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Data replication is a key building block for large-scale distributed systems to improve

availability, performance, and scalability. Because there is a fundamental trade-off between

performance and consistency as well as between availability and consistency, systems must

make trade-offs among these factors based on the demands and technologies of their target

environments and workloads.

Unfortunately, existing replication protocols and mechanisms are intrinsically en-

tangled with specific policy assumptions. Therefore, to accommodate new trade-offs for

new policy requirements, developers have to either build a new replication system from

scratch or modify existing mechanisms.

This dissertation presents a universal data replication architecture (URA) that cleanly

separates mechanism and policy and supports Partial Replication (PR), Any Consistency

(AC), and Topology Independence (TI) simultaneously. Our architecture yields two signif-

icant advantages. First, by providing a single set of mechanisms that capture the common

underlying abstractions for data replication, URA can serve as a common substrate for

building and deploying new replication systems. It therefore can significantly reduce the

effort required to construct or modify a replication system. Second, by providing a set of

vii



general and flexible mechanisms independent of any specific policy, URA enables better

trade-offs than any current system can provide. In particular, URA can simultaneously pro-

vide the three PRACTI properties while any existing system can provide at most two of

them. Our experimental results and case-study systems confirm that universal data repli-

cation architecture is a way to buildbetter replication systems and abetter wayto build

replication systems.
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Chapter 1

Introduction

Data replication is a fundamental technique for improving the performance [8, 10, 24, 27,

68, 73, 77, 94, 28], availability [18, 27, 50, 102, 21], ubiquity [48, 72, 23], persistence [61,

49], and managability [1, 69, 71] of a broad range of large-scale distributed systems such as

mobile file systems [48, 69, 72, 23], web services [24, 27, 94], enterprise file systems [42,

77, 29], and grid replication systems [5, 73].

Despite decades of research on data replication, we lack a single “perfect replication

system” for all environments. The fundamental technical reason behind this problem is that

any replication system must make trade-offs between availability, consistency, performance,

and partition-resilience based on the demands and technologies of their target environments

and workloads. For example, the well-known CAP (Consistency/Availability/Partition-

resiliance) dilemma [13, 31, 84] proves that systems cannot simultaneously achieve both

sequential consistency and high availability if there are network partitions. Similarly, Lip-

ton and Sandburg [54] prove that there is a fundamental trade-off between performance and

consistency when data are shared by multiple nodes. As a result, most existing replication

systems are built for specific environments or workloads.

Therefore, as technologies and workloads evolve, it is safe to presume that just as

many replication systems have been built for different environments in the past [48, 69, 72,

1
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Figure 1.1: URA vision.

42, 77, 29, 23], we will continue to need to develop new replication systems to meet current

and future application challenges.

Unfortunately, the state of the art for constructing new replication systems for new

environments is lacking. New systems are typically built from the ground up and co-mingle

new mechanisms and new policies in their design. This ad-hoc approach makes it hard to

construct and deploy new systems because each system must be built from scratch, makes

it hard to evolve systems because the existing implementation is based on specific policy

assumptions, makes it hard to teach the principles of replication because we are forced to

teach a series of case studies rather than a set of basic principles, and makes it hard to focus

the community research agenda because it is difficult to identify the open questions or to

isolate the contributions of a newly-proposed system.

We believe that, many existing systems are “special cases” of a more fundamental

underlying protocol. This dissertation therefore investigates auniversal data replication

architecture(URA) over which a broad range of replication systems can be constructed

with dramatically less effort than current approaches.

As indicated in Figure 1.1, the goal of theuniversal data replication architecture

is to build areplication microkernelthat cleanly separates mechanisms and policies so that

different replication systems can be built on the same set of mechanisms, and they only

differentiate from each other by policies.

URA yields two significant advantages compared to existing approaches. First, it

is abetter wayto build replication systems. By providing a single set of mechanisms that

2
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Figure 1.2: Systems built on URA and the features they implemented.

capture the common underlying abstractions for data replication, URA can serve as a com-

mon substrate for building and deploying replication systems. It therefore can significantly

reduce the effort required to construct or modify a replication system.

As illustrated in Figure 1.2, to test whether we succeed in building a universal “mi-

crokernel”, we have built a broad range of replication systems that covers a large design

space using URA. These systems demonstrate the power of URA: (1) it isflexible in that

we are able to construct systems with a wide range of architectures and features; (2) URA is

efficientin that we are able to build systems that are comparable to hand-built systems from

literature with respect to the central properties of a replication architecture;and (3) URA

facilitates innovationby exposing new design space and making it much easier to add new

features in existing systems.

Although we do not argue that our URA implementations areidentical to the orig-

inal systems on which they are based, we do believe that they capture all important fea-

tures relating to how these systems maximize performance, availability, and consistency.
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Figure 1.2 enumerates many of the key features included in our implementations. In Sec-

tion 7.1.1, we more formally define a notion ofreplication equivalenceand argue that our

URA implementations arereplication equivalentto the systems they model.

Second, it is a way to buildbetter replication systems. By providing a set of general

and flexible mechanisms independent of any specific policy, URA enables better trade-

offs than any current system can provide. In particular, URA can simultaneously provide

PRACTI properties, i.e., Partial Replication (PR), Any Consistency (AC), and Topology

Independence (TI) while existing systems [96, 50, 103, 68, 48, 65, 20, 25, 4, 89, 76, 17, 75,

72, 36, 77, 60] can only simultaneously provide at most two of them. As a result, PRACTI

allows us to construct systems whose performance is at least comparable to and sometimes

much better than systems constructed using existing replication protocols.

Notably, by providing PRACTI simultaneously, URA replication can yield signif-

icant practical advantages over existing approaches. For example, Figure 1.3 summarizes

an experiment that we will describe in more detail in Chapter 4. It shows the time re-

quired to synchronize updates between a palmtop and a laptop when the connection be-

tween these two devices is good, but when the connection to the rest of the Internet is lim-

ited. As indicated in the graph, the URA architecture ismore than an order of magnitude

4



betterthan two of the three major classes of existing replication architectures—traditional

hierarchical/client-server [65, 68, 48] and server-replication architectures [96, 72]. Because

URA can adapt to the network conditions (TI), it dominates the restricted topology PR-AC

client-server approach; because URA can exploit locality to send just the information of

interest to the palmtop (PR), it dominates the full-replication (AC-TI) server replication ap-

proach. Although the third major class of existing replication architectures—PR-TI object

replication architectures [36, 77, 60]—are capable of having performance comparable to

URA, these systems give up URA’s ability to provide cross-object consistency guarantees

(AC), which can increase complexity and errors for applications and users. By providing

all these PRACTI properties, URA dominates most of existing approaches.

1.1 Challenges

The challenges to constructing such a universal data replication architecture mainly come

from the need to meet three requirements.

• First, the architecture must beflexible. Because replication systems cover a large

design space, to serve as a common substrate for developing different systems, the

architecture must be capable of implementing a wide range of systems including

client-server systems [65, 68, 48], server-replication systems [96, 72], object replica-

tion systems [36, 77, 60], systems that use callbacks [65, 68, 48], systems that use

polling [79, 11], systems that use leases [33, 101], systems that subscribe to groups

of objects [23, 48], systems that fetch individual objects on demand [65], and so on.

• Second, the architecture must beefficient. It should not only be able to support a wide

variety of systems but also ensure that the cost a specific system implementation pays

is proportional to the demands it has, i.e., resulting in systems that are comparable to

hand-built systems.

• Finally, the architecture interface exposed to system designers must besimple. On

5



one hand the architecture should support as many replication policy choices as pos-

sible to cover the large design space. On the other hand, it must make it easy for

system designers to specify replication policies and reason about replication cost and

consistency semantics.

Meeting those requirements in a single framework is challenging because the com-

bination of some of the requirements make it difficult to support other requirements. In

particular, as we will illustrate in more details in Chapter 2, supporting flexible consistency

(to be flexible and simple) requires careful ordering of how updates propagate through the

system, but consistent ordering becomes more difficult if nodes communicate in ad-hoc

patterns (to be efficient) or if some nodes only know about updates to some objects but not

those to other objects (to be efficient).

1.2 Approaches

To address these challenges, the URA design strictly follows one principle:separation of

mechanisms and policies. The mechanisms define the abstractions for storage, communica-

tion, and consistency that automatically handle the bookkeeping needed to allow policies to

distribute data however they want. Policies specify system-specific choices such as what to

synchronize, who to synchronize with, and when to synchronize. The URA implementation

defines acore that embodies these mechanisms and leaves policy definition to a separate

controllerso that different deployments may use different controllers to implement different

policies. This thesis focuses on the core mechanisms.

1.2.1 CR-Repl: Coarse-grain PRACTI Replication

As a first step to meet the above three requirements, the URAcore implements acoarse-

grain replication protocol (CR-Repl)that supports three vital properties simultaneously:

Partial Replication(PR)—for flexibility and efficiency any data can be replicated on any
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device; Any Consistency(AC)—for flexibility and simplicity the architecture supports a

range of consistency guarantees; andTopology Independence(TI)—for flexibility and sim-

plicity information can flow between any pair of nodes.

To implement these three vital properties, CR-Repl draws on key ideas of existing

protocols but recasts them to remove the deeply-embedded policy assumptions that prevent

one or more properties. In particular, our design begins with log exchange mechanisms

that support a range of consistency guarantees and ad-hoc communication topology but

that fundamentally assume full replication [72, 96, 103]. To support partial replication, we

extend the mechanisms in two simple but fundamental ways.

1. In order to allow partial replication of data, our designseparates the control path

from the data pathby separating invalidation messages that identify what has changed

from body messages that encode the changes to the contents of objects. Distinct inval-

idation messages are widely used in hierarchical caching systems [65, 48, 12], but we

demonstrate how to use them in topology-independent systems: we develop explicit

synchronization rules to enforce consistency despite multiple streams of information,

and we introduce general mechanisms for handling demand read misses.

2. In order to allow partial replication of update metadata, we introduceimprecise in-

validations, which allow a single invalidation to conservatively summarize a set of

invalidations. Imprecise invalidations allow us to provide cross-object consistency

in a scalable manner in which each node incurs storage and bandwidth costs propor-

tional to the size of the requested data sets.

To support imprecise invalidations, we define a protocol that allows nodes to compose

precise invalidations into imprecise ones, to incrementally exchange logs of mixed

precise and imprecise invalidations, to allow precise reads (that see aconsistentview

of the data) or imprecise reads (that see only acoherentview of the data), and to

recover precision for objects that have become imprecise.
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1.2.2 UR-Repl: Universal Replication Mechanisms

Although the basic CR-Repl protocol covers a large design space and is efficient for some

scenarios, it incurs significant overhead when it comes to implementing single object call-

backs [42, 68], which are fundamental to many caching protocols, or supporting workloads

where checkpoint exchange is a more efficient way for synchronization. To generalize the

PRACTI mechanisms to a universal architecture, we extend the CR-Repl protocol in three

fundamental ways to address these limitations:

1. In order to efficiently support both coarse-grained and fine-grained subscriptions, we

multiplex invalidation subscriptionsover a single network stream. By maintaining a

shared state for multiple subscriptions and allowing one imprecise invalidation to be

used across all active subscriptions, UR-Repl allows a node to dynamically subscribe

or unsubscribe for invalidations to a large set of objects or to individual objects with

the cost proportional to the total number of updates to the subscribed objects.

2. In order to support fast resynchronization of different type of workloads, UR-Repl

introduces a novelincremental checkpoint exchangeand smoothly integrates it with

CR-Repl’s log exchange protocol. Instead of freezing the receiver and sender’s states

as required in most existing checkpoint exchange protocols [72], UR-Repl allows the

receiver to receive an incremental checkpoint for a small portion of its ID space and

then either prefetch checkpoints of other interest sets or fault them in on demand.

Therefore, UR-Repl is more efficient to support bandwidth-limited network environ-

ment than existing approaches.

3. In order to support efficient conflict detection for both log exchange and checkpoint

exchange, we use noveldependency summary vectors (DSV)to detect write-write

conflicts. This new write-write conflict detection algorithm yields three advantages.

First, by having multiple objects to share the same version vector to detect conflicts,

UR-Repl avoids sending and storing per-object version vector, thus saving network

8



bandwidth and storage space. Second, this conflict detection mechanism not only

works for the log exchange protocol but also works for the checkpoint exchange

protocol. Finally, we show how to efficiently implement the DSV using the state

already required by the consistency maintenance algorithm—one version vector per

interest set plus one version vector per network connection.

1.2.3 Case-Study Systems

A core hypothesis of URA is that a single framework can cleanly support a broad range of

systems. To test whether our mechanisms capture the right abstractions and simplify the

understanding and construction of replication systems, we first explain how to map a broad

range of existing technologies such as callbacks, leases, and quorums. onto our underlying

mechanisms and then combine a subset building blocks into series of case-study systems

inspired by systems from the literature spanning a significant portion of the design space.

These case-study systems include:

• Two client-server systems modeled on Coda [48] and TRIP [66] which illustrate how

to map existing techniques such ascallbacks, leases, hoarding list sequential consis-

tency, anddisconnected operationto URA;

• Two server replication systems modeled on Bayou [72] and Chain Replication [91]

which demonstrate how to map existing techniques such asprimary server commit

(CSN) [72],anti-entropy, andcheckpoint exchangeto URA;

• Two object replication systems modeled on Pangaea [77] and TierStore [23] which

show how to map existing techniques or features such asgold nodes[77], best-effort

coherence, andDTN supportto URA.

We also demonstrate how URA facilitates rapid evolution by adding significant fea-

tures to several of these systems. For example, we add cooperative caching to U-Coda, our

version of Coda, so that a clique of devices can share data even when disconnected from
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the server; we add support for small devices to U-Bayou so that a limited-storage device

can participate in Bayou replication without storing all of the system’s data; and we add

cooperative caching to U-TierStore so that once one user in a developing region downloads

data across an expensive modem link, nearby users can retrieve that data using their local

wireless network; and we add hierarchy to U-TRIP to improve scalability.

1.3 Contributions

This dissertation makes the following contributions:

• It defines the PRACTI paradigm and provides a taxonomy for replication systems

that explains why existing replication architectures fall short of ideal.

• It describes the first replication protocol architecture to simultaneously provide all

three PRACTI properties.

• It defines common abstractions of data replication systems that cleanly separate mech-

anism from policy and thereby simplify the understanding and construction of repli-

cation systems.

• It demonstrates that URA replication offers decisive practical advantages compared

to existing approaches.

• It demonstrates the usefulness of URA by building several key case study applications

and mapping existing techniques on URA.

• It proposes novel incremental checkpoint exchange, flexible commit primitive, and

efficient conflict detection algorithms.

The rest of this dissertation is organized as follows: Chapter 2 defines the PRACTI prop-

erties and taxonomy to understand data replication design space, and it illustrates why it
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is challenging to provide PRACTI properties in one single framework. This chapter closes

with a discussion of the scope of URA and some issues that URA does not attempt to

address. Chapter 3 gives an overview of the architecture and describes the simple abstrac-

tions URA exposes to system designers. Chapter 4 shows how to implement CR-Repl

mechanisms and demonstrates the experiment results. Chapter 5 presents how to make

CR-Repl mechanisms efficient bymultiplexing subscriptions, addingincremental check-

point exchange, and usingdependency summary vectorsfor conflict detection. Chapter 6

describes how to map existing techniques to URA, and then Chapter 7 illustrates how to

combine some of them to build a broad range of case-study systems. Chapter 8 summarizes

related work. Finally, Chapter 9 concludes the dissertation.
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Chapter 2

PRACTI Taxonomy, Challenges and

Scope

In order to put the URA approach in perspective, this section defines the PRACTI prop-

erties, examines existing replication architectures, and considers why years of research

exploring many different replication protocols have failed to realize PRACTI properties

simultaneously. Finally we define the scope of the PRACTI paradigm and identify aspects

of replication system design that are not within the scope of the PRACTI taxonomy on the

URA protocol.

2.1 PRACTI Properties

Replication systems cover a large design space. Some cache objects on demand [42, 68],

while others replicate all data to all nodes [72, 96]; some guarantee strong consistency [48,

91, 66] while others sacrifice consistency for higher availability [77, 23, 36]; some invali-

date stale objects [42, 68], while others push updates [37]; some disseminate updates among

nodes via a tree structure [23], while others synchronize data in an ad-hoc fashion [72]; and

so on.
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Informally, we can categorize replication policies into three families:placement

policiessuch as demand-caching [42, 68], prefetching [35], push-caching [37], or replicate-

all [72, 96] define which nodes store local copies of which data;consistency policiessuch as

sequential [52] or causal [43] define which reads must see which writes;topology policies

such as client-server [42, 68], hierarchy [12, 65], or ad-hoc [36, 50, 72] define the paths

along which updates flow.

To cover the large design space of replication systems, any universal data replication

architecture should provide all three PRACTI properties:

• Partial replication (PR)which allows any node to replicate any subset of data so that

replication systems that make use of locality to improve performance [48] or that

control placement to improve reliability [77] can be supported.

• Any consistency (AC)which allows a variety of consistency guarantees to be imple-

mented so that systems that require weaker consistency like best-effort coherence and

those which require stronger consistency like linearizability [40] can be supported.

• Topology independence (TI)which allows any node to synchronize with any other

node so that systems with fixed update propagation topologies as well as those with

dynamic, ad-hoc update topologies can be supported.

Although many existing systems can each provide two of these properties, we are

aware of no system that provides all three. As a result, systems give up the ability to exploit

locality, support a broad range of applications, or dynamically adapt to network topology.

Note that the requirements for supporting flexible consistency guarantees are sub-

tle, and Chapter 6 discusses the full range of flexibility our protocol provides. URA should

support both the weak coherence-only guarantees acceptable to some applications and the

stronger consistency guarantees required by others. Note thatconsistencysemantics con-

strain the order that updates acrossmultiple objectsbecome observable to nodes in the
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system whilecoherencesemantics are less restrictive in that they only constrain the or-

der that updates to asingle objectbecome observable but do not additionally constrain the

ordering of updates across multiple locations. (Hennessy and Patterson discusses the dis-

tinction between consistency and coherence in more detail [39].) For example, if a noden1

updates objectA and then objectB and another noden2 reads the new version ofB, most

consistency semantics would ensure that any subsequent reads byn2 see the new version

of A, while most coherence semantics would permit a read ofA to return either the new or

old version.

2.2 PRACTI Taxonomy

The PRACTI paradigm defines a taxonomy for understanding the design space for replica-

tion systems as illustrated in Figure 2.1. As the figure indicates, many existing replication

systems can be viewed as belonging to one of four protocol families, each of which provides

at most two of the PRACTI properties.

Server replicationsystems like Replicated Dictionary [96] and Bayou [72] provide

log-based peer-to-peer update exchange that allows any node to send updates to any other

node (TI) and that consistently orders writes across all objects. Lazy Replication [50] and

TACT [103] use this approach to provide a wide range of tunable consistency guarantees

(AC). Unfortunately, these protocols fundamentally assume full replication: all nodes store

all data from any volume they export and all nodes receive all updates. As a result, these

systems are unable to exploit workload locality to efficiently use networks and storage, and

they may be unsuitable for devices with limited resources.

Client-serversystems like Sprite [68] and Coda [48] andhierarchicalcaching sys-

tems like hierarchical AFS [65] permit nodes to cache arbitrary subsets of data (PR). Al-

though specific systems generally enforce a set consistency policy, a broad range of con-

sistency guarantees are provided by variations of the basic architecture (AC) [99]. How-

ever, these protocols fundamentally require communication to flow between a child and
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Figure 2.1: Replication system classification in the PRACTI taxonomy.

its parent. Even when systems permit limited client-client communication for cooperative

caching [20, 25, 4], they must still serialize control messages at a central server for consis-

tency [14]. These restricted communication patterns (1) hurt performance when network

topologies do not match the fixed communication topology or when network costs change

over time (e.g., in environments with mobile nodes), (2) hurt availability when a network

path or node failure disrupts a fixed communication topology, and (3) limit sharing during

disconnected operation when a set of nodes can communicate with one another but not with

the rest of the system.

DHT-based storage systemssuch as BH [89], PAST [76], and CFS [17] implement

a specific—if sophisticated—topology and replication policy: they can be viewed as gener-

alizations of client-server systems where the server is split across a large number of nodes

on a per-object or per-block basis for scalability and replicated to multiple nodes for avail-

ability and reliability. This division and replication, however, introduce new challenges for
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providing consistency. For example, the Pond OceanStore prototype assigns each object to

a set of primary replicas that receive all updates for the object, uses an agreement proto-

col to coordinate these servers for per-object coherence, and does not attempt to provide

cross-object consistency guarantees [75].

Object replicationsystems such as Ficus [36], Pangaea [77], and WinFS [60] allow

nodes to choose arbitrary subsets of data to store (PR) and arbitrary peers with whom to

communicate (TI). But, these protocols enforce no ordering constraints on updates across

multiple objects, so they can provide coherence but not consistency guarantees. Unfortu-

nately, reasoning about the corner cases of consistency protocols is complex, so systems

that provide only weak consistency or coherence guarantees can complicate constructing,

debugging, and using the applications built over them. Furthermore, support for only weak

consistency may prevent deployment of applications with more stringent requirements.

2.3 Why Is PRACTI Hard?

It is surprising that despite the disadvantages of omitting any of the PRACTI properties,

no system provides all three. Our analysis suggests that these limitations are fundamental

to these existing protocol families: the assumption of full replication is deeply embedded

in the core of server replication protocols; the assumption of hierarchical communication

is fundamental to client-server consistency protocols; careful assignment of key ranges to

nodes is central to the properties of DHTs; and the lack of consistency is a key factor in the

flexibility of object replication systems.

To understand why it is difficult for existing architectures to provide all three PRACTI

properties, consider Figure 2.2’s illustration of a naive attempt to add PR to a AC-TI server

replication protocol like Bayou. Suppose a user’s desktop node stores all of the user’s files,

including filesA andB, but the user’s palmtop only stores a small subset that includesB

but notA. Then, the desktop issues a series of writes, including a write to fileA (making

it A′) followed by a write to fileB (making it B′). When the desktop and palmtop syn-
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Figure 2.2: Naive addition of PR to AC-TI.

chronize, for PR, the desktop sends the write ofB but not the write ofA. At this point,

everything is OK: the palmtop and desktop have exactly the data they want, and reads of lo-

cal data provide a consistent view of the order that writes occurred. But for TI, we not only

have to worry about local reads but also propagation of data to other nodes. For instance,

suppose that the user’s laptop, which also stores all of the user’s files including bothA and

B, synchronizes with the palmtop: the palmtop can send the write ofB but not the write

of A. Unfortunately, the laptop now can present an inconsistent view of data to a user or

application. In particular, a sequence of reads at the laptop can return the new version ofB

and then return the old version ofA, which is inconsistent with the writes that occurred at

the desktop under causal [43] or even the weaker FIFO consistency [54].

This example illustrates the broader, fundamental challenge: supporting flexible

consistency (AC) requires careful ordering of how updates propagate through the system,

but consistent ordering becomes more difficult if nodes communicate in ad-hoc patterns

(TI) or if some nodes know about updates to some objects but not other objects (PR).

Existing systems resolve this dilemma in one of three ways. The full replication of

AC-TI replicated server systems ensures that all nodes have enough information to order

all updates. Restricted communication in PR-AC client-server and hierarchical systems en-

sures that the root server of a subtree can track what information is cached by descendants;

the server can then determine which invalidations it needs to propagate down and which it
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can safely omit. Finally, PR-TI object replication systems simply give up ability to consis-

tently order writes to different objects and instead allow inconsistencies such as the one just

illustrated.

2.4 Scope and Excluded Properties

A deeper challenge to designing a replication architecture is how to identify the essential

characteristics of replication systems the architecture should encompass. Research papers

discuss many features of their systems, and prototype implementations often include even

more features not mentioned in papers. However, not all features are crucial to the archi-

tecture being advocated. Spending the time to create “bug compatible” implementations

would detract from the central thrust of our research effort and would also likely confuse

rather than clarify our results.

URA therefore focuses on supporting key features that relating to how replication

systems maximize the performance, availability, and consistency to address the CAP [31]

and PC [54] trade-offs. In particular, in Section 7.1.1, we formally define areplication

equivalencenotion based onoverhead, consistencyandavailable local data.

2.4.1 Excluded properties

These definitions restrict the scope of our architecture. Several excluded properties warrant

discussion: security, interface, conflict resolution, and configuration.

First, we do not address security. We believe that ultimately our replication archi-

tecture should also define flexible security mechanisms and make specifying a system’s

security a policy choice. Providing this ability is important future work, but it is outside the

scope of this paper, which can be regarded as focusing on the architectural problem of al-

lowing systems to define their replication, consistency, and topology policies [9] to address

the CAP [31] and PC [54] trade-offs. Mahajan et al. explore security issues for a simple

protocol elsewhere [56].
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Second, we do not systematically address the local interface a system exposes (e.g.,

file system [48, 77, 66], object store [22], tuple store [72], etc.) because we do not regard

these differences as fundamental. URA currently implements a object store and we have

constructed several file systems over it; future work is needed to extend it to support tuple-

stores.

Third, we do not attempt to support all possible conflict resolution algorithms [48,

88, 47, 83, 22]. URA logs all write-write conflicts in a way that is data-preserving and

consistent across nodes to support a broad range of application-level resolvers. We be-

lieve it is possible to extend our mechanisms to support Bayou’s more flexible application-

specified conflict detection and reconciliation programs, but supporting this additional flex-

ibility would increase the cost of applying updates to a node’s storage because it would

requires a node’s state to be rolled back to the logical time of an update in order to run the

conflict detection and resolution programs in an appropriate context [88].

Finally, we do not attempt to duplicate how systems are configured (e.g., specifying

lists of peers or replication policy with configuration files [48] or symbolic links [62, 22]).

We rely on some configuration files and provide hooks for our liveness policies to access

the object store, but we do not claim that our arrangement is optimal.
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Chapter 3

Architecture Overview

Given the PRACTI properties, URA’s mechanisms can expose very simple abstractions for

system designers to implement a broad range of systems. Before we describe how to address

the challenge of providing the PRACTI properties, this chapter first gives an overview of

the URA architecture by defining the basic replication abstractions URA expose to system

designers and then describes the requirements to implement such abstractions. Chapter 4

and Chapter 5 describe how to implement these abstractions efficiently and correctly. Chap-

ter 6 discusses how to map existing features to these abstractions and Chapter 7 describes

how to build more sophisticated case-study systems.

3.1 Replication Abstractions

Figure 3.1 provides a high-level view of the URA architecture. To separate the mechanism

and policy, the architecture is divided into two separate layers. The mechanism layercore

is composed of a set of basic mechanisms that support PRACTI features. The policy layer

controller implements specific system policies using the underlying common mechanisms

through a set of replication interfaces. System designers can build different replication

systems in the policy layer by constructing different controller instances.
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The controller’s major task is to allow system designers to specify replication poli-

cies to trigger the right communication between the right cores at the right time to do such

things as satisfying a read miss, prefetching data to improve performance. In particular, to

build a replication system, a system designer must specify two sets of replication policies.

• Policies for storage. This set of policies specify the consistency requirements and the

data placement strategies of a system. For example, they answer questions such as

“what consistency semantics” to enforce and “what objects to store locally on each

node”.

• Policies for communication. This set of policies specify the update distribution strate-

gies including where to send invalidations, when to send bodies, and where to go for

body etc.

As Figure 3.1 illustrates, to implement those replication policies, the URA core

exposes two basic abstractions: storage and communication. A controller instance works

with the core to construct a replication system through thelocal API andcommunication

API to implement the storage and communication policies: a core informs the controller of

important local events like message arrival or read miss, a controller calls a remote core’s

communication APIto trigger transmissions of invalidation streams or bodies and calls a

local core’sLocal API to enforce consistency guarantees. Additionally, a set of controllers

implementing a specific distributed policy may communicate with one another using policy-

specific interfaces.

To illustrate how the system works, let’s look at how to deal with a read miss.

When a core can not satisfy a local read request because the data is INVALID, it informs

the controller and blocks the read thread until the data is VALID. The controller responses

to theinformcall by invoking a core demand read request to fetch the data from the core of

a remote node it selects. When the body arrives, the local core applies it to make it VALID,

unblocks the waiting read, and informs the controller so that the controller does not have

to retry. Chapter 7 has more concrete illustration of the interactions between the controller
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Figure 3.1: One node replication abstractions.

and the core.

3.1.1 Storage

The storage abstraction is simple and has two main parts: (1) anobject storeto store a subset

of the system’s data locally selected by the policy for serving local read/write requests and

(2) consistency statesto track and expose the dependencies among updates.

Object store. For simplicity, URA exposes a bare object-store interface for local reads

and writes. It is straightforward to build other sophisticated higher-level interfaces such

as a file system on top of it. For example, Chapter 6 will describe an NFS interface we

implement using the basic object-store interface.

In order to support replication and caching, each node has an object store that con-

tains a subset of the system’s data. Every object has an object ID and byte-addressable data.
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An interest set(IS) identifies an individual object or a group of objects (e.g., /a/b/*) and a

policy can specify and update a list of interest sets for which a node should store per-object

state. This per-object state includes consistency state information related to the object and

may include the data stored in each byte-range if that data has been received by the node.

A node need not store per-object state for objects outside of the interest sets specified by

the policy. A node also tracks per-IS state that contains sufficient information to derive the

consistency state for all objects covered by an interest set.

Consistency state. To be universal, URA’s consistency state must meet two requirements.

First, it must be flexible to support a wide range of constraints. Second, it must be simple.

The underlying system should handle details to maintain sufficient consistency bookkeeping

information to make it easy for policy writers to specify high-level requirements.

URA defines two sets of primitives to implement the consistency state. First, it

maintains a per-node logical vector clock and a per-node real-time vector clock to track

the overall state of each node. These version vectors are updated when invalidations or

heartbeats are received from other nodes. The logical vector clock is used to track the

updates a node has learned of and is useful for supporting TACT’s [103]order error (OE);

the real-time vector clock is used to track objects’ staleness and is useful for enforcing to

support TACT’s tunabletemporal error(TE) and leases. We will discuss how to support

those mechanisms in more detail in Chapter 6.

Second, by maintaining the per-object state and per-IS state, a node tracks 3 basic

consistency states for each object that is included in its interest sets:

1. VALID tracks whether the node has data corresponding to the highest received in-

validation for the target object. It is useful for enforcing coherence by blocking each

read when the target object is invalid and for maximizing availability by ensuring that

invalidations received from other nodes are not applied until they can be applied with

their corresponding data [23, 66].
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2. PRECISEtracks whether the object’s local state reflects all updates before the node’s

current logical time. It is useful for enforcing cross object consistency. For example,

to enforce causal consistency, a node blocks a read until the targeted object isVALID

andPRECISE. This combination ensures that each read returns the newest update

of its target object up to the node’s current logical time, therefore they provide a

consistent view across different objects.

When an object is imprecise, it means that the node may not receive all updates tar-

geting this object, which might lead to inconsistency. For example, suppose there are

four updatesW0 andW2 on o1 andW1 andW3 on o2 that are causally ordered as

W1 < W2 < W3 < W4. Suppose a nodeα only receivesW0 andW3, thenα sees

the old value ofo1 and the new value ofo2, which violates the causal consistency.

3. SEQUENCEDtracks whether the current local version of the target object has been

placed in a total order. It is useful for enforcing strong consistency semantics such

as sequential consistency and linearizability that require commit protocols. For ex-

ample, to support a primary commit protocol [72], the primary server can commit

updates by setting theSEQUENCEDstatus in the order invalidations arrive, and then

each client blocks each read until the target object isSEQUENCED.

Local API. Given the range of consistency policies enabled by the basic object store and

consistency state mechanisms, URA allows system designers to specify a consistency policy

via a node’slocal API. As Figure 3.1 indicates, the local API operates on the local object

store and consistency state and allows clients to read/write objects. A consistency policy

defines the circumstances under which it is safe to process a read/write request or to return

a response. In particular, enforcing consistency semantics generally requires blocking reads

until a sufficient set of updates are reflected in the locally accessible state, blocking writes

until the resulting updates make it to some or all of the system’s nodes, or both.

URAś local API therefore allowsblocking predicatesto block a read request, a write
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isValid Block until node has body corresponding to highest re-
ceived invalidation for the target object, i.e., the target
per-object state VALID istrue.

isComplete Block until object’s consistency state reflects all up-
dates before the node’s current logical time, i.e., the
target object state PRECISE istrue.

isSequenced Block until object’s total order is established
propagated
nodes, count, p

Block until count nodes innodes have received my
pth most recent write

maxStale
nodes, count, t

Block until I have received all writes up to
(operationStart− t) from count nodes innodes.

tupletuple-spec Block until receiving a message matchingtuple-spec

Figure 3.2: Conditions available for defining consistency policies.

request, or application of received updates until a predicate is satisfied. The predicates

specify conditions based on the consistency bookkeeping information maintained by the

persistent storage or they can wait for the arrival of a specific message generated by the

liveness policy. Basing the predicates on these inputs suffices to specify any order-error or

staleness error constraint in Yu and Vahdat’s TACT model [103] and thereby implement a

broad range of consistency models from best effort coherence to delta coherence [85] to

causal consistency [51] to sequential consistency [52] to linearizability [103].

URA defines 5 points for which a policy can supply a predicate and a timeout value

that blocks a request until the predicate is satisfied or the timeout is reached.ReadNow-

Blockblocks a read until it will return data from a moment that satisfies the predicate, and

WriteBeforeBlockblocks a write before it modifies the underlying local store.ReadEnd-

BlockandWriteEndBlockblock read and write requests after they have accessed the local

store but before they return.ApplyUpdateBlockblocks an update received from the network

before it is applied to the local store.

Figure 3.2 lists the conditions available to consistency predicates.isValid if settrue

blocks a read/write request until the per-object state isV ALID. It is useful for enforcing

coherence.isCompleteandisSequencedare useful for enforcing consistency semantics like

causal, sequential, or linearizable.PropagatedandmaxStalenessare based on the status
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Local Operations

Read obj, off, len, blockUntilVALID, blockUntil PRECISE, blockUntilSEQUENCED
Write obj[], off[], len[], time, blockUntil PRECISE, blockUntilSEQUENCED
Delete obj, time
AssignSequence obj, version, time

Figure 3.3: Local storage access interface for policy writers.

of the per-node logical vector clock and real-time vector clock; they are useful for enforc-

ing TACT order error and temporal error tunable consistency guarantees [103].propagated

is also useful for enforcing some durability invariants. Cases not handled by these predi-

cates are handled bytuple. Tuplebecomes true when the liveness policies produce a tuple

matching a specified pattern.

For maximum flexibility, each read/write operation includes parameters to specify

the consistency state semantics. Figure 3.3 lists the basic local read/write interfaces URA

core exposes. TheblockUntil X parameters if specified will block the operations until

the consistency state of the target object isX. Note that theWrite interface allows a

write operation to atomically update one or more objects which is useful for implementing

a file system interface andAssignSequence interface is useful for implementing commit

protocols such as Bayou’s primary commit (CSN) protocol [72]. System designers typically

insulate applications and users from the full interface by adding a simple wrapper that

exposes a standard read/write API and that adds the appropriate parameters before passing

the requests through to URA. For example, to enforce causal consistency, a system designer

can add a wrapper that calls the basic read interface by setting theblockUntil V ALID and

blockUntil PRECISE to betrue, i.e., put theisValidandisPrecisepredicate to the read

interface. Chapter 6 explains how to use these basic API and predicates to write wrappers

for different consistency semantics.
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3.1.2 Communication

Each update is distributed by two types of messages: aninvalidation message that sum-

marizes which object1 the update targets and when the update occurs and abodymessage

that contains the actual contents of the update. These messages are distributed in the sys-

tem by setting up uni-directional invalidation subscriptions and body subscriptions/fetches

between nodes.

Invalidation subscriptions. An invalidation subscription has two parameters: a start time

startVV (a version vector) and a subscription setSS(a collection of object IDs) that to-

gether define the request: “send all invalidations for objects in SS that have occurred since

startVV”. Besides sending the invalidations for subscribed objects, the invalidation stream

also delivers sufficient metadata information for objects outside the subscription set to allow

the receiver to track dependencies among all updates.

If the start time for a subscription is earlier than the sender’s current logical time,

then the sender can transmit either alog of the events that occurred between the start time

and the current time or acheckpointthat includes just the most recent update to each byte

range since the start time. Sending a log is more efficient when the number of recent

changes is small compared to the number of objects covered by the subscription. Con-

versely, a checkpoint is more efficient if (a) the start time is in the distant past (so the log of

events is long) or (b) the subscription is for only a few objects (so the size of the checkpoint

is small). Note that once a subscription catches up with the sender’s current logical time,

updates are sent as they arrive, effectively putting all active subscriptions into a mode of

continuous and incremental log transfer.

Invalidation subscriptions can be used for coarse-grained replication of directory

trees or volumes. For example, in a departmental file system, a user, Alice, can subscribe

the subdirectory of/users/Aliceso as to get only the information about her files. Invalidation

1Our prototype API allows atomic multi-object write; for simplicity, we only describe the single-object
invalidations.
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Updates Distribution Interface

Add Inval Sub srcId, destId, objs, LOG|CP|CP+Body
Remove Inval Sub srcId, destId, objects
Add Body Sub srcId, destId, objs
Remove Body Sub srcId, destId, objs
Send Body srcId, destId, objId, off, len, time

Figure 3.4: Communication interface for policy writers.

subscriptions can also be used to support fine-grainedcallbacksmechanism commonly used

in caching systems [48, 42, 68, 12, 65, 100]. For example, by creating an invalidation

subscription with a subscription set composed of onlyo, a client can create a callback for

objecto on the server so that the server will notify the client whenever an update too occurs.

Body subscriptions and body fetches. Whereas invalidation subscriptions make nodes

aware of the remote updates that have occurred, body messages deliver the contents of

these updates. Each body message identifies the invalidation with which it is associated and

carries the contents of the corresponding update. Each node can request an individual body

message or specify a subscription setSSand a start timestartVVto subscribe for receiving

the body messages forSSthat have occurred sincestartVVfrom any other node.

Discussion. These simple communication abstractions are sufficient to cover the large de-

sign space summarized in [78]. In particular, they can be used to support arbitrarydistribu-

tion topologyincluding client-server structures like Coda, chain structures like Chain Repli-

cation, and Bayou style ad hoc topologies by simply setting up invalidation subscriptions

and body subscriptions between nodes to form any desired structure. Arbitrarysynchroniza-

tion schedulescan be enforced simply by orchestrating the start and stop of invalidation or

body subscriptions. Regarding thesynchronization contents, although the subscription ab-

straction separates the distribution of invalidation and body, distribution ofentire update

can be supported simply by setting up the invalidation stream the same way as the body

28



Connection Events

Inval subscription start srcId, destId, objs
Inval subscription caught-up srcId, destId, objs
Inval subscription end srcId, destId, objs, reason
Body subscription start srcId, objs, destId
Body subscription end srcId, destId, objs, reason

Local Operation Events

Read blocks obj, off, len, EXIST|VALID |PRECISE|SEQUENCED
Write obj, off, len, time
Delete obj, time

Message Arrival events

Inval arrives sender, obj, off, len, time
Fetch success sender, obj, off, len, time
Fetch failed sender, receiver, obj, offset, length, time

Figure 3.5: Events exposed to policy writers.

stream and delaying applying an invalidation until the corresponding body arrives. Arbi-

trarydata placementcan be enforced by setting the subscription sets of invalidation streams

and body streams.

Communication API. Figure 3.4 lists the communication APIs URA exposes for policy

writers to set up subscriptions for any subset of updates between any pair of nodes at any

time.

In order to provide sufficient information for policy writers to build sophisticated

policies, besides the storage API and communication API, URA also exposes a set of event

notification interface to the controller. As listed in Figure 3.5, these events include local

operation events such as local read blocked and local write issued, connection events such

as body subscription start and invalidation subscription failed, and message arrival events

such as invalidation arrived or body fetch failed.
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3.2 Requirements

To be a universal substrate for building different replication systems for different workloads

or environments, the protocol should not only be able to support a wide variety of systems

but also ensure that the cost a specific system implementation pays is proportional to the

demands it has, i.e., it should limit the cost for generality. In particular, the implementation

of the above abstractions needs to meet the following correctness and cost requirements:

• To support flexible consistency guarantees, the local storage and invalidation streams

should at least preserve the causality of updates. As demonstrated in Chapter 6,

maintaining causality is almost as cheap as coherence, and causality can be used as

a basic building block for stronger consistency guarantees such as sequential consis-

tency [51] and linearizability [40] and also for tunable consistency guarantees like

TACT [103].

• To support small devices with limited storage capacity, a node’s storage requirement

should be proportional to the number of and size of the objects that the node is inter-

ested in.

• To support bandwidth-limited network connections, the overall bandwidth consump-

tion for an invalidation stream should be proportional to the total number of updates

to the objects subscribed.

Although the basic abstractions are simple, the challenge is how to implement them

to meet the correctness and cost requirements. For example, to support traditional per-object

callbacks, the network bandwidth cost should be proportional to the number of updates to

these objects that have callbacks, therefore the protocol must omit the information about

other updates. However to support causal consistency, we have to send sufficient metadata

information about updates to other objects as well. In the next two chapters, we present

protocols that implement these abstractions and meet these goals.
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Chapter 4

CR-Repl: Coarse-grain PRACTI

Replication

We implement the replication abstractions described in the previous chapter in two steps.

First, we implement a novel peer-to-peer replication protocol CR-Repl that realizes

the invalidation/body subscription abstractions and the storage abstractions. In particular,

this protocol provides the following key properties:

• It provides all the three PRACTI properties described in Chapter 2: (1)Partial Replication—

it allows any node to replicate any subset of data and metadata; (2)Any Consistency—

it provides both strong and weak consistency guarantees so that only applications that

require strong guarantees pay for them; and (3)Topology Independence—it allows

any node to exchange updates with any other node.

• It implements a novel log maintenance algorithm to efficiently store and form impre-

cise invalidations.

• It enablesself-tuning body propagationfor efficient prefetching.

• It providesincremental log exchangeto allow systems to minimize the window for

conflicting updates.
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• It provides a conflict detection mechanism based on a per-updateprevious stamp.

The CR-Repl protocol has three key limitations. First, although the use of im-

precise invalidations enables efficient coarse-grain invalidation subscriptions, it falls short

to support dynamic fine-grained invalidation subscriptions. Second, the incremental log

exchange protocol is inefficient for some workloads where checkpoint exchange is more

efficient. Finally, although it supports a simple write-write conflict detection mechanism,

doing so adds an extra per-update stamp overhead for both storage and network bandwidth,

and the conflict detection protocol may not work properly when the log is truncated.

Therefore, at the second step, we implement a universal replication protocol UR-

Repl to fix these limitations. This protocol supports four key features: (1)incremental log

exchange and checkpoint exchangewhich allows a node to receive an incremental prefix

of updates or an incremental checkpoint to support fast resynchronization of subsets of

data and incremental progress despite network disruptions; (2)efficient support for both

coarse-grained and fine-grained invalidation subscriptionswhich allows a node to dynam-

ically subscribe or unsubscribe for invalidations to a large set of objects or to individual

objects from any other node with the cost proportional to the total number of updates to the

subscribed objects; (3)efficient conflict detectionwhich allows nodes to accurately detect

conflicting writes during either log exchange or checkpoint exchange with reasonable over-

heads so that it can support large-scale data replication systems. ; and (4)flexible commit

mechanismswhich implement theSEQUENCEDconsistency state without requiring any

rollback as is required in Bayou [72] and enable a range of commit protocols by allowing

system designers to control when and under what circumstances to commit a write.

This chapter focuses on the description of the CR-Repl protocol, and we leave the

description of the UR-Repl protocol in the next Chapter. The rest of this chapter first gives

an overview of the basic data structures and key ideas of CR-Repl, and then describes the

key ideas in more details in Section 4.2 and Section 4.3. After that, Section 4.4 presents

the special log maintenance algorithm and Section 4.5 describes other novel features of
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Figure 4.1: Core data structures.

our prototype that enable it to support the broadest range of policies. Finally, Section 4.6

experimentally evaluates the prototype.

4.1 Implementation Overview

Figure 4.1 illustrates the main local data structures of each node’s core to implement the

abstractions described in Chapter 3. Each core maintains aLogand aRandom Access State

(RAS). The log is used to store updates for future potential update exchange. The RAS

implements the storage abstractions including theobject storeand theconsistency state.

Applications access data stored in the local core via the per-nodeLocal API for creating,

reading, writing, deleting, and sequencing objects. These functions operate the local node’s

log and RAS: modifications are appended to the log and then update the RAS, and reads

access the RAS. To support partial replication policies, the mechanisms allow each node

to select an arbitrary subset of the system’s objects to store locally, and nodes are free

to change this subset at any time (e.g., to implement caching, prefetching, hoarding, or

replicate-all).
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As described in Chapter 3, to handle read misses and to exchange updates between

nodes, URA cores use two types of communication—causally orderedStreams of Invalida-

tionsand unorderedBodymessages. To implement these communication abstractions, the

URA core includes four communication modules as illustrated in the figure:ApplyBodyand

ApplyInvalmodules for processing incoming messages,SendBodyandSendInvalmodules

for assembling and transmitting outgoing messages.

The protocol for sending streams of invalidations is similar to Bayou’s [72] log

exchange protocol, and it ensures that each node’s log and RAS always reflect a causally

consistent view of the system’s data. But it differs from existing log exchange protocols in

two key ways:

1. Separation of invalidations and bodies.Invalidation streams notify a receiver that

writes have occurred, but separate body messages contain the contents of the writes.

A core coordinates these separate sources of information to maintain local consis-

tency invariants. This separation supports partial replication of data—a node only

needs to receive and store bodies of objects that interest it.

2. Imprecise invalidations.Although the invalidation streams each logically contain a

causally consistent record of all writes known to the sender but not the receiver, nodes

can omit sending groups of invalidations by instead sendingimprecise invalidations.

Whereas traditionalprecise invalidationsdescribe the target and logical time of a

single write, an imprecise invalidation can concisely summarize a set of writes over an

interval of time across a set of target objects. Thus, a single imprecise invalidation can

replace a large number of precise invalidations and thereby support partial replication

of metadata—a node only needs to receive traditional precise invalidations and store

per-object metadata for objects that interest it.

Imprecise invalidations allow nodes to maintain consistency invariants despite partial

replication of metadata and despite topology independence. In particular, they serve

as placeholders in a receiver’s log to ensure that there are no causal gaps in the log
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a node stores and transmits to other nodes. Similarly, just as a node tracks which

objects areINVALID so it can block a read to an object that has been invalidated

but for which the corresponding body message has not been received, a node tracks

which sets of objects areIMPRECISEso it can block a read to an object that has been

targeted by an imprecise invalidation and for which the node therefore may not know

about the most recent write.

In the next two subsections we first detail how the protocol separates invalidations

and bodies and then describe how it implements imprecise invalidations.

4.2 Separation of Invalidations and Bodies

As just described, nodes maintain their local state by exchanging two types of updates: or-

dered streams of invalidations and unordered body messages.Invalidationsare metadata

that describe writes; each contains an object ID1 and logical time of a write (a.k.a. accept

stamp). A write’s logical timeacceptStampis assigned at the local interface that first re-

ceives the write, and it contains the current value of the node’s Lamport clock [51] and the

node’s ID. Like invalidations,body messagescontain the write’s object ID and logical time,

but they also contain the actual contents of the write.

The protocol for exchanging updates is simple.

• As illustrated in Figure 4.1, each node maintains alog of the invalidations it has

received sorted by logical time. And, for random access, each node stores bodies in

the RAS indexed by object ID.

• Invalidations from a log are sent via a causally-ordered stream that logically contains

all invalidations known to the sender but not to the receiver. As in Bayou, nodes use

1For simplicity, we describe the protocol in terms of full-object writes. For efficiency, our implementation
actually tracks per-object state, invalidations, and bodies on arbitrary byte ranges.
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version vectors to summarize the contents of their logs in order to efficiently identify

which updates in a sender’s log are needed by a receiver [72].

• A receiver of an invalidation inserts the invalidation into its sorted log and updates its

RAS. RAS update of the entry for object ID entails marking the entryINVALID and

recording the logical time of the invalidation. Note that RAS update for an incoming

invalidation is skipped if the RAS entry already stores a logical time that is at least as

high as the logical time of the incoming invalidation.

• A node can send any body from its RAS to any other node at any time. When a node

receives a body, it updates its RAS entry by first checking to see if the entry’s logical

time matches the body’s logical time and, if so, storing the body in the entry and

marking the entryVALID.

4.2.1 Rationale

Separating invalidations from bodies provides topology-independent protocol that supports

both arbitrary consistency and partial replication.

Supporting arbitrary consistency requires a node to be able to consistently order all

writes. Log-based invalidation exchange meets this need by ensuring three crucial proper-

ties [72]. First theprefix propertyensures that a node’s state always reflects a prefix of the

sequence of invalidations by each node in the system, i.e., if a node’s state reflects theith

invalidation by some noden in the system, then the node’s state reflects all earlier invalida-

tions byn. Second, each node’s local state always reflects acausally consistent[43] view

of all invalidations that have occurred. This property follows from the prefix property and

from the use of Lamport clocks to ensure that once a node has observed the invalidation

for write w, all of its subsequent local writes’ logical timestamps will exceedw’s. Third,

the system ensureseventual consistency: all connected nodes eventually agree on the same

total order of all invalidations. This combination of properties provides the basis for a broad

range of tunable consistency semantics using standard techniques [103].
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At the same time, this design supports partial replication by allowing bodies to

be sent to or stored on any node at any time. It supports arbitrary body replication poli-

cies including demand caching, push-caching [37, 77, 94], prefetching [35], hoarding, pre-

positioning bodies according to a global placement policy [93], or push-all [72].

4.2.2 Design Issues

The basic protocol adapts well-understood log exchange mechanisms [72, 96]. But, the sep-

aration of invalidations and bodies raises two new issues: (1) coordinating disjoint streams

of invalidations and bodies and (2) handling reads of invalid objects.

The first issue is how to coordinate the separate body messages and invalidation

streams to ensure that the arrival of out-of-order bodies does not break the consistency

invariants established by the carefully ordered invalidation log exchange protocol. The

solution is simple: when a node receives a body message, it does not apply that message

to its RAS until the corresponding invalidation has been applied. A node therefore buffers

body messages that arrive “early.” As a result, the RAS is always consistent with the log,

and the flexible consistency properties of the log [103] extend naturally to the RAS despite

its partial replication.

The second issue is how to handle demand reads at nodes that replicate only a subset

of the system’s data. The core mechanism supports a wide range of policies: by default, the

system blocks a local read request until the requested object’s status isVALID. Of course,

to ensure liveness, when anINVALID object is read, an implementation should arrange

for someone to send the body. Therefore, when a local read blocks, the core notifies the

controller. The controller can then implement any policy for locating and retrieving the

missing data such as sending the request up a static hierarchy (i.e., ask your parent [12]

or a central server [42]), querying a separate centralized [26] or DHT-based [89] directory,

using a hint-based search strategy [81], or relying on a push-all strategy [72, 96] (i.e., just

wait and the data will come.)
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Figure 4.2: Imprecise invalidation example.

4.3 Partial Replication of Invalidations

Although separation of invalidations from bodies supports partial replication of bodies, for

true partial replication the system must not require all nodes to see all invalidations or to

store metadata for each object. Exploiting locality is fundamental to replication in large-

scale systems, and requiring full replication of metadata would prevent deployment of a

replication system for a wide range of environments, workloads, and devices. For example,

consider palmtops caching data from an enterprise file system with 10,000 users and 10,000

files per user: if each palmtop were required to store 100 bytes of per-object metadata,

then 10GB of storage would be consumed on each device. Similarly, if the palmtops were

required to receive every invalidation during log exchange and if an average user issued just

100 updates per day, then invalidations would consume 100MB/day of bandwidth to each

device.

The implementation of invalidation subscriptions is complicated by the following

two restrictions. On one hand, an invalidation stream(SS, startV V ) is supposed to only

send updates for objects inSS. Therefore the cost needs to be proportional to the number

of invalidations to those objects. On the other hand, to maintain cross-object causal consis-

tency, invalidation streams need to send information for updates to objects outside ofSS.

Even if a node never looks at objects outside ofSS and can tolerate not seeing those up-

dates, it could relay to another node updates aboutSS but not updates about objects outside
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of SS on which those updates depend and thereby lead to violations of consistency.

To support true partial replication and meet the efficiency and consistency require-

ments, CR-Repl invalidation streamslogically contain all invalidations as described in Sec-

tion 4.2, but inreality they omit some by replacing them withimprecise invalidations.

Imprecise invalidations. As Figure 4.2 illustrates, an imprecise invalidation is a conser-

vative summary of several standard orprecise invalidations.Each imprecise invalidation

has atargetSetof objects,start logical time, and anendlogical time, and it means “one or

more objects intargetSetwere updated betweenstart andend.” An imprecise invalidation

must beconservative: each precise invalidation that it replaces must have itsobjId included

in targetSetand must have its logicaltime included betweenstart andend, but for efficient

encodingtargetSetmay include additional objects. In our prototype, thetargetSetis en-

coded as a list of subdirectories and thestart andendtimes are partial version vectors with

an entry for each node whose writes are summarized by the imprecise invalidation. Finally,

note that a standard precise invalidation is simply a special case of an imprecise invalidation

with a single-objecttargetSet, single-entrystart andendtimes, andstart = end.

A node reduces its bandwidth requirements by subscribing to receive precise inval-

idations only for desired subsets of data and receiving imprecise invalidations for the rest.

And a node saves storage by tracking per-object state only for desired subsets of data and

tracking coarse-grained bookkeeping information for the rest.

4.3.1 Forming Imprecise Invalidations

URA forms an imprecise invalidationI by combining generalized invalidationsGI1 and

GI2. I hasstart andendarrays with entries for every nodeη in eitherGI1 or GI2’s start,

andI.startη = min(GI1.startη, GI2.startη), andI.endη = max(GI1.endη, GI2.endη).

Finally, I.targetSet encompasses all objects encompassed byGI1 andGI2’s targetSets.

When a controller asks nodeα to send a stream of invalidations to nodeβ, the

controller specifies two parameters that each filter the transmitted information: a start time
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Figure 4.3: Invalidation streams with imprecise invalidations.

startV V to provide a filter on logical time and a subscription setSS to provide a filter

on the ID space.α replies with a causally consistent stream of all invalidations it knows

about that logically occurred afterstartV V . Invalidations whose target intersectsSS are

sent as is (typically they are precise, but some may be imprecise), butα combines other

invalidations into imprecise summaries as just described. This process is incremental and

continuous—as new invalidations arrive atα, α sends them on toβ once all causally prior

invalidations have been sent.

Examples. Figure 4.3 gives two examples of invalidation streams. Nodeα has received a

list of causally ordered invalidations as indicated in the second box. When a node subscribes

for /A/∗ from startV V = 〈−1@α,−1@β〉, the invalidation stream consists of precise

invalidations for/A/∗ and imprecise invalidations for/B/∗ and/C/∗ and they are sent in

causal order as indicated inStream 1. For example, the list of precise invalidations for/B/∗

in ©1 are replaced by one imprecise invalidation©2. Similarly, when the node subscribes for

/B/∗, α sends all invalidations of/B/∗ as they are and combines invalidations for/A/∗
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and/C/∗ into imprecise invalidations as indicated inStream 2.

4.3.2 Applying Imprecise Invalidations

In the previous section, we define how a node creates and sends an invalidation stream;

the rest of this section details how our implementation copes with maintaining local state

as nodes receive invalidation streams by (a) applying invalidations in causal order despite

the multiple start and end times in imprecise invalidations and despite concurrency across

streams and (b) maximizing the information extracted and stored from each invalidation in

a stream to minimize the amount ofIMPRECISEdata a node stores locally and to minimize

the scope of imprecise invalidations propagated to other nodes.

When a node receives an imprecise invalidationI, it insertsI into its log and updates

its RAS. For the log, imprecise invalidations act as placeholders to ensure that the omitted

precise invalidations do not introduce causal gaps in the log that a node stores locally or in

the streams of invalidations that a node transmits to other nodes.

Design issues. Tracking the effects of imprecise invalidations on a node’s RAS must ad-

dress four related problems:

1. For consistency, a node mustlogically mark all objects targeted by a new imprecise

invalidation asINVALID. This action ensures that if a node tries to read data that

may have been updated by an omitted write, the node can detect that information is

missing and block the read until the missing information has been received.

2. For liveness, a node must be able to unblock reads for an object once the per-object

state is brought up to date (e.g., when a node receives the precise invalidations that

were summarized by an imprecise invalidation.)

3. For space efficiency, a node should not have to store per-object state for all objects.

As the example at the start of this subsection illustrates, doing so would significantly
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restrict the range of replication policies, devices, and workloads that can be accom-

modated.

4. For processing efficiency, a node should not have to iterate across all objects encom-

passed bytargetSetto apply an imprecise invalidation.

Interest set status. To meet these requirements, rather than track the effects of impre-

cise invalidations on individual objects, nodes keep bookkeeping information on groups

of objects calledInterest Sets. In particular, each node independently partitions the object

ID space into one or more interest sets and decides whether to store per-object state on a

per-interest set basis. A node tracks whether each interest set isPRECISE(per-object state

reflects all invalidations) orIMPRECISE(per-object state is not stored or may not reflect

all precise invalidations) by maintaining two pieces of state.

• Each node maintains a global variablecurrentVV, which is a version vector encom-

passing the highest timestamp of any invalidation (precise or imprecise) applied to

any interest set.

• Each node maintains for each interest setIS the variableIS.lpVV, which is the latest

version vector for whichIS is known to bePRECISE.

If IS.lpVV = currentVV, then interest setIS has not missed any invalidations and it isPRE-

CISE. Otherwise, the interest set may have missed on or more precise invalidations, and we

regard the interest set asIMPRECISE.

In this arrangement, applying an imprecise invalidationI to an interest setISmerely

involves updating two variables—the globalcurrentVVand the interest set’slpVV. In partic-

ular, a node that receives imprecise invalidationI always advancescurrentVVto includeI’s

endlogical time because after applyingI, the system’s state may reflect events up toI.end.

Conversely, the node only advancesIS.lpVVto the latest time for whichIS has missed no

invalidations.
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1: // Global state:
2: // currentV V – node’s current version vector
3: // IS.lpV V – IS’s last precise version vector
4: // RASobj – per-object state
5: // log – replay log
6: // Per-stream state:
7: // stream = startV V, GI1, GI2, . . .
8: // GI – next generalized invalidation to apply
9: // prevV V – logical time before next GI applied

10: // pending – set of GI’s whose end time has not passed
11:
12: ProcedureProcessInvalStream(IS, stream)
13: prevV V = stream.readObj()
14: if ! includes(currentV V, prevV V )
15: return; //Reject streams that do not preserve prefix property
16: pending = new Set()
17: GI = stream.readObj()
18: while (GI 6= EOF ) do
19: nextStartV V =advanceToInclude(prevV V, GI.start)
20: if !(∃bufferedInval ∈ pending |includes(nextStartV V,bufferedInval.end))
21: log.insert(GI, prevV V )
22: //Update interest set status
23: currentV V =advanceToInclude(currentV V, GI.end) // update (1)—see text
24: if includes(IS.lpV V, prevV V ) // If no gaps, update lpVV
25: if GI.isPrecise() // Advance to include precise inval
26: IS.lpV V =advanceToInclude(IS.lpV V, GI.start) // update (2)
27: else// Advance to just before imprecise inval
28: IS.lpV V =advanceNoInclude(IS.lpV V, GI.start) // update (3)
29: //Update per-object state
30: if GI.isPrecise()
31: RASGI.objId.valid = INV ALID
32: RASGI.objId.accept = GI.start
33: pending.insert(GI) // Apply to non-overlapping later
34: prevV V = nextStartV V // Update stream logical time
35: GI = stream.readObj()
36: else// Apply non-overlappingbufferedInval frompending at end time
37: if !(bufferedInval.target intersectsIS)
38: if includes(lpV V, prevV V )
39: IS.lpV V =advanceToInclude(IS.lpV V,bufferedInval.endV V ) // update (4)
40: pending.remove(bufferedInval)

Figure 4.4: Stream processing algorithm for interest setIS with stream = {startV V , GI1,
GI2, . . .}
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1: ProcedureadvanceToInclude(V V 1, V V 2)
2: for all nodeId do
3: retV VnodeId = max(V V 1nodeId, V V 2nodeId)
4: returnretV V
5:
6: ProcedureadvanceNoInclude(V V 1, V V 2)
7: for all nodeId do
8: retV VnodeId = max(V V 1nodeId, V V 2nodeId − 1)
9: returnretV V

10:
11: Procedureincludes(V V 1, V V 2) // Does VV1 include VV2?
12: for all nodeId do
13: if V V 2nodeId > V V 1nodeId

14: return false
15: return true

Figure 4.5: Utility functions forProcessInvalStream.

Algorithm details. One of the most intellectually challenging parts of our effort in de-

veloping the CR-Repl prototype was to get the imprecise invalidation processing precisely

right. Figure 4.4 and Figure 4.5 detail the algorithm for processing an incoming stream of

invalidations. As indicated in Figure 4.4 line 7, each incoming invalidation stream consists

of a logical start timestartV V followed by a series of general invalidationsGI1, GI2, . . .

such that any invalidation whose start time logically occurs afterstartV V and on which

GIi causally depends appears beforeGIi. A generalized invalidationGIi can be either a

precise invalidation or an imprecise invalidation.

For each general invalidationGI, the log, the per-object state, and the interest set

status must be updated. Updating the per-object state (lines 29 to 32) was described in

Section 4.2, and we will discuss updating the log (line 21) in Section 4.4. The remaining

issue is updating the per-interest setPRECISEstate (lines 22 to 24 and lines 37 to 40), i.e.,

updatingcurrentV V and one or morelpV V s.

At the core of the algorithm is a simple idea: an interest set isPRECISEif it has

missed no precise invalidations. To track an interest setIS’s state, besides the two vari-

ablescurrentV V andIS.lpV V as described above, the receiver also tracks aper-stream

version vectorprevV V that always holds the logical time justbeforethe next invalidation
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Update Code IS state GI type GI Action
Number Line When intersectsIS

(1) 23 GI.start ANY ANY ANY AdvancecV V to includeGI.end
(2) 26 GI.start PRECISE PRECISE ANY AdvanceIS.lpV V to includeGI.end

(= GI.end) (= GI.start)
(3) 28 GI.start PRECISE IMPRECISE ANY AdvanceIS.lpV V to just beforeGI.start
(4) 39 GI.end PRECISE IMPRECISE NO AdvanceIS.lpV V to includeGI.end

Figure 4.6: Summary of cases for updating interest set PRECISE/IMPRECISE status.

in the stream is applied. Each invalidationGI is processed in the context of the logical

time stream.prevV V at which it was applied to determine ifGI can advanceIS.lpV V .

stream.prevV V is initialized to the stream’sstartV V (line 13) and advanced to include

gi.end as eachGI is processed (line 19 and line 34).

The interest set status information is updated in four places as summarized in Fig-

ure 4.6. The first three updates occur whenGI is first encountered in the stream, i.e., when

it is known that there is no event that is causally afterstream.prevV V and causally before

GI. The fourth occurs atGI.end, i.e., when it is known that no remainingGIi in the stream

contains any event that causally occurs beforeGI.end.

WhenGI is first encountered in the stream, we always advancecurrentV V to

include theend timeof GI because the system now reflects information inGI (update

number 1 in the table, line 23 in the pseudo-code). Further, due to the prefix property,GI ’s

presence in the causal invalidation stream means that any interest set that wasPRECISE

beforeGI is still PRECISEto GI.start. So, if interest setIS was PRECISEat time

stream.prevV V , then we advanceIS.lpV V .

We advanceIS.lpV V differently depending on whetherGI is a precise or impre-

cise invalidation. IfGI is precise, then there have been no imprecise invalidations be-

tweenstream.prevV V andGI.start, and we advanceIS.lpV V to includeGI.end (note:

GI.start = GI.end if GI is precise.) That case is update number 2 in the table and line

26 in the pseudo-code. Conversely, ifGI is imprecise, we can only advanceIS.lpV V to

just beforeGI.start (i.e.,∀α : IS.lpV Vα = max(IS.lpV Vα, GI.startα − 1)). That case
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is update number 3 in the table and line 28 in the pseudo-code.

Two points should be emphasized:

• Notice that when there is a gap in the logical time sequence for a given node,GI.start

may exceedIS.lpV V even though no invalidations were skipped. This is why we

maintainprevV V for each stream and why line 24 comparesIS.lpV V againstprevV V

rather than againstGI.start when deciding whether it is safe to advanceIS.lpV V .

• Notice that an imprecise invalidationGI will always advancecurrentV V to include

GI ’s endtime but can at most advanceIS.startV V to just beforeGI ’s start time.

It is this difference that causes imprecise invalidations to make interest setsIMPRE-

CISE.

If we stopped here, an imprecise invalidation would make both interest sets it over-

laps and interest sets it does not overlapIMPRECISE. The algorithm addresses this issue

by buffering each imprecise invalidation after it is first applied at its start time and apply-

ing a buffered invalidationbufferedInvalagain oncestream.prevV V includesbufferedIn-

val’s end time (i.e., once allGIs whose start times precedebufferedInval’s end time have

been processed.) ApplyingbufferedInvaladvancesIS.lpV V to includebufferedInval.end

for any interest setIS that (a)bufferedInval.targetSet doesnot intersect and that (b) is

PRECISEas of logical timestream.prevV V . This case is update number 4 in the ta-

ble and line 39 in the code. Notice that by waiting untilbufferedInval’s end time before

advancing “nonoverlapping” invalidations to the end time, we avoid erroneously advanc-

ing lpV V for an interest set that becomesIMPRECISEbetweenbufferedInval.start and

bufferedInval.end.

Finally notice that the algorithm above ensures that if an interest setIS becomes

IMPRECISE, it can be made precise by receiving a stream that contains all precise invali-

dations that occurred betweenIS.lpV V andcurrentV V and that targetsIS.

Summary. This algorithm meets the four requirements listed above.
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1. By default, a read request blocks until the interest set in which the object lies isPRE-

CISEand the object isVALID. This blocking ensures that reads only observe the RAS

state they would have observed if all invalidations were precise and therefore allows

nodes to enforce the same consistency guarantees as protocols without imprecise in-

validations.

2. For liveness, the system must eventually unblock waiting reads. The core signals

the controller when a read of anIMPRECISEinterest set blocks, and the controller

is responsible for arranging for the missing precise invalidations to be sent. When

the missing invalidations arrive, they advanceIS.lpVV. The algorithm for processing

invalidations as described above guarantees that any interest setIScan be madePRE-

CISEby receiving a sequenceS of invalidations fromIS.lpVV to currentVVif S is

causally sorted and includes all precise invalidations targetingIS in that interval.

3. Storage is limited: each node only needs to store per-object state for data currently

of interest to that node. Thus, the total metadata state at a node is proportional to

the number of objects of interest plus the number of interest sets. Note that our

implementation allows a node to dynamically repartition its data across interest sets

as its locality patterns change.

4. Imprecise invalidations are efficient to apply, requiring work that is proportional to

the number of interest sets at the receiver rather than the number of summarized

invalidations.

Example. The example in Figure 4.7 illustrates the maintenance of interest set state. Ini-

tially, (1) interest setIS is PRECISEand objectsA, B, andC are VALID. Then, (2) an

imprecise invalidationI arrives. I (3) advancescurrentVVbut notIS.lpVV, makingIS IM-

PRECISE. But then (4) precise invalidationsPI1 andPI2 arrive on a single invalidation
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B  VALID  99@node1
C  VALID  100@node1

A  VALID  98@node1
Per−IS State:      lastPreciseVV[node1] = 100
Global State:      currentVV[node1] = 103

B  INVALID  103@node1
C  VALID      100@node1

A  INVALID  101@node1
Per−IS State:      lastPreciseVV[node1] = 103
Per−Obj State:

Global State:      currentVV[node1] = 103

PI1=(A, 101@node1), PI2=(B, 103@node1)

Per−Obj State:
B  VALID  99@node1
C  VALID  100@node1

A  VALID  98@node1

Global State:      currentVV[node1] = 100
Per−IS State:      lastPreciseVV[node1] = 100

I=(target={A,B,C}, start=101@node1, end=103@node1)

1
Initial State
IS is PRECISE

5
Final State
IS is PRECISE

2
Imprecise
Inval Arrives

3
IS is now
IMPRECISE

4
Missing
Precise Invals
Arrive

Per−Obj State:

Figure 4.7: Example of maintaining interest set state. For clarity, we only shownode1’s
elements ofcurrentVVandlpVV.

channel from another node. (5) These advanceIS.lpVV, and in the final stateIS is PRE-

CISE, A andB areINVALID, andC is VALID.

Notice that although the node never receives a precise invalidation with time102@node1,

the fact that a single incoming stream contains invalidations with times101@node1and

103@node1allows it to infer by the prefix property that no invalidation at time102@node1

occurred, and therefore it is able to advanceIS.lpVVto makeIS PRECISE.

4.4 Log Maintenance

Each node stores the invalidations it generates or receives from other nodes in a log for

future potential invalidation subscriptions with other nodes. One of the main goals of log

maintenance is to maximize the information extracted and stored from each invalidation in

a stream to minimize the amount ofIMPRECISEdata a node stores locally and to minimize

the scope of imprecise invalidations propagated to other nodes.

Imprecise invalidations complicate log updates. For example, a nodeη may receive
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startVV[ ]: 0γ
gi: <1   5   (A,B)>γγα

β

η δgi: <1   1   A>
gi: <1   5   (A,B)>
gi: <4   8   (B,C)>

γ γ
γγ

γ γ

startVV[ ]: 0γ

IMPRECISE
IMPRECISE

IMPRECISE
PRECISE

PRECISE
IMPRECISE

IMPRECISE
PRECISE

B.lpVV[ ] = 3γB.lpVV[ ] = 3γ
startVV[ ]: 0γ
gi: <1   1   A>
gi: <4   8   (B,C)>

γ γ
γ γ

curVV[ ] = 8curVV[ ] = 8γ γ
A.lpVV[ ] = 1γA.lpVV[ ] = 8γ

C.lpVV[ ] = 5γC.lpVV[ ] = 5γ
D.lpVV[ ] = 8γD.lpVV[ ] = 8γ

(a) Naive log exchange.

startVV[ ]: 0γ
gi: <1   5   (A,B)>γγα

β

η δgi: <1   1   A>
gi: <4   5   B>
gi: <6   8   (B,C)>

γ γ
γγ

γ γ

startVV[ ]: 0γ

IMPRECISE

PRECISE
IMPRECISE

PRECISE
IMPRECISE

PRECISE
IMPRECISE

PRECISE
B.lpVV[ ] = 3γ

startVV[ ]: 0γ
gi: <1   1   A>
gi: <4   8   (B,C)>

γ γ
γ γ

B.lpVV[ ] = 3γ

curVV[ ] = 8curVV[ ] = 8γ γ

D.lpVV[ ] = 8γ D.lpVV[ ] = 8γ
C.lpVV[ ] = 5γ C.lpVV[ ] = 5γ

A.lpVV[ ] = 8A.lpVV[ ] = 8γ γ

(b) Log exchange with gap-filling and intersection.

Figure 4.8: Log exchange example. Nodeη first receives a log fromα, then receives a log
from β, and then sends the combined log toδ. Imprecise invalidations have three fields:
〈start, end, targetSet〉. Note that all writes were issued by nodeγ and, for clarity, we
show onlyγ’s component for all version vectors.

different subsets of information from different peersα andβ. η must ensure that imprecise

invalidations received fromα do not “mask” precise invalidations received fromβ and vice

versa. Notice that the algorithm just described updates a node’s local state by interpreting

each invalidation relative to the per-streamprevV V , which allows the algorithm to infer

that there are no missing invalidations betweenstream.prevV V and the invalidation. But,

if η were simply to store each invalidation in its log, some of this valuable “no missing

invalidations” information could be lost. Then, as Figure 4.8-(a) illustrates, ifη were to

send its log to some other nodeδ, then even ifδ receives the same invalidations asη, δ

could end upIMPRECISEwhereη is PRECISE(e.g., for objectA) as indicated in the

colored boxes in Figure 4.8-(a). Another problem with the naive approach is that it sends

redundant invalidations which overlap some time intervals.

In order to ensure that a node can transmit all information received including both

the generalized invalidations and the information implicit in the incoming invalidation
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stream and only sends one invalidation for each time point, we augment our logs in three

ways.

First, each node maintains a single on-disk append-only replay log in which invali-

dations are stored in the order they are received. Additionally each node maintains separate

per-writer logs: when a node inserts an imprecise invalidationII into its log, it first appends

II to the on-disk log and decomposesII into per-writer general invalidations and then in-

serts the per-writer pieces into separate logs. DecomposingII into per-writer general inval-

idationsIIα is simple: for each serverα in II.start, generateIIα with start = II.startα,

end = II.endα, andtarget = II.target. Note that precise invalidationPI can be treated

as an imprecise invalidation withstart = PI.acceptStamp andend = PI.acceptStamp,

and it is already a per-writer invalidation.

Second, each per-writer log usesgap filling to explicitly encode the knowledge that

each incoming stream is causally consistent and is therefore FIFO consistent for each writer.

In particular, each per-writer log maintains the invariant that there is no gap between the end

time of an element and the start time of the next element. When a node insertsIIα into its

per-writer log forα, if IIα is newer than the newest element in the log, it fills any gap

betweenIIα.start and the existing element by inserting a new gap-filling invalidation with

a start stamp one larger than the highest existing end stamp, an end stamp one smaller than

IIα.start, and an empty target.

Third, each per-writer log usesintersectionto combine information received across

multiple streams. In particular, we maintain the invariant that there is at most one inval-

idation that covers any moment in time in a per-writer log. We intersect two per-writer

invalidationsa andb by replacing them with up to three per-writer invalidations: the first

covers the time from the earlier start to the later start and targets the objects targeted by

the earlier start; the second covers the time from the later start to the earlier end and covers

targets represented by the intersection ofa andb’s targets; and the third covers the time

from the earlier end to the later end and covers the targets of the later end.
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Figure 4.9: Illustration of imprecise invalidation mechanisms insplit-join scenario. Nodes
α, β, γ, andδ share objects a, b, and c. At each node, we show the per-interest-set in-
formation (last precise version vectorlpV V and current version vectorcV V ), the per-
invalidation-stream information (startV V and a series of generalized invalidations), and
the per-interest-set per-stream information (prevV V as it is updated as each generalized
invalidation is applied.) For clarity, we show onlyα’s component for all version vectors
and omit the node ID (α) in accept stamps.

As Figure 4.8-(b) illustrates, when a node sends a stream of invalidations to an-

other node, it discards gap-filling invalidations and it combines per-writer invalidations into

multi-writer invalidations. Notice that nowA is precise onδ.

Nodes can garbage collect any prefix of their logs, which allows each node to bound

the amount local storage used for the log to any desired fraction of its total disk space. The

truncated prefix can be summarized by a version vectoromitVV[72].

Split-join example. The following example is a bit involved, but we have found that

working through it step by step sheds considerable light on the purpose of the rules for

updating the interest set status and loggap fillingandintersectionjust described.

Figure 4.9 illustrates these mechanisms in action. Nodeα writes objects a, b, and

c; nodeβ cares about object a and receives fromα precise invalidations about a and impre-

cise invalidations about b and c. Nodeγ cares about object c and receives fromα precise

invalidations about c and imprecise invalidations about a and b. Finally, nodeδ cares about
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a and c and receives fromβ precise invalidations about a (but imprecise invalidations about

b and c due toβ’s imprecision) and fromγ precise invalidations about c (but imprecise

invalidations about a and b.) First,α sends a stream of invalidations (precise for a and

imprecise for b and c) toβ. As illustrated in the figure, each invalidation advancesβ’s

per-invalidation-stream, per-interest-setprevV V value as well asβ’s per-interest-set last

precise version vector (lpV V ) and current version vector (cV V ) for interest set{a}. How-

ever, because the second invalidation (4, 6, bc) intersects interest set{b,c}, that message

causes that interest set to become imprecise and subsequent invalidations fail to advance

that interest set’slpV V . After processing all four invalidations in that stream,β is precise

for interest set{a}, but imprecise for interest set{b,c}. γ’s behavior processing the stream

of precise invalidations for c and imprecise invalidations for a and b is similar.

Then, whenβ andγ send their log contents toδ, we show the case whereγ pro-

cessesβ’s first three invalidations, thenγ’s four invalidations, and finallyβ’s fourth invali-

dation. As the figure shows, after processing the first three invalidations fromβ, δ is precise

for {a}, but imprecise for{b} and{c}. The next four messages (fromγ) makeδ precise for

{c} but imprecise for{a} and{b}. Finally, the last message (fromβ) bringsδ to the state

one would desire: after seeing all precise invalidations for objects a and c,δ is precise for

both interest set{a} and{c} despite the fact that these precise messages were mixed with

some imprecise invalidations for objects a, b, and c. Finally, one may verify that because

of theδ’s gap filling and intersection operations,δ’s log contains sufficient information so

that a nodeε that receivesδ’s log contents could get precise updates for objects a or c.

Conversely, note that ifδ were simply to interleave the messages it received fromα andβ

without gap filling and intersection and then send them toε, information would be lost and

ε would be left imprecise for interest sets{a}, {b}, and{c}.
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4.5 Additional Features

Three novel aspects of our implementation further our goal of constructing a flexible frame-

work that can accommodate the broadest range of policies. First, our implementation uses

self-tuning body propagationto enable prefetching policies that are simultaneously aggres-

sive and safe. Second, our CR-Repl implementation adds aprevAcceptstate to support a

simple and flexible conflict detection and resolution mechanism. Third, our implementation

providesincremental log exchangeto allow systems to minimize the window for conflicting

updates. Finally, we use Golding’s algorithm [32] to implement theisSequencedpredicate.

4.5.1 Self-tuning Body Propagation

In addition to supporting demand-fetch of particular objects, our prototype provides a novel

self-tuning prefetching mechanism. A noden1 subscribes to updates from a noden2 by

sending a listL of directories of interest along with astartVVversion vector.n2 will then

sendn1 any bodies it sees that are inL and that are newer thanstartVV. To do this,n2

maintains a priority queue of pending sends: when a new eligible body arrives,n2 deletes

any pending sends of older versions of the same object and then inserts a reference to the

updated object. This priority queue drains ton1 via a low-priority network connection

that ensures that prefetch traffic does not consume network resources that regular TCP

connections could use [92]. When a lot of spare bandwidth is available, the queue drains

quickly and nearly all bodies are sent as soon as they are inserted. But, when little spare

bandwidth is available, the buffer sends only high priority updates and absorbs repeated

writes to the same object.

4.5.2 Conflict Detection and Resolution

The log exchange protocol just described last-writer-wins conflict resolution with global

eventual consistency in the case of concurrent writes. However, it is useful to not only

resolve conflicts in a globally consistent way but also to flag them and provide informa-
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tion about conflicting writes to a more flexible manual or programmatic conflict resolution

procedure.

To support more flexible conflict detection and resolution, we augment the algo-

rithm described above by adding a field,prevAcceptto both invalidation messages and to

per-object state. When a node receives an invalidationGI and appliesGI to the local store

of an objectobj (with GI.acceptStamp 6= obj.acceptStamp), there are three cases to

consider. First, ifGI.prevAccept == obj.acceptStamp, there is no write-write conflict.

The second case,GI.prevAccept > obj.acceptStamp, is impossible by the prefix prop-

erty. The third case,GI.prevAccept < obj.acceptStamp andGi.acceptStamp is not

included inobj.lpV V , represents a write-write conflict, which is resolved by updatingobj

with eitherGI or obj depending on which has a higher accept stamp and by storing the

losing entry to disk in a local (non-shared) per-objectconflict file; bodies that match stored

losing writes are also stored. CR-Repl implementations can provide a local interface for

reading and deleting these “losing” conflicting writes, which allows higher-level code to

resolve conflicts using application-specific rules by generating compensating transactions.

Note that although different nodes can see different series of “losing” writes, all

nodes that make an interest set precise are guaranteed to see the “final” write to each

causally–independent series. For example, consider the case of two causal chains of writes

to one object by the nodesα, β, andγ: (1) 0@α, 1@β, 2@β, 3@β and (2)0@α, 4@γ. The

protocol guarantees that eventually any precise node will agree that the final state of the

write is the result ofγ’s write at time 4 and that there was a write-write conflict that3@β

lost, and but different nodes may see different subsets of1@β, 2@β, 3@β, which seems

acceptable in that neither causal chain regards either1@β or 2@β as important values for

the final state of the system.
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4.5.3 Incremental Log Propagation

The prototype implements a novel variation on existing batch log exchange protocols. In

particular, in the batch log exchange used in Bayou, a node first receives a batch of updates

comprising a start timestartVVand a series of writes, it then rolls back its checkpoint to

beforestartVVusing an undo log, and finally it rolls forward, merging the newly received

batch of writes with its existing redo log and applying updates to the checkpoint. In contrast,

our incremental log exchange applies each incoming write to the current RAS state without

requiring roll-back and roll-forward of existing writes.

The advantages of the incremental approach are efficiency (each write is only ap-

plied to the RAS once), concurrency (a node can process information from multiple contin-

uous streams), and consistency (connected nodes can stay continuously synchronized which

reduces the window for conflicting writes.)

The disadvantage is that it only supports simple conflict detection logic: for our in-

cremental algorithm, a node detects a write/write conflict when an invalidation’sprevAccept

logical time (set by the original writer to equal the logical time of the overwritten value)

differs from the logical time the invalidation overwrites in the node’s RAS. Conversely,

batch log exchange supports more flexible conflict detection: Bayou writes contain adepen-

dencycheckprocedure that can read any object to determine if a conflict has occurred [88];

this approach works in a batch system because rollback takes all of the system’s state to a

logical moment in time at which these checks can be re-executed. Note that this variation

is orthogonal to the CR-Repl approach: a full replication system such as Bayou could be

modified to use our incremental log propagation mechanism, and a PRACTI system could

use batch log exchange with roll-back and roll-forward.

4.5.4 Simple Commit Implementation

As described in Chapter 3, URA exposes anisSequencedpredicate that blocks requests

according to write commit status. It is useful for implementing the stronger consistency
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semantics such assequential consistencyandlinearizability that require acommitprotocol

to establish a total order. A write iscommitted locallyif a node sees all preceding writes

in the final total order. The state of the art has different commit protocols including Gold-

ing’s algorithm [32], primary commit [72], and quorum-based commit protocol [90]. For

simplicity, here we use Golding’s algorithm2 to implement theisSequencedpredicate.

It is straightforward to implement Golding’s commit algorithm in CR-Repl. Each

node uses itscurrentVVto determine whether or not it has seen all writes with logical time

less than or equal tot and thus makes sure that all writes with logical stamp less thant

are committed. For example, ifα.currentV V equals(3@α, 5@β) and the system only has

two nodesα andβ, then we can derive that any write with an accept stamp less than3 are

committed. Note that for liveness, we need to put heartbeats at some nodes to bring the

last write (5@β in the above example) committed if there are no other updates at the other

nodes.

4.6 Evaluation

In this section we evaluate the properties of CR-Repl protocol. We use the prototype both

(1) to evaluate the PRACTI mechanisms in several environments such as web service repli-

cation, data access for mobile users, and grid scientific computing and (2) to characterize

PRACTI’s properties across a range of key metrics.

Our experiments seek to answer three questions.

1. Can protocols implemented on CR-Repl match/approximate wide range of existing

protocols?We find that our system performance can match most of existing systems

such as the PR-AC and AC-TI systems and approximate the performance of PR-TI

object replication systems that gives up cross-object consistency.

2. Do CR-Repl offer significant advantages over existing replication architectures for at

2We have also implemented a sequential consistency library based on the primary commit protocol
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least some environments?We find that our system can dominate existing approaches

by providing more than an order of magnitude better bandwidth and storage effi-

ciency than AC-TI replicated server systems, as much as an order of magnitude bet-

ter synchronization delay compared to PR-AC hierarchical systems, and consistency

guarantees not achievable by PR-TI per-object replication systems for some environ-

ments.

3. What are the costs of CR-Repl’s generality?Given that a flexible CR-Repl protocol

can subsume existing approaches, is it significantly more expensive to implement

a given system using URA than to implement it using narrowly-focused specialized

mechanisms? We find that the primary “extra” cost of CR-Repl’s generality is that our

system can transmit more consistency information than a customized system might

require. But, our implementation reduces this cost compared to past systems via

separating invalidations and bodies and via imprecise invalidations, so these costs

appear to be minor.

To provide a framework for exploring these issues, we compare our system with

the three major classes of replication architectures defined by the PRACTI taxonomy as

we described in Chapter 2. In particular, we first focus on partial replication by comparing

our protocol with AC-TI systems in 4.6.1. We then compare our protocol with PR-AC and

AC-TI systems in 4.6.2. Finally, we examine the costs of flexible consistency by comparing

our protocol with PR-TI in 4.6.3.

4.6.1 Partial Replication

When comparing to the AC-TI full replication protocols from which our CR-Repl system

descends, we find that support for partial replication can dramatically improve performance

for three reasons:
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Figure 4.10: Impact of locality on replication cost.

1. Locality of Reference:partial replication of bodies and invalidations caneachreduce

storage and bandwidth costs by an order of magnitude for nodes that care about only

a subset of the system’s data.

2. Bytes Die Young:partial replication of bodies can significantly reduce bandwidth

costs when “bytes die young” [7].

3. Self-tuning prefetching:self-tuning prefetching minimizes response time for a given

bandwidth budget.

It is not a surprise that partial replication can yield significant performance advantages

over existing server replication systems. What is significant is that (1) our experiments

provide evidence that despite the good properties of server replication systems (e.g., support

for disconnected operation, flexible consistency, and dynamic network topologies) these

systems may be impractical for many environments; and (2) they demonstrate that these

trade-offs are not fundamental—a CR-Repl system can support PR while retaining the good

AC-TI properties of server replication systems.
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Locality of reference. Different devices in a distributed system often access different

subsets of the system’s data because of locality and different hardware capabilities. In such

environments, some nodes may access 10%, 1%, or less of the system’s data, and partial

replication may yield significant improvements in both bandwidth to distribute updates and

space to store data.

Figure 4.10 examines the impact of locality on replication cost for three systems

implemented on our CR-Repl core using different controllers: a full replication system

similar to Bayou, a partial-body replication system that sends all precise invalidations to

each node but that only sends some bodies to a node, and a partial-replication system that

sends some bodies and some precise invalidations to a node but that summarizes other

invalidations using imprecise invalidations. In this benchmark, we overwrite a collection of

1000 files of 10KB each. A node subscribes to invalidations and body updates for subset of

the files that are of interest to that node. TheX axis shows the fraction of files that belong to

a node’s subset, and the y axis shows the total bandwidth required to transmit these updates

to the node.

The results show that partial replication of both bodies and invalidations is crucial

when nodes exhibit locality. Partial replication of bodies yields up to an order of magni-

tude improvement, but it is then limited by full replication of metadata. Using imprecise

invalidations to provide true partial replication can gain over another order of magnitude as

locality increases.

Note that Figure 4.10 shows bandwidth costs. Partial replication provides similar

improvements for space requirements (graph omitted).

Bytes die young. Bytes are often overwritten or deleted soon after creation [7]. AC-

TI Full replication systems send all writes to all servers, even if some of the writes are

quickly made obsolete. In contrast, CR-Repl replication can send invalidations separately

from bodies: if a file is written multiple times on one node before being read on another,

overwritten bodies need never be sent.
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Figure 4.11: Bandwidth cost of distributing updates as the number of writes to a file between
reads varies.

To examine this effect, we randomly write a set of files on one node and randomly

read the files on another node. As Figure 4.11 shows, CR-Repl’s gains are significant when

bytes die young. For example, when the write to read ratio is 2, CR-Repl uses 55% of

the bandwidth of full replication, and when the ratio is 5, CR-Repl uses 24%. At ratios

exceeding 20, CR-Repl’s gains exceed an order of magnitude.

Self-tuning prefetching. Separation of invalidations from bodies enables a novel self-

tuning data prefetching mechanism described in Section 4.5. As a result, systems can repli-

cate bodies aggressively when network capacity is plentiful and replicate less aggressively

when network capacity is scarce.

Figure 4.12 illustrates the benefits of this approach by evaluating three systems that

replicate a web service from a single origin server to multiple edge servers. In thedissem-

ination services[66] we examine, all updates occur at the origin server and all client reads

are processed at edge servers, which serve both static and dynamic content. We compare

the read response time observed by the edge server when accessing the database to service

client requests for three replication policies:Demand Fetchfollows a standard client-server
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HTTP caching model by replicating precise invalidations to all nodes but sending new bod-

ies only in response todemand readrequests,Replicate Allfollows a Bayou-like approach

and replicates both precise invalidations and all bodies to all nodes, andSelf Tuningexploits

CR-Repl to replicate precise invalidations to all nodes and to have all nodes subscribe for all

new bodies via the self-tuning prefetching mechanism. We use a synthetic workload where

the read:write ratio is 1:1, reads are Zipf distributed across files (α = 1.1), and writes are

uniformly distributed across files. We use Dummynet to vary the available network band-

width from 0.75 to 5.0 times the system’s average write throughput. In addition to prototype

benchmark experiment reported here, we also simulate performance under a range of other

parameters, which yields expected results: increasingα improves the read hit rate when not

all bodies are prefetched, decreasing the read to write ratio for a given write rate hurts the

read response time forDemand Fetch, and increasing the write rate shifts the curves to the

right.

As Figure 4.12 shows, when spare bandwidth is available, self-tuning prefetch-

ing improves response time by up to a factor of 20 compared toDemand-Fetch. A key

challenge, however, is preventing prefetching from overloading the system. Whereas our

self-tuning approach adapts bandwidth consumption to available resources,Replicate All

sends all updates regardless of workload or environment. This makesReplicate Alla poor
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Storage Dirty Data Wireless Internet

Office server 1000GB 100MB 10Mb/s 100Mb/s
Home desktop 10GB 10MB 10Mb/s 1Mb/s
Laptop 10GB 10MB 10Mb/s 50Kb/s

1Mb/s Hotel only
Palmtop 100MB 100KB 1Mb/s N/A

Figure 4.13: Configuration for mobile storage experiments.

neighbor—it consumes prefetching bandwidth corresponding to the current write rate even

if other applications could make better use of the network.

4.6.2 Topology Independence

We examine topology independence by considering two environments: a mobile data access

system distributed across multiple devices and a wide-area-network file system designed to

make it easy for PlanetLab and Grid researchers to run experiments that rely on distributed

state. In both cases, CR-Repl’s combined partial replication and topology independence

allows our design to dominate PR-AC topology-restricted hierarchical approaches by doing

two things:

1. Adapt to changing topologies: a CR-Repl system can make use of the best paths

among nodes.

2. Adapt to changing workloads: a CR-Repl system can optimize communication paths

to, for example, use direct node-to-node transfers for some objects and distribution

trees for others.

We primarily compare against standard PR-AC restricted-topology client-server systems

like Coda and IMAP. For completeness, our graphs also compare against AC-TI topology-

independent, full replication systems like Bayou.

Mobile storage. We first consider a mobile storage system that distributes data across

palmtop, laptop, home desktop, and office server machines. We compare a CR-Repl sys-
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Figure 4.14: Synchronization time among devices for different network topologies and
protocols.

63



tem to a client-server Coda- or IMAP-like system that supports partial replication but that

distributes updates via a central server and to a full-replication Bayou-like system that can

distribute updates directly between any nodes but that requires full replication. All three

systems are realized by implementing different controllers with different policies.

As summarized in Figure 4.13, our workload models a department file system that

supports mobility: an office server stores data for 100 users, a user’s home machine and

laptop each store one user’s data, and a user’s palmtop stores 1% of a user’s data. Note that

due to resource limitations, we store only the “dirty data” on our test machines, and we use

desktop-class machines for all nodes. We control the network bandwidth of each scenario

using a library that throttles transmission.

Figure 4.14 shows the time to synchronize dirty data among machines in four sce-

narios: (a)Plane: the user is on a plane with no Internet connection, (b)Hotel: the user’s

laptop has a 50Kb/s modem connection to the Internet, (c)Home: the user’s home machine

has a 1Mb/s connection to the Internet, and (d)Office: the office desktop has a 100Mb/s

connection to the Internet. The user carries her laptop and palmtop to each of these lo-

cations and co-located machines communicate via wireless network at speeds indicated in

Figure 4.13. For each location, we measure time for machines to exchange updates: (1)

Palm↔Lap: the palmtop and laptop exchange updates, (2) Palm↔Home: the palmtop and

home machine exchange updates, (3) Lap→Home: the laptop sends updates to the home

machine, (4) Office→All: the office server sends updates to all nodes.

In comparing the CR-Repl system to a client-server system, topology independence

has significant gains when the machines that need to synchronize are near one another

but far from the server: in the isolatedPlane location, the palmtop and laptop can not

synchronize at all in a client-server system; in theHotel location, direct synchronization

between these two co-located devices is an order of magnitude faster than synchronizing

via the server (1.7s v. 66s); and in theHomelocation, directly synchronizing co-located

devices is between 3 and 20 times faster than synchronization via the server.
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Figure 4.15: Execution time for the WAN-Experiment benchmark.

Conversely, as the “Full Replication” lines show, although existing server-replication

systems provide topology independence, full-replication limits their effectiveness. For ex-

ample, even if a palmtop is only interested in 100MB of the system’s data and in 100KB

of the laptops’ updates, full replication would require it to store 100GB of data and receive

10MB of updates when synchronizing with the laptop. Such a configuration appears infea-

sible, so if such an existing “full replication” system were used, it would likely manually

partition data into volumes and configure the system so that different devices store differ-

ent subsets of volumes. In principle, careful volume configuration could approximate the

performance of CR-Repl in this experiment, but it is not clear how to configure or manage

such a system. Also note that partitioning data into separate replication volumes would

sacrifice causal consistency across volumes and would likely prevent conflict detection and

reconciliation rules [88] whose inputs or outputs span volumes.

WAN-FS for Researchers. Figure 4.15 evaluates a wide-area-network file system called

PLFS designed for PlanetLab and Grid researchers. The controller for PLFS is simple: for

invalidations, PLFS forms a multicast tree to distribute all precise invalidations to all nodes.

And, when anINVALID file is read, PLFS uses a DHT-based system [97] to find the nearest

copy of the file; not only does this approach minimize transfer latency, it effectively forms
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a multicast tree when multiple concurrent reads of a file occur [5, 89].

We examine a 3-phase benchmark that represents running an experiment: in phase

1 Disseminate, each node fetches 10MB of new executables and input data from the user’s

home node; in phase 2Process, each node writes 10 files each of 100KB and then reads

10 files from randomly selected peers; in phase 3,Post-process, each node writes a 1MB

output file and the home node reads all of these output files. We compare PLFS to three sys-

tems: a client-server system, client-server with cooperative caching of read-only data [5],

and server-replication [72]. All 4 systems are implemented via CR-Repl using different

controllers.

The figures show performance for an experiment running on 50 distributed nodes

each with a 5.6Mb/s connection to the Internet (we emulate this case by throttling band-

width) and 50 cluster nodes at the University of Texas with a switched 100Mb/s network

among them and a shared path via Internet2 to the origin server at the University of Utah.

The speedups range from 1.5 to 9.2, demonstrating the significant advantages en-

abled by the CR-Repl architecture. Compared to client/server, it is faster in both the Dis-

semination and Process phases due to its multicast dissemination and direct peer-to-peer

data transfer. Compared to full replication, it is faster in the Process and Post-process

phases because it only sends the required data. And compared to cooperative caching of

read only data, it is faster in the Process phase because data is transferred directly between

nodes.

4.6.3 Any Consistency

This subsection first examines the benefits and then examines the costs of supporting flexi-

ble consistency.

Improved consistency trade-offs. CR-Repl improves the range of consistency trade-offs

available for replication. Gray [34] and Yu and Vahdat [102] show a trade-off: aggressive

propagation of updates improves consistency and availability but can also increase system
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Figure 4.16: Consistency trade-offs.

load. Yu’s study finds an order of magnitude improvement in reducing unavailability for

some workloads when using aggressive propagation of updates compared to lazy propaga-

tion and Gray shows that the number of conflicts can rise with the square of propagation

delay for some workloads [34].

We examine a range of consistency requirements and network failure scenarios via

simulation (all other experiments in this paper are prototype measurements.) We use a

synthetic read/write workload with the same parameters as the workload used in Fig 4.12.

We use an average network path unavailability of 0.1% with Pareto distributed repair time

R(t) = 1− 15t−0.8 [19].

In Figure 4.16-a we measure the best order error that can be maintained for a

given bandwidth budget. Order error constrains the number of outstanding uncommitted

writes [103]. We compare theTACT Aggressivepolicy [102] to aPRACTI Prefetchpol-

icy that aggressively distributes invalidations as in TACT’s policy but that distributes bod-

ies using the self-tuning approach. CR-Repl reduces the bandwidth needed to maintain

reasonable consistency by a factor of 3 compared toTACT Aggressiveand improves the
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consistency bounds attainable for some bandwidth budgets by orders of magnitude.

Figure 4.16-b plots system unavailability for an order error bound of 100 as band-

width varies. Following Yu and Vahdat’s methodology [102], we say that the system is

availableto a read or write request if the request can issue without blocking and the system

is unavailableif the request must block in order to meet the consistency target(i.e, the cur-

rent total order error is less than 100). When bandwidth is limited, CR-Repl dramatically

improves system availability under consistency constraints compared to full replication.

Consistency overheads. Our protocol ensures that requests pay only the latency and

availability costs of the consistency they require. But, distributing sufficient bookkeeping

information to support a wide range of per-request semantics does impose a bandwidth cost.

If all applications in a system only care about coherence guarantees, a customized protocol

for that system could omit imprecise invalidations and thereby reduce network overheads.

Three features of our protocol minimize this cost. First, transmitting invalidations

separately from bodies allows nodes to maintain a consistent view of data without receiving

all bodies. Second, transmitting imprecise invalidations in place of some precise invali-

dations allows nodes to maintain a consistent view of data without receiving all precise

invalidations. Third, self-tuning prefetch of bodies allows a node to maximize the amount

of local, valid data in a checkpoint for a given bandwidth budget.

Figure 4.17 quantifies the remaining cost to distribute both precise and imprecise

invalidations (in order to support consistency) versus the cost to distribute only precise

invalidations for the subset of data of interest and omitting the imprecise invalidations (and

thus only supporting coherence.) We vary the fraction of data of interest to a node on the

x axis and show the invalidation bytes received per write on the y axis. Our workload is

a series of writes by remote nodes in which all objects are equally likely to be written.

Note that the cost of imprecise invalidations depends on the workload’s locality: if there

is no locality and writers tend to alternate between writing objects of interest and objects

not of interest, then the imprecise invalidations between the precise invalidations will cover
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Figure 4.17: Bandwidth cost of consistency information.

relatively few updates and save relatively little overhead. Conversely, if writes to different

interest sets arrive in bursts, then the system will generally be able to accumulate large

numbers of updates into imprecise invalidations. We show two cases: theNo Localityline

shows the worst case scenario, with no locality across writes, and theburst=10 line shows

the case when a write is ten times more likely to hit the same interest set as the previous

write than to hit a new interest set.

When there is significant locality for writes, the cost of distributing imprecise inval-

idations is small: imprecise invalidations to support consistency never add more than 20%

to the bandwidth cost of supporting only coherence. When there is no locality, the cost is

higher, but in the worst case imprecise invalidations add under 50 bytes per precise invali-

dation received. Overall, the difference in invalidation cost is likely to be small relative to

the total bandwidth consumed by the system to distribute bodies.
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Chapter 5

UR-Repl: Universal Replication

Mechanisms

The CR-Repl protocol just described in previous chapter is only a first step towards a uni-

versal data replication architecture. Although it implements the replication abstractions by

supporting PRACTI properties simultaneously, it does fall short of our eventual goal of pro-

viding a unified architecture in four significant ways. First, it does not efficiently support

dynamic fine-grained invalidation subscriptions that are needed for many caching protocols

that support single object callbacks [42, 68]. In particular, the processing cost is propor-

tional to the number of interest sets, which is reasonable for coarse-grain subscriptions, but

not for per-object fine-grain subscriptions. Second, the invalidation subscription is ineffi-

cient for some workloads where checkpoint exchange is more efficient. Third, although it

supports a simple commit, it lacks a general commit mechanism to efficiently support com-

mit protocols such as the primary commit CSN [72]. Finally, although the CR-Repl protocol

supports a simple write-write conflict detection mechanism, it adds extra per-update stamp

overhead for both storage and network bandwidth, and it could not work properly when the

log is truncated.

To complete the CR-Repl mechanisms to serve as a replication “microkernel”, this
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chapter presents a novel replication protocol UR-Repl that addresses these limitations via

four key ideas:

1. In order to efficiently support both coarse-grained and fine-grained subscriptions, we

multiplex invalidation subscriptionsover a single stream. By maintaining a shared

state for multiple subscriptions and allowing one imprecise invalidation to be used

across all active subscriptions, the processing overhead to handle each invalidation is

reduced fromO(number of activeinterestsets) to update each interest set’s state

to O(1) to update the per-stream’s state.

2. In order to support fast resynchronization of different type of workloads, besides

incremental log exchange, UR-Repl introduces a novelincremental checkpoint ex-

changeand smoothly integrates it with CR-Repl log exchange protocol. Instead of

freezing the receiver and sender’s states as required in most of existing checkpoint

exchange protocols such as that in [72], UR-Repl allows the receiver to receive an

incremental checkpoint for a small portion of its ID space and then either prefetch

checkpoints of other interest sets or fault them in “on demand”.

3. In order to support flexible commit protocols, we introduce a novel mechanism that

makes use of a special primitive and a special messagecommit invalidationto allow

system designers to explicitly specify when and under what circumstances to commit

a write.

4. In order to support efficient conflict detection for both log exchange and checkpoint

exchange, we use noveldependency summary vectorsto detect write-write conflicts.

UR-Repl allows multiple objects to share the same version vector to detect conflict

so as not to incur additional costs for conflict detection other than that already being

paid for consistency maintenance.

In the rest of this chapter, we first describe the enhanced invalidation subscription

protocol by multiplexing subscriptions in one stream in Section 5.1. Then Section 5.2 de-
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UR-Repl CR-Repl

Network NSub* (SSetup+NPre*SPre+NImp*SImp) NSub * (SSetup+NPre*SPre) + NImp*SImp

bandwidth
Inv Processing O(number of interest sets) O(1)
overhead
Read Overhead O(1) O(number of connections)

Figure 5.1: Invalidation subscription cost. Here, for simplicity, we assume each subscrip-
tion request although subscribes a different subscription set, it requires the same number of
precise invalidations and imprecise invalidations.NSub is the number of subscription re-
quests;NPrecise andSPrecise are the number of updates targeting objects in the subscription
set from the subscription start time to the current logical time and the size of one precise
invalidation; Similarly,NImprecise andSImprecise are the number of imprecise invalidations
in one subscription and the size of an imprecise invalidation;SSetup is the size of setup a
subscription.

scribes the novel incremental checkpoint exchange protocol, Section 5.3 details the general

commit mechanism. and Section 5.4 presents thedependency summary vectorsconflict

detection algorithm. Finally, Section 5.5 evaluates the UR-Repl prototype.

5.1 UR-Repl Invalidation Subscription

As we described in Section 3.1.2, the invalidation subscription abstraction is a natural way

to implement callbacks. To create a callback for a single objecto on the server so that it

will be notified of any new updates too by the server, a client simply sets up an invalidation

subscription with a subscription set composed of onlyo and a start time ofo.acceptStamp.

Thecallback breakcan be implemented simply by stopping the corresponding subscription.

Unfortunately, the invalidation subscription protocol described in the previous chap-

ter makes it expensive to implement such fine-grained dynamic callbacks for two reasons.

First, althoughimprecise invalidationsalone significantly reduce the bandwidth cost

of a single invalidation stream [9], the total bandwidth cost could still be significant for

serving multiple dynamic fine-grained subscription requests. For multiple subscription re-

72



quests, the same set of updates are sent multiple times for consistency although in different

compact formats. For example, comparingStream 1andStream 2in Figure 4.3, to serve

two subscription requests from the same node,α needs to send two different streams each

of which must include precise or imprecise invalidations to cover all the updates issued af-

ter startVV. When the number of objects included in one subscription set is small and the

number of subscription requests is large, the total bandwidth cost will be much more than

the cost that is actually demanded for the subscribed workload.

Similarly, as the processing overhead to handle each invalidation is proportional to

the number of interest sets, the total processing overhead of multiple subscriptions might

be huge. Upon receiving an invalidation, a node must iterate across all interest sets twice to

update the consistency state as indicated in Figure 4.4.

UR-Repl addresses these issues bymultiplexing subscriptions. Recall that the key

subscription invariant is that the sender sends all updates as precise invalidations or impre-

cise invalidations from the subscription start time to its current time. Instead of sending a

stream of invalidations for one subscription, UR-Repl multiplexes all invalidation subscrip-

tions from one node to another onto a single underlying invalidation stream. It thus reduces

the network bandwidth overhead for adding a new subscription by allowing one imprecise

invalidation to be used across all active subscriptions.

In addition, by allowing multiple interest sets to share a singlestream state, UR-

Repl reduces the processing overhead to handle each invalidation to update each interest

set’s state fromO(number of interest sets) to O(1). The disadvantage is that the read

performance may increase fromO(1) to O(number of connections).

Figure 5.1 summarizes the invalidation subscription cost of CR-Repl and UR-Repl

in terms of network bandwidth and processing cost. UR-Repl thus makes the protocol

efficient for both coarse-grained callbacks and dynamically-created, fine-grained callbacks.

In the rest of this section, we first explain how to form an invalidation stream when

multiplexing subscriptions and describe the steps to form such a stream in Section 5.1.1. We
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InvalStream = StreamStart + [ [ LogCatchup|CPCatchup ]∗ + [preciseInv|impreciseInv]∗ ]∗

LogCatchup = CatchupStart + [preciseInv|impreciseInv]∗ + CatchupEnd
CPCatchup = CatchupStart + 〈/∗, r.cvv, s.cvv〉+ SS.lpV V + [perobject states of SS] + CatchupEnd

Figure 5.2: UR-Repl invalidation stream.

then explain how to process the stream to maintain the consistency state in Section 5.1.2.

5.1.1 Forming Invalidation Streams

Given the CR-Repl protocol, the basic idea to implement UR-Repl is simple. Similar to

the CR-Repl replication, UR-Repl separates the distribution of updates into invalidations

and bodies for partial replication of data and usesimprecise invalidationsto reduce the

bandwidth overhead of a single invalidation subscription to be proportional to the updates

of subscribed objects. Then to reduce the overall invalidation stream bandwidth between

two nodes, itmultiplexessubscriptions to allow a node to dynamically add objects or remove

objects from the subscription set on a single stream.

Figure 5.2 defines a UR-Repl invalidation stream. Similar to a CR-Repl invalida-

tion stream, it has aStreamStart to indicate the start point of the stream followed by a

sequence of causally ordered precise or imprecise invalidations. The only difference from

a CR-Repl invalidation stream is that a UR-Repl invalidation stream may include some

catchup streamsthat are needed for adding new invalidation subscriptions to an existing

stream.

As the separation of invalidations and bodies and the forming ofimprecise invali-

dationare exactly the same as described in Section 4.2 and Section 4.3 respectively, here

we focus on explaining how to add/remove subscriptions to/from an existing stream.

Multiplexing subscriptions. In order to multiplex invalidation subscriptions, each node

α maintains a per-receiver outgoing stream shared by all active subscriptions between the

receiver andα. A stream tracks asubscription set SSto identify which objects are currently
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subscribed and aversion vector streamCVVto summarize all the previous updates sent by

the stream.

To implement the subscription abstraction, a stream promises that it will send all

invalidations afterstreamCVVin causal order. In particular, it will send all invalidations

to objects inSSas they are and combine invalidations about objects outside ofSSinto

imprecise invalidations.

As indicated in Figure 5.2, to add a new subscription with(newSS, startVV)to a

stream, a node must first send acatchup streambetweenstartVVandstreamCVVbefore

addingnewSSto the stream’s current subscription setSS. Thecatchupstream is needed to

implement the semantics of the invalidation subscription abstraction as described in Chap-

ter 3: “send all precise invalidations to objects in newSS after startVV”. BecausenewSS

is not included inSS, the stream might have sent invalidations to objects innewSSas im-

precise invalidations. Therefore, we need the catchup stream to send the omitted precise

information aboutnewSSfrom startVVto streamCVV.

Note that the receiver must already have received imprecise or precise invalidations

for all objects up tostreamCVV, so the sender is free to send this information about past

updates tonewSSwithout violating consistency.

Note that instead of sending an ordered sequence of invalidations betweenstartVV

andstreamCVVto catchupnewSS, a node can alternatively send the checkpoint of all the

objects innewSSthat were updated betweenstartVVandnewSS. As a result, as indicated in

Figure 5.2 an invalidation stream is composed of a version vector to indicate where it starts,

a series of precise invalidations and imprecise invalidations sent in causal order, and a set

of catchup invalidations or checkpoints for adding new objects to the stream. We focus on

describing the invalidation catchup here and defer the description of the checkpoint catchup

to Section 5.2.

Sending an invalidation stream. Figure 5.3 illustrates the sender’s invalidation subscrip-

tion protocol in action. The protocol is simple and includes 4 parts: initialization, adding
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CatchupStart(/B/*, <1@α, -1@β>)
</B/1, 1@α>
</B/2, 1@β>
</B/1, 2@α>
</B/1, 3@β>
CatchupEnd
</A/2, 5@α>
</A/3, 6@α>
</B/1, 7@α>
</B/2, 8@α>

</A/1, 0@α>
</B/1, 1@α>
</B/2, 1@β>
</B/1, 2@α>
</B/1, 3@β>
</A/2, 4@β>

</A/2, 5@α>
</A/3, 6@α>
</B/1, 7@α>
</B/2, 8@α>

</B/2, 9@α>
</C/1, 9@β, 19@β> 

</A/2, 20@α>
</A/1, 21@α>
</A/1, 22@α>

Add subscription (/A/*, <-1@α, -1@β>)

Log

Remove subscription (/A/*)

""       <-1@α, -1@β>

"/A/*:/B/*" <2@α, 4@β >

α γOutgoingConnection
SS        streamCVV

</A/1, 0@α>

</B/*,             ,             >

</A/2, 4@β>

1@α
1@β

2@α
3@β

1

"/A/*"   <-1@α, -1@β>

StreamStart(<-1@ α, -1@β>)
Create a stream

2

Add subscription (/B/*, <1@α, -1@β>)3

"/B/*"    <8@α, 4@β >
4

</B/2, 9@α>

</A/*:/C/*,            ,              >9@α
9@β

22@α
19@β

Figure 5.3: Multiplexing invalidation subscriptions.

a catchup stream, removing a set of objects from a stream, sending regular invalidation

streams. As illustrated in©1 of Figure 5.3, initially the sender sets itsSSto empty and

streamCVVto its currentVVand sends aStreamStartmessage that includes itscurrentVV

so that the receiver knows where the stream starts.

When there is no pending subscription requests, the sender sends precise invalida-

tions and imprecise invalidations accumulated according to the stream’ssubscription set

as described in Section 4.3 and updates thestreamCVVaccordingly. For example, in Fig-

ure 5.3 step©3, α sends all the precise invalidations targeting directory/A and sends an

imprecise invalidation to summarize all the updates targeting any object in directory/B

because the stream’ssubscription setis /A/∗ during this period. Whereas in step©5, as

thesubscription setis /B/∗, the stream sends precise invalidations targeting any object in

directory/B and summarizes all the other invalidations in imprecise invalidations.

As indicated in step©4, whenever a new subscription request comes, the sender

sends aninvalidation catchup streamthat includes all the precise invalidations targeting
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any object innewSSbetweenstartVVandstreamCVVas shown in the grey box. Acatchup

streamstarts with aCatchupStartmessage that includesnewSSandstartVVand ends with

aCatchupEndmessage so that the receiver knows how to process the catchup stream. Note

that the catchup stream can safely omit all invalidations not targeting objects innewSS

because the stream has already logically sent information about every updates from stream

start time up tostreamCVV.

To remove a subscription setremoveSSfrom a stream, the sender only needs to

remove theremoveSSfrom SSso that the sender will replace future invalidations targeting

removeSSby imprecise invalidations. As indicated in Figure 5.3 step©5, after theSSis

updated to/B/∗, the invalidation stream combines invalidations to/A/∗ thereafter.

5.1.2 Applying Invalidation Streams

In the previous subsection, we define how a sender creates an invalidation stream; in this

subsection, we explain how to efficiently maintain the local state when receiving an invali-

dation stream.

Note that the processing ofimprecise invalidationsis different here due to themul-

tiplexing of subscriptions. In particular, where CR-Repl applies each invalidation to each

interest set for which it tracks consistency state for, UR-Repl only applies the invalidation

to a stream shared by multiple interest sets and therefore reduces the processing cost from

Ø(number of invalidations×number of interest sets) toO(number of invalidations).

Consistency state. Like the CR-Repl replication, UR-Repl needs to track the per-object

state and per-interest set state. For completeness, here we give a brief overview of main-

taining these states.

First, because updates are distributed separately by invalidation subscriptions and

body subscriptions, each node needs to track if the object it is interested in has received an

invalidation with or without the corresponding body. In particular, it maintains a per-object

state that includes an object ID, theacceptStampof the last known invalidation to the object,
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a flagVALID that if true indicates that the corresponding data associated toacceptStampis

available. When applying a newer invalidation, the per-object stateacceptStampis updated

and theVALID is markedfalse. When receiving a body message, if theacceptStamp

matches with the one in per-object state,VALID is marked totrue. Sometimes we also say

the object is markedINVALID.

Second, due to imprecise invalidations, a node also needs to track theprecisenessof

each object, i.e., whether an object has missed any invalidations. To save the storage space,

we usean interest setto track theprecisenessof a group of objects. In particular, each

interest setIS maintains a version vectorlpVV to identify the latest time at which a node

is known to have seen all invalidations that could affect any object inIS. A node tracks

whether each interest setIS is PRECISE (per-object state reflects all precise invalidations)

or IMPRECISE (per-object state is not stored or may not reflect all precise invalidations)

by comparingIS.lpVV and the node’scurrentVV. If IS.lpVVequalscurrentVV, thenIS has

not missed any invalidations and it is precise.

Stream state. To avoid applying each invalidation to each interest set for maintaining the

per-interest setlpVV, a receiver maintains a per-stream statestreamCVVshared by multiple

interest sets. AstreamCVVsummarizes all the invalidations sent in the stream and is ad-

vanced whenever the node receives a new invalidation from the stream. UR-Repl leverages

the per-streamstreamCVVto track thelpVV efficiently byattachingmultiple interest sets

to an active stream.

In order to derivelpVV by streamCVV, UR-Repl enforces an invariant whenat-

tachingany interest setIS to any streamS: IS can beattachedto S if and only if IS

has received all precise invalidations to objects inIS up to streamCV V . Therefore, a

node mustdetachan interest setIS from a streamS whenever the node misses any precise

invalidation toIS up to S.streamCV V . Note that a streamS might omit some precise

invalidations toIS, but a node might have learned those precise invalidations from other

streams, therefore,IS might still be able to be attached toS. A node can attach an interest
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set to multiple streams from different senders.

In this arrangement, to track thelpVV, each interest setIS stores a list of refer-

encesattachedStreamsto the active streams to whichIS is currently attached and alast-

KnownLPVVto record the last knownlpVV when it is detached from a stream. When the

node needs to calculate theIS.lpVV, it only needs to take the maximum ofIS.lastKnownLPVV

and thestreamCVVof every stream included inIS.attachedStreams.

Processing an invalidation stream. A node must ensure two things when applying an

invalidation stream to guarantee theattachinvariant,

• It cannot attach an interest setIS to a streamSuntil IS is precise up toS.streamCVV.

• It mustdetachthe interest setIS from a stream if it receives an imprecise invalidation

II overlapping withIS andIS is not made precise up toII.endbecause after applying

II , S.streamCVVwill be advanced to includeII.end.

BesidesstreamCVV, a node also maintains anattachedSSfor each active incoming

stream to track which interest sets are attached so that it knows whom to detach when

receiving an imprecise invalidation.

Processing an invalidation stream merely involves updating these data structures to

implement theattachsemantics described above. In the rest of this section, we describe

how to apply messages received from a streamSon a nodeα.

Figure 5.4 details the algorithm for processing an incoming invalidation stream.

• As indicated in Figure 5.4 from Line 42 to Line 46, upon receiving a precise inval-

idation PI, α advancesS.streamCVVto includePI and updates the corresponding

per-object state ifPI.targetSetis one of the objects that it is interested in. Because

any invalidation stream preserves the prefix property [72], the arrival ofPI implies

that there are no updates betweenS.streamCVVandPI.acceptStamp. Therefore any

attachedIScan remain attached whenSadvances itsstreamCVV.
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1: // Global state:
2: // IS.lastKnownLPV V – IS’s last known precise version vector
3: // IS.attachedStreams – streams to which IS is currently attached
4: // Per-stream state:
5: // streamCV V – stream current version vector
6: // attachedSS – attached subscription set
7: // pendingCV V – current version vector of the catchup stream
8: // pendingSS – pending subscription set to be attached
9:

10: ProcedureProcessURInvalStream(stream)
11: // Initialization
12: attachedSS = empty
13: streamCV V = stream.readObj()
14: if ! includes(currentV V, streamCV V )
15: applyInv(new ImpreciseInv(currentV V, streamCV V, “/∗′′)) // Cover the gap
16: NextMSG = stream.readObj()
17: while (NextMSG 6= EOF ) do
18: if NextMSG instanceof GeneralInv //Normal invalidation stream
19: applyInval(NextMSG, streamCV V, attachedSS)
20: else// Catchup stream starts
21: //Apply catchup stream
22: pendingSS = NextMSG.catchupSS, pendingCV V = NextMSG.catchupStartV V
23: IgnoreCatchup =! includes(pendingCV V, pendingSS.getLPV V ())
24: while (NextMSG 6= CatchupEnd) do
25: NextMSG = stream.readObj()
26: if ! IgnoreCatchup
27: applyInval(NextMSG, pendingCV V, pendingSS)
28: if ! IgnoreCatchup //Attach pendingSS
29: attachedSS.add(pendingSS)
30: pendingSS.attachedStreams.add(S)
31: NextMSG = stream.readObj()
32:
33: ProcedureapplyInval(GI, CV V, SS)
34: currentV V =advanceToInclude(currentV V, GI.end)
35: log.insert(GI)
36: if GI.isImprecise() andGI.targetSetoverlapsSS // If imprecise, remove overlapped subscription set

and advance lpvv to just before imprecise inval
37: KickedSet = GI.targetSet.getIntersection(SS)
38: KickedSet.lastKnownLPV V =advanceNoInclude(CV V, GI.start))
39: KickedSet.attachedStreams.remove(S)
40: SS.remove(KickedSet)
41: //Advance CVV to include GI
42: CV V = advanceToInclude(CV V, GI.end)
43: //Update per-object state
44: if GI.isPrecise() andGI.targetSet ∈ attachedSS
45: RASGI.objId.valid = INV ALID
46: RASGI.objId.accept = GI.start

Figure 5.4: Stream processing algorithm forstream = {startV V , [ [ CatchupStart,
[preciseInv|impreciseInv]∗, CatchupEnd ]∗, [preciseInv|impreciseInv]∗ ]∗}
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• As indicated in Figure 5.4 from Line 36 to Line 40, upon receiving an imprecise in-

validationII , to ensure that every attached interest set is still precise after applyingII ,

α needs to detach any interest set that is made imprecise byII . Suppose the overlap-

ping interest set ofII.target andS.attachedSSis KickedSet, if KickedSetis not precise

up toII.end, α must detachKickedSetfrom the streamS.

In particular, the stream needs to do three things before it advances itsstreamCVV

to II.end: (1) updatesS.attachedSSto excludeKickedSet(Line 40); (2) removes

its reference fromKickedSet.attachedStreams(Line 39); and (3) advancesKicked-

Set.lastKnownLPVVto includestreamCVVand(II.start− 1)1 (Line 38.)

Note because of the stream’s prefix property, the arrival ofII implies that there are

no updates betweenS.streamCVVandII ’s start, therefore it is safe to updateKicked-

Set.lastKnownLPVVto includeII.start− 1.

• Upon receiving a catchup stream for interest setcatchupSSstarting fromcatchup-

StartVV, if catchupStartVVhas any component larger thancatchupSS.lpVV, α ignores

the catchup stream because the gap might hide some precise invalidations (Line 23).

Otherwise,α needs to track the status of the catchup stream and decide at the end of

the catchup stream if it can attachcatchupSSto S.

A node maintains the status for a catchup stream for two reasons. First, the catchup

stream might still contain imprecise invalidations forcatchupSSbecause the sender

might do not have all of the precise invalidations either. Therefore it might not be able

to attach thecatchupSSat the end of the catchup stream. Second, even if a catchup

stream fails to attachcatchupSSat the end, it might still make some progress for the

catchupSS.lpVVbefore receiving the imprecise invalidation.

To track the status for a catchup stream,S maintains apendingSSto identify the

objects expecting to joinS and apendingCVVto summarize the catchup progress.

1For simplicity, we useV V − 1 to represent the version vector of whom each entry’s timestamp is one less
than VV’s.
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As described in Section 5.1.1, a catchup stream starts with aCatchupStartmessage,

which includes a subscription setcatchupSSto identify which objects to catchup and

acatchupStartVVto indicate the start time of the catchup stream.

The processing of a catchup stream is similar to the processing of a normal in-

validation stream. It mainly involves updating thependingSS, pendingCVV, and

catchupSS.lastKnownLPVV. In particular, it handles four cases: (1) as indicated in

Figure 5.4 line 22, whenα receives aCatchupStartmessage, it updates thepend-

ingSSandpendingCVVto catchupSSandcatchupStartVVrespectively; (2) similar to

applying invalidations from the normal stream as described above,α advances the

pendingCVVand updates per-object state when receiving precise invalidations in the

catchup stream (from Line 42 to Line 46); (3) whenα receives an imprecise invali-

dationII in the catchup stream, it removesII.targetSetfrom pendingSSand advances

the removed set’s per-interest set stateII.targetSet.lastKnownLPVVto include both

(II.start− 1) andpendingCVVbefore advancing thependingCVVto includeII.end

(from Line 36 to Line 40); (4)finally, whenα receives theCatchupEndmessage,

α attaches the remainingpendingSSto S because it must have received all precise

invalidations toS.streamCVV(Line 29 and Line 30).

5.2 Checkpoint Catchup

As indicated in Figure 5.2, to share the same stream, a new subscription request(SS,

startVV)must catch up with the current status of the stream first. One way to catch up

is to send the log fromstartVV to streamCVVas described in Section 5.1. An alternative

is to send checkpoints—the status of objects inSSthat were updated afterstartVVas of

streamCVV.

Checkpoint catchup is needed for two reasons. First, it is needed for log garbage

collection. Nodes can garbage collect any prefix of their logs, which allows each node to

bound the amount local storage used for the log to any desired fraction of its total disk
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space. If a nodeα garbage collects all log entries older thanα.omitV V and another node

β requests a subscription catchup withstartVVolder thanα.omitV V , thenα can not bring

β up by sending a catchup invalidation stream. Instead,α must send a checkpoint of its

per-object state and interest setlpVV.

Second, checkpoint catchup is more efficient than log catchup in some cases. Send-

ing a log is more efficient when the number of recent changes is small compared to the

number of objects covered by the subscription. Conversely, a checkpoint is more efficient if

(a) the start time is in the distant past (so the log of events is long) or (b) the subscription is

for only a few objects (so the size of the checkpoint is small). Note that once a subscription

catches up with the sender’s current logical time, updates are sent as they arrive, effectively

putting all active subscriptions into a mode of continuous, incremental log transfer.

In existing server replication protocols [72], in order to ensure consistency, such a

checkpoint exchange must atomically update receiver’s state for all objects in the system.

Otherwise, the prefix property and causal consistency invariants could be violated. Tradi-

tional checkpoint exchanges, therefore, may block interactive requests while the checkpoint

is atomically assembled at the sender or applied at receiver, and they may waste system re-

sources if a checkpoint transfer is started but fails to complete.

Imprecise invalidations yield an unexpected benefit: incremental checkpoint trans-

fer. Rather than transferring information about all objects, an incremental checkpoint up-

dates a subset of checkpoint.

5.2.1 Incremental Checkpoint Transfer Protocol

As indicated in Figure 5.2, a checkpoint catchup for(SS, startVV)includes (1) an imprecise

invalidation that covers all objects in the system from the receiver’scurrentVVup to the

sender’scurrentVV, (2) SS.lastPreciseVVif newer thanstartVV, and (3) the per-object state

for any object inSSwhoseacceptStampexceedsstartVV. The purpose of (1) is to ensure

the consistency ofSSand other interest sets, which is the key to enable updating partial
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checkpoint consistently. The receiver first applies (1) as a normal imprecise invalidation as

described in Section 5.1.2. Then the receiver applies (2) to its corresponding per-interest

set states and applies (3) to the corresponding per-object states. Thus, the receiver’s state

for SSis brought up to include the updates known to the sender, but other interest sets may

becomeIMPRECISEto enforce consistency.

This checkpoint catchup algorithm yields three advantages over traditional check-

point exchange algorithms [72]. First, it is incremental. Whereas existing checkpoint ex-

change must either give up causal consistency across objects like in WinFS [70] or atomi-

cally update the receiver’s state for all objects in the system (otherwise, the prefix property

and causal consistency invariants could be violated), our protocol can incrementally send

subset of the checkpoint with an imprecise invalidation for the rest of the objects to ensure

consistency when full replication of checkpoint is less likely succeed. Second, as illustrated

in Figure 5.2, by simply adding theCatchupStartandCatchupEndmessages, this approach

enables UR-Repl subscription protocol to smoothly integrate the checkpoint catchup option

to implement the subscription abstraction as the checkpoint catchup is semantically equiv-

alent to log catchup. Finally, the processing of checkpoints has less impact on local access

performance. The receiver does not need to freeze the local read/write while it is uploading

the checkpoint.

5.2.2 Discussion

Informally, most existing peer-to-peer consistent replica synchronization protocols fall into

two families: log-based [72, 103] and state-based [70]. However, neither is perfect. Al-

though the log-based approach can continuously synchronize updates and thereby provide

stronger consistency and fewer conflicts, it adds additional storage overhead and needs

a careful garbage-collection protocol [3, 32, 80]. State-based protocols require no extra

storage, but there is no easy way to summarize the local state if the synchronization is in-

terrupted, and they have to either give up consistency across objects [70] or require full
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replication and blocking for checkpoint exchange [72].

UR-Repl seamlessly combines both worlds by using imprecise invalidations and

multiplexing subscriptions. Policies can make the tradeoffs between the local extra log

storage overhead and extra checkpoint network bandwidth. When both catchup options are

available, policies can optimize the cost of an invalidation subscription by selecting either

of the two semantically-equivalent catchup options.

5.3 Flexible Commit Mechanism

As a universal data replication architecture, simply implementing a single commit proto-

col is not sufficient since any of the state of the art commit protocol has limitations. For

example, the Golding’s algorithm [32] as described in Chapter 4 requires periodical heart-

beat messages for liveness which might hurt availability when some nodes are disconnected

and which may incur additional network bandwidth overhead. Although Bayou’s primary

server commit protocol [72] mitigates the availability issue and does not require heartbeat

messages for liveness, it requires the primary server to issue a new sequence number to each

update and thereby leads to write reordering, which complicates the protocol. In particular,

it requires each node to rollback all uncommitted updates and remove the corresponding

uncommitted update to insert each newly committed update.

To facilitate the implementation of different commit protocols, UR-Repl imple-

ments a flexible commit primitive via anAssignSequenceinterface to allow system designer

to explicitly control when to commit an update and then leave the propagation of the com-

mit operation to a special invalidationsequence invalidation. ThisAssignSequenceinterface

has two parameters: atargetSetthat specifies the target object(s) and atargetASthat identi-

fies the accept stamp of the write to be sequenced. When this operation is called, similar to

processing a write operation, the node generates an accept stamp calledsequenceStampand

a special invalidation calledsequence invalidation. Like a general invalidation, asequence

invalidation has atargetSetand an accept stamp which is thesequenceStamp. The only
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difference between asequence invalidationand a precise invalidation is that the sequence

invalidation includes another accept stamptargetASto identify the sequenced write.

Once generated, asequence invalidationis propagated and processed in the sys-

tem exactly the same way as a precise invalidation. For example, it can also be accumu-

lated in an imprecise invalidation. The post condition of applying asequence invalidation

is that if the targetSet’s per-object state is not marked asSEQUENCED and the ac-

cept stamp of the per-object state istargetAS, then the per-object state will be marked as

SEQUENCED. Note that initially all per-object states are marked asUNSEQUENCED.

This commit primitive is flexible to implement different commit protocols for the

isSequencedpredicate. To demonstrate the flexibility and elegance of this mechanism, in

the rest of this section, we explain how to implement the primary server commit protocol

using this primitive.

Primary server commit. Besides Golding’s algorithm [32] as described in Chapter 4,

Bayou’s primary commit protocol [72] is another useful commit protocol in server repli-

cation systems. By forcing all writes committed by one primary server, this protocol does

not slow down the commit process due to lengthy disconnections of some replicas. In this

protocol, one node is designated as the “primary” server that assigns a monotonically in-

creasing commit sequence number (CSN) to each write. The CSN defines a total commit

order for all writes. The other nodes send their updates in the partial causal order to the

primary, and then the committed writes are propagated back among nodes in the committed

total order after getting the CSNs from the “primary” server.

With the AssignSequenceinterface, implementing Bayou’s CSN commit protocol

is straightforward. First, a server commits writes when it sees them usingAssignSequence.

Second, all clients only read committed writes by setting theReadNowBlockpredicate to

isValid, isCompleteandisSequenced. Because allsequence invalidationsare generated by

one server and all writes are sequenced in the order they arrive, thesequence invalidations

preserves the partial causal order among writes. By blocking a read until an object is pre-
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cise, valid, and sequenced, each client sees the same view that is consistent to the sequenced

order.

Note that our implementation of the primary server commit protocol does not re-

order any updates because the invalidation subscription protocol and theisSequencedpred-

icate for read naturally guarantee that every node’s reads reflect the same view as if all

updates are ordered by the commit sequences issued by the primary server.

5.4 Conflict Detection

Integrating theincremental checkpoint catchupinto the invalidation log exchange protocol

raises an issue for thePrevAcceptconflict detection mechanism described in Chapter 4. This

detection algorithm requires a node to receive all the precise invalidations of the object it is

interested in. When falling back to checkpoint catchup, it could have false positives due to

some missing old updates. This section first gives a brief survey of existing design choices

of conflict detection mechanisms and then introduces a novel efficient conflict detection

mechanismsdependency summary vectorsthat works efficiently for both log catchup and

checkpoint catchup.

5.4.1 Design Choices

UR-Repl focuses on syntactic conflict detection based on the causal relationship [51] rather

than relying on any application-specific semantics. In particular, any two updates to the

same object that do not have any causality relationship are consideredconflicting.

The state of art to detect conflicting writes defined by causality includes three main

families:

1. Previous stamps. This approach [34] includes in each write the version just overwrit-

tenprevious stampand stores theprevious stampin the local per-object state. When

receiving a write, a node compares the write’sprevious stampto the per-object state
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current time. If they mismatch, then a conflict is detected.

This approach can accurately detect all conflicts in any log exchange protocol that

ensures the prefix property as we described in section 4.5, but it adds extra per-update

stamp overhead for both storage and network bandwidth. More importantly, in the

case when the log is truncated and a node falls back to checkpoint exchange, it could

have false positives due to some missing old updates.

2. Hash histories. Kang et. al. [45] usehash historiesto detect conflicts. Whenever the

local state changes, a node creates a new hash summarizing the current entire state.

Each node keeps a list of hashes ordered by generating times. Whenever a nodeα

synchronizes its state with another nodeβ, it looks upβ’s last hash in its own hash

history. If the hash exists, thenα’s version is a newer version. Similarly, ifβ finds

α’s last hash inβ’s hash history, thenβ’s version is a newer version. If neither of the

last hashes exists in the other’s history, then it is a conflict.

Although the size of a hash history is independent of the number of replicas, it grows

proportionally to the total number of updates. More importantly, because the hashes

summarize the entire local state, it could have false negatives due to concurrent up-

dates to different objects. Therefore, it requires complicated commit protocol to care-

fully garbage collect stable updates’ hashes. More importantly, in the case when there

are concurrent updates on two different nodes to two different objects, the last hash of

either node will not be found in the other node’s history, then it has a false negative.

3. Version vectors. Using version vectorsis the most well-known and popular alter-

native [48, 74]. A version vector [44] accurately captures the causality relationship

between updates. Two writes are conflicting if and only if neither of their version

vectors dominates the other.

Although this approach can accurately detect conflicts, it is expensive to maintain the

per-object version vectors, especially in large-scale systems. In order to reduce the

88



version vector overhead, WinFS’spredecessor vectors with exceptions(PVE) [60]

uses one globalversion vector with a list of exception stampsto replace the per-

object version vectors. But when a synchronization process is interrupted frequently,

the exception list might grow indefinitely. To address this issue, a later approach [57]

vector setsbounds the worst case cost to per-object version vector by grouping mul-

tiple objects and represents their state in a single version vector. Note that neither of

these two approaches can provide causal consistency when a synchronization process

is interrupted prematurely because a node might only receive subset of all changed

objects.

5.4.2 Dependency Summary Vectors

UR-Repl conflict detection algorithm extends WinFS’svector setsalgorithm to detect con-

flicts dynamically while processing invalidation streams.

Definition. A write W ’s dependency summary vector (DSV)is a version vector that sum-

marizes all the updates on whichW depends on. In particular, any version vector that satis-

fies the following two conditions is calledW ’s DSV: (1) includes all the writes onW.target

that precedesW and (2) excludes any writes onW.target that are causally ordered afterW .

For example, suppose all the causally ordered updates on objecto are1@α, 3@α, 10@β.

Regarding a writeW with acceptStamp = 3@α, 〈1@α, 9@β〉 is W ’s DSV, while both

〈0@α, 9@β〉 and〈3@α, 10@β〉 are not because the first one does not include the causally

preceding write1@α and the second one does not exclude the causally newer write10@β.

An object version can have multiple DSVs. For the same example described above,

both 〈1@α, 9@β〉 and〈2@α, 6@β〉 can beW ’s DSVs. Therefore,dependency summary

vectors (DSV)can make conflict detection efficient by finding a common DSV for multiple

objects to save the storage space and bandwidth cost.

If we know theDSVs of any two writesw1 andw2 that update the same object, we

can detect conflicts according to the following three rules:
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Message in an invalidation streamS DSV

Normal precise invalidationinv S.streamCV V

Precise invalidationinv in log catchup S.pendingCV V

Checkpoint catchupo ∈ IS IS.LastPreciseV V

Figure 5.5: Invalidation stream messages and their DSVs.

r1 If w1.acceptStampis included byw2.DSV, thenw1causally precedesw2.

r2 Similarly, if w2.acceptStampis included byw1.DSV, thenw2causally precedesw1..

r3 If neitherw2.DSVincludesw1.acceptStampnor w1.DSVincludesw2.acceptStamp,

andw1andw2are not equal, thenw1 andw2 conflict.

The key challenge is how to maintain theDSV in the local state efficiently and

deliver this information in the invalidation stream efficiently.

Conflict detection in applying invalidation stream. UR-Repl leverages the cost already

paid for maintaining causal consistency, i.e.per-interest set lpVV, to augment the protocol

to detect conflicts without any additional cost. To ensure that theLpVV of an object can

be used as the current object version’sDSV, UR-Repl enforces two rules: (1) only apply a

precise invalidation to the per-object state when the targeted object is precise and (2) block

a local write until the object is precise.

By ensuring (1) and (2), the local stored newest version is guaranteed to be the

newest version up to the object’s currentLpVV. If any of these two rules is violated, the

node might miss some updates betweenLpVVand the version just applied.

Figure 5.5 summarizes theDSVof any update version received from an invalidation

stream. For a checkpoint catchup streamCP , because the sender’sIS.LpV V is part of

the checkpoint, by comparing the sender’s(CP[IS].LpVV, CP[o].acceptStamp)with the

receiver’s(IS.LpVV, o.acceptStamp)according to the rules [r1] [r2] [r3], we can accurately

detect any conflicts.
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By taking advantage of the prefix property of invalidation streams, a node can de-

rive theDSVfor any arriving invalidation without the sender explicitly sending any vectors

except the initialStreamStart. In particular, a stream’sstreamCVVsummarizes all previous

writes of the current sending invalidationinv, and any newer invalidations to the same ob-

ject should not be sent beforeinv by the prefix property. Therefore,streamCVVcan serve

as theDSVof inv. When receiving a normal precise invalidationinv from the stream, the re-

ceiver simply compares(streamCVV, inv.acceptStamp)and((inv.targetSet).LpVV, per-object

state[inv.targetSet].acceptStamp)to detect conflicts. Similarly, when receiving a catchup

precise invalidationinv, the receiver uses thependingCVVas theDSVof inv.

5.5 Evaluation

As a unified replication protocol, UR-Repl should beflexibleenough to construct a broad

range of systems andefficientso that the costs associated with building a system with UR-

Repl is proportional to the demands of the system, i.e. the extra cost for generality is

minimal. We will demonstrate the flexibility of UR-Repl in the next two chapters. In this

section, we focus on the efficiency of UR-Repl. In particular, we quantify the efficiency of

subscriptions and conflict detection.

5.5.1 Cost for Subscriptions

Experimental environment. The prototype implementation is written in Java. Except

where noted, all experiments are carried out on machines with single-core 3GHz Intel

Pentium-IV Xeon processors, 1GB of memory, and 1Gb/s Ethernet. We use Fedora Core 6,

BEA JRocket JVM, and Berkeley DB Java Edition 3.2.23.

Our primary performance goal is to minimize network overheads. We focus on

network costs for two reasons. First, we want UR-Repl to be useful for network-limited

environments. Second, if network costs are close to the ideal, it would be evidence that

UR-Repl captures the right abstractions for constructing replication systems.
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Best Case UR-Repl Prototype

Start conn. 0 Nnodes ∗ (Ŝid + Ŝt)

Inval sub w/ (Nprev + Nnew) ∗ Sinval (Nprev + Nnew) ∗ Ŝinval

LOG catchup +Ssub +Nimpr ∗ Ŝimpr + Ŝsub

Inval sub w/ (NmodO + Nnew) ∗ Sinval (NmodO + Nnew) ∗ Ŝinval

CP catchup +Ssub +Nimpr ∗ Ŝimpr + Ŝsub

Body sub (NmodO + Nnew) ∗ Sbody (NmodO + Nnew) ∗ Ŝbody

Single body Sbody Ŝbody

Figure 5.6: Network overheads breakdown. Here,Nnodes is the number of nodes;Nprev and
NmodO are the number of updates and the number of updated objects from a subscription
start time to the current logical time;Nnew is the number of updates sent on a subscription
after it has caught up to the sender’s logical time until it ends; andNimpr is the number
of imprecise invalidations sent on a subscription.Sid, St, Sinval, Simpr, Ssub andSbody

are the sizes to encode a node ID, logical timestamp, invalidation, imprecise invalidation,
subscription setup, or body message;Sx are the sizes of ideal encodings andŜx are the
sizes realized in the prototype.

Network Efficiency

Figure 5.5.1 shows the cost model of our implementation of UR-Repl’s communication

abstractions and compares these costs to the costs of hypothetical best-case implementa-

tions. Note that these best-case implementation costs are optimistic and may not always be

achievable.

Two things should be noted. First, the best case costs of the primitives are propor-

tional to the useful information sent, so they capture the idea that a designer should be able

to send just the right data to just the right place. Second, the overhead of our implementation

over the ideal is generally small.

In particular, there are three ways in which our prototype may send more informa-

tion than a hand-crafted implementation of some systems.

First, UR-Repl invalidation subscriptions are multiplexed onto a single network

connection per pair of communicating nodes, and establishment of such a connection re-

quires transmission of a version vector [105]. Note that in our prototype this cost is amor-
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tized across all of the subscriptions and invalidations multiplexed on a network connection.

A best-case implementation might avoid or reduce this communication, so we assume a

best-case cost of 0.

Our use of connections allows us to avoid sending per-update version vectors or

storing per-object version vectors. Instead, each invalidation and stored object includes an

acceptStamp[72] comprising a 64-bit nodeID and a 64-bit Lamport clock.

Second, invalidation subscriptions carry bothprecise invalidationsthat indicate the

logical time of each update of an object targeted by a subscription andimprecise invali-

dationsthat summarize updates to other objects. The number of imprecise invalidations

sent is never more than the number of precise invalidations sent (at worst, the system al-

ternates between the two), and it can be much less if writes arrive in bursts with locality

as we demonstrated in Section 4.6. The size of an imprecise invalidation depends on the

locality of the workload, which determines the extent to which the target set for imprecise

invalidations can be compactly encoded. A best-case implementation might avoid sending

imprecise invalidations in some systems, so we assume a best-case invalidation subscription

cost of only sending precise invalidations.

Third, our Java-serialization of specific messages may fall short of the ideal encod-

ings.

UR-Repl vs. CR-Repl. We first compare the cost of establishing callbacks on UR-Repl

and on the implementation of CR-Repl described in previous chapter. We approximate

ideal callbacks by establishing single-object subscriptions over both protocols. Figure 5.7

shows the cost for synchronizing the updates to 1000 object in a 100-node system (1) using

single-object interest sets and (2) using a single interest set spanning all 1000 objects. We

consider the ideal cost of a callback in a client-server system as sending an object Id and

receiving the object and the timestamp.

As Figure 5.7 shows, when fine-grained callbacks are established, UR-Repl ap-

proximates callbacks and is an order of magnitude cheaper than the CR-Repl replication.
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Figure 5.8: Network bandwidth cost to synchronize 1000 10KB files, 100 of which are
modified.

The CR-Repl replication pays a higher cost because every subscription establishes a new,

independent connection which involves sending a version vector summarizing the current

state of IS and then receiving an imprecise invalidation describing all invalidations to ob-

jects not in IS. In addition, coarse-grained subscriptions have much less overhead than

fine-grained subscriptions because version vectors are only transmitted once when estab-

lishing the coarse-grained subscription instead of each time a fine-grained subscription is

established.

Figure 5.8 and Figure 5.10 shows the impact of the size of a subscription set on
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Figure 5.9: Invalidation overheads breakdown to synchronize 1000 10KB files, 100 of
which are modified.

the subscription cost. By varying the size of a subscription set, i.e. the number of objects

included in one subscription, invalidation subscriptions provide trade-offs between the cost

of setting up subscriptions and the cost of sending invalidations for objects in a large sub-

scription set that are not of immediate interest. Given the same total number of objects

that need to create callbacks, the size of one subscription set affects the overall bandwidth

overhead because the larger the size, the less information needed to send for objects outside

of the subscription set on one subscription.

Subscription cost breakdown. Figure 5.8 illustrates the overall synchronization cost and

Figure 5.9 illustrates the breakdown of invalidation cost for a simple scenario. In this ex-

periment, there are 10,000 objects in the system organized into 10 groups of 1,000 objects

each, and each object’s size is 10KB. The reader registers to receive invalidations for one of

these groups. Then, the writer updates 100 of the objects in each group. Finally, the reader

reads all of the objects.

We look at four scenarios representing combinations of coarse-grained vs. fine-

grained synchronization and of writes with locality vs. random writes. For coarse-grained

synchronization, the reader creates a single invalidation subscription and a single body sub-

scription spanning all 1000 objects in the group of interest and receives 100 updated objects.
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For fine-grained synchronization, the reader creates 1000 invalidation subscriptions, each

for one object, and fetches each of the 100 updated bodies. For writes with locality, the

writer updates 100 objects in theith group before updating any in thei + 1st group. For

random writes, the writer intermixes writes to different groups in random order.

Four things should be noted. First, the synchronization overheads are small com-

pared to the body data transferred. Second, the “extra” overhead of UR-Repl over the

best-case due to connection setup and imprecise invalidations is a small fraction of the total

overhead in all cases. Third, when writes have locality, the overhead of imprecise invalida-

tions falls further because larger numbers of precise invalidations are combined into each

imprecise invalidation. Fourth, coarse-grained synchronization has lower overhead than

fine-grained synchronization because they avoid per-object setup costs. In particular, for

this example, setting up a single-object callback requires transmission of 333 bytes, so set-

ting up 1000 callbacks costs 333,000 bytes, and setting up a single subscription of all 1000

objects in a group costs 97,236 bytes.

Log catchup vs. checkpoint catchup. More generally, our implementation efficiently

implements both fine-grained and coarse-grained subscriptions by taking advantage of both

log catchup and checkpoint catchup. As discussed in Section 5.1 an ideal implementation

of an invalidation subscription will sendCatchupStartmessage when it is established, and

aCatchupEndmessage once the past invalidations or the checkpoint has been sent. Each of

these messages can be as small as a single byte. In UR-Repl, since multiple subscriptions

are multiplexed on a single stream, theCatchupStartandCatchupEndmessages contain the

encoding of the associated subscription set.

Figure 5.10 quantifies the network bandwidth required to establish an invalidation

subscription. 500 objects were updated and the x-axis corresponds to the number of objects

for which subscriptions were established. The three lines correspond to the cost when a

separate subscription for each object was established, like traditional callbacks [42].

The figure demonstrates that the cost of establishing subscriptions for the log catchup
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Figure 5.10: Bandwidth for establishing invalidation subscriptions.

and the checkpoint catchup is within a factor of the ideal implementation. The overhead

can be attributable to the size of theCatchupStartmessage. The checkpoint catchup does

worse than the log catchup because the size of the invalidation meta-data for each object is

bigger than an actual invalidation sent during the log catchup.

We also quantify the cost of establishing a single coarse-grained subscription for all

objects. The cost of a coarse-grained log and checkpoint catchup is almost the same. Both

fairly better than the ideal because theCatchupStartandCatchupEndmessages are only

sent once instead of 500 times.

Consistency overhead. Invalidation subscriptions also have the additional overhead of

imprecise invalidationssent to maintain consistency information. Figure 5.11 quantifies

this overhead when compared to a system that does not send any consistency ordering

information. We compared the overheads under three workloads. As we can see from

Figure 5.11, even in the worst case, the overhead for maintaining consistency is at most 2x

the number of invalidations sent over the subscription.
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Coherence-only UR-Repl

1-in-1 update 26 26
1-in-10 updates 26 30
1-in-2 updates 26 52

Figure 5.11: Number of bytes per relevant update sent over an invalidation stream for dif-
ferent workloads. 1-in-10 represents a workload in which every 1 out of 10 updates happen
to objects in the subscription set.

Write Write Read Read
(sync) (async) (cold) (warm)

ext3 6.64 0.02 0.04 0.02
BerkeleyDB 8.01 0.06 0.06 0.01
Local NFS 8.61 0.14 0.10 0.05
UR-Repl object store 8.47 1.27 0.25 0.16

Figure 5.12: Read/write performance for 1KB objects/files in ms.

Performance Overheads

This section examines the performance of the UR-Repl prototype. Our goal is to provide

sufficient performance for the system to be useful, but we expect to pay some overheads

relative to a local file system for three reasons. First, UR-Repl is a relatively untuned

prototype rather than well-tuned production code. Second,our implementation emphasizes

portability and simplicity, so UR-Repl is written in Java and stores data using BerkeleyDB

rather than running on bare metal. Third, UR-Repl provides additional functionality such

as tracking consistency metadata not required by a local file system.

Figures 5.12 and 5.13 summarize the performance for reading or writing 1KB or

100KB objects stored locally in UR-Repl compared to the performance to read or write

a file on the local ext3 file system. In each run, we read/write 100 randomly selected

objects/files from a collection of 10,000 objects/files. The values reported are averages of 5

runs. Overheads are significant, but the prototype still provides sufficient performance for

a wide range of systems.
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Write Write Read Read
(sync) (async) (cold) (warm)

ext3 19.08 0.13 0.20 0.19
BerkeleyDB 14.43 4.08 0.77 0.18
Local NFS 21.21 1.37 0.26 0.22
UR-Repl object store 52.43 43.08 0.90 0.35

Figure 5.13: Read/write performance for 100KB objects/files in ms.
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Figure 5.14: Performance for Andrew benchmark.

Figure 5.14 depicts the time required to run the Andrew benchmark [42] over the

UR-Repl prototype via the Java NFS wrapper that we will describe in Chapter 6. UR-Repl

successfully runs the benchmark, but it is slower than a well-tuned local file system.

Previous stamps Version vectors PVE Vector sets DSV

Storage overhead lower bound O(N + q + R) O(N ×R) O(N + R) O(N + R) O(N + R)
Storage overhead upper bound O(N + Q + R) O(N ×R) unbounded O(N ×R) O(N ×R)
Communication overhead lower bound O(q + R) O(q ×R) O(q + R) O(q ×R) O(q + R)
Communication overhead upper bound O(q + R) O(N ×R) unbounded O(N ×R) O(q ×R)

Figure 5.15: Storage and communication overhead lower and upper bounds comparison of
existing approaches.
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5.5.2 Cost for Conflict Detection

Figure 5.15 compares the storage and communication overhead of the various conflict de-

tection approaches in terms ofN objects,R replicas, andq recent updates. It compares CR-

Repl’s previous stamp approach, traditional version vectors, WinFS’s predecessor vectors

with exceptions (PVE), WinFS’s vector sets and UR-Repl’sdependency summary vectors

(DSV).

Under normal low-fault situations, in which synchronization occurs in one go, DSV,

like the vector sets and concise version vectors, maintains and communicates as little as a

single version vector to summarize all previous updates for all objects. Therefore, the

storage cost lower bound of these approaches is one version vector plus one acceptStamp

per object, i.e.O(N + R), and the communication cost lower bound is per update stamp

plus one version vector, i.e.O(R + q).

Under severe communication disruptions, there is extra network and storage costs

for some approaches because of the increase in size of book-keeping information. The

worst case storage cost for both DSV and vector sets is a per-object version vector which is

no worse than traditional version vectors. However, DSV’s network cost is better than the

vector sets and traditional version vectors because it takes advantage of the prefix properties

of invalidation subscriptions and only needs to send the per update version vector instead of

per-object version vector. The upper bounds of both storage and communication overhead

for the concise version vector approach are unbounded because of the size of a concise

version vector can be unbounded due to exceptions. Note that although, analytically, the

previous stamp approach could outperform DSV, practically, it is unable to detect conflicts

during checkpoint catchup whereas all other approaches can.
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Chapter 6

Flexibility

A core hypothesis of our work is that most of existing systems are “special cases” of a set

of underlying mechanisms and that UR-Repl is the set of mechanisms for such a replication

microkernel. We study this question in two steps. First we study this question “in the small”

and demonstrate the flexibility of URA by mapping a range of existing protocols in terms of

our lower-level mechanism abstractions. Second, we study this question “in the large” by

explaining how to put those existing protocols together to build a few case-study systems

on top of URA.

We defer the description of case-study systems to the next chapter. This chapter

focuses on explaining how to mapping existing techniques to URA abstractions. In partic-

ular, Section 6.1 discusses how to implement a range of consistency semantics using URA

local API. Then Section 6.2 explains how to use the subscription abstractions to implement

callbacks leases. Finally Section 6.3 demonstrates how to support quorums over URA.

6.1 Flexible Consistency

This section discusses the crosscutting issue of how to provide flexible consistency that (a)

supports strong consistency semantics for those applications that require them and (b) does
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not introduce unnecessary overhead for applications that do not.

Enforcing cache consistency entails fundamental trade-offs. For example the CAP

dilemma states that a replication system that provides sequentialConsistency cannot simul-

taneously provide 100%Availability in an environment that can bePartitioned [31, 84].

Similarly, Lipton and Sandberg describe fundamental consistency v. performance trade-

offs [54].

A system that seeks to support flexible consistency must therefore do two things.

First, it must allow a range of consistency guarantees to be enforced. Second, it must ensure

that workloads only pay for the consistency guarantees they actually need.

This section first describes the range of consistency guarantees that URA provides

and proves the correctness. It then discusses how URA provides these guarantees without

introducing unnecessary overhead.

6.1.1 Providing Flexible Guarantees.

Discussing the semantic guarantees of large-scale replication systems requires careful dis-

tinctions along several dimensions.Consistencyconstrains the order that updates across

multiple memory locations become observable to nodes in the system, whilecoherence

constrains the order that updates to a single location become observable but does not ad-

ditionally constrain the ordering of updates across multiple locations [39].Stalenesscon-

strains the real-time delay from when a write completes until it becomes observable.

Our protocol provides considerable flexibility along all three of these dimensions.

Causal Coherence

With respect to coherence, although our default read interface enforces causal consistency,

the interface allows programs that do not demand cross-object consistency to issueimpre-

cise readsby setting theReadNowBlockpredicate toisValid. Imprecise reads may achieve

higher availability and performance than precise reads because they can return without wait-
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ing for an interest set to becomePRECISE. Imprecise reads thus observe causal coherence

(causally coherent ordering of reads and writes for any individual item) rather than causal

consistency (causally consistent ordering of reads and writes across all items.)

With respect to consistency and staleness, URA provides a range of traditional

guarantees such as the relatively weak constraints of causal consistency [43, 51] or delta

coherence [85], to the stronger constraints of sequential consistency [52] or linearizabil-

ity [40]. Further, it provides a continuous range of guarantees between causal consistency,

sequential consistency, and linearizability by supporting TACT’s order error for bounding

inconsistency and temporal error for bounding staleness [103].

The read/write interface provides best-effort coherence and causal consistency by

setting the read interface parameters. The stronger guarantees of sequential consistency and

linearizability make use of “wrapper” interfaces over the default interface.

Causal Consistency

We enforce the causal consistency defined by Hutto and Ahamad [43]: “causal memory that

requires all processors to agree on the order of causally related effects (writes) but allows

events not related by potential causality to be observed in differing orders.”

URA provides causal consistency by simply setting theReadNowBlockpredicate

to isValid andisComplete. By blocking the read until the target object isPRECISE and

V ALID, URA provides causal consistency by enforcing three constraints.

• (C1) Use of Lamport logical clock.UR-Repl uses Lamport logical clock to capture

the causal relationship between writes.

• (C2)Prefix property of invalidation propagation.The invalidation propagation proto-

col maintains an invariant: if a node’s state reflects thei’th invalidation by some node

n, then the node’s state reflects all earlier invalidations byn precisely or imprecisely.

• (C3)Body apply rule.A body can not be applied until the corresponding invalidation
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has arrived. Any older body is overwritten by a newer body for the same object.

The “newer” and “older” are defined by the corresponding lamport logical clock and

breaking ties by the original writer’s node ID.

We now prove that the default interface provides causal consistency.

Lemma 1. An objecto on nodeα is preciseonly if α’s local state ofo has reflected all the

precise invalidations related too covered byα’s current version vectorcurrentV V .

Proof. We prove lemma 1 in two steps. First, we prove the simple case where there is no

checkpoint catchup. Supposeo is precise, and there is a missing precise invalidationpi s.t.

pi’s acceptStamp (as@β) is included incurrentV V . It’s obvious thatβ 6= α. By C2, α

must have received at least an imprecise invalidationii such thatii coverspi. Sincepi is

missing, every invalidation received byα that overlapspi’s logical time region is imprecise

and itstarget overlapso. According to the per-interest set state update rules as described

in Section 4.3 or Section 5.1.2,o.lpV V will never advance to include (as@β). Therefore,

currentV V > o.lpV V . e.g.o is IMPRECISE which contradicts the assumption.

Now consider the case where a checkpoint related too is sent for the first time, be-

cause the checkpoint ofo reflects all precise invalidations too up to the checkpoint’slpV V ,

the receiver’s state also reflects the same set of invalidations after applying the checkpoint.

After the catchup, the normal invalidation exchange protocol follows. Therefore, it is not

hard to derive that Lemma 1 still holds in the presence of checkpoint catchup.

Theorem 1. Blocking reads of INVALID and IMPRECISE ensures causal view of writes.

Proof. We can prove this theorem by contradiction. In particular, we prove that the fol-

lowing scenario would never happen if we block reads of INVALID and IMPRECISE:

suppose for some writeW1 (as1@n1, o1) causally precedes writeW2 (as2@n2, o2), i.e.

W1 → W2, there exists a noden4 such that its first readR1 of o2 returnsW2 and its

following readR2 of o1 returnsW3 (as3@n3, o1) whereas3@n3 < as1@n1.
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By C1, we haveas1@n1 < as2@n2. Now we prove that there is no such node in

both of the following two cases.

1. o1 = o2.

By C3, R2 always returns a value which is at least as new as the previous readR1

value, i.e.as3@n3 ≥ as2@n2, thereforeas3@n3 > as1@alpha which contradicts

with the assumption.

2. o1 6= o2.

SinceW1 causally precedesW2, either (1)W1 happens beforeW2 at the same

node; or (2)W1 has been propagated to the node whereW2 is first issued; or (3)

there existsWi s.t.W1 → Wi andWi → W2.

In the first two cases,W1 is already inn2’s log whenW2 is inserted to the same log.

By C2, we can easily derive that this property still holds in the third case. HenceW1

will always be the prefix ofW2 in any stream, i.e. whenever a node learns ofW2, the

node must have also learned ofW1. Therefore, when the first read returnsW2, the

currentV V should have already includedW1. By lemma 1, when the second read

returns, the node should have reflected all the precise invalidations related too1 up

to currentV V ′ ≥ currentV V which includesW1. Therefore,as3@n3 ≥ as1@n1

which contradicts with the assumption.

Therefore blocking reads of INVALID and IMPRECISE reflects the causal order of

writes.

Sequential Consistency

Lamport [52] defines sequential consistency as follows: “the result of any execution is the

same as if the [read and write] operations by all processes were executed in some sequential
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order and the operations of each processor appear in this sequence in the order specified by

its program.”

In this section, we describe how to implementsequential consistencyon URA.

For simplicity, here we use Golding’s algorithm as described in Chapter 4 to im-

plement consistency semantics discussed in this Chapter. Recall that the accept stamps

assigned to each write and the commit protocol define a total order on all writes that is

consistent with the program order of writes. Further recall the commit protocol ensures that

eventually all nodes agree on this total order for a prefix of all writes [88]. We can thus

enforce sequential consistency by ensuring (1) that reads only observe committed writes

and (2) that any reads by a program appears after all preceding writes by that program in a

total order.

Implementation. TheSequentialLocalInterfacewrapper may delay completion of reads

and writes in order to meet the constraints of sequential consistency. It ensures the above

two conditions as follows.

After the wrapper issues a write to the URA default local interface, the wrapper

stores theacceptStampassigned to that write in the variablelastLocalWrite.

Then, a read via the wrapper proceeds as follows:

• (ReadBlock1) The wrapper blocks until thelastLocalWriteis committed.

• The wrapper issues a read using URA’s default causal consistency read interface

which returns abodyand the accept stampobservedAcceptStampof the write that

was just observed.

• (ReadBlock2) The wrapper blocks untilobservedAcceptStampis committed.

Note: the first block makes sure that the read is ordered after any preceding local

write in the global serialization order. As illustrated in Figure 6.1, if it does not block until

all the previous local writes (e.g., W11@n2) commit, it is possible that some writes (e.g.,

106



Time

n2 W1(1@n2, o1) R1(o2)

n1 W2(1@n1, o2)

send W2

Figure 6.1: Sequential consistency violation example 1. The committed order isW2 <
W1. However,R1 < W2 becauseR1 returns older value than W2. ThereforeR1 < W1
which contradicts the program order.

Time

n2

n1 W1(1@n1, o2)

send W1

W0(0@n2, o2) R1(o1)W2(1@n2, o1) R2(o2)

Figure 6.2: Sequential consistency violation example 2. The committed order isW1 <
W2 < R1. However,R2 < W1 asR2 reads an older value thanW1. ThereforeR2 < R1
which contradicts with their program order.

W2 1@n1) ordered before the last local write (e.g., W1) in the global order defined by the

accept stamps have not arrived yet. Then the read R1 returns an value older than W2 since

W2 arrives after the read. Therefore in the corresponding sequential order, the read should

be ordered before the writes which precedes the last local write, i.e,R1 < W2. Then

becauseW2 < W1, by transitiveness we haveR1 < W1, i.e., the read is ordered before

the last local write which is inconsistent with the program order.

Similarly, the third block makes sure that the order between reads across multiple

objects are preserved as defined in the program. Otherwise, as illustrated in in Figure 6.2,
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the sequential order of reads (ordered by the read values) might violate the program order.

In this example, the first readR1 on objecto1 observesW2 while W2 is not committed

locally. BecauseW2 is not committed,W1 which precedesW2 in the committed order

might have not arrived to noden3 yet. If R1 returnsW2 without waiting forW2 to be

committed, the following readR2 on o2 will return an older valueW0 instead ofW1.

Therefore, we haveR2 < W1. SinceW1 < W2 andW2 < R1, we haveR2 < R1 which

is inconsistent with the program order.

Correctness. In order to prove that theSequentialLocalInterfacewrapper ensures sequen-

tial consistency, we first define a four-member tuple for each operation.

• Mark a WRITE with an acceptStamp(time, nodeId) as(time, nodeId,−∞,−∞).

• Mark a READ that is issued on nodereadNodeat real timet, and that returns at

the moment when the maximum committed timestamp atreadNodeis (maxStamp,

maxNodeId)as(maxStamp, maxNodeId, readNode, t).

We define the order between the four-member tuples as:

(as1, nid1, rnd1, rno1) < (as2, nid2, rnd2, rno2)

iff ( as1 < as2)

or ((as1 = as2) and (nid1 < nid2))

or ((as1 = as2) and (nid1 = nid2) and (rnd1 < rnd2))

or ((as1 = as2) and (nid1 = nid2) and (rnd1 = rnd2)) and (rno1 < rno2))

These tuples give a global serialization orderS for all reads and writes. Note that

we use (readNode, t) to distinguish reads with the same last committed write. The order

of those reads does not affect the read results. We use (−∞,−∞) for writes so that writes

can always order before the corresponding reads in the sequential order.

Lemma 2. The reads and writes issued through theSequentialLocalInterfaceare consistent

with the global sequential order ofS.
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Proof. First, it is obvious that this serialization order preserves the total order defined by

the write accept stamps and the write commit protocol, therefore the writes are consistent

with this sequential order.

Now let us prove that the read throughSequentialLocalInterfacewrapper returns

the same value as executing it at one node according toS.

Suppose at nodeα, a SequentialLocalInterfaceread on objecto returns when the

write with the maximum commit accept stamp on nodeα is maxCommittedWrite. By

ReadBlock1andReadBlock2, the value returned to the read is the last writeW issued too

that precedes or equals tomaxCommittedWrite.

Now let us simulate the sequential order according toS, i.e., execute all the opera-

tions at one node in the order ofS. As this read is ordered right aftermaxCommittedWrite

( there might be some other reads in between, but they will not affect the value this read

returns), it is executed right aftermaxCommittedWrite. Since the writes inS are con-

sistent with the order defined by their accept stamps, the writeW is the last executed after

all the other writes that updateo before the read. Therefore the read returns the same value

as the read through theSequentialLocalInterfacewrapper.

Lemma 3. This global serialization orderS is consistent with each node’s program order

P .

Proof. For any two writesW1(as1, n1−∞,−∞), W2(as2, n1,−∞,−∞), and any two

readsR1(as3, n3, n1rno3), R2(as4, n4, n1rno4) in a programP running at noden1, we

consider the following four cases:

1. W1 precedesW2 in P

⇒ as1 < as2, by lamport logical clock

⇒ (as1, n1) < (as2, n1)

⇒ (as1, n1−∞,−∞) < (as2, n1−∞,−∞)

⇒ W1 precedesW2 in S
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2. W1 precedesR1 in P

⇒ (as1, n1) ≤ (as3, n3), by ReadBlock1, W1 must have committed beforeR1

returns

⇒ (as1, n1−∞,−∞) < (as3, n3, n1rno3)

⇒ W1 precedesR1 in S

3. R1 precedesW1 in P

⇒ (as1, n1) > (as3, n3), By ReadBlock2, write (as3, n3) must have been commit-

ted atn1 before issuingW1

⇒ (as1, n1−∞,−∞) > (as3, n3, n1rno3)

⇒ R1 precedesW1 in S

4. R1 precedesR2 in P

⇒ rno3 < rno4 and (as3, n3) ≤ (as4, n4), because the maximum committed

accept stamp at one node is monotonically increasing.

⇒ (as3, n3, n1rno3) < (as4, n4, n1rno4)

⇒ R1 precedesR2 in S

Therefore the order of each individual program’s operations inS preserves the order

specified by the program.

Theorem 2. The reads through theSequentialLocalInterfacewrapper observe sequential

consistency of all writes issued.

Proof. From Lemma 2 and Lemma 3, by the definition of sequential consistency in [52],

we can conclude that the above algorithm can support sequential consistency.

Linearizability

Herlihy and Wing define Linearizability as follows [40]: an concurrent execution is lin-

earizable if it satisfies: (1) “processes act as if they were interleaved at the granularity of
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complete operations” and (2) “ this apparent sequential interleaving respects the real-time

precedence ordering of operations”.

The aboveSequentialLocalInterfaceensures the first condition. In order to ensure

the second condition, we must make sure the write/read order preserves the real-time prece-

dence. Especially, we must make sure that (1) any writeW1 that finishes before another

write W2 is started in real time appears beforeW2 in the committed order; (2) any read

appears in the total order after all writes that finish before the read is started and (3) any

readR2 that is requested after another readR1 returns in another node must observe the

same or newer view.

Implementation. TheLinearizableLocalInterfacewrapper may delay completion of reads

and writes in order to ensure these conditions as follows.

• (WriteBlock1) each write blocks until the write is visible at all nodes. A noden1

determines that its writew is visibleat another noden2 by issuing asynchronization

requestto n2 and waiting for the requested acknowledgement to arrive.n2 will send

back an acknowledgement ton1 as soon as itscurrentVVincludesw.acceptStamp.

A read via the wrapper proceeds as follows:

• (ReadBlock1) the wrapper blocks until the newest write a node learnedmaxKnown-

Write is committed locally;

• The wrapper issues a read using URA’s default causal consistency interface that re-

turns abodyand the accept stampobservedAcceptStampof the write that was just

observed;

• (ReadBlock2) blocks untilobservedAcceptStampis visible at all nodes.

Note that theWriteBlock1andReadBlock1is necessary to ensure that read happens

after all real-time preceding writesW . As illustrated in Figure 6.3, ifW2 does not wait for
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Time

n3 W1(1@n3, o1) W1return

n1 W2(1@n1, o2)

n2
R1(o2)

Inv1 

Ack1 

Ack1 

Learn W1

Learn W1

Figure 6.3: Linearizability violation example. The committed order isW2 < W1, but
R1 < W2 becauseR1 returns an value older thanW2. ThereforeR1 < W1 which
violates the real-time order.

n2 to get the invalidations,R1 will return a value ofo2 older thanW2. SinceW1 returns

earlier thanR1, R1 should not return a value older thanW2. Therefore the scenario in

Figure 6.3 violates the semantics oflinearizability.

Note thatReadBlock2is necessary to make sure that reads at different nodes returns

values consistent to their real-time order. When a read returns a value, the following read

should returns a value which relates to the same or newer committed point.

Correctness. Similar to the proof ofsequential consistency, we also assign each read/write

operation a four-member tuple and prove the theorem in two steps. First, we prove that the

effects of any read/write operation through theLinearizableLocalInterfacewrapper is con-

sistent with the global serialization order “S” defined by the four-member tuple. Second,

we prove that the global serialization order “S” is consistent with the real-time precedence

order.

Lemma 4. TheLinearizableLocalInterfacewrapper is consistent with the global serializa-

tion order defined by “S”.

We skip the proof which is similar to the proof of lemma 2.
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Lemma 5. The global serialization order “S” is consistent with the real-time precedence

order.

Proof. For any two writesW1 : (as1, n1,−∞,−∞), W2 : (as2, n2,−∞,−∞), and any

two readsR1 : (as3, n3, rn3, rno3), R2 : (as4, n4, rn4, rno4), we consider the following

four cases:

1. W1 precedesW2 in real-time

⇒ as1 < as2, by WriteBlock1, W1 returns beforeW2, thereforen2 knowsW1

before issuing the accept stamp toW2

⇒ (as1, n1−∞,−∞) < (as2, n1−∞,−∞)

⇒ W1 precedesW2 in S

2. W1 precedesR1 in real-time

⇒ (as1, n1) ≤ (as3, n3), by WriteBlock1, W1 should have been known atrn3

whenW1 returns, therefore byReadBlock1W1 must have committed beforeR1

returns

⇒ (as1, n1,−∞,−∞) < (as3, n3, nr3, rno3)

⇒ W1 precedesR1 in S

3. R1 precedesW1 in real-time

⇒ as1 > as3, by ReadBlock2, write (as3, n3) is known atn1 whenW1 is issued

⇒ (as1, n1,−∞,−∞) > (as3, n3, rn3, rno3)

⇒ R1 precedesW1 in S

4. R1 precedesR2 in real-time

⇒ (as3, n3) is known atn4 whenR2 is issued byReadBlock2

⇒ (as4, n4) ≥ (as3, n3)

⇒ (as3, n3, rn3, rno3) < (as4, n4, rn4, rno4)

⇒ R1 precedesR2 in S
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Theorem 3. Each read/write operation through theLinearizableLocalInterfacewrapper is

linearizable with respect to all other reads and writes through the same interface.

Proof. From Lemma 4 and Lemma 5, we can conclude that the above algorithm can support

linearizability.

Order Error Bound and Temporal Error Bound

Besides the above commonly-used consistency wrappers, URA also support TACT’s [103]

tunable temporal error (TE) bound and order error (OE) bound. The read interface has a

TE parameterto restrict staleness by specifying the maximum real time delay between a

remote update and a read. To support TE, every node maintains a real-time version vector

currentT ime that is updated when an invalidation is received. A read is blocked if any

component of the real-time version vector is older thancurrentT ime−TE. A node sends

periodic heartbeats to its peers when there are no updates to prevent reads from blocking

unnecessarily.

Similarly, UR-Repl’s write interface has anOE parameter that specifies the maxi-

mum number of outstanding, uncommitted local writes. We employ Golding’s algorithm [32]

for write commit. As described in Chapter 4, every node uses itscurrentVVto determine

how many writes have not been committed, providing a means to block a write if the number

is greater than that specified by theOEparameter.

We generalize the TE interface to support themaxStale(nodes, count, t)predicate

and generalize the OE interface to support thepropagated(nodes, count, p)predicate as

listed in Figure 3.2.

6.1.2 Costs of Consistency

URA protocols should ensure that workloads only pay for the semantic guarantees they

need. Our protocol does so by distinguishing the availability and response time costs paid
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by read and write requests from the bandwidth overhead paid by invalidation propagation.

The read interface allows each read to specify its consistency and staleness require-

ments. Therefore, a read does not block unlessthat readrequires the local node to gather

more recent invalidations and updates than it already has. Similarly, most writes complete

locally, and a write only blocks to synchronize with other nodes ifthat write requires it.

Therefore, as in TACT [103], the performance/availability versus consistency dilemmas are

resolved on a per-read, per-write basis.

Conversely, all invalidations that propagate through the system carry sufficient in-

formation that a later read can determine what missing updates must be fetched to ensure

the consistency or staleness level the read demands. Therefore, the system may pay an ex-

tra cost: if a deployment never needs strong consistency, then our protocol may propagate

some bookkeeping information that is never used. We believe this cost is acceptable for

two reasons: (1) other features of the design—separation of invalidations from bodies and

imprecise invalidations—minimize the amount of extra data transferred; and (2) we believe

the bandwidth costs of consistency are less important than the availability and response time

costs. Experiments in Section 4.6 quantify these bandwidth costs, and we argue that they

are not significant.

6.2 Callbacks And Leases

Callbacks and leases are important techniques widely used in a range of client-server caching

systems [48, 42, 68, 12, 65, 100]. In this section, we discuss how to map these techniques

to URA.

6.2.1 Callbacks

Callbacks have long been studied for distributed file systems [48, 42, 68, 12]. In tradi-

tional callback algorithms, servers (or parents in hierarchical systems) keep track of which

clients (or children) are caching what objects and promise to notify the clients whenever
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an update to the cached object occurs. Callbacks save network bandwidth by only sending

invalidations of the objects that a client currently caches.

URA generalizes “callbacks” to ad-hoc communication topologies. But without the

client-server or hierarchy topology assumption, it is a challenge to save network bandwidth.

For example, in the client-server systems, the server (or parent) does not need to send

invalidations of updates to other objects that a client does not currently cache while still

maintaining cross-object consistency because it has all the newest objects and the client

only renews the invalidated object from the server. As another example, in the client-server

systems, once the server sends an invalidation for an object to the client, it does not have

to send other invalidations about that object because it knows that the client no longer has

the data, i.e., a “callback break”. However, in an arbitrary topology, a node can not decide

if the other node’s cache is still marked as “INVALID” because the destination may have

gotten the new version from someone else between the last invalidation and “now”.

Implementation on URA

URA generalizes the notion of establishing a callback with a server to adding (attaching)

an interest set to a stream and the “callback break” as removing (detaching) an interest set

from a stream.

For example, on a read miss for objecto, a client takes two actions. First, it issues

a single-object fetch for the current body ofo. Second, it creates a “callback” on the server

by setting up an invalidation subscription for objecto starting fromo.lpV V from the server

so that the server will notify the client ifo is updated. As a result of these actions, the client

will receive the current version ofo, receive previous updates fromo.lpV V up to server’s

current time, and receive an invalidation wheno is next modified; the server will block any

new update until the client with callbacks receives the corresponding invalidation.

The invalidation subscription invariant—sending precise invalidations for subscribed

objects and imprecise invalidations for other objects simplifies the implementation of “call-
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back break”. In particular, once a clientα removeso from the stream, the server will send

imprecise invalidations wheno is updated later. Onceα receives an imprecise invalidation

for o, the next read ofo with isV alid andisComplete predicates onα will trigger a read

miss becauseo is imprecise. As a result, a callback foro as described above will be estab-

lished. Therefore, to break a callback, the server only needs to removeo from the outgoing

stream to the client.

As illustrated in Chapter 5, URA minimizes thecallbackscost by using two tech-

niques. First, it employs imprecise invalidations to concisely summarize missing infor-

mation. Second, it multiplexes multiple subscriptions over the same network connection

so as to only send information relating to any update once per connection rather than re-

peatedly sending this bookkeeping information once per subscription. As demonstrated in

Section 5.5, it is an order of magnitude more efficient than the CR-Repl replication, and

performs close to traditional callbacks or even outperforms traditional callbacks when the

workload exhibits high predictability and locality.

Callback recovery. Using UR-Repl’s invalidation subscriptions to implementcallbacks

yields a significant advantage: it makes “recovery” a natural implication of UR-Repl mech-

anisms, especially when compared to traditional protocols where “recovery” is treated as

a special case. Recovery in most systems simply entails restoring lost connections and

the re-establishment of the invalidation subscription and theisCompletepredicate on reads

automatically ensures that local state reflects any updates that were missed.

In particular, after a subscription carrying updates from a client to the server breaks,

the server periodically attempts to reestablish the connection. Because the server always

restarts a subscription from where it left off, once a local write is applied to a client’s local

state, it eventually must be applied to the server’s state.

Additionally, after a connection carrying invalidations from the server to the client

breaks and is reestablished, URA’s invalidation subscription protocol advances the client’s

consistency state only for objects whose subscriptions have been added to the new connec-
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tion, i.e. remainsPRECISE. Other objects are then treated asIMPRECISEas soon as the

first invalidation arrives on the new connection. As a result, no special actions are needed

to resynchronize a client’s state during recovery.

6.2.2 Leases

Leases [33, 98] are another important mechanism for maintaining strong consistency for

client-server systems. An object lease represents permission to access an object until spec-

ified time [33]. It introduces a tradeoff between the availability of write and the availability

of read. With thecallbacksmechanisms, when a client with a valid callback is disconnected

from the server, the server can not make progress for updates. This problem is addressed

by using leases which specify a length of time during which servers notify clients of mod-

ifications to cached objects. After the lease expires, a client must renew it before it access

any cached object. Therefore, the server could still modify the object even if any client with

callbacks is disconnected.

URA supports Yin et al.’s volume lease [101] to expire callbacks from unreachable

clients. The volume leases protocol is a variation of leases protocol that generalize leases

to work efficiently with WAN workloads. A volume lease is a lease on a group of objects

(volume). Under the volume leases protocol, a client may access a cached object if it holds

valid leases on both the object and the object’s volume, and a server can modify data as

soon as either lease expires.

Implementation. Implementing volume leases mainly involves how to expire/renew the

corresponding callbacks. To implement leases, URA needs to extend the basic callback

implementation in three ways. First, clients maintain incoming subscriptions to a specific

volume lease object from the server. Second, in order to renew the lease automatically if

connected, the server keeps the client’s view up-to-date by sending periodic heartbeats via

a volume lease object, i.e., periodically updates the volume lease object. As a result of the

subscription, the clients will receive the precise invalidations of the volume lease object
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and all other precise invalidations of any subscribed object. Note that therealTimeaccept

stamp in each precise invalidation updates the clients’ notion of server’s real time so that

the clients can check for expired leases.

Finally, to realize the lease expiration effect, it need to do two things for handling

reads and writes.

• We need an additional condition to theReadNowBlockpredicate besides theisValid

and isCompletecondition variables if the client’s view of the server’s state is too

stale. It turns out that the TACT’sTE parameter is the right interface to implement

this block. If we setTE to be the lease period, the read will be blocked if the client

is disconnected from the server for more thanTE or the object has not renewed the

lease from the server.

• The server must maintain the lease status of all clients who have callbacks so that a

write can proceed once all callbacks either break or the corresponding leases expire.

We can do this by splitting the callback list into two listscallback1 andcallback2.

When a callback for a clientC is established, the server addsC to callback1. When

a callback for a clientC is broken, the server removesC from either list where it

exists. Suppose the lease period isL seconds, in order to expire the lease, the server

periodically emptiescallback2, removes the corresponding subscriptions, and then

moves nodes incallback1 to callback2 in everyL/2 seconds. The server can return

a write whenever both of the list are empty.

Note that by transporting heartbeats via a URA object, we ensure that a client ob-

serves a heartbeat only after it has observed all causally preceding events, which greatly

simplifies reasoning about consistency.
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6.3 Quorums

Another important class of replication protocols is the quorum-based (a.k.a. voting) ap-

proaches [90, 30]. In the quorum-based protocols, any write/read operation only requires

a subset of nodes (write/read quorum) to be available to process it. The intersection of

read/write quorums invariant guarantees regular semantics [53] in the presence of network

partitions and node failures. There are a number of variations of quorum-based protocols

that address different workloads and failure models. For example, Grid quorums [15], tree

quorums [2] etc. reduce the quorum size by imposing a logical structure on the set of

replicas. Byzantine quorum systems [58] use quorum systems to tolerate arbitrary failures.

In addition, the quorum method is also a powerful framework that can address a

broad range of other replication systems. For example, server replication systems such

as Bayou are fundamentally Read-One-Write-All-Asynchronous (ROWAA) systems. A

ROWAA system can be viewed as a special quorum system with read quorum of 1 and

write quorum of all. In this “quorum” system, instead of waiting for voting from all nodes,

the write operation returns immediately after one node applies it and propagates it to the

other nodes asynchronously.

Client-server replication systems are also related to quorum systems. In particular,

dual-quorum [28] generalizes client-server systems by separating the read/write quorums

into two independent quorum systems. The output quorum system caches/prefetches data

from the input quorum system. The input quorum system acts as servers and grants volume

leases [101] to the output quorum system, and the output quorum system renews the leases

from the input quorum system.

6.3.1 Implementation on URA

To facilitate implementing a range of quorum systems on URA, we provide aQuorumLo-

calInterfacewrapper over the basic local operation interface. TheQuorumLocalInterface

wrapper provides primitives similar to Q-RPC [59] so that the controller layer can freely
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implement different styles of quorum systems ranging from those that number a simple ma-

jority, to explicit enumeration of the membership of each possible quorum. The complete

description of policy implementation of those quorum systems is beyond the scope of this

dissertation. In the following paragraphs, we discuss how to extend URA’s local interface

to implement the building blocks, i.e., theQuorumLocalInterfacewrapper that includes two

basic operations:quorum readandquorum write.

Quorum read. In order to provideregular semantics, the quorum read must ensure that

the read value is the newest value among all local values stored at all of the nodes in a read

quorum. Therefore a quorum read issued at a nodeα with a read quorum ofQread includes

two steps.

• First, the wrapper blocks untilα has an active incoming invalidation stream from each

node inQread. This block makes sure thatα’s state reflects all updates processed at

any node inQread before this read is issued.

• Then the wrapper issues a URA local read atα with the ReadNowBlockpredicate

set toisValid and isCompleteand finally returns the read value to the quorum read

client. These two blocks ensure that the read returns the newest value among all

values stored in all of the nodes inQread.

Note that because of separation of invalidation and body, in the second step, if the

read is blocked because ofINV ALID, the controller can specify any policy to bring the

matching or newer body to unblock the read. The sender does not have to be one member

of theQread. Therefore the wrapper can offer a range of policies to optimize the quorum

read latency and reduce network bandwidth overhead.

Quorum write. In order to provideregular semantics, the quorum writeW must ensure

that any following quroum read afterW returns a value at least as new asW . Therefore a

quorum write issued at a nodeα with a write quorum ofQwrite includes three steps.
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• First, the wrapper blocks untilα has an incoming invalidation subscription from each

node in a read quorum. These subscriptions bringalpha.currentV V up to include

each node’scurrentV V in a read quorum. Since any read quorum intersects any

write quorum, this block and the lamport clock ensures that the current pending quo-

rum write is ordered after any previous completed writes.

• Then the wrapper issues a local writeW through the URA local write interface.

• Finally, the wrapper sends ansynchronization requestto each node inQwrite and

returns the write after it receives an acknowledgement from each node inQwrite.

This block ensures that at least all nodes inQwrite is aware of the new update so that

any following read will return a value as new asW .

The QuorumLocalInterfacewrapper enforcesregular semanticsif the Qread and

Qwrite has intersections. Note that in the third step, the controller can specify any policy to

distribute the invalidation of the quorum write toQwrite and specify any reliability policy

to distribute the body to any node while the wrapper can still enforce theregular semantics.

We can implement different controllers for different quorum systems using the basic

QuorumLocalInterfacewrapper.

6.4 Other Features

There are additional features that are useful for implementing replication systems. Here we

briefly list some of them.

Atomic writes. Besides the traditional strong consistency semantics described above, we

also provideatomic multi-object writes. This write interface allows an update targeting

to multiple objects and assigns the updates to multiple objects with one logical stamp and

thus propagates them atomically as one invalidate in the system, i.e., either all the objects

are updated/invalidated or non of the objects are updated/invalidated. Note that the only
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difference between the multi-object invalidation and the normal precise invalidation is the

targetSet. We can treat a multi-object invalidation as a normal precise invalidation to be

inserted in the log or be accumulated in an imprecise invalidation or to be applied to local

storage state as described in chapter 5.

This interface is very useful in implementing file system interface on top of our raw

object store as described in the next paragraph.

NFS interface. To demonstrate the feasibility of supporting useful applications built on

URA, we implement an NFS interface wrapper over URA object interface. The NFS in-

terface wrapper serves as a bi-directional translation between the NFS client calls and the

URA local interface calls. The wrapper implements a user-level loop-back NFS server that

listens on the NFS port, parses RPC requests, translates calls to URA local interface calls,

and finally puts up corresponding responses to the requests.

The major complexity comes from translating the file and directory concepts into

the raw object access interface. We implement each file as two URA objects, one for the

content and the other for the metadata information like file size etc. We also implement

a directory as a normal file except that the corresponding metadata object is marked as a

directory type, which enables the read to parse the object correctly.

Although the NFS specification provides only loose requirements on the consis-

tency of the files that are exposed to users, NFS requires that each operation beatomic, i.e,

the system should never be visible in a state where a particular operation has only partly

completed. Because each file or directory is composed of two URA objects, any translated

URA object update operations must atomically change both objects. We simply use the

atomic multi-object write described above to implement this semantics.

Detailed description of the implementation of our NFS interface can be found in

[67].
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Chapter 7

Case-study Systems

To examine the claim that URA is abetter wayto build replication systems by providing

a common substrate, this chapter evaluates URA with a series of case-study systems that

span a significant portion of the design space.

Figure 7.1 summarizes the features covered by 6 case-study systems and 4 addi-

tional variations we implemented using URA. The systems include a wide range of ap-

proaches for balancing consistency, availability, partition resilience, performance, reliabil-

ity, and resource consumption, including demand caching and prefetching; coarse- and fine-

grained invalidation subscriptions; structured and unstructured topologies; client-server, co-

operative caching, and peer-to-peer replication; full and partial replication; and weak and

strong consistency. The figure details the range of features we implement from the papers

describing the original systems.

Except where noted in the figure all of the systems implement important features

like well-defined consistency semantics, crash recovery, and support for both the object

store interface and an NFS wrapper.

In the rest of this chapter, we first describe the evaluation criteria to compare our

prototype systems to systems from the literature. Then Section 7.2 describes how to im-

plementclient-server systemslike Coda [48] and TRIP [66] and then compares these URA
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U-Bayou[72] U-Chain U-Coda [48] U-Tier
+Small Repl +Coop U-Pangaea Store U-TRIP
Device [91] Cache [77] [23]+CC [66]+Hier

Consistency Causal Lin. Open/close Coherence Coherence Seq.
→ Causal

Topology Ad- Chains Client/ Ad- Tree Client/Server
Hoc Server Hoc → Tree

Partial
Replication

√ √ √ √

Prefetching/
Replication

√ √ √ √ √ √

Cooperative
Caching

√ √

Disconnected
operation

√ √ √

Callbacks
√ √ √

Leases
√

All reads
served locally

√ √ √

Crash recovery
√ √ √ √ √ √

Object store interface∗
√ √ √ √ √ √

File system interface∗
√ √ √ √ √ √

Figure 7.1: Features covered by case-study systems.∗Note that the original implementa-
tions of some of these systems provide interfaces that differ from the object store or file
system interfaces we provide in our prototypes.

implementations with existing systems, Section 7.3 details the implementation ofserver-

replication systemslike Bayou [72] and Chain Replication [91], and finally Section 7.4 ex-

plain how to implement theobject replication systemslike Pangaea [77] and TierStore [23].

7.1 Evaluation Criteria

The reader should be a bit concerned at this point. We claim that URA simplifies the task

of developing replication systems, but how can such a claim be judged? Our evaluation

compares prototype systems to systems from the literature, but constructing perfect, “bug

compatible” duplicates of such systems on URA is probably not a realistic (or useful) goal.

On the other hand, if we are free to pick and choose arbitrary subsets of features to exclude,

then the bar for evaluating our framework is too low: we can claim to have built any system

by simply excluding any features our architecture has difficulty supporting.
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This issue reflects a deeper challenge to designing a replication architecture: we

must identify the essential characteristics of replication systems the architecture should

encompass. Published replication systems have many features; some are fundamental to

their design and some are peripheral. However, to be useful, an architecture mustrestrict

the choices of a designer: an architecture that allows every possible variation of every

possible design decision is not an architecture at all.

In this section, we therefore define a workingequivalencerelationship between

replication systems that defines both the scope of and requirements on URA.

7.1.1 Equivalence

We define equivalence in terms of three properties:

E1. Equivalent overhead.SystemA’s cumulative network bandwidth between any pair

of nodes and local storage at any node are within a small constant factor of system

B’s. “Small constant factor” sounds weak but appropriate because we believe that

although there exists no meaningful way to check what “small” means in all possible

workloads, we can and will show empirically that our system does perform well in

many real-life scenarios.

E2. Equivalent consistency.SystemA provides consistency, coherence, and staleness

properties that are at least as strong as systemB’s.

E3. Equivalent local data.The set of data that may be accessed from systemA’s local

state without network communication is a super-set of the set of data that may be

accessed from systemB’s local state for any workload.

Notice that property E3 encompasses several factors including latency, availability, and

durability.

There is a principled reason for believing that these properties capture something

about the essence of a replication system: they highlight how a system resolves the funda-

mental CAP (Consistency v. Availability v. Partition-resilience) [31] and PC (Performance
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v. Consistency) [54] trade-offs that any replication system must make. More specifically,

omitting any of these properties could allow a system to significantly cut corners. For

example, one can improve read performance by increasing network and storage resource

consumption to speculatively replicate more data to each node and weakening consistency

by delaying invalidations until the corresponding body has been prefetched [66]. Similarly,

one can improve the availability a system offers for a given level of consistency by using

more network bandwidth to synchronize more often [103], or one can reduce the resources

consumed by replication by delaying propagation of updates and weakening consistency [7]

or by reducing the amount of data cached at a node.

We define different levels of equivalence specifying when E1–E3 must hold.

Definition. SystemA is S-equivalent(strongly equivalent) to systemB if at any time for

any workload E1, E2, and E3 hold.

Unfortunately, though appealing, the S-equivalence relation is too strong in practice—

it can exclude systems that are “equivalent enough.” For example, if two systems (or even

two runs of the same system) make different non-deterministic choices about the order of

two concurrent writes to an object, different nodes could end up with a copy of the ob-

ject, making the system fail the third test. We therefore define a useful, weaker form of

equivalence.

Definition. SystemA is Q-equivalent(quiescent equivalent) to systemB if for a Q-

workload consisting of a series of requests with a quiescent period after requesti completes

execution before requesti + 1 begins execution, properties E1 and E3 hold at the start of

each quiescent period and property E2 holds for all requests.

Although the workload defined in Q-equivalence is unrealistic, it makes comparison

of systems tractable by removing the non-determinism concurrency can introduce. Further-

more, we believe that if a system can meet the Q-equivalent requirements, it is likely the

system will be “equivalent enough” for most realistic workloads.
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More broadly, systems may target specific workloads, and their behavior for other

workloads may not be of interest.

Definition. SystemA is W-equivalent(workload equivalent) to systemB if properties

E1 through E3 hold at specified times for a specified subset of workloads. Obviously, one

must judge whether a W-equivalent system is interesting based on the specific subset of

workloads included.

All of the six systems we build and discuss in this paper are designed to be Q-

equivalent with their original systems.

7.2 Client-server Systems

As described in Chapter 2,Client-serversystems like Sprite [68] and Coda [48] andhierar-

chicalcaching systems like hierarchical AFS [65] permit nodes to cache arbitrary subsets of

data (PR) and ensure certain consistency semantics. However, these protocols fundamen-

tally require communication to flow between a child and its parent, which hurts performance

and availability under certain environments.

In this section, we discuss how to implement such systems and how URA enables

better performance by removing the topology restriction of those systems by detailing two

case-study systems: U-Coda [48] and U-Chain Replication [66].

7.2.1 U-Coda

Coda [48] is a typical client-server system. All data is located at the server whereas the

client caches some files locally. The server maintains a list of clients who cache valid

copies of files and notifies the clients once it learns a new update (callbacks). Every client

has a list of files, the “hoard set”, that it will prefetch from the server and store it in its local

cache whenever it is connected to the server.

128



We discuss in detail U-Coda, a system inspired by the version of Coda. U-Coda sup-

ports disconnected operation, reintegration, crash recovery, whole-file caching, open/close

consistency (when connected), causal consistency (when disconnected), and hoarding. We

know of one feature from this version that we are missing: we do not support cache re-

placement prioritization. In Coda, some files and directories can be given a lower pri-

ority and will be discarded from cache before others. Coda is long-running project with

many papers worth of ideas. We omit features discussed in other papers like server replica-

tion [82], trickle reintegration [63], and variable granularity cache coherence [64]. We see

no fundamental barriers to adding them in U-Coda. We also illustrate the ease with which

co-operative caching can be added to U-Coda.

Implementing consistency policies. Coda provides open/close semantics which means

that when a file is opened at a client, the client will return the local valid copy or retrieve

the newest version from the server. A close on a client will block until all updates have

been propagated to the server and the server has made sure that all copies cached on other

clients have been invalidated. When a client is disconnected from the server, the client only

accesses locally cached files that are valid.

We employ an open/close wrapper library that buffers writes in the library until

close, at which point it will make the writes to URA’s storage. A file “open” is implemented

as a read of an object. The causal consistency read interface is used, i.e. all reads will block

until the local object isV ALID andPRECISE before the object is accessed. All writes

to file are buffered until the file is closed at which point, the object is written. If the client is

connected to the server, an object write will be blocked until the server gathers invalidation

acknowledgements from all clients that have callbacks and reports “done.” Otherwise, the

write is simply stored in log and will be transferred to the server when connected later. This

standard open/close library is usable by different systems.
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Implementing topology policies. U-coda topology policies can be divided into 7 main

groups: configuration, connectivity, demand read, write propagation, recovery, hoarding,

and safety enforcement. Note the safety enforcement are part of the consistency library, we

include them here for completeness.

Note that because the configuration and connectivity are similar for most of case-

study systems, we discuss these implementation here and skip them in the other case-study

system description.

Configuration and connectivity. A configuration file stores the server’s identity

and another configuration file provides the hoard list. Each clientC periodically pings

the serverS to check whether the serverS is currently reachable. We base on an imple-

mentation of Narada [55] to track connectivity information and generatenewLiveNeighbor

anddeclareDeadNodeevents, which invoke different subscription actions respectively as

specified by the topology policies.

Handling read blocks. When a read of objecto is blocked at a connected client

C. C subscribes fromS for o’s invalidations using a checkpoint catchup for efficiency, and

fetches the body fromS. Eventually,o is no longer inconsistent, andC unblocks the read.

The invalidation subscription ensures that if another node updateso, it will become invalid.

Write propagation and callbacks. To propagate client writes to the server, an

invalidation and a body subscription from the client to the server are triggered when the

client connects to the server.

The invalidation subscriptions created by clients when they read objects from the

server ensure that our underlying mechanisms transmit invalidations. To avoid sending re-

peated invalidations to a client, U-coda removes an object from the invalidation subscription

when a client receives an invalidation.
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Figure 7.2: Average read latency of U-Coda and U-Coda with co-operative caching.

Recovery. When a client reconnects to a server, it establish an invalidation sub-

scription for an empty subscription set from the server. This action makes all the locally

cached objectsIMPRECISE if server has any update during the disconnected period.

Therefore, it breaks all callbacks and hence enforce the consistency.

Hoarding. As in Coda, we prefetch objects in a user-definedhoard set. The hoard

set is stored in a local configuration file which is read when the server becomes connected.

The client then subscribes to receive invalidations and bodies for subscription sets listed in

the hoard file.

Safety enforcement. The bulk of the safety enforcement is done at the server. The

client sends an acknowledgement to the server whenever it receives an invalidation. Once

the server has collected the required acknowledgements from other clients, it sends “done”

acknowledgement to the client. The arrival of this acknowledgement unblocks the blocked

write.

Adding cooperative caching We add co-operative caching to U-Coda so that discon-

nected clients can fetch valid files from their peers. This allows a disconnected client to
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access files it previously couldn’t.

To provide a way for disconnected clients to fetch data from their peers, we augment

the node list configuration file to include a list of peers; when a client reads the configuration

file, it generates a list of peers and keeps track of connectivity to peers. A client triggers a

fetch attempt from reachable peers if the server is not reachable.

Cooperative caching allows a clique of connected devices to share data without

relying on the server. Figure 7.2 demonstrates the significant improvement by adding co-

operative caching to U-Coda. For the experiment, the latency between two clients is 10ms,

whereas the latency between a client and server is 500ms. Without cooperative caching, a

client is restricted to retrieving data from the server. However, with cooperative caching,

the client can retrieve data from a nearby client, greatly improving read performance. More

importantly, with this new capability, clients can share data even when disconnected from

the server.

Equivalence. U-Coda is Q-equivalent to Coda if the number of writes at each node be-

tween disconnections exceeds the number of nodes and if the initial state, the number of

clients, the hoard set at each client, and the workload is the same.

E1. Overhead.Both systems issue and process the same writes, invalidations, and lo-

cal/remote reads. Establishing or breaking each callback has a constant cost that is

near the cost of ideal callbacks (see Fig. 5.10). Similarly, demand read requests are

of constant size and demand read replies have the data plus a constant overhead.

Establishing one body update subscription to propagate updates to the server and es-

tablishing the first invalidation connection to/from the server each entail sending a

version vector, so U-Coda is only Q-equivalent to Coda if the number of invalidation

and body messages sent to/from the server exceeds the number of entries in a version

vector so that network bandwidth is within a constant factor.
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E2. Consistency.Both systems enforce open/close semantics when connected and causal

when disconnected.

E3. Available local data.For both systems, on each client, only the objects that have an

established callback are available during connected operation and only the objects

that areconsistentare available during disconnected operation.

7.2.2 U-TRIP

TRIP [66] seeks to provide transparent replication for web edge servers of dynamic content.

All nodes enforce sequential consistency and a limit on staleness.

With the detailed description of Coda, here we give a brief overview of the U-TRIP

implementation.

Implementing consistency and topology policy. U-TRIP uses the standard causal con-

sistency library with the maxStaleness predicate set. Note that a causal consistency library

also enforces sequential consistency if, as in TRIP, there is a single writer. The topology

policies are simple: clients subscribe to receive all invalidations and bodies from the server.

Extending U-TRIP. What is perhaps most interesting about this example is the extent

to which URA facilitates evolution. For example, the TRIP implementation assumes a

single server and a star topology. By implementing on URA, we can improve scalability by

changing the topology from a star to a static tree simply by changing a node’s configuration

file to list a different node as its parent—invalidations and bodies flow as intended and

sequential consistency is still maintained. Better still, if one writes a topology policy that

dynamically reconfigures a tree when nodes become available or unavailable [55], a few

additional rules to subscribe/unsubscribe produce a dynamic-tree version of TRIP that still

enforces sequential consistency.
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7.3 Server Replication Systems

As described in Chapter 2, server replication systems like Dictionary [96], Bayou [72] pro-

vide log-based peer-to-peer update exchange that allows any node to send updates to any

other node (TI) and that consistently orders writes across all objects. However, these sys-

tems are unable to exploit workload locality to efficiently use networks and storage, and

they may be unsuitable for devices with limited resources because their protocols funda-

mentally requires all nodes store all data from and all nodes receive all updates.

In this section, we discuss how to implement such systems and how URA enables to

add new features to those systems which would be difficult in the original implementations

by detailing two case-study systems: U-Bayou [72] and U-Chain Replication [91].

7.3.1 U-Bayou

Bayou is a server replication system that uses anti-entropy to exchange updates between any

pair of servers at any time. We implement a server replication system over URA modeled

on the version of Bayou described by Petersen et. al. [72]. In particular, we implement log-

based peer-to-peer anti-entropy protocol, log truncation to limit state, checkpoint exchange

in case of log truncation, primary commit, causal consistency, and eventual consistency.

Implementing consistency semantics. Implementing the consistency policy of Bayou on

URA is simple. Since Bayou provides causal consistency and eventual consistency, as we

described in Chapter 6, U-Bayou simply uses the default causal consistency interface pro-

vided by URA, i.e, sets theReadNowBlockpredicate toisValidandisComplete. To provide

100% availability as the original Bayou does, U-Bayou delays applying an invalidation to

a node until the node has received the corresponding body, i.e., sets theApplyUpdateBlock

predicate toisValid.
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Figure 7.3: Anti-Entropy bandwidth on U-Bayou.

Implementing update distribution policies. The topology policy of Bayou is mainly

about carrying out anti-entropy sessions. Anti-entropy sessions can be easily implemented

by establishing invalidation and body subscriptions between nodes for “/*”(means all ob-

jects) and removing the subscriptions once all updates have been transferred. Note, as in

Bayou, by default the catchup sending invalidations instead of checkpoint. If the log at the

sender is truncated to a point after subscription’s start time, the invalidation subscription

will automatically send a checkpoint.

Small-device support. In standard Bayou, each node must store all objects in all volumes

it exports and must receive all updates in these volumes. It is difficult for a small device

(e.g, a phone) to share some objects with a large device (e.g, a server hosting my home

directory). By building on URA, we can easily support small devices. Instead of storing

the whole database, a node can specify the set of objects or directories it cares about by

changing the subscription set for anti-entropy.

As Figure 7.3 indicates, the overhead for anti-entropy in U-Bayou is relatively small

compared to “ideal” anti-entropy. In addition, if a node requires only 10% of the data, the
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small device enhancement in U-Bayou greatly reduces the bandwidth required for anti-

entropy.

Equivalence. U-Bayou is Q-Equivalent to the original Bayou implementation assuming

that nodes execute anti-entropy with the same peers during the same quiescent periods in

the workload. The network overhead is the information transferred during anti-entropy.

For both systems, the number of bytes transferred during anti-entropy is proportional to the

number of updates which the sender has but the receiver doesn’t and the size of the updates.

Or if checkpoints are sent, the size of checkpoint is directory proportional to the size of

changed objects. Both systems store all objects locally. As for the log, both garbage collect

old log entries to keep the log to a specified maximum size. Additionally, both systems

enforces casual and eventual consistency. Finally, for both systems, 100% of the data is

always locally available at every node.

7.3.2 U-Chain Replication

Chain Replication [91] is another server replication protocol in which the nodes are ar-

ranged as a chain to provide high availability and linearizability. To implement linearizabil-

ity, all updates are introduced at the head of the chain and queries are handled by the tail.

An update does not complete until all live nodes in the chain have received it.

U-Chain Replication implements this protocol with support for volumes, node fail-

ure and recovery, and the addition of new nodes to the chain.

Our implementation is Q-equivalent to the published system. We omit detailed

discussion of this unsurprising result.

Implementing consistency and topology policies Although we could use our standard

linearizability consistency wrapper as described in Chapter 6, to gain performance and

availability comparable to the original Chain Replication system we implement a cus-

tomized consistency wrapper that exploits the chain topology and simply blocks a write
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until it receives an acknowledgement from the tail.

U-Chain-Replication implements each link in the chain as an invalidation and a

body subscription. When an update occurs at the head, the update flows down the chain via

subscriptions. Chain management is carried out by a master, as in the original system.

Note that most of the complexity in the original chain replication algorithm stems

from the need to track which updates have been received by a node’s successors so as

to handle node failure and recovery. URA makes recovery simple because of the seman-

tics guaranteed by subscriptions. When subscriptions are established, all updates that the

successor is missing are automatically sent during catchup, making it unnecessary for pre-

decessors to track the flow of updates.

7.4 Object Replication Systems

As described in Chapter 2,Object replicationsystems such as Ficus [36], Pangaea [77], and

WinFS [60] allow nodes to choose arbitrary subsets of data to store (PR) and arbitrary peers

with whom to communicate (TI). But, these protocols enforce no ordering constraints on

updates across multiple objects, so they can provide coherence but not consistency guaran-

tees and therefore their applications are restricted to those with less stringent semantics.

In this section, we discuss how to implement such systems by detailing two case-

study systems: U-TierStore [23] and U-Pangaea [77].

7.4.1 U-TierStore

TierStore [23] is an object based hierarchical replication system for developing regions that

provides eventual consistency and per-object coherence in the face of intermittent connec-

tivity. It employs a “pub/sub” approach to distribute updates among nodes.

Implementing consistency and topology policies U-TierStore uses the standard best-

effort coherence interface by setting theReadNowBlockpredicate toisValid. For 100%
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availability, it sets theApplyUpdateBlockpredicate toisValid to delay applying an invalida-

tion to a node until the node has received the corresponding body.

To implement TierStore’s tree-based topology, we make use of configuration files,

as in the original protocol. Every node has configuration files which specify its parent node,

its children, and the “publication”, i.e. data subtree, that it is interested in. On initialization,

as these files are read, the corresponding subscriptions between parents and children are

established as follows: (1) from a parent to child, invalidation and body subscriptions for

each of the publications a child is interested in are established and (2) from a child to parent,

invalidation and body subscriptions for “/*” are established.

Extending U-TierStore. Just like U-Coda, cooperative caching is easily added to U-

TierStore by adding a few lines of code. This addition enables users in a developing region

to retrieve data using local wireless links from nearby peers who have already downloaded

data across an expensive modem link.

7.4.2 U-Pangaea

Pangaea [77] is a wide-area file system that supports high degrees of replication and high

availability. Replicas of a file are arranged in anm-connected graph, with a clique ofg gold

nodes. The location of the gold nodes for each file is stored in the file’s directory entry.

Updates flood harbingers in the graph. On receipt of a harbinger, a node requests the body

from the sender of the harbinger with the fastest link. Pangaea enforces weak, best-effort

coherence.

U-Pangaea implements object creation, replica creation, update propagation, gold

nodes and m-connected graph maintenance, temporary failure rerouting and permanent fail-

ure recovery. We do not implement the “red button” feature, which provides applications

confirmation of update delivery or a list of unavailable replicas, but do not see any difficulty

in integrating it.
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Implementing consistency and topology policies. Similar to U-TierStore, U-Pangaea

uses a standard coherence-only wrapper, which does not block any reads or writes. Addi-

tionally, if an individual node wishes to enforce stronger consistency, that node may instan-

tiate the causal or TE wrapper to block reads and thereby enforce causal consistency or a

bound on staleness (temporal error.)

The topology policy for Pangaea is pretty complex. Most of the complexity stems

from (1) constructing the required per-object invalidation graph across gold and bronze

replicas, (2) updating the invalidation graph when nodes become unreachable, and (3) cre-

ating new gold replicas for objects when an existing gold replica fails. We do not go into

details due to space constraints, but provide overview of the different aspects.

U-Pangaea considers harbingers as invalidations, and hence each edge of a Pangaea

graph is an invalidation subscription. U-Pangaea’s liveness policy sets up and maintains

the m-connected graph for each object among the nodes. In particular, (1) it maintains m-

connectedness for each replica; (2) it makes sure that a replica is connected to at least one

gold node; and (3) it makes sure that there are at leastg gold nodes which are connected in

a clique.

In case of a read miss, U-Pangaea will try to identify if the object exists in the

network or if it is a new object. If the object exists, it creates a new local replica by finding

the closest replica and adding an invalidation subscription from it for the object with catchup

policy set tocheckpointso that it can quickly retrieve the object. Then it integrates itself

into the replica graph by setting up subscriptions withm − 1 other neighbors. In case of

a new object, it will create the object, locateg − 1 other nodes to be gold nodes, create

replicas on them and establish subscriptions among each other.

In case of an update, invalidations are automatically flooded along the subscriptions.

When a node receives an invalidation, it will demand read for the body from the sender it

receives the first invalidation. If it does not receive the body within a certain timeout, it will

find another neighbor to retrieve the body from.
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Figure 7.4: Read miss latency for U-Pangaea and alternatives.

Figure 7.4 illustrates one aspect of U-Pangaea’s performance: its ability to dynam-

ically choose the best replica from which to fetch data. In this experiment, a simplified

version of the experiment presented in Saito et al.’s Figure 11 [77], we measure the time

to satisfy a cache miss from one of three replicas. We compare three policies: (1) Pangaea

(locality-based), (2) Random, and (3) Static. For the Static policy, we show results for each

of the three possible choices. Our results are consistent with Saito et al.’s experiment: not

surprisingly, fetching data from a nearby node is a good policy.

Equivalence. URA propagates sufficient information for any node to enforce causal con-

sistency using local information. U-Pangaea does not use this information, so it retains the

high availability, partition-resilience, and performance [54, 31] available to weak-consistency

systems. Furthermore, the overhead of propagating this information is modest for several

reasons. First, as Figure 5.11 indicates, once a connection between a pair of nodes is es-

tablished, URA sends at most two invalidation messages for every one sent by a coherence-

only algorithm—at worst an URA node alternates sending an invalidation requested by the

receiver and an imprecise invalidation summarizing updates the receiver has not requested.

Furthermore, as long as there is locality workload’s updates in the object ID space, im-

precise invalidations are comparable in size to regular invalidations. Finally, as the figure
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indicates, if there are bursts of load to objects of interest, the ratio of invalidations to im-

precise invalidations improves. As a result, network bandwidth remains within a constant

factor of a coherence-only protocol if the workload has sufficient locality in the object ID

space for imprecise invalidations to achieve good compression.
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Chapter 8

Related work

Decades of research on data replication yield a number of replication techniques and frame-

works for different environments or workloads in different perspectives. This chapter sur-

veys the related work.

8.1 Replication Mechanisms

State of the art mechanisms allow a designer to retain full flexibility along at most two of

the three dimensions of replication, consistency, or topology policy. Chapter 2 examines

existing PR-AC [42, 48, 68, 4, 12, 20], AC-TI [32, 46, 50, 72, 96, 103], and PR-TI [36, 77]

approaches. These systems can be seen as special case “projections” of the more gen-

eral URA mechanisms. Ideas relating to URA’s mechanisms can be seen in these systems.

For example, the separation of invalidations from bodies is standard in client-server sys-

tems [42][68], and imprecise invalidations are closely related to messages sent by client-

server systems during callback-state recovery [6][99]. Several systems have noted the value

of separating data and metadata paths [4][77][89].

Some recent work extends server replication systems towards supporting partial

replication. Holliday et al.’s protocol allows nodes to store subsets of data but still requires
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all nodes to receive updates for all objects [41]. Published descriptions of Shapiro et al.’s

consistency constraint framework focus on full replication, but the authors have sketched

an approach for generalizing the algorithms to support partial replication [83].

8.2 Replication Framework

A number of other efforts have defined frameworks for constructing replication systems for

different environments. Like URA, the Deceit file system [84] provides a flexible substrate

that subsumes a range of replication systems. Deceit, however, focuses on replication across

a handful of well-connected servers, and it therefore makes very different design decisions

than PRACTI. For example, each Deceit server maintains a list of all files and of all nodes

replicating each file, and all nodes replicating a file receive all bodies for all writes to the file.

Zhang et. al. [104] define an object storage system with flexible consistency and replication

policies in a cluster environment. As opposed to these efforts for cluster file systems, URA

focuses on systems in which nodes can be partitioned from one another, which changes the

set of mechanisms and policies it must support. Stackable file systems [38] seek to provide

a way to add features and compose file systems, but it focuses on adding features to local

file systems.

WinFS [70] employs a peer-to-peer state-based exchange algorithm to synchronize

nodes but exchanges stored state rather than logs. Although it providestopology indepen-

dence, partial replication, eventual consistency, and efficient conflict detection usingvector

sets, it can not provide causal consistency when synchronization is interrupted.

URA incorporates the order error and staleness abstractions of TACT tunable con-

sistency [103]; we do not currently support numeric error. Like URA, Swarm [87] provides

a set of mechanisms that seek to make it easy to implement a range of TACT guarantees;

Swarm, however, implements its coherence algorithm independently for each file, so it does

not attempt to enforce cross-object consistency guarantees like causal, sequential, or lin-

earizability. IceCube [47] and actions/constraints [83] provide frameworks for specifying
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general consistency constraints and scheduling reconciliation to minimize conflicts. Fluid

replication [16] provides a menu of consistency policies, but it is restricted to hierarchical

caching.

8.3 Conflict Detection

As described in Section 5.4, there are three main approaches for conflict detection:pre-

vious stamps[34, 9], hash histories[45], andversion vectors[48, 74, 95]. Bothprevious

stampsandhash historiesimposes per-update storage overhead and might have false nega-

tives under certain scenarios.Version vectorscan accurately detect conflicts but it imposes

one vector per object overhead which is prohibitive when the number of replicas is large.

predecessor vectors with exceptions (PVE)[60] andvector sets[57] are variations of the

version vectorsapproach employed by WinFS [70] to reduce the total number of version

vectors each node maintain.

Although some existing systems provide conflict resolution mechanisms that take

into account the semantics of the data being resolved - for e.g. Bayou [72], TACT [102], and

Coda [48] - URA provides a simpler interface that allows users to view aconflict logand

take appropriate action (e.g. perform a compensating write). Although we do not provide

additional facilities to help conflict resolution such as log roll back [72] or conflict-handling

procedures [88], we speculate that such features can be added to our system without diffi-

culty.
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Chapter 9

Conclusions

The central thesis of this dissertation is that there is a set of flexible common replication

mechanisms that capture the right abstractions for replication and therefore can serve as

a replication “micro-kernel” for building and deploying replication systems for different

environments and workloads by simply defining the right policies on top of the mechanism

layer.

To answer this question, this dissertation presented auniversal data replication

architecture(URA) that cleanly separates mechanism from policy to simplify the devel-

opment of new replication systems, subsumes most of existing replication protocols, and

enables better trade-offs for some environments than are currently available.

As we have shown in the dissertation, we presented the architecture in two steps.

First, we presented the PRACTI replication mechanisms that for the first time provide

three vital features simultaneously:Partial Replication,Any Consistency, andTopology

Independence. Through prototype experiments, our conclusion is that by providing all

three PRACTI properties, PRACTI replication enables better trade-offs than existing mech-

anisms that support at most two of the three properties: it dominates existing families of

architectures by providing order of magnitude performance improvements for some key

environments and workloads and matching their performance for most other environments
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and workloads.

Second, we described the UR-Repl protocol that extends the PRACTI mechanisms

to support efficient callbacks, incremental checkpoint exchange and efficient conflict de-

tection. Our micro-benchmark experiments demonstrated that the UR-Repl protocol is an

order of magnitude more efficient than the PRACTI replication protocol for supporting call-

backs, and its conflict detection algorithm is more efficient than existing approaches in most

cases.

To demonstrate the flexibility of URA, we described how to map most of existing

techniques and consistency semantics over URA and presented the results of a set of case-

study systems that cover a significant portion of the design space. Overall, our experience

suggests that (1) URA isflexiblein that we are able to implement a broad range of systems;

(2) URA is efficientin that we are able to build systems that are comparable to hand-built

systems from literature with respect to the central properties of a replication architecture;

and (3) URAfacilitates innovationby exposing new design space and making it much easier

to add new features in existing systems.

In summary, this dissertation makes the following key contributions:

• It defines the PRACTI paradigm and provides a taxonomy for replication systems

that explains why existing replication architectures fall short of ideal.

• It describes the first replication protocol architecture to simultaneously provide all

three PRACTI properties.

• It defines common abstractions of data replication systems that cleanly separate mech-

anism from policy and thereby simplify the understanding and construction of repli-

cation systems.

• It demonstrates that URA replication offers decisive practical advantages compared

to existing approaches.
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• It demonstrates the usefulness of URA by building several key case study applications

and mapping existing techniques on URA.

• It proposes novel incremental checkpoint exchange, flexible commit primitive, and

efficient conflict detection algorithms.

Limitations and future work. The current URA prototype focuses on getting the archi-

tecture right and has the following limitations and potential future work:

• Scalability. The version vector limits the architecture scaling to a large number of

nodes. A possible future work is to add/remove ids from an interest set’s version

vector on the fly (a la Bayou’s adding and removing servers on the fly). Essentially,

one could insert a “remove X from VV for interest set I” into the log that instructs

anyone receiving the write that it is OK to stop tracking nodeX for interest setI; this

“write” would get serialized in the log according to the normal rules and ifX later

does a write toI, it gets added back into the version vector starting at the time that it

does the write.

If this dynamic version vector algorithm works, then the version vector length for an

interest set is proportional to the number of “active writers” in that interest set rather

than proportional to the number of nodes in the system.

• Performance. As indicated in Section 4.6, we have a lot of room for performance-

tuning as our prototype is implemented in Java and the local storage implementation

is based on the BerkeleyDB JE [86]. For example, we have not spent time parameters

of the BerkeleyDB JE for our workload.

• Local storage management. Currently, we leave all of the local storage management

work to BerkeleyDB. In the future, it will be interesting to use RAID and play with

disk layout and data replacement etc..

• Policies for splitting/joining interest sets. As indicated in Chapter 4, the size of an

interest set affects the URA’s storage and performance for tracking per-IS consistency
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state. Although currently, URA makes static configuration of the structure of interest

sets, URA allows system designers to dynamically split an interest set or join different

interest sets so as to make different tradeoffs for different workloads. In the future,

we may be able to build applications that take advantage of this mechanism.

148



Bibliography

[1] Tivoli data exchange data sheet.http://www.tivoli.com/products/

documents/datasheets/data_exchange_ds.pd%f , 2002.

[2] D. Agrawal and A. Abbadi. The Tree Quorum Protocol: An Efficient Approach for

Managing Replicated Data. 1990.

[3] D. Agrawal and A. Malpani. Efficient dissemination of information in computer

networks.The Computer Journal, 34(6):534–541, 1991.

[4] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang. Server-

less Network File Systems.ACM Transactions on Computer Systems, 14(1):41–79,

February 1996.

[5] S. Annapureddy, M. Freedman, and D. Mazières. Shark: Scaling file servers via co-

operative caching. InProceedings of the Second USENIX Symposium on Networked

Systems Design and Implementation, May 2005.

[6] M. Baker. Fast Crash Recovery in Distributed File Systems. PhD thesis, University

of California at Berkeley, 1994.

[7] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Seltzer. Non-Volatile Memory

for Fast, Reliable File Systems. InProceedings of the Fifth International Confer-

ence on Architectural Support for Programming Languages and Operating Systems

(ASPLOS-V), pages 10–22, September 1992.

149



[8] M. Beck and B. Dempsey. I2-DSI overview. In4th Intl. Web Caching Workshop,

March 1999.

[9] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yalagandula,

and J. Zheng. PRACTI replication. InProceedings of the Third USENIX Symposium

on Networked Systems Design and Implementation, May 2006.

[10] Bent and Voelker. Whole page performance. InWorkshop on Web Caching and

Content Distribution, September 2002.

[11] T. Berners-Lee, R. Fielding, and H. Frystyk Nielsen. Hypertext Transfer Protocol

– HTTP/1.0. Internet Draft draft-ietf-http-v10-spec-00, Internet Engineering Task

Force, March 1995.

[12] M. Blaze and R. Alonso. Dynamic Hierarchical Caching in Large-Scale Distributed

File Systems. InProceedings of the 12th International Conference on Distributed

Computing Systems, June 1992.

[13] E. Brewer. Lessons from giant-scale services. InIEEE Internet Computing,

July/August 2001.

[14] S. Chandra, M. Dahlin, B. Richards, R. Wang, T. Anderson, and J. Larus. Experi-

ence with a Language for Writing Coherence Protocols. InUSENIX Conference on

Domain-Specific Languages, October 1997.

[15] S. Cheung, M. Ahamad, and M. Ammar. The grid protocol: a high performance

scheme for maintaining replicated data. pages 438–445, 1990.

[16] L. Cox and B. Noble. Fast reconciliations in fluid replication. InProceedings of the

21st International Conference on Distributed Computing Systems, 2001.

[17] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative

150



storage with CFS. InProceedings of the Eightteenth ACM Symposium on Operating

Systems Principles, October 2001.

[18] M. Dahlin, B. Chandra, L. Gao, and A. Nayate. End-to-end wan service availability.

IEEE/ACM Transactions on Networking, 2003.

[19] M. Dahlin, B. Chandra, L. Gao, and A. Nayate. End-to-end WAN service availability.

ACM/IEEE Transactions on Networking, 11(2), April 2003.

[20] M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Cooperative Caching: Using

Remote Client Memory to Improve File System Performance. InProceedings of the

First Symposium on Operating Systems Design and Implementation, pages 267–280,

November 1994.

[21] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly avail-

able key-value store. InProceedings of the 21th ACM Symposium on Operating

Systems Principles, 2007.

[22] M. Demmer, B. Du, and E. Brewer. TierStore: a distributed storage system for chal-

lenged networks. http://tier.cs.berkeley.edu/docs/projects/

tierstore.pdf , December 2006.

[23] M. Demmer, B. Du, and E. Brewer. TierStore: a distributed storage system for

challenged networks. InProceedings of the 7th USENIX Conference on File and

Storage Technologies, February 2008.

[24] B. Duska, D. Marwood, and M. Feeley. The Measured Access Characteristics of

World-Wide-Web Client Proxy Caches. InProceedings of the USENIX Symposium

on Internet Technologies and Systems, December 1997.

[25] M. Feeley, W. Morgan, F. Pighin, A. Karlin, H. Levy, and C. Thekkath. Implementing

Global Memory Management in a Workstation Cluster. InProceedings of the Fif-

151



teenth ACMSymposium on Operating Systems Principles, pages 201–212, December

1995.

[26] S. Gadde, J. Chase, and M. Rabinovich. A taste of crispy squid. InWorkshop on

Internet Server Performance, June 1998.

[27] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar. Application specific data

replication for edge services. InInternational World Wide Web Conference, May

2003.

[28] L. Gao, M. Dahlin, J. Zheng, L. Alvisi, and A. Iyengar. Dual-quorum replication for

edge services. InProceedings of the ACM/IFIP/USENIX 6th International Middle-

ware Conference, November 2005.

[29] S. Ghemawat, H. Gobioff, and S. Leung. The Google file system. InProceedings of

the 19th ACM Symposium on Operating Systems Principles, 2003.

[30] D. Gifford. Weighted voting for replicated data. In7th ACM Symposium on Operat-

ing Systems Principles, pages 150–162, April 1979.

[31] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of Consistent, Avail-

able, Partition-tolerant web services. InACM SIGACT News, 33(2), Jun 2002.

[32] R. Golding. A weak-consistency architecture for distributed information services.

Computing Systems, 5(4):379–405, 1992.

[33] C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant Mechanism for Dis-

tributed File Cache Consistency. InProceedings of the Twelfth ACM Symposium on

Operating Systems Principles, pages 202–210, 1989.

[34] J. Gray, P.Helland, P. E. O’Neil, and D. Shasha. Dangers of replication and a solution.

In Proc. SIGMOD, pages 173–182, 1996.

152



[35] J. Griffioen and R. Appleton. Reducing File System Latency Using A Predictive

Approach. InProceedings of the Summer 1994 USENIX Conference, June 1994.

[36] R. Guy, J. Heidemann, W. Mak, T. Page, Gerald J. Popek, and D. Rothmeier. Imple-

mentation of the Ficus Replicated File System. InProceedings of the Summer 1990

USENIX Conference, pages 63–71, June 1990.

[37] J. Gwertzman and M. Seltzer. The case for geographical pushcaching. InHOTOS95,

pages 51–55, May 1995.

[38] J. Heidemann and G. Popek. File-system development with stackable layers.ACM

Transactions on Computer Systems, 12(1):58–89, February 1994.

[39] J. Hennessy and D. Patterson.Computer Architecture A Quantitative Approach. Mor-

gan Kaufmann, Inc., 2nd edition, 1996.

[40] M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent

objects.ACM Trans. Prog. Lang. Sys., 12(3), 1990.

[41] J. Holliday, D. Agrawal, and A. El Abbadi. Partial database replication using epi-

demic communication. InProceedings of the 22nd International Conference on Dis-

tributed Computing Systems, July 2002.

[42] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham,

and M. West. Scale and Performance in a Distributed File System.ACM Transactions

on Computer Systems, 6(1):51–81, February 1988.

[43] P. Hutto and M. Ahamad. Slow memory: Weakening consistency to enhance con-

currency in distributed shared memories. In10th International Conference on Dis-

tributed Computing Systems, pages 302–311, 1990.

[44] D. S. Parker (Jr.), G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton,

J. M. Chow, S. Kiser, D. Edwards, and C. Kline. Detection of Mutual Inconsistency

153



in Distributed Systems.IEEE Transactions on Software Engineering, SE-9(3):240–

247, May 1983.

[45] B. Kang, R. Wilensky, and J. Kubiatowicz. Hash history approach for reconciling

mutual inconsistency in optimistic replication. InProceedings of the 23rd Interna-

tional Conference on Distributed Computing Systems, 2003.

[46] P. Keleher. Decentralized replicated-object protocols. InProceedings of the 18th

Symposium on the Principles of Distributed Computing, pages 143–151, 1999.

[47] A. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel. The IceCube aproach to

the reconciliation of divergent replicas. InProceedings of the 20th Symposium on

the Principles of Distributed Computing, 2001.

[48] J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System.

ACM Transactions on Computer Systems, 10(1):3–25, February 1992.

[49] R. Kotla, L. Alvisi, and M. Dahlin. SafeStore: A durable and practical storage

system. InProceedings of the 2007 USENIX Annual Technical Conference, June

2007.

[50] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high availability using

lazy replication.ACM Transactions on Computer Systems, 10(4):360–391, 1992.

[51] L. Lamport. Time, clocks, and the ordering of events in a distributed system.Com-

munications of the ACM, 21(7), July 1978.

[52] L. Lamport. How to make a multiprocessor computer that correctly executes multi-

process programs.IEEE Transactions on Computers, C-28(9):690–691, September

1979.

[53] L. Lamport. On interprocess communications.Distributed Computing, pages 77–

101, 1986.

154



[54] R. Lipton and J. Sandberg. PRAM: A scalable shared memory. Technical Report

CS-TR-180-88, Princeton, 1988.

[55] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica. Implementing

declarative overlays. InProceedings of the 20th ACM Symposium on Operating

Systems Principles, October 2005.

[56] P. Mahajan, S. Lee, J. Zheng, and M. Dahlin. SADDR: Secure autonomous dis-

tributed data replication, May 2008.http://www.cs.utexas.edu/users/

zjiandan/papers/saddr08.pdf .

[57] D. Malkhi, L. Novik, and C. Purcell. P2P Replica Synchronization with Vector Sets.

ACM SIGOPS Operating Systems Review, 41(2):68–74, 2007.

[58] D. Malkhi and M. Reiter. Byzantine quorum systems.Distributed Computing, pages

203–213, 1998.

[59] D. Malkhi and M. Reiter. An Architecture for Survivable Coordination in Large

Distributed Systems.IEEE Transactions on Knowledge and Data Engineering, pages

187–202, March 2000.

[60] D. Malkhi and D. Terry. Concise version vectors in WinFS. In20th Symposium on

Distributed Computing (DISC), 2005.

[61] P. Maniatis, M. Roussopoulos, TJ Giuli, D. Rosenthal, M. Baker, and Y. Muliadi.

Preserving peer replicas by rate-limited sampled voting. InProceedings of the 19th

ACM Symposium on Operating Systems Principles, October 2003.

[62] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key manage-

ment from file system security. InProceedings of the Seventeenth ACM Symposium

on Operating Systems Principles, December 1999.

155



[63] L. Mummert, M. Ebling, and M. Satyanarayanan. Exploiting Weak Connectivity for

Mobile File Access. InProceedings of the Fifteenth ACMSymposium on Operating

Systems Principles, pages 143–155, December 1995.

[64] L. Mummert and M. Satyanarayanan. Large Granularity Cache Coherence for Inter-

mittent Connectivity. InProceedings of the Summer 1994 USENIX Conference, June

1994.

[65] D. Muntz and P. Honeyman. Multi-level Caching in Distributed File Systems or Your

cache ain’t nuthin’ but trash. InProceedings of the Winter 1992 USENIX Conference,

pages 305–313, January 1992.

[66] A. Nayate, M. Dahlin, and A. Iyengar. Transparent information dissemination. In

Proceedings of the ACM/IFIP/USENIX 5th International Middleware Conference,

October 2004.

[67] Amol Nayate.Transparent Replication. UT Austin, Austin, Texas, 2006.

[68] M. Nelson, B. Welch, and J. Ousterhout. Caching in the Sprite Network File System.

ACM Transactions on Computer Systems, 6(1), February 1988.

[69] E. Nightingale and J. Flinn. Energy-efficiency and storage flexibility in the blue file

system. InProceedings of the Sixth Symposium on Operating Systems Design and

Implementation, December 2004.

[70] L. Novik, I. Hudis, D. Terry, S. Anand, V. Jhaveri, A. Shah, and Y. Wu. Peer-to-peer

replication in winfs. Technical Report MSR-TR-2006-78, Microsoft Research, June

2006.

[71] D. Peek and J. Flinn. Ensemblue: Integrating distributed storage and consumer elec-

tronics. InProceedings of the Seventh Symposium on Operating Systems Design and

Implementation, 2006.

156



[72] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers. Flexible Update

Propagation for Weakly Consistent Replication. InProceedings of the Sixteenth ACM

Symposium on Operating Systems Principles, October 1997.

[73] A. Rajasekar, M. Wan, and R. Moore. MySRB and SRB - components of a data grid.

In The 11th International Symposium on High Performance Distributed Computing,

July 2002.

[74] P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and G. Popek. Resolving File Con-

flicts in the Ficus File System. InProceedings of the Summer 1994 USENIX Confer-

ence, 1994.

[75] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond:

the OceanStore prototype. InProceedings of the 2nd USENIX Conference on File

and Storage Technologies, March 2003.

[76] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-

scale, persistent peer-to-peer storage utility. InProceedings of the Eightteenth ACM

Symposium on Operating Systems Principles, 2001.

[77] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Taming aggressive

replication in the Pangaea wide-area file system. InProceedings of the Fifth Sympo-

sium on Operating Systems Design and Implementation, December 2002.

[78] Y. Saito and M. Shapiro. Optimistic replication.ACM Computing Surveys, 37(1):42–

81, 2005.

[79] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and im-

plementation of the Sun network filesystem. InProceedings of the Summer 1985

USENIX Conference, pages 119–130, June 1985.

[80] S. Sarin and N. A. Lynch. Discarding Obsolete Information in a Replicated Database

157



System. IEEE Transactions on Software Engineering, SE-13(1):39–47, January

1987.

[81] P. Sarkar and J. Hartman. Efficient Cooperative Caching using Hints. InProceedings

of the Second Symposium on Operating Systems Design and Implementation, pages

35–46, October 1996.

[82] M. Satyanarayanan. Scalable, Secure, and Highly Available Distributed File Access.

IEEE Computer, 23(5):9–21, May 1990.

[83] M. Shapiro, K. Bhargavan, and N. Krishna. A constraint-based formalism for con-

sistency in replicated systems. InProceedings of the 8th International Conference

on the Principles of Distributed Systems, December 2004.

[84] A. Siegel. Performance in Flexible Distributed File Systems. PhD thesis, Cornell,

1992.

[85] A. Singla, U. Ramachandran, and J. Hodgins. Temporal notions of synchronization

and consistency in Beehive. InProceedings of the Ninth Annual ACM Symposium

on Parallel Algorithms and Architectures, 1997.

[86] Sleepycat Software.Getting Started with BerkeleyDB for Java, September 2004.

[87] S. Susarla and J. Carter. Flexible consistency for wide area peer replication. InPro-

ceedings of the 25th International Conference on Distributed Computing Systems,

June 2005.

[88] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser. Man-

aging Update Conflicts in Bayou, a Weakly Connected Replicated Storage System.

In Proceedings of the Fifteenth ACMSymposium on Operating Systems Principles,

December 1995.

158



[89] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Beyond Hierarchies: Design Consid-

erations for Distributed Caching on the Internet. InProceedings of the Nineteenth

International Conference on Distributed Computing Systems, May 1999.

[90] R. Thomas. A majority consensus approach to concurrency control for multiple copy

databases.Database Systems, 4(2):180–209, 1979.

[91] R. van Renesse and F. B. Schneider. Chain replication for supporting high through-

put and availability. InProceedings of the Sixth Symposium on Operating Systems

Design and Implementation, December 2004.

[92] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: A mechanism for back-

ground transfers. InProceedings of the Fifth Symposium on Operating Systems De-

sign and Implementation, December 2002.

[93] A. Venkataramani, P. Weidmann, and M. Dahlin. Bandwidth constrained placement

in a wan. InProceedings of the 20th Symposium on the Principles of Distributed

Computing, August 2001.

[94] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and M. Dahlin. Potential

costs and benefits of long-term prefetching for content-distribution.Elsevier Com-

puter Communications, 25(4):367–375, March 2002.

[95] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The LOCUS distributed op-

erating system. InProceedings of the Ninth ACM Symposium on Operating Systems

Principles, pages 49–69, October 1983.

[96] G. Wuu and A. Berstein. Efficient solutions to the replicated log and dictionary

problem. InProceedings of the Third Symposium on the Principles of Distributed

Computing, pages 233–242, 1984.

[97] P. Yalagandula and M. Dahlin. A scalable distributed information management sys-

tem. InACM SIGCOMM 2004 Conference, August 2004.

159



[98] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar. Engineering server-driven consistency

for large scale dynamic web services. InProceedings of the 2001 International World

Wide Web Conference, May 2001.

[99] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar. Engineering web cache consistency.

ACM Transactions on Internet Technologies, 2(3), 2002.

[100] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Hierarchical Cache Consistency in a WAN.

In Proceedings of the Second USENIX Symposium on Internet Technologies and Sys-

tems, October 1999.

[101] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Volume Leases to Support Consistency

in Large-Scale Systems.IEEE Transactions on Knowledge and Data Engineering,

February 1999.

[102] H. Yu and A. Vahdat. The costs and limits of availability for replicated services. In

Proceedings of the Eightteenth ACM Symposium on Operating Systems Principles,

2001.

[103] H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous consis-

tency model for replicated services.ACM Transactions on Computer Systems, 20(3),

August 2002.

[104] Y. Zhang, J. Hu, and W. Zheng. The flexible replication method in an object-oriented

data storage system. InProc. IFIP Network and Parallel Computing, 2004.

[105] J. Zheng, N. Belaramani, M. Dahlin, and A. Nayate. A universal protocol for effi-

cient synchronization.http://www.cs.utexas.edu/users/zjiandan/

papers/upes08.pdf , Jan 2008.

160



Vita

Jiandan Zheng was born in Yueqing, Zhejiang China in 1977. After completing her high

school at Yueqing High School in 1994, she enrolled in Beijing University. She received

the degree of Bachelor of Science from Beijing University in July 1998 and the degree of

Master of Science from Institute of Software, Chinese Academy of Sciences in 2001. She

received the degree of Master of Art in Computer Science from the University of Texas at

Austin in May 2005.

Permanent Address: Xiangyang Town Liunan Village

Yueqing, Zhejiang 325619

P.R. China

This dissertation was typeset with LATEX 2ε
1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of the
American Mathematical Society. The macros used in formatting this dissertation were written by Dinesh Das,
Department of Computer Sciences, The University of Texas at Austin, and extended by Bert Kay and James A.
Bednar.

161


