
The University of Texas at Austion Dept. of Computer Sciences Technical Report #TR-08-36. August 30, 2008

Using Annotated KD-Trees to Accelerate Shadow Ray Queries

Peter Djeu∗ Stan Volchenok†

The University of Texas at Austin

A

B

(b)

A

B

(a)

A

B

(c)

A

B

(d)

A

B

(e)

0

Figure 1: A 2D kd-tree built over a circle. A grid-like kd-tree is shown for clarity, although in practice the tree is less uniform. Nodes that are used
as voxel proxies appear darker. (a) Standard kd-tree intersection. (b) The kd-tree is annotated with a boundary bit that indicates the presence
of voxel proxies. (c) The kd-tree is further annotated with average normals. (d) The annotations exist within higher levels of the kd-tree. (e) The
average normal can indicate that the voxel proxy is not appropriate for intersection.

ABSTRACT

We present preliminary work on a new algorithm to accelerate
shadow ray visibility queries by using a volumetric proxy represen-
tation of the original shadow caster, which we assume is specified as
a polygonal mesh. The algorithm creates this proxy representation
by building an annotated kd-tree over the mesh. Certain nodes in
the kd-tree are marked as voxel proxies for the original mesh based
on a classification heuristic. These voxel proxies are used in tandem
with the original mesh to accelerate shadow ray queries while main-
taining high shadow quality. In addition to proposing the algorithm,
we present results on the importance of using an appropriate surface
area metric during build and extend the approach to use average
normals in order to reduce blockiness artifacts along the silhou-
ette. Finally, we present some static measurements of the required
computation which indicate that this work is a promising, although
not-yet-fully-realized approach to improving real-time shadow ray
evaluation.

Index Terms: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Boundary representations; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Raytracing

1 INTRODUCTION

A ray tracer must evaluate shadow ray queries in order to produce a
visually plausible image. Performance is often bottlenecked, how-
ever, by these shadow ray queries due to their volume and incoher-
ent nature. To alleviate these problems, ray tracers employ acceler-
ation structures. KD-trees are one such acceleration structure, and
they accelerate the process of ray-triangle intersection by sorting
the scene geometry into an adaptive partitioning of space. In this
paper we present a new use for kd-trees: they can represent a coarsi-
fied version of a polygonal mesh in addition to serving their original
purpose. We present preliminary work on an algorithm designed to
accelerate the evaluation of shadow ray queries by approximating
the mesh as opaque voxels within an annotated kd-tree. We refer

∗e-mail: djeu@cs.utexas.edu
†e-mail: stanv@cs.utexas.edu

to these opaque voxels as voxel proxies of the original mesh. The
voxel proxies have the same spatial extent as nodes within the kd-
tree, meaning that unlike the faces of the original mesh, the proxies
are volumetric in nature.

An annotated kd-tree is created from a polygonal mesh repre-
senting a single closed object in the scene (such as a teapot). The
voxel proxies are then used in tandem with the original polygonal
mesh to accelerate shadow ray visibility queries. Contrast this tech-
nique with the traditional way of evaluating shadow ray queries,
which involves traversing shadow rays through the kd-tree and then
intersecting them with faces from the polygonal mesh. We propose
intersecting the shadow rays whenever appropriate with the voxel
proxies (which are just nodes from the kd-tree) in lieu of intersect-
ing against the actual geometry. When this substitution is not appro-
priate, the algorithm falls back on ray-triangle intersection. When
this substitution is appropriate, the annotated kd-tree provides an
opportunity for even faster, coarser approximations. The tree rep-
resents a hierarchy of voxel proxies, meaning that interior nodes in
the tree can also be used as proxies, rather than just the leaves.

Like most methods dealing with coarsification, this algorithm in-
volves approximation which can produce shadowing artifacts (e.g.
blockiness), thereby reducing the quality of the resulting shadows.
We will discuss two important considerations that affect the quality
of the voxel proxy shadows.

The first consideration is whether the kd-tree can be used effec-
tively as a representation of voxel proxies. Certain trees are more
suited than others based on the heuristics used in their build. We
will examine the effect of two common kd-tree build heuristics as
they relate to blockiness in the resulting annotated kd-tree.

The second consideration is deciding when an annotated kd-tree
node can be used as a voxel proxy. We will discuss two simple
heuristics for making this decision. The first is the naı̈ve heuris-
tic which assumes that all proxies are usable. The second heuristic
determines the usability of a proxy based on the average normal
associated with the annotated node. While more expensive, this
heuristic leads to a substantial increase in the quality of the shad-
ows.

Many of the ideas in this paper can be applied in a very straight-

1



The University of Texas at Austion Dept. of Computer Sciences Technical Report #TR-08-36. August 30, 2008

forward manner to other ray tracing acceleration structures, for ex-
ample annotated bounding volume hierarchies (BVHs) and anno-
tated uniform grids. One of our key contributions is to suggest that
an acceleration structure, which a ray tracer has readily available,
can be given new uses, such as representing a coarsified version of
a mesh. The additional use of the acceleration structure leverages
much of the work that was already invested in its creation, such as
the determination of voxels that tightly bound subsections of the
mesh in the case of kd-trees and BVHs.

Finally, we present initial results on the appropriateness of this
algorithm for use in real-time ray tracing. Although this paper does
not provide a final validation via real-time performance, it does
study the savings in computation, measured in operation count. In
particular, it compares the number of operations needed when using
voxel proxies versus the number of operations needed when using
normal ray-triangle intersection. It should be emphasized that this
paper only explores the potential for real-time performance gains.
Future work is needed to fully validate this technique.

2 RELATED WORK

The primary inspiration for this work is Dammertz and Keller’s
work in improving the numerical robustness of ray-surface inter-
sections [1]. Their technique computes a 3D interval on which
the ray-surface intersection must lie. They recursively refine this
intersection interval until the low and high bounds of the interval
no longer change or are degenerate, at which point they return an
intersection value. The primary focus of their work is to guaran-
tee that free-form surfaces are sufficiently refined and remove self-
intersection artifacts by narrowing their intersection intervals until
they approach machine precision. Our goal, on the other hand, is
to accelerate ray-surface intersection while maintaining reasonable
shadow quality. Unlike Dammertz and Keller, who refine their in-
put geometry towards machine epsilon granularity, we preserve the
input mesh as the finest level of detail. Were we to perform re-
finement on the input mesh, we would only increase the number
of geometric components that would need to be considered during
intersection.

Other work has used volumetric proxies to produce expensive
rendering effects at real-time rates on the GPU. Shanmugam and
Arikan use spherical proxies to compute the low-frequency compo-
nent of ambient occlusion induced by distant occluders [14]. Sloan
et al. use similar spherical proxies to produce soft shadows and
indirect illumination in addition to ambient occlusion [15]. Our
work differs from this category of previous work in that we em-
bed our proxies directly into the ray tracing acceleration structure
and determine the size and placement of the proxies by leveraging
the work needed to construct the acceleration structure in the first
place. Our technique has an added benefit of being able to transition
between ray-proxy intersection and ray-triangle intersection when
necessary.

Other work has used proxies within the context of a ray tracing
acceleration structure. The R-LOD technique of Yoon et al. re-
places the geometry in each node with a single plane created using
principle component analysis on the original geometry [16]. Light
bleeding can occur because the planes in each node are derived in-
dependently and may not line up with one another. Lacewell et
al. replace the geometry in each acceleration structure node with a
prefiltered representation of opacity in order to render soft shadows
and ambient occlusion for meshes with many pieces of partially
transparent, uncorrelated geometry (i.e. foliage and hair) [9]. Their
opacity proxies are based on the assumption that geometry between
nodes is uncorrelated, which could also lead to light leakage. In
contrast, our work is primarily concerned with producing leakage-
free hard shadows while studying and minimizing the artifacts that
arise when using proxies for hard shadows, particularly along the
silhouette.

Another approach is to use 2D rather than 3D proxies to accel-
erate intersection. Popescu et al. use billboards and depth maps
to render reflections at interactive rates [12]. Objects that cast a
reflection are converted into 2D proxies which are quite cheap to
intersect. It would be interesting to compare in future work this
type of proxy with our approach.

This work shares many similarities with level of detail tech-
niques. The voxel proxies in the annotated kd-tree can be viewed as
a coarsification of the original mesh. However, unlike a traditional
level of detail algorithm, which converts a polygonal mesh into a
coarser polygonal mesh (discussed in detail in Luebke et al [10]),
this work converts a polygonal mesh into a volumetric representa-
tion.

3 CREATING THE VOXEL PROXIES

The first step in accelerating shadow queries is to create the voxel
proxies, which are actually nodes within an annotated kd-tree. The
kd-tree is built over a mesh of a single closed object in the scene
(such as a teapot), (Figure 1.a). This kd-tree includes only polygo-
nal faces from the object; it ignores geometry from all other objects
in the scene. A scene graph can easily provide the semantically
meaningful grouping of faces into objects [2].

The kd-tree is built in the traditional way using the surface area
heuristic down to the leaves [3, 11, 4]. We would like to reduce
shadow artifacts by using tight-fitting kd-trees (see the next section)
so we use an exhaustive kd-tree builder which considers all split
candidates along all three axes.

After the kd-tree has been built, another pass is made which
marks the nodes that can be used as voxel proxies for the origi-
nal mesh. This extra annotation is in the form of a boundary bit
that is set when a node belongs to the boundary represented by the
polygonal mesh (recall that a polygonal mesh is a boundary repre-
sentation that partitions space into three sets: interior, exterior, and
boundary). The node’s boundary bit is set based on the following
simple recursive rules:

1. If a node is a leaf, set the boundary bit if the node contains
any triangles.

2. Otherwise, set the boundary bit if one or both children have
their boundary bit set.

A kd-tree created in this way can be seen in Figure 1.b, where
the lightly shaded kd-nodes have their boundary bit set. These are
the nodes that represent potential voxel proxies.

4 THE IMPORTANCE OF KD-TREE TIGHTNESS

Creating an annotated kd-tree produces a serviceable voxelization
of the original polygonal mesh. However, this voxelization will not
always produce high quality shadows, where quality is inversely
proportional to the number of shadow artifacts. The reason why
shadow quality suffers is because the nodes that serve as the voxel
proxies do not tightly enclose their contents. Figure 2 shows an
example of what happens when the kd-tree is built using the basic,
unmodified Surface Area Metric [3, 11, 4]. Notice that certain kd-
nodes deviate significantly from the silhouette of the bunny formed
by the remaining nodes.

The problem is that the voxel proxies in Figure 2 do not tightly
bound their contents. Specifically, there is empty space in these
proxies that has not been isolated by a kd-split. This problem can
be mitigated by introducing the empty space bonus to the surface
area metric [7]. We use a multiplier of 0.85x to reduce the cost of
a split that produces an empty node. When this multiplier is used,
the results improve dramatically, as seen in Figure 3.

In another attempt to improve the tightness of the kd-tree’s voxel
proxies, we also build trees that use a correction term to the Surface

2



The University of Texas at Austion Dept. of Computer Sciences Technical Report #TR-08-36. August 30, 2008

Figure 2: KD-tree built for the 69k Bunny using the Basic SAM. Only
the kd-nodes that contain geometry are shown.

Area Heuristic to account for mailboxing [5] due to similarities be-
tween using mailboxing and using voxel proxies. We found, how-
ever, that this did not provide as much improvement as the empty
space bonus.

In the results section, we will provide a measure of the tightness
of annotated kd-trees by counting the number of leaves in the tree
that do not tightly bound their contents. We introduce the term loose
leaf to refer to such a node. A kd-tree with many loose leaves will
produce a shadow that appears much blockier.

5 MODIFYING RAY TRAVERSAL TO USE VOXEL PROXIES

In order to use the voxel proxies within the annotated kd-tree, it is
necessary to modify kd-tree traversal. We start with standard kd-
tree traversal for shadow rays:

bool traverseP(Ray r, KdNode n, Interval i) {

// MODIFICATION POINT 1

if (n.isLeaf()) {

// MODIFICATION POINT 2

return isectP(r, n.geometry, i);

}

// find the ray-plane intersection

float tSplit = isect(r, n.splitPlane);

// subsequent traversal of child nodes

// is unchanged

}

We have implemented two modifications to traversal to incorpo-
rate voxel proxies. In both methods, a decision criterion (i.e. heuris-
tic) is introduced to determine which voxel proxies, if any, should
be used to occlude the shadow ray. The first such method involves
a simple and fast heuristic that chooses any leaf of the annotated
kd-tree that has its boundary bit set. The second method involves
using the average normal within a node to determine whether that
node is an appropriate voxel proxy. This second technique is more
expensive, but produces images with fewer artifacts.

Figure 3: KD-tree built for the 69k Bunny using the SAM with the
Empty Space Bonus. Only the kd-nodes that contain geometry are
shown.

5.1 Heuristic 1: Boundary Bit Set at the Leaves

Perhaps the simplest way to incorporate voxel proxies into traversal
is to use all of them when the ray is at a leaf in the kd-tree. To do
so, a check is performed on whether the boundary bit is set when a
ray enters a leaf. The line right after “Modification Point 2” in the
original kd-traversal algorithm is replaced with:

return n.boundaryBitSet();

Not too surprisingly, this technique produces the blockiness ar-
tifacts seen in Figure 4. The geometry has been completely re-
placed with voxel proxies, which is a gross approximation even at
the leaves of the kd-tree. We observe that the shadows have high
quality in areas where the geometry is mostly front facing to the
shadow ray (mostly back facing is also fine). However, if the ray
approaches the geometry at a glancing angle, then the voxel proxy
is unable to provide the resolution necessary to distinguish between
when the ray hits and when it does not. In this case, intersecting
against the regular geometry would be better.

5.2 Heuristic 2: Dot Product with the Average Normal

To improve the quality of the shadows, we introduce a new annota-
tion that summarizes the orientation of the geometry within a node.
This annotation is then used in a new heuristic based on the dot
product to decide which proxies are appropriate for the current ray.

5.2.1 Annotation using average normals

We add a new step to the creation of the voxel proxies. In addition
to having a boundary bit, annotated kd-nodes now include a normal
vector. This normal is called the average normal and is assigned
to each node in the kd-tree with the boundary bit set according to
the following rule: average together the normals of all faces that are
within the bounds of the current kd-node.

These normals can be computed in an efficient manner bottom-
up starting from the leaves of the tree. To do so, each node needs
to keep track of its average normal and the total number of vectors
that are included in the average normal (although this latter value
can be discarded after the preprocess phase).

3



The University of Texas at Austion Dept. of Computer Sciences Technical Report #TR-08-36. August 30, 2008

Figure 4: Shadows produced when using Heuristic 1 on the 69k
Bunny. The shadow silhouette has a ragged edge because this
heuristic emphasizes the spatial quantization of the voxel proxies
along the silhouette.

Unlike most computations involving normal averaging, the result
of the averaging is not normalized. This means that the average
normal may have unit length but is often shorter.

The meshes used in this paper have a fairly uniform tessella-
tion rate across the mesh so we found that using a simple average
is good enough for the normal that annotates each kd-node. For
meshes with a non-uniform tessellation rate, the face normals can
be weighted by the area of the face to account for different faces
contributing more or less to occlusion. Using a weighted average
will also require clipping or a remeshing of the larger faces so that
they do not overcontribute to nodes with which they have only par-
tial overlap.

5.2.2 Dot product test

We now propose a new heuristic for selecting when a voxel proxy
can occlude the current ray. We take the dot product of the current
unit ray direction with the voxel proxy’s average normal. If the
magnitude of this dot product is greater than a threshold value, then
the current voxel proxy passes the dot product test and should be
used to occlude the current ray.

Intuitively, the dot product test is used to find places where the
mesh is almost entirely front facing or almost entirely back facing to
the incoming ray. In such cases, the voxel proxy is a good proxy for
the original mesh, such as the case for Ray A in Figure 1.c. Contrast
this situation with Ray B, which passes outside of the object near
its silhouette. Incorrectly using a voxel proxy for rays such as B
leads to blockiness along the silhouette. However, the dot product
test will indicate that the voxel proxy should not be used for Ray B;
rather, Ray B should be tested against the actual geometry.

An additional benefit to using the dot product test is that interior
nodes in the kd-tree can now be used as voxel proxies. Previously,
the use of these interior nodes led to severe blockiness artifacts in
the shadow. However, the dot product test indicates when it is ap-
propriate to use these nodes. For example, the large voxel proxy can
be used for Ray A in Figure 1.d because it passes the dot product
test. The voxel proxy, an interior kd-node, represents a region of
the mesh that is mostly front-facing to the ray. Even though there
are smaller voxel proxies that could be explored, the larger voxel

proxy suffices. Contrast this with Ray B in the same figure, which
is still approaching at a glancing angle to the voxel proxies at this
level of the kd-tree. Interestingly, annotating kd-tree nodes with the
average normal of its geometry can lead to nodes that are assigned
the zero vector. This case is illustrated in Figure 1.e. The root node
of the kd-tree contains the average normal over the entire sphere,
which amounts to the zero vector. No ray is able to use this node as
a voxel proxy due to its degenerate average normal.

Setting the threshold value for the dot product test is crucial to
determining the quality of the resulting shadows. Although it is dif-
ficult to find a value that works well with all scenes, we found that
a value of 0.9 produces high quality shadows in the scenes that we
tested, in contrast to a threshold value of 0.7, which contains no-
ticeable artifacts (Figures 5 and 6). The dot product threshold also
controls how much error appears in the shadow. When it is set to
a low value, greater approximations are allowed when determining
where the geometry lies (effectively larger nodes in the kd-tree be-
come usable voxel proxies). At the same time, fewer traversal steps
and fewer ray-triangle intersections are needed when larger nodes
are used as proxies. The dot product threshold thus controls the
balance between rendering speed and image quality, and leaving it
as a free parameter may be useful. For example, the renderer may
choose to adapt the dot product threshold value based on a priori
knowledge of the scene and the requirements of the rendering.

5.2.3 Modifying traversal for the dot product test

We will add the dot product test to the original, unmodified traversal
algorithm in the following way. The following lines of code should
be inserted at “Modification Point 1.”

if (n.boundaryBitSet()) {

float dotProd = dot(r.dir, n.avgNormal);

if (abs(dotProd) > DOT_PROD_THRESHOLD) {

return true;

}

}

When the ray first enters a node, a check is performed to deter-
mine whether the kd-node has its boundary bit set (a prerequisite
for being a voxel proxy). If so, the dot product test is performed,
and if it passes, true is returned to indicate that the proxy occludes
the current ray. Notice that the original check for intersecting the
actual geometry in leaf nodes is preserved. When using the dot
product test, if a usable voxel proxy is not found, the algorithm falls
back to intersecting actual geometry. This characteristic allows the
algorithm to preserve quality in the silhouettes of shadows.

6 EXPERIMENTAL VALIDATION

We will now discuss our implementation of this algorithm and the
experimental results gathered. There are two goals to this valida-
tion: 1) the algorithm should produce images that are mostly free
from artifacts (here we use our subjective judgment, although a
more formal method can be used in the future) and 2) the amount of
computation performed and saved when using voxel proxies should
be promising for future improvements. We would like to emphasize
that this work is still preliminary and does not present final run-time
speed-up. However, by carefully performing a static analysis of the
algorithm, we will have a better understanding of run-time speedup
or slowdown in later work.

6.1 Methodology

The following results include only measures of computation during
traversal. The cost of constructing the annotated kd-tree is not re-
ported in this section because build is considered a preprocess in
this work.

4



The University of Texas at Austion Dept. of Computer Sciences Technical Report #TR-08-36. August 30, 2008

Bunny 69k nodes d leaves loose leaves % loose

Basic SAM 303531 28 151766 65882 43.4%

SAM w/ ESB 363879 33 181940 38607 21.2%

Dragon 203k nodes d leaves loose leaves % loose

Basic SAM 699319 31 349660 147449 42.2%

SAM w/ ESB 838463 33 419232 79655 19.0%

Table 1: KD-tree statistics. ESB is empty space bonus. d is depth.

We vary the following experimental parameters. The Surface
Area Heuristic used to build the initial kd-tree is first set to the
Basic Surface Area Metric (Basic SAM), and then to the Surface
Area Metric with an Empty Space Bonus (SAM w/ ESB). We set
our empty space bonus multiplier in the SAM w/ ESB to 0.85x
whenever a split produces an empty node. Also, during shadow
rendering we exclusively use Heuristic 2 (dot product test) because
Heuristic 1 produces too many blockiness artifacts. We study the
tradeoffs in Heuristic 2 by using dot product threshold values of 0.9
and 0.7.

All images are rendered at 512x512 using the viewpoint shown.
Although 512x512 is not a realistic rendering resolution, the re-
sults presented in this paper are primarily concerned with percent-
age savings over the baseline technique of direct geometry intersec-
tion. These percentage savings are to a large degree independent of
resolution.

We use the Stanford Bunny (Figure 5) and the Stanford Dragon
(Figure 6) as the test models.

6.2 Analysis of Results

Table 1 shows that the number of loose leaves decreases by roughly
a factor of two as the Basic SAM is switched to the SAM with
Empty Space Bonus. The kd-tree, in turn, contains voxel proxies
that better approximate the original mesh.

Our measure of the number of operations required by this algo-
rithm is included in Table 2. Notice that by using the voxel proxies,
the shadow queries can be evaluated using fewer ray-triangle inter-
sections and kd-node traversals. At the 0.9 threshold, the savings
are only within the 10% to 15% range for ray-triangle intersection,
but using the 0.7 threshold, these savings go up to as high as 30% to
35%. The number of kd-tree nodes traversed decreases negligibly,
by only around 1% to 5%. It seems that in general, using the Basic
SAM produces more traversal and intersection savings than using
the SAM with Empty Space Bonus. The extra savings is most likely
attributable to more loose leaves in the tree and hence larger voxel
proxies throughout the tree.

Interestingly, models with higher tessellation are more tolerant to
a low dot product threshold. Compare Figures 5 and 6 to see that
a threshold value of 0.7 causes noticeable artifacts in the Bunny
(69k triangles) but not the Dragon (203k triangles). We suspect
that highly tessellated models respond better to this approximation
technique because they produce much tighter kd-trees.

6.3 Negligible Temporal Artifacts

A very real concern when using voxel proxies is the presence of
temporal artifacts, such as popping along the shadow silhouette
when the position of the light moves relative to the shadow caster.
We demonstrate in the associated video that a dot product threshold
of 0.9 creates a voxel proxy shadow that is nearly indistinguishable
from the ground truth generated via ray-triangle intersection.

7 SUMMARY

It is important to realize that this work is not the final word on this
topic, but rather an initial foray into a new avenue of research. Here
is a summary of the things that have been learned in this work.

The SAM with the empty space bonus seems to produce a notice-
able increase in shadow quality at low additional cost and mini-
mal algorithmic change. Using Heuristic 2 (dot product test) is
also a promising approach. It leads to significantly fewer artifacts
in the resulting image and provides a decision criterion for when
to use voxel proxies that are interior to the kd-tree. Empirically,
more highly tessellated models still produce high quality images
even when the dot product threshold is decreased. For instance, the
Bunny shows quality loss at a threshold of 0.7 while the Dragon
does not. The algorithm’s robustness when dealing with highly tes-
sellated models such as the Dragon is encouraging because these
models stand to benefit the most from a technique such as voxel
proxies.

8 FUTURE WORK

It remains to be seen whether this technique can be adapted for use
in real-time ray tracing. Combining the static counts that are pre-
sented in this work with measured run-time latencies should pro-
vide a good idea of whether this technique can be made fast enough.
From here, it is a matter of engineering the code to achieve real-time
performance.

Another avenue of future work is to build or update the anno-
tated kd-tree every frame to support dynamic meshes. The recent
advances in fast kd-tree building suggest that such a task is possi-
ble [6, 13]. Additionally, since the algorithm operates only on one
mesh at a time, it is very amenable to lazy build of the kd-tree [2].
New annotated kd-trees can be built or updated for only the meshes
that interact with the current frame. One glaring problem which
needs to be addressed, however, is whether computing the average
normal within a kd-tree node can be done quickly enough for real-
time use.

A big component that is missing from this work is a mechanism
to account for acceptable error once the shadow becomes small in
screen space. This paper explores the cost of shadows that take
up a majority of the screen, in which case image quality must be
kept high. However, the real benefit to approximating the mesh’s
shape with voxel proxies comes when some amount of error is ac-
ceptable. By combining lazy build with the contribution that the
shadow query will have on the final image (for example, via ray
differentials [8]), it might be possible to build a much shallower an-
notated kd-tree with voxel proxies that are coarser but still sufficient
for the current frame. In these cases a simpler heuristic for choosing
proxies (such as Heuristic 1) may produce acceptable results.

This paper also introduces a framework to explore new ideas in
using volumetric proxies for ray traced shadows. We present only
a small set of techniques and heuristics in this paper; many others
are possible.

ACKNOWLEDGEMENTS

The authors wish to thank Warren Hunt and Sean Keely for insight-
ful discussion and help with implementing the rendering platform.
The models were provided courtesy of the Stanford 3D Scanning
Repository. This work was supported in part by NSF CAREER
award #0546236 and by a research grant from Intel Corporation.

REFERENCES

[1] H. Dammertz and A. Keller. Improving ray tracing precision by ob-

ject space intersection computation. In Proceedings of the 2006 IEEE

Symposium on Interactive Ray Tracing, September.

[2] P. Djeu, W. Hunt, R. Wang, I. Elhassan, G. Stoll, and W. R. Mark. Ra-

zor: An architecture for dynamic multiresolution ray tracing. Techni-

cal Report TR-07-52, The University of Texas at Austin, Department

of Computer Sciences, January 24 2007.

[3] J. Goldsmith and J. Salmon. Automatic creation of object hierarchies

for ray tracing. IEEE Comput. Graph. Appl., 7(5):14–20, 1987.

[4] V. Havran and J. Bittner. On improving kd-trees for ray shooting.

Journal of WSCG, 10(1):209–216, February 2002.

5



The University of Texas at Austion Dept. of Computer Sciences Technical Report #TR-08-36. August 30, 2008

Bunny 69k, Basic SAM Normal shadows 0.9 Voxel Proxies % Improvement 0.7 Voxel Proxies % Improvement

ray-tri isects 649125 588664 9.3% 425885 34.4%

kd-nodes traversed 5793631 5721574 1.2% 5441030 6.1%

boundary bit checks 0 5721574 N/A 5441030 N/A

dot product compares 0 4871535 N/A 4615918 N/A

Bunny 69k, SAM w/ ESB

ray-tri isects 551089 508665 7.7% 397811 27.8%

kd-nodes traversed 5597824 5584896 0.2% 5527477 1.3%

boundary bit checks 0 5584896 N/A 5527477 N/A

dot product compares 0 4634215 N/A 4579346 N/A

Dragon 203k, Basic SAM Normal shadows 0.9 Voxel Proxies % Improvement 0.7 Voxel Proxies % Improvement

ray-tri isects 511291 442111 13.5% 331441 35.2%

kd-nodes traversed 5392612 5332964 1.1% 5124576 5.0%

boundary bit checks 0 5332964 N/A 5124576 N/A

dot product compares 0 4528236 N/A 4340596 N/A

Dragon 203k, SAM w/ ESB

ray-tri isects 443938 387612 12.7% 302779 31.8%

kd-nodes traversed 4688839 4672679 0.3% 4618153 1.5%

boundary bit checks 0 4672679 N/A 4618153 N/A

dot product compares 0 3926972 N/A 3875946 N/A

Table 2: Static counts. ESB stands for empty space bonus.

Figure 5: 69k Bunny shadow quality. Top Row: KD-tree built using the Basic SAM. Bottom Row: KD-tree built using the SAM w/ ESB. Left
Column: Geometry only (reference). Middle Column: Voxel proxies with a dot product threshold of 0.9. Right Column: Voxel proxies with a dot
product threshold of 0.7. Note that the two images in the left column are identical.

6



The University of Texas at Austion Dept. of Computer Sciences Technical Report #TR-08-36. August 30, 2008

Figure 6: 203k Dragon shadow quality. The layout matches Figure 5.

[5] W. Hunt. Corrections to the surface area metric with respect to mail-

boxing. In IEEE Symposium on Interactive Raytracing, 2008.

[6] W. Hunt, W. R. Mark, and G. Stoll. Fast kd-tree construction with an

adaptive error-bounded heuristic. In IEEE Symposium on Interactive

Ray Tracing, pages 81–88, 2006.

[7] J. Hurley, A. Kapustin, A. Reshetov, and A. Soupikov. Fast ray tracing

for modern general purpose CPU. In Graphicon 2002, 2002.

[8] H. Igehy. Tracing ray differentials. In SIGGRAPH ’99: Proceed-

ings of the 26th annual conference on Computer graphics and inter-

active techniques, pages 179–186, New York, NY, USA, 1999. ACM

Press/Addison-Wesley Publishing Co.

[9] D. Lacewell, B. Burley, S. Boulos, and P. Shirley. Raytracing pre-

filtered occlusion for aggregate geometry. In IEEE Symposium on

Interactive Raytracing, 2008.

[10] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and

R. Huebner. Level of Detail for 3D Graphics. Morgan Kaufmann

Publishers, San Francisco, CA, USA, 2003.

[11] D. J. MacDonald and K. S. Booth. Heuristics for ray tracing using

space subdivision. The Visual Computer: International Journal of

Computer Graphics, 6(3):153–166, 1990.

[12] V. Popescu, C. Mei, J. Dauble, and E. Sacks. Reflected-scene impos-

tors for realistic reflections at interactive rates. In Computer Graphics

Forum, volume 25, issue 3 (EG 2006), Sep 2006.

[13] S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek. Experiences with

streaming construction of SAH KD-trees. In Proceedings of the 2006

IEEE Symposium on Interactive Ray Tracing, pages 89–94, 2006.

[14] P. Shanmugam and O. Arikan. Hardware accelerated ambient occlu-

sion techniques on GPUs. In I3D ’07: Proceedings of the 2007 Sym-

posium on Interactive 3D Graphics and Games, pages 73–80, New

York, NY, USA, 2007. ACM.

[15] P.-P. Sloan, N. K. Govindaraju, D. Nowrouzezahrai, and J. Snyder.

Image-based proxy accumulation for real-time soft global illumina-

tion. In PG ’07: Proceedings of the 15th Pacific Conference on Com-

puter Graphics and Applications, pages 97–105, Washington, DC,

USA, 2007. IEEE Computer Society.

[16] S.-E. Yoon, C. Lauterbach, and D. Manocha. R-lods: Fast lod-based

ray tracing of massive models. The Visual Computer, 22(9–11):772–

784, September 2006.

7


