Leases to Support Consistency
in Large-Scale System3EEE Transactions on Knowledge and Data Engineering

February 1999.

[102] H. Yu and A. Vahdat. The costs and limits of availability for replicated services. In
Proceedings of the Eightteenth ACM Symposium on Operating Systems Principles
2001.

[103] H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous consis-
tency model for replicated service&CM Transactions on Computer Syste@¥(3),

August 2002.

[104] Y. Zhang, J. Hu, and W. Zheng. The flexible replication method in an object-oriented
data storage system. Rroc. IFIP Network and Parallel Computin@004.

[105] J. Zheng, N. Belaramani, M. Dahlin, and A. Nayate. A universal protocol for effi-
cient synchronization.http://www.cs.utexas.edu/users/zjiandan/

papers/upes08.pdf , Jan 2008.

160

Vita

Jiandan Zheng was born in Yueqing, Zhejiang China in 1977. After completing her high
school at Yueqing High School in 1994, she enrolled in Beijing University. She received
the degree of Bachelor of Science from Beijing University in July 1998 and the degree of
Master of Science from Institute of Software, Chinese Academy of Sciences in 2001. She
received the degree of Master of Art in Computer Science from the University of Texas at

Austin in May 2005.

Permanent Address: Xiangyang Town Liunan Village
Yueqing, Zhejiang 325619
P.R. China

This dissertation was typeset Wit 2.1 by the author.

LATEX 2¢ is an extension ofAIEX. IATEX is a collection of macros forgX. TeX is a trademark of the
American Mathematical Society. The macros used in formatting this dissertation were written by Dinesh Das,
Department of Computer Sciences, The University of Texas at Austin, and extended by Bert Kay and James A.
Bednar.

161

