Dynamic Software Updates for Java:
A VM-Centric Approach

Suriya Subramanian*

*The University of Texas at Austin

Abstract

Software evolves to fix bugs and add features, but stopping and
restarting existing programs to take advantage of these changes
can be inconvenient and costly. Dynamic software updating
(DSU) addresses these problems by updating programs while
they run. The challenge is to develop DSU infrastructure that
is flexible, safe, and efficient—DSU should enable updates that
are likely to occur in practice, and updated programs should be
as reliable and as efficient as those started from scratch.

This paper presents the design and implementation of a JVM
we call JVOLVE that is enhanced with DSU support. The pa-
per’s key insight is that flexible, safe, and efficient DSU can
be supported by naturally extending existing VM services. By
piggybacking on classloading and garbage collection, JVOLVE
can flexibly support additions and replacements of fields and
methods anywhere within the class hierarchy, and in a manner
that may alter class signatures. By utilizing bytecode verifi-
cation and thread synchronization support, JVOLVE can ensure
that an applied update will never violate type-safety. Finally,
by employing JIT compilation, all DSU-related overhead be-
fore or after an update can be effectively eliminated. Using
JVOLVE, we successfully applied dynamic continuous updates
corresponding to 20 of the 22 releases that occurred over nearly
two years’ time, one update per release, for three open-source
programs, Jetty web server, JavaEmailServer, and CrossFTP
server. Our results indicate that the VM is well-suited to sup-
port practical DSU services.

1 Introduction

Software is imperfect. To fix bugs and adapt software
to the changing needs of users, developers must modify
deployed systems. However, halting a software system
to apply updates creates new problems: safety concerns
for mission-critical and transportation systems; substan-
tial revenue losses for businesses [29, 25]; maintenance
costs [33]; and at the least, inconvenience for users,
which can translate into a serious security risk if patches
are not applied promptly [2, 17]. Dynamic software up-

Michael Hicks'

Kathryn S. McKinley*
Y University of Maryland, College Park

dating (DSU) addresses these problems by updating pro-
grams while they run. DSU is appealing because it is
general-purpose: it requires no special software architec-
ture and neither extra nor redundant hardware [27]. The
challenge is to make DSU safe enough that updating a
program is as correct as deploying it from scratch, flexi-
ble enough that it can support software updates that are
likely to occur in practice, and efficient enough to have
little or no impact on application performance.

Researchers have made significant strides toward mak-
ing DSU practical for systems written in C or C++,
supporting server feature upgrades [23, 7], security
patches [2], and operating systems upgrades [30, 4,
19, 6, 17]. Because enterprise systems and embedded
systems—including safety-critical applications—are in-
creasingly written in languages such as Java and C#,
these languages would benefit from DSU support. Un-
fortunately, work on DSU for these languages lags be-
hind work for C and C++. For example, while the
HotSpot JVM [16] and several .NET languages [11] sup-
port on-the-fly method body updates, this support is too
inflexible for all but the simplest updates—Iess than half
of the changes in three Java benchmark programs we ex-
amined could be supported. Other approaches proposed
in the literature [28, 20, 26] are more flexible but impose
substantial a priori space and time overheads and have
not been proven on realistic applications.

This paper presents the design and implementation of
a dynamic updating system called JVOLVE that we have
built into Jikes RVM, a Java research virtual machine.
The paper’s key contribution is to show that modest ex-
tensions to existing VM services naturally support DSU
that is flexible, safe, and imposes no a priori space or
time overheads.

JvoLVE DSU support is quite flexible. Dynamic up-
dates may add new classes or change existing ones. A
change to a class may add new fields and methods, or re-
placing existing ones, and these replacements may have
different type signatures. Changes may occur at any level

of the class hierarchy. To initialize new fields and update
existing ones, JVOLVE applies class and object trans-
former functions, the former for static fields and the lat-
ter for instance fields. A default transformer is automat-
ically generated by the system at runtime—it initializes
new and changed fields to a default value, and retains the
values of unchanged fields—or the user may provide a
custom one.

JVOLVE loads new and updated classes into a run-
ning program via the standard class loading facility.
JVOLVE triggers compilation of the modified classes
and invalidates existing compiled code for modified and
transitively-modified methods, which are those methods
that rely on the prior method’s representation, such as
methods in which the JIT previously inlined the modified
methods. The JIT compiler then naturally recompiles
each invalidated method when the program next tries to
execute it, just as it would for a newly-loaded method.
When a dynamic update to some class changes its in-
stance fields, JVOLVE piggybacks on top of a whole-heap
GC to find and transform existing instances of that class.
When the collector encounters such an object, it creates
a new object corresponding to the new class definition.
At the conclusion of GC, JVOLVE applies the object and
class transformers to initialize the new objects’ fields and
static class fields, respectively.

JVOLVE imposes no overhead during normal execu-
tion. The class loading, recompilation, and garbage col-
lection modifications of JVOLVE’s VM-based DSU sup-
port are modest and their overheads are only imposed
during an update, which is a rare occurrence. The zero
overhead for a VM-based approach is in contrast to DSU
techniques typical of C and C++ that, for example, use
a compiler or dynamic rewriter to insert levels of indi-
rection [23, 26] or trampolines [6, 7, 2, 17], respectively,
which affect performance during normal execution. VMs
also have the advantage of better memory management
support. Rather than requiring each allocation to pad ob-
jects in case they become larger due to an update [23],
managed languages have the flexibility to copy objects,
and thus grow them only when necessary.

JVOLVE piggybacks on normal bytecode verification,
part of classloading, to ensure that updated classes are
type-safe. To avoid type errors that could result due to
the timing of an update [23, 4], JVOLVE only permits
updates to take place at a safe point. Such a point occurs
when no running thread’s activation stack refers to (1)
an updated class, or (2) any class that either inlines an
updated class or calls a method of an updated class whose
signature has changed. Both parts of condition (2) are to
handle changes in representation due to recompilation.
This safety condition is similar to conditions proposed in
prior work [31, 5], but is comparably much simpler, and
accepts the large majority of updates we considered.

To assess JVOLVE, we used it to apply nearly two
years’ worth of the changes corresponding to releases of
three open-source applications, Jetty web server, JavaE-
mailServer (an SMTP and POP server), and CrossFTP
server. JVOLVE could successfully apply 20 of the 22
updates—the two updates it could not apply changed
classes with infinitely-running methods, and thus no safe
point could be reached. We plan to leverage VM on-
stack replacement facilities to update active methods in
future work. Performance experiments with Jetty con-
firm that applications updated by JVOLVE enjoy the same
performance as those started from scratch, except during
the update itself. Microbenchmark results show that the
pause time due to an update depends on the size of the
heap and fraction of objects that must be transformed.
We find there is a high per-object cost to using a trans-
former as compared to simply copying the bytes. How-
ever, most updates to Jetty, JavaEmailServer, and Cross-
FTP transformed only a small fraction of heap objects.

In summary, the main contribution of this paper is
JVOLVE, a VM-based approach for supporting dynamic
software updating that is distinguished from prior work
in its realism, technical novelty, and high performance.
We believe this approach is a promising step toward
supporting highly flexible, efficient, and safe updates in
managed code virtual machines.

2 Dynamic Updates in JVOLVE

This section overviews how JVOLVE performs dynamic
updating, including the sorts of updates that JVOLVE sup-
ports, and how the developer participates in the process.

2.1 System Overview

Figure 1 illustrates the dynamic update process. It shows
the VM running the current version of the program and
at top left, the source files. Meanwhile, developers are
working on a new version, whose source files are shown
at the bottom left. When the new version is ready—it com-
piles correctly and the developer has fully tested it using
standard procedures—the developer passes the old and
new versions of the source tree to JVOLVE’s change de-
tector. This tool identifies classes that have been added
or changed and copies them into a separate directory.

At this point, the developer may write some number of
object and class transformers. Transformer methods take
an object or class of the old version and produce an object
or class of the new version. For example, if an update to
class Foo adds a new instance field x and a new static
field y, the programmer can write an object transformer
(called jvolve_object) to initialize x for each updated
object, and a class transformer (called jvolve_class)
to initialize y. If the programmer chooses not to write

current version

:_|

Foo.java

_/—\ change

~

load JVolve VM

update safe
point?

gc+

Q Q update
old

jvolve_object

— detector

Foo.java

_/—.

new version

~

Foo.java

version space
new version
space
new/modified classes

with user-provided
object/class transformer methods

Figure 1: Dynamic Software Updating with JVOLVE

one of these transformers, the system will dynamically
produce a default one that simply initializes each new
field to its default value and copies over the values of any
old fields that have not changed type. Transformer meth-
ods are the only portions of code where both views of the
class definition are visible and they are only ever invoked
at update time. This feature enables the programmer to
develop the application largely oblivious to the fact that
it will be dynamically updated.

JVOLVE then translates the transformer functions to
class files, which ensures (among other things) that they
are type correct. The running VM then starts the up-
dating process by loading the transformers and the new
user class files. Next, the VM waits for all the threads
to stop at a DSU safe point [14, 23] at which all threads
are stopped and none of their activation stack’s contain
updated methods. Updated methods include all the di-
rectly updated methods and any methods that depend on
them or updated classes, e.g., due to inlining. Section 3.2
describes some additional restrictions on safe points.

The VM then adds any new entries to the method dis-
patch table, and invalidates any updated method imple-
mentations. Changed methods are then compiled as a
matter of course the next time the program invokes them
(and the old implementations can never be accessed).
Finally, the VM initiates a full copying garbage collec-
tion to update the state of existing objects whose classes
changed. When the collector encounters an object to up-
date in the from space, it allocates a copy of this object
and an object of the new class in the 7o space. At the
end of the collection, JVOLVE runs object transformers
on each of these pairs and at the last invokes the class
transformers. At this point, the update is complete.

2.2 Update Model

We have designed a flexible, yet simple update model
that supports updates that we believe are important in
practice. JVOLVE classifies updates into the following
two categories:

Method body updates: These updates change just the
internal implementation of a method.

Class updates: These updates change the class signa-
ture by adding or removing fields and methods, or
by changing the signature of fields and methods in
a class.

Method body updates are the simplest and most com-
monly supported updates [16, 11, 10, 13, 26, 30, 15],
because these changes do not require DSU safe points;
they can be applied at any time and preserve type safety.
Permitting only method implementation updates how-
ever prevents many common changes [22]. For example,
Section 4 shows that over half of the updates to Jetty,
JavaEmailServer and CrossFTP add fields and/or change
method signatures.

Class updates may occur at any level of the class hier-
archy. For example, an update that deletes a field from
a parent class will propagate correctly to the class’s de-
scendants. JVOLVE does not support permutations of the
class hierarchy, e.g., reversing a super-class relationship.
While this update may be desirable in principle, in prac-
tice, it requires sophisticated transformers that can en-
force update ordering constraints. None of the program
versions we observed made this type of update.

JVOLVE’s update model is quite flexible. Developers
may change a method implementation to fix a bug. De-
velopers may enhance functionality by adding and acting
on a new parameter to a method, or by adding a new field
and its access methods to a class (and its subclasses, as
desired). JVOLVE’s supported updates also match com-
mon refactorings, such as dividing a method into mul-
tiple methods, renaming a class or interface, changing
types, and renaming fields [12].

Example. Consider the following update from JavaE-
mailServer, a simple SMTP and POP e-mail server. Fig-
ure 2 illustrates a pair of classes that change between
versions 1.3.1 and 1.3.2. These changes are fully sup-
ported by JVOLVE. JavaEmailServer uses the class User

public class User {
private String username, domain, password;
private String[] forwardAddresses;
public String[]
getForwardedAddresses() {...}
public void
setForwardedAddresses(String[] £) {...}
}
public class ConfigurationManager {
private User loadUser(...) {

User user = new User(...);
String[]l £ = ...;
user.setForwardedAddresses (f);
return user;

(a) Version 1.3.1

public class User {

}

private String username, domain, password;
private EmailAddress[] forwardAddresses;
public EmailAddress/[]

getForwardedAddresses() {...}
public void

setForwardedAddresses (EmailAddress([] £) {...}

public class ConfigurationManager {

private User loadUser(...) {

User user = new User(...);
EmailAddress[] £ = ...;
user.setForwardedAddresses (f);
return user;

(b) Version 1.3.2

Figure 2: Example changes to JavaEmailServer User and ConfigurationManager classes

to maintain information about e-mail user accounts in
the server. Moving from version 1.3.1 to 1.3.2, there
are two basic differences. First, the method loadUser
fixes some problems with the loading of forwarded ad-
dresses from a configuration file (details not shown).
This change is a simple method update. Second, for-
warded addresses are represented as an array of instances
of a new class, EmailAddress, rather than String.
This change modifies the class signature of User since
it modifies the type of forwardedAddresses. The
class’s setForwardedAddresses method is also al-
tered to take an array of EmailAddresses instead of an
array of Strings.

2.3 Class and Object Transformers

For our example, the JVOLVE change detector identifies
that the User and ConfigurationManager classes have
changed. At this point, the programmer may elect to
write object and class transformers or use the defaults.
The user elects to write both a class and object trans-
former for the class User, as illustrated in Figure 3.
Object and class transformer methods are simply
static methods that augment the new class. The class
transformer method jvolve_class (body not shown)
takes no arguments, while the object transformer method
jvolve_object takes two reference arguments: to, the
uninitialized new version of the object, and £rom, the old
version of the object. For both methods, the old version
of the changed class has its version number prepended
to its name. In our example, the old version of User is
redefined as class v_1_3_1_User, which is the type of
the from argument to the jvolve_object method in the
new User class. The v_1_3_1_User class contains only

field definitions from the original class, defined with ac-

cess modifier public to allow them to be accessed from
the jvolve_object method.

The code in transformer methods is essentially a kind
of constructor: it should initialize all of the fields of the
new class/object. Very often the best choice is to initial-
ize a new field to its default value (e.g., O for integers
or null for references) or to copy references to the old
values. In the example, the first few lines simply copy
username, domain, and other fields from their previous
values. A more interesting case is the field type change
to forwardedAddresses; the user initializes the new
field by referring to the old field. The function allocates
a new array of EmailAddresses initialized using the
Strings from the old array. Note that the default trans-
former function would instead copy the first three fields
as shown, and initialize the forwardedAddresses field
to null because it has changed type.

Supported in its full generality, a transformer method
may reference any object reachable from the global
(static) namespace of both the old and new classes,
and read or write fields or call methods on the old version
of the object being updated and/or any objects reachable
from it. JVOLVE presents a more limited interface sim-
ilar to that of past work [28, 20]. In particular, trans-
formers may only use old objects to initialize new ob-
jects; the only safe access to a new object is through the
to argument. Transformers may safely copy the con-
tents of from fields. These fields may also be derefer-
enced if the update has not changed their class, or if it
has, once the referenced objects are transformed to con-
form to the new class definition. At the moment this is
achieved by invoking a VM function, but ultimately we
plan to provide more automatic support. Finally, object
transformers may not call methods on the old object. For
example in Figure 3, class v_1_3_1_User is defined in

public class v_1_3_1_User {
public String username, domain, password;
public String[] forwardAddresses;

}

public class User {

public static void jvolve_class() { ... }
public static void
jvolve_object(User to, v_1_3_1_User from) {
to.username = from.username;
to.domain = from.domain;
to.password = from.password;
// default transformer would have:
// to.forwardAddresses = null
int 1 = from.forwardAddresses.length;
to.forwardAddresses = new EmailAddress[1];
for (int i = 0; i < 1; i++) {
to.forwardAddresses[i] =

new EmailAddress(from.forwardAddresses([i]);

33}
Figure 3: Example User object transformer

terms of the fields it contains, while the methods have
been removed. As explained in Section 3.4, these limi-
tations stem from a goal to keep our garbage collector-
based traversal safe and relatively simple. This interface
is sufficient to handle all of the updates we tested.

If a programmer does not write an object transformer,
the VM merely initializes new or changed fields to their
default values and copies the values from unchanged
fields. JVOLVE’s Update Preparation Tool (UPT) (de-
scribed in Section 3.1) generates default versions of
the jvolve_object and jvolve_class methods in the
same way, which the user may modify [14, 23].

3 VM Support for DSU

This section describes how we implement DSU by ex-
tending common virtual machine services. We discuss
our particular implementation choices in the context of
Jikes RVM [1], a high-performance [32] Java-in-Java Re-
search VM. Our current JVOLVE implementation uses
Jikes RVM’s dynamic classloader, JIT compiler, thread
scheduler, and copying garbage collector. Specifically,
both class updates and method body updates (see Sec-
tion 2.2), require VM classloading, JIT compilation, and
thread scheduling support. Class updates additionally re-
quire garbage collection support.

The update process in JVOLVE proceeds in four steps.
First, a standalone tool prepares the update. When the
update is ready, the user signals JVOLVE, which waits
until it is safe to apply the update. At this point JVOLVE
stops running threads, loads and JIT-compiles the up-
dated classes (although it would be straightforward to
perform this step asynchronously), and installs the mod-

ified methods and classes. Finally, if needed, it performs
a modified garbage collection that implements class sig-
nature updates by transforming object instances from the
old to the new class definitions.

3.1 Update Preparation

To determine the changed and transitively-affected
classes for a given release, we wrote a simple Update
Preparation Tool (UPT) that examines differences be-
tween the old and new classes provided by the user. UPT
is built on top of jclasslib,! a bytecode viewer and library
for examining (bytecode) class files. UPT first finds
class updates — classes whose signature has changed
due to field or method additions or deletions, or due to
method signature changes. UPT finds methods whose
bodies have changed and classifies them as method body
updates. It simply compares the bytecodes to make
these classifications. Finally, UPT determines indirect
method updates, which are methods whose source code
is unchanged but refer to a field or method in an up-
dated class. Such methods must be recompiled to cor-
rect field or methods offsets that changed because of the
update. (Once an update is loaded, the VM also adds
methods to this list similarly affected by JIT inlining
choices.) JVOLVE does not load or compile indirectly-
updated methods, but rather invalidates the old compiled
versions and the JIT later recompiles them on demand.

As mentioned previously, JVOLVE generates the de-
fault transformer internally. In addition it provides tem-
plates for object and class transformer functions, that the
user may modify if necessary. The user presents the list
of updated classes and user transformers to JVOLVE.

3.2 Stopping/Resuming Execution

To preserve type safety, JVOLVE ensures that the update
to the new version is atomic. No code from the new
version must run before the update completes, and no
code from the old version must run afterward. JVOLVE
requires the running system to reach a DSU safe point
before applying updates. DSU safe points occur at VM
safe points, but also restrict the methods referenced by
running threads’ stacks. To safely perform VM services
such as thread scheduling, garbage collection, and JIT
compilation, Jikes RVM (like most production VMs) in-
serts yield points at all method entry and exit points, and
loop back edges. If the VM wants to perform a garbage
collection or schedule a higher priority thread, it sets a
yield flag, and the threads stop at the next VM safe point.
JVOLVE piggybacks on this functionality. When JVOLVE
is informed an update is available, it sets the yield flag.

"http://www.ej-technologies.com/products/
jclasslib/overview.html

Once all threads have reached VM safe points, a DSU
thread checks all thread stacks. If none refers to a re-
stricted method, as defined below, the update is applied.
Otherwise, the update is rejected, and must be retried.

Similar to most other DSU systems [28, 20, 2, 10, 16,
11,7, 30], JVOLVE’s restricted methods include those be-
longing to classes that are being updated. To see why this
restriction is important, consider the update from Fig-
ure 2 and assume the thread is stopped at the beginning
of the ConfigurationManager.loadUser method. If
the update takes effect at this point, the implementa-
tion of User.setForwardedAddresses will take an
object of type EmailAddress[] as its argument. How-
ever, if the old version of loadUser were to resume, it
would still call setForwardedAddresses with an array
of Strings, resulting in a type error.

Preventing an update until updated methods are no
longer on the stack ensures type safety because the new
version of the program is itself internally type correct.
If a programmer changes the type of a method m, for
the program to have compiled properly, any methods that
call m must do so at the right type. In our example, the
fact that setForwardedAddresses changed type neces-
sitated changing the function loadUser to call it with the
new type. With this safety condition, there is no possi-
bility that JVOLVE could change the signature of method
m and some old caller could call it—the update must also
include all callers of m.

However, restricting methods belonging to updated
classes is not enough—we must also restrict those meth-
ods updated indirectly, i.e., all methods identified by
UPT. This is because these methods depend on the par-
ticular field and method offsets of the classes to which
they refer, so if a class changes its signature then its
callers must be recompiled to reflect that change. Finally,
we must also restrict those methods into which updated
methods—whether directly or indirectly—have been in-
lined. For example, if an updated method m is inlined
into another method n, then n must also be considered
restricted. JVOLVE keeps track of the compiler’s inlining
decisions and, when an update is available, computes a
transitive closure of all methods that have inlined meth-
ods appearing in the update method set. JVOLVE adds
these additional methods to the set of restricted methods
used to determine a safe point.

Discussion. While simple and largely efficacious, there
are several possible enhancements to our basic approach
for establishing safe points.

First, we could use a static analysis to determine
that some methods may be removed from the restricted
method set. For example, Stoyle et al.’s static analy-
sis [31] would determine the update to User could be
permitted even while 1loadUser is running, but only af-

ter the call to setForwardedAddresses. Static analysis
however cannot enable updates to methods that are es-
sentially always on the stack, such as infinite loops that
perform event processing. Updates to methods contain-
ing such loops will be indefinitely delayed. To update in
this case, past work has proposed extracting out the con-
tents of an infinite loop into separate methods as a part of
compiling updatable software, i.e., before the first execu-
tion [23]. Therefore, if the contents of the loop change,
the change is limited to the extracted method body, but
the loop itself and the type signature of the extracted
method will remain the same. This source modification
enables updates to the loop body because there are win-
dows in which it is not active, i.e., just before or just after
a call to the extracted method. A similar technique could
be implemented at update-time using on-stack replace-
ment, which is provided in many VMs, including Jikes
RVM. The user would indicate the correspondence be-
tween an infinite loop in the old version of the method
and the loop in the new version, and indicate how to map
between the local variables used in the two cases.

For the updates to programs we have considered,
JVOLVE usually reaches a safe point on the first try, as
described in Section 4.1. We have not explored retry
policies in any depth, but simple ones are obvious; e.g.,
retry the update every n milliseconds, or according to
some distribution. However, with a simple timer-based
policy, there may be but a small window in which the
all forbidden methods are inactive, in which case only a
very lucky user will find that window. A better approach
would be to delay an update, and use stack barriers [8] to
identify ripe conditions under which to try again.

A final possible enhancement is that the compiler
could take care to keep the field layout the same when-
ever possible, reducing the number of updated methods
and consequently the restricted method set. We leave ex-
ploration of these ideas to future work.

3.3 Loading Modified Classes

Once the program reaches a safe point, the JVOLVE ini-
tiates the update. There are two main steps in this pro-
cess. First, JVOLVE loads the changed classes and then
arranges for them to be compiled properly by updating
the metadata for the existing classes and adding meta-
data for new classes. Second, the garbage collector trans-
forms existing object instances to refer to the new meta-
data and, in the case of class signature changes, to use
the new object layout, initialized by the default or user-
provided object transformer function. The remainder of
this section covers the first step, and the next subsection
covers the second.

In Jikes, a class has several data structures. Each
class has a corresponding VM_Class meta-object that de-

old (version) space I

... list of pending xforms

new (version) space

username
forwAddrs

(EmailAddr) ((EmailAddr)
user user
domain

CT1J

Figure 4: Running object transformers following GC

scribes the class. It points to other meta-objects that
describe the class’s methods and fields, which describe
the field or method’s type, and its offset in an object
instance. The compiler uses offset information to gen-
erate field and method access code, while the garbage
collector uses it to perform collection. In addition to this
metadata, VM_Class points to the type information block
(TIB) for the class, which maps a method’s offset to its
actual implementation. Jikes RVM chooses to always
compile a method directly to machine code, where the
compilation takes place on-demand, when the method is
first called. Each object instance contains a pointer to its
TIB, to support dynamic dispatch. When the program in-
vokes a method on an object, the generated code indexes
the object’s TIB at the correct offset and jumps to the
machine code.

For a class update, the class’s number, type, and or-
der of fields or methods may have changed, which in
turn impacts an object’s layout and its TIB. To effect
these changes, JVOLVE renames the old metadata for
the class (to use it during object updates), and installs
the new VM_Class and corresponding metadata for the
newly-compiled class. Installing this information takes
two steps. First, the VM updates several Jikes data struc-
tures to indicate that the newly-loaded class is now the
up-to-date version. These include the JTOC (Java Table
of Contents) for static methods and fields. In addition,
the VM invalidates the TIB for all updated methods. Just
as with a newly-loaded method, the JIT will compile the
updated method when it is first invoked following the up-
date. The second step happens when the garbage collec-
tor traces objects affected by the change: it updates them
to point to their new TIB (as well as applying their object
transformer, described next).

3.4 Applying Transformers

Existing objects whose class signatures have changed
must be transformed via their object transformer meth-
ods. We modify the Jikes semi-space copying collector

to update changed objects as part of the collection, which
is safe because DSU safe points are a subset of GC safe
points. The VM ensures that the stack maps are correct
at every thread yield point. Stack maps enumerate all
registers and stack variables that contain root references
in to the heap and are required to perform a collection.

A semi-space copying collector normally works by
traversing the pointer graph in the heap (called from-
space) starting at the roots and performs a transitive clo-
sure over the object graph, copying all objects it encoun-
ters to a new heap (called to-space). Once the collector
copies an object, it overwrites its header with a forward-
ing pointer to the new copy in to-space. If the collector
encounters the old object later during the traversal via an-
other reference, it uses the forwarding pointer to redirect
the reference to the new object.

Our modified collector works in much the same way,
but differs in how it handles objects whose class signa-
ture has changed. In this case, it allocates a copy of the
old object and a new object of the new class (which may
be a different size compared to the old one). The col-
lector initializes the new object to point to the TIB of the
new type, and installs a forwarding pointer in from-space
to this new version. Next, the collector stores pointers to
the copy of the old object and the new object in an up-
date log. The collector continues scanning the copy of
the old version. After the collection completes, JVOLVE
goes through the update log and invokes the relevant ob-
ject transformer (either the default, or jvolve_object,
if present), passing the old and new object pairs as ar-
guments. Once all pairs have been processed, the log is
deleted, making the duplicate old versions unreachable.
They will be reclaimed at the next collection. Finally,
JVOLVE executes the class transformers.

Figure 4 illustrates a part of the heap at the end of
the GC phase while applying the update from Figure 3
(forwarding pointers are not shown to avoid clutter). On
the left is a depiction of part of the heap prior to the up-
date. It shows a User object whose fields point to var-
ious other elided objects. After the copying phase, all

of the old reachable objects have been duplicated in to-
space. The transformation log points to the new version
of User (which is initially empty) and the duplicate of
the old version, both of which are in to-space. The trans-
former function can safely copy fields of the from ob-
ject. The figure shows that after running the transformer
function, the new version of the object points to the same
username field as before, and it points to a new array
which points to new EmailAddress objects. The con-
structor initialized these objects by referring to the old
e-mail String values by assigning fields to point to sub-
strings of the given String.

In our example, the jvolve_object function only
copies the contents of the old User object’s fields. More
generally, the fields of old objects can be dereferenced
safely so long as all objects they point to are up-to-date.
If one of the fields points to an object whose class has
been updated, it is possible that the pointed-to object has
not yet been transformed (i.e., since it appears later in the
update log). To transform it, we could find the old object
by scanning the remainder of the update log and then
pass both old and new objects to the jvolve_object
method (or the default transformer). To avoid multiple
scans of the update log, we instead cache a pointer to the
old version from its new version when performing the
GC (this pointer is not shown in the figure).

We must also take care that jvolve_object func-
tions invoked recursively to transform old objects do not
loop infinitely (which would constitute one or more ill-
defined transformer functions). We detect cycles with a
simple check, and abort the update if a cycle is found.
In our current implementation, the programmer indicates
whether to transform a child object before or after the
parent at the start of the jvolve_object function. It
should be straightforward to determine when this case
automatically, through a read barrier during collection in
the jvolve_object code, or even simple analysis of the
jvolve_object bytecode.

Discussion. Our approach of requiring an extra copy
of all updated objects adds temporary memory pressure,
since copies will persist until the next GC. We could
instead copy the old versions to the end of from-space,
rather than to to-space. Assuming they all fit, they will
be immediately reclaimed when the GC is complete. We
could attempt to avoid extra copying altogether by invok-
ing object transformer functions during collection. This
approach is more complicated because it may require
recursively invoking the collector from the transformer
if a dereferenced field has not yet been processed. We
also would need to insert an extra GC-time read barrier
that follows forwarding pointers before dereferencing an
object, and that determines whether an object has been
transformed yet. We leave exploration of these ideas to

future work.

We use a stop-the-world garbage collection-based ap-
proach that requires the application to pause for the du-
ration of a full GC. This pause time could be mitigated
by piggybacking on top of a concurrent, collector. We
could also consider applying object and class transform-
ers lazily, as they are needed [28, 20, 23, 7]. The main
drawback here is that code must be inserted to check, at
each dereference, whether the object is up-to-date, im-
posing extra overhead on normal execution. Moreover,
stateful actions by the program after an update may inval-
idate assumptions made by object transformer functions.
It is possible that a hybrid solution could be adopted,
similar to Chen et al. [7], in which inserted checking code
is removed once all objects have been updated.

4 Experience

To evaluate JVOLVE, we used it to update three open-
source servers written in Java: the Jetty webserver?,
JavaEmailServer,®> an SMTP and POP e-mail server, and
CrossFTP server*. These programs belong to a class that
should benefit from DSU because they typically run con-
tinuously. DSU would enable deployments to incorpo-
rate bug fixes or add new features without having to halt
currently-running sessions. We explored updates corre-
sponding to releases made over roughly a year and a half
of each program’s lifetime. Of 22 updates we considered,
JVOLVE could support 20 of them—the two updates we
could not apply changed classes with infinitely-running
methods, and thus no safe point could be reached. To
our knowledge, no existing general-purpose DSU system
for Java could support these updates either, and indeed
typical support for dynamic updating (changing method
bodies only) would support only 9 of 22. JVOLVE is the
first DSU system for Java that has been shown to support
changes to realistic programs as they occur in practice
over a long period. The remainder of this section de-
scribes this experience.

4.1 Jetty webserver

Jetty is a widely-used webserver written in Java, in de-
velopment since 1995. It supports static and dynamic
content and can be embedded within other Java appli-
cations. The Jikes RVM is not able to run the most re-
cent versions of Jetty (6.x), therefore we considered 11
versions, consisting of 5.1.0 through 5.1.10 (the last one
prior to version 6). Version 5.1.10 contains 317 classes
and about 45000 lines of code. Table 1 shows a summary
of the changes in each update. Each row in the column

Zhttp://wuw.mortbay.org
Shttp://wuw.ericdaugherty.com/java/mailserver/
“http://www.crossftp.com/

Ver. # # changed

classes || classes methods fields

added add | del | chg | add | del
5.1.1 0 14 4 1 38/0 0 0
5.1.2 1 5 0 0 12/1 0 0
5.13 3 15 19 2 59/0 10 1
5.1.4 0 6 0 4 9/6 0 2
5.15 0 54 21 4 112/8 5 0
5.1.6 0 4 0 0 20/0 5 6
5.1.7 0 7 8 0 1172 9 3
5.1.8 0 1 0 0 1/0 0 0
5.1.9 0 1 0 0 1/0 0 0
5.1.10 0 4 0 0 4/0 0 0

Table 1: Summary of updates to Jetty

tabulates the changes relative to the prior version. For the
column listing changed methods, the notation x/y indi-
cates that x +y methods were changed, where x changed
in body only, and y changed their type signature as well.
For dynamic updating systems that only support changes
to method bodies, only the first and last three of the ten
updates could be expressed, since the remainder either
change method signatures and/or add or delete fields.

With JVOLVE we were able to successfully write dy-
namic updates to all versions of Jetty we examined.
However, we could not apply an update to version 5.1.3
because JVOLVE was never able to reach a safe point. To
understand why, we instrumented the VM to emit infor-
mation about restricted method set and, if a safe point
cannot be reached, which restricted method was active.
For each version, starting at 5.1.0, we ran Jetty under full
load. After 30 seconds we tried to apply the update to
the next version; if a safe point could not be immedi-
ately reached, we deemed the attempt as failed (i.e., we
did not retry). The results are presented in Table 2. Col-
umn 2 shows the number of times (out of five such runs)
the application reached a safe point. The methods whose
presence on a thread stack precluded the application from
reaching a safe point are mentioned below the table. For
the update to 5.1.3, the offending method was always ac-
tive (it contained an infinite loop). The other updates ei-
ther always succeeded, or did most of the time, implying
that with retries they could be applied fairly quickly.

Column 3 contains the total number of methods in the
program at runtime, where the number in parentheses is
the number of these the compiler inlined when using ag-
gressive optimization (which provides an upper bound
on the effect of inlining in reaching a safe point). The
next group of columns contains the restricted method set.
Each column in the group specifies the number of meth-
ods loaded at run time by the VM, followed by the total
number of methods in that category in the program. The
first column in this group is the number of methods in
classes involved in a class update. Recall that when a
class is updated, say by adding a field, all its methods are
considered restricted. The second column in this group

is the number of methods whose bodies are updated, the
third is the number of methods indirectly updated, and
the fourth sums these, with the number of the total that
were inlined written in parentheses. The final column is
the total number of methods in the restricted set; it differs
from the first number in the fourth column by the number
of (transitively) inlined callers of the restricted methods
that were not already restricted.

The table shows that both indirect method calls and
inlining significantly add to the size of the restricted
set, though inlining is small by comparison because all
callers of an updated class’s methods are already in-
cluded in the indirect set, so inlining these methods adds
no further restriction. Interestingly, having a greater
number of restricted methods overall does not necessar-
ily reduce the likelihood that an update will take effect;
rather, it depends on the frequency with which methods
in this set are on the stack.

4.2 JavaEmailServer

For JavaEmailServer we looked at 10 versions—1.2.1
through 1.4—spanning a duration of about two years.
The final version of the code consists of 20 classes and
about 5000 lines of code. Table 3 shows the summary
of changes for each new version. Approaches that only
support updates to method bodies will be able to handle
only four of the nine updates we considered. We could
successfully construct updates for all versions we exam-
ined, and we could successfully apply all of them but
the update to version 1.3. This update reworked the con-
figuration framework of the server, among other things
removing a GUI tool for user administration and added
several new classes to implement a file-based system. As
a result, many of the classes were modified to point to a
new configuration object, among these threads with in-
finite processing loops (e.g., to accept POP and SMTP
requests). Because these classes are always active, the
safety condition can never be met and thus the update
cannot be applied.

In addition, for the update from 1.3 to 1.3.1, the pro-
cessing loop of one class was indirectly updated, and this
initially precluded the update from taking place. To rem-
edy this problem, we manually extracted the body of the
loop and made it a separate function, essentially a manual
application of the “loop extraction” transformation used
in other work [23]. However, even in this case the update
would only take effect if the server was idle; a similar
situation occurred for the update to version 1.3.3. We
could avoid this transformation and the need for idleness
by using a limited form of on-stack replacement (OSR)
in combination with stack barriers, as mentioned in Sec-
tion 3.2. Note that loop extraction would not help for our
other problematic updates because it was the run meth-

Upd. Number of # methods not allowed on stack, due to Number of
to Reached methods at class method body indirect method restricted
ver. safe point? runtime | updates updates updates Total methods
5.1.1 always 1378 (376) 26/49 7712 20/29 53/90 (17) 67
5.1.2 4/51 1374 (375) 25/25 3/5 35/43 63/73 (35) 67
5.1.3 0/5* 1374 (375) | 326/382 4/6 42/45 370/433 (97) 373
5.14 always 1384 (374) 82/82 5/6 15/16 101/104 (24) 101
5.1.5 always 1380 (372) 14/80 39/60 13/15 62/155 (17) 62
5.1.6 3/51 1394 (378) | 203/219 3/3 16/19 222/241 (40) 223
5.1.7 always 1394 (380) | 186/187 172 53/69 239/258 (74) 243
5.1.8 always 1402 (379) 0/0 171 0/0 1/1 (1) 1
5.1.9 always 1402 (379) 0/0 0/1 0/0 0/1 (0) 0
5.1.10 always 1402 (379) 0/0 4/5 0/0 4/5 (2) 6
Restricted method HttpConnection.handleNext () was active
*Restricted method ThreadedServer.acceptSocket () was (always) active
Table 2: Impact of safe point restrictions on updates to Jetty
Ver. # classes # changed Ver. # classes # changed
add | del classes methods fields add | del classes methods fields
add | del | chg | add | del add | del | chg | add | del
1.2.2 0 0 3 0 0 3/0 0 0 1.06 4 1 1 0 0 3/0 1 0
1.2.3 0 0 7 0 0 1472 12 0 1.07 0 0 3 4 0 14/0 5 0
1.2.4 0 0 2 0 0 4/0 0 0 1.08 0 1 3 2 0 10/0 0 2
1.3 4 9 2 11 3 6/9 12 5
1.3.1 0 0 2 0 0 4/0 0 0
132 0 0 8 4 2) 3 1 Table 4: Summary of updates to CrossFTP server
1.3.3 0 0 4 0 0 3/0 0 0
1.3.4 0 0 6 2 0 6/0 2 0
1.4 0 0 7 6 1 4/1 6 0

Table 3: Summary of updates to JavaEmailServer

ods themselves whose code was changed, and not some
method that they call.

4.3 CrossFTP server

CrossFTP server is an easily configurable, secure-
enabled FTP server. CrossFTP allows simple configu-
ration through a GUI and more advanced customization
using configuration files. We did not use the GUI inter-
face and therefore do not consider changes to that part of
the program. We looked at 4 versions — 1.05 through
1.08 — spanning a duration of more than a year. Version
1.08 contains about 18000 lines of code spread across
161 classes. We could successfully handle all three up-
dates to this application, though one update would apply
only rarely under load. Note that since all updates ei-
ther add or delete fields, simple method body updating
support on its own would be insufficient.

5 Performance

The main performance impact of JVOLVE is the cost of
applying an update; once updated, the application runs

without further overhead. To confirm this, we measured
the throughput of Jetty when started from scratch and fol-
lowing an update and found them to be essentially iden-
tical. We report on this experiment in Section 5.1.

The cost of applying an update is the time to load any
new classes, invoke a full heap garbage collection, and to
apply the transformation methods on objects belonging
to updated classes. Roughly, on a uniprocessor system:
the time to suspend threads and check that the application
is in a safe-point is around 1ms; the classloading time is
usually less than 20ms; the time to resume execution is
usually less than 20ms. Therefore the update disruption
time is primarily due to the GC and object transformers,
and the cost of these is proportional to the size of the heap
and the fraction of objects being transformed. We wrote
a simple microbenchmark to measure this. Section 5.2
reports our results, which show object transformation to
be the dominant cost.

We conducted all our experiments on a dual
P4@3GHz machine with 2 GB of RAM. The machine
ran Ubuntu 6.06, Linux kernel version 2.6.19.1. We im-
plemented JVOLVE on top of Jikes RVM 2.9.1. The VM
was configured with one virtual processor and utilized
only one of the machine’s CPUs.

Config. Req. rate (/s) Resp. time (ms)
5.1.5 (JVOLVE) 361.3 +/- 33.2 19.2
5.1.6 (Jikes) 352.8 +/- 28.5 17.4
5.1.6 (JVOLVE) 366.2 +/- 26.0 15.9
5.1.6 (upd. idle) 357.4 +/-34.9 15.2
5.1.6 (upd. midway) 357.5 +/-41.6 17.5

Table 5: Throughput measurements for Jetty webserver

5.1 Jetty performance

To see the effect of updating on application perfor-
mance, we measured Jetty under various configurations
using httperf,> a webserver benchmarking tool. We
used httperf to issue roughly 100 new connection re-
quests/second, which we observed to be Jetty’s satura-
tion rate. Each connection makes 5 serial requests to a
10Kbyte file. The tests were carried out for 60 seconds.
The client and server were run on different processors in
the same machine. Thus, these experiments do not take
into account network traffic.

Table 5 shows our results. The second column reports
the average rate at which requests were handled, mea-
sured every five seconds over the sixty second run, along
with the standard deviation. The third column is the av-
erage response time per request. The first row illustrates
the performance of Jetty version 5.1.5 using the JVOLVE
VM, while the remaining measurements consider Jetty
version 5.1.6 under various configurations. The second
and third lines measure the performance of 5.1.6 started
from scratch, under the Jikes and JVOLVE VMs, while
the fourth line measures the performance of 5.1.6 up-
dated from 5.1.5 before the benchmark starts. The per-
formance of these three configurations is essentially the
same (all within the margin of error), illustrating that
neither the JVOLVE VM nor the updated program is im-
pacted relative to the stock Jikes RVM.

The last line of the table measures the performance of
Jetty version 5.1.6 updated from version 5.1.5 midway
through the benchmarking run, thus causing the system
to pause during the measurement, which correspondingly
affects the processing rate. We can see this pictorially in
Figure 5, which plots throughput (the Y-axis) over time
for the last three configurations in Table 5 (the others are
not shown to avoid cluttering the graph). Two details are
worth mentioning. First, the throughput during the run
is quite variable in general. Second, when the update
occurs at time 30, the throughput dips quite noticeably
shortly thereafter. We measured this pause at about 1.36
seconds total, where roughly 99% of the time is due to
the garbage collector, and less than 0.1% is due to trans-
former execution. When updating Jetty when it is idle,
the total pause is about 0.76 seconds, with 99.6% of the
time due to GC and 0.01% due to transformer execution.

Shttp://www.hpl.hp.com/research/linux/httperf

-+ 5.1.6 (Jvolve)
200 -=- 5.1.6 (upd. idle)
~+-5.1.6 (upd. midway)

Reply rate (/s), sampled every 5 seconds
g

1 2 EY @ % Y
Time (s)

Figure 5: Webserver request rate over time

5.2 Microbenchmarks

The two factors that determine JVOLVE update time are
the time to perform a GC, determined by the number of
objects, and the time to run object transformers, deter-
mined by the fraction of objects being updated. To mea-
sure the costs of each, we devised a simple microbench-
mark that creates objects and transforms a specified frac-
tion of these objects when a JVOLVE update is triggered.
The microbenchmark has two simple classes, Change
and NoChange. Both start with a single integer field. The
update adds another integer field to Change. The user-
provided object transformation function copies the first
field and initializes the new field to zero. The benchmark
contains two arrays, one for Change objects and one for
NoChange objects. We measure the cost of performing
an update while varying the total number of objects and
the fraction of objects of each type.

Table 6 shows the JVOLVE pause time for 1000 to
100000 objects (the rows) while varying the fraction of
the objects that are of type Change (the columns). The
first group of rows measures the total pause time, the sec-
ond group measures the portion of this time due to run-
ning transformer functions, and the final group measures
the portion of this time due to running the garbage collec-
tor. The first column of the table shows that there is large
fixed cost of performing a whole heap collection even for
a small number of objects. This time includes the time to
stop the running threads and perform other setup. As we
move right in the table, we can see that the cost of ob-
ject transformation can outweigh the cost of the garbage
collection by quite a bit. Also, with more objects to be
transformed, the time to run object transformation func-
tions increases non-linearly, because of caching effects.

The highly optimized original copying sequence does
a memcopy, whereas our transformer functions use re-
flection and copy one field at a time. For each trans-
formed object, JVOLVE looks up and invokes an ob-
ject’s jvolve_object function using reflection, and
then copies each of the fields one by one. The cost of
reflection could be reduced by caching the lookup, but
a naively compiled field-by-field copy is much slower

objects Fraction of Change objects
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Total pause (ms)

1000 | 381.21 387.66 389.61 390.28 392.14 391.21 394.40 395.90 397.41 399.47 400.77
10000 | 382.62 43323 436.40 433.09 47441 461.82 479.59 496.99 510.60 528.99 544.46
50000 | 382.73 463.11 541.53 619.35 702.17 779.67 886.48 1559.58 1802.33 1990.18 2152.32

100000 | 383.64 541.03 698.73 852.36 1067.21 1276.26 3347.12 3968.23 4738.28 6712.72 7903.21
Running transformation functions (ms)

1000 0.22 1.20 2.05 2.89 3.77 4.62 543 6.29 7.21 8.03 8.89
10000 0.22 9.55 17.36 25.80 36.32 44.05 51.40 61.74 68.36 78.98 85.39
50000 0.22 42.92 86.01 128.87 176.29 215.94 267.37 928.25 1132.23 1288.18 1423.34

100000 0.22 86.97 170.81 256.17 392.32 511.02 2539.37 3088.71 3789.88 569390 6809.91
Garbage collection time (ms)

1000 | 376.83 38229 38345 383.19 384.27 382.47 384.73 385.40 386.06 387.27 387.78
10000 | 378.25 419.11 41494 403.02 433.65 413.64 422.63 431.04 438.11 445.85 454.95
50000 | 378.36 416.04 45141 486.34 521.74 559.62 614.63 627.00 663.25 697.86 723.43

100000 | 379.29 44992 52238 591.98 673.23 756.01 803.67 875.33 94438 1014.69 1089.16

Table 6: Microbenchmark results: JVOLVE pause time (in ms) due to update application, for various heap sizes

than the collector’s highly-optimized copying loop. Note
however that the number of transformed objects in our
actual benchmarks was usually very low, less than 25 ob-
jects in the applications we considered, as illustrated by
Jetty pause times reported above.

6 Related Work

We discuss of related work on supporting DSU in Java
and other managed languages, and on supporting DSU
in C and C++. Broadly speaking, JVOLVE is one of the
most flexible systems proposed to date, and when com-
pared to systems with similar flexibility, demonstrates
superior performance and a more realistic and thorough
evaluation.

6.1 Edit and Continue Development

Debuggers have long provided edit and continue (EnC)
functionality that permits limited modifications to pro-
gram state to avoid stopping and restarting during de-
bugging. For example, Sun’s HotSwap VM [16, 9],
.NET Visual Studio for C# and C++ [11], and library-
based support [10] for .NET applications all provide
EnC. These systems are all less flexible than JVOLVE,
typically supporting only code changes within method
bodies. This limitation reduces safety concerns, and pro-
grammers need not write class or object transformers, but
as discussed in Section 4, more than half of the updates
we saw in practice would be disallowed.

6.2 DSU in Managed Languages

Approaches with special VM support. JDrums [28]
and the Dynamic Virtual Machine (DVM) [20] both im-
plement DSU support for Java within the VM, providing
a programming interface similar to JVOLVE. However,
their implementations impose overheads during normal

execution, whereas JVOLVE has zero overhead and a
richer evaluation.

Both prior VMs update lazily. For example, JDrums
traps object pointer dereferences to check whether a new
version of the object’s class is available. If so, the VM
runs the object transformer function(s) to upgrade the ob-
ject. By contrast JVOLVE performs updates eagerly, as
part of a full GC. (The DVM performs updates lazily as
JDrums, but does some eager conversion incrementally.)
Lazy updating has the advantage that the pause due to
an update can be amortized over subsequent execution.
The main drawback is that the overhead persists during
normal execution even though updates are relatively rare.

Both JDrums and the DVM are in the Sun JDK 1.2
VM, which uses an extra level of indirection (the handle
space) to support heap compaction. Indirection conve-
niently supports object updates, but adds extra overhead.
The DVM only works with the interpreter. Relative to
the stock bytecode interpreter, which is already slow, the
extra traps result in roughly 10% overhead. By contrast,
JVOLVE imposes no overhead once an update is com-
plete. Neither JDrums nor the DVM has been evaluated
on updates derived from realistic applications—only a
handful of toy updates have been considered.

More recently, Nicoara et al. developed PROSE, a sys-
tem for run-time code patching with an API in the style
of aspect-oriented programming [24]. PROSE aims to
support short-term, run-time patches to code for logging,
introspection, or performance adaptation, rather than in
support of run-time software evolution. As such, PROSE
only supports updates to method bodies, with no support
for signature or state changes. This flexibility is simi-
lar to the EnC implementations discussed above; indeed,
PROSE builds on the HotSwap method replacement sup-
port in its Sun JDK implementation [16].

Gilmore et al. [13] propose DSU support for modules
in ML programs. They use a programming interface that
is similar to ours, but more restrictive. They also pro-

pose using copying GC to perform the update, as we do.
They formalized an abstract machine for implementing
upgrades using a copying garbage collector but did not
implement it.

Boyapati et al. [5] support lazily upgrading objects
in a persistent object store (POS). Though in a differ-
ent domain, their programming interface is quite similar
to JVOLVE and the other Java-based systems: program-
mers provide object transformer functions for each class
whose signature has changed. Their object transformers
are somewhat different than ours. Their system allows
the object transformer of some class A to access the state
of old objects pointed to by A’s fields, assuming these
objects are fully encapsulated; i.e., they are only reach-
able through A. Encapsulation is ensured via extensions
to the type system. By contrast, our transformers may
dereference fields via old objects, but if these fields point
to objects whose classes have been updated, they will see
the new versions (a semantics which is more typical). We
plan to further explore the costs/benefits of transformer
function semantics in future work.

Approaches using a standard VM. To avoid chang-
ing the VM, researchers have developed special-purpose
classloaders, compiler support, or both for DSU. The
main drawbacks of these approaches are typically less
flexibility and greater overhead. Eisenbach and Barr [3]
and Milazzo et al. [21] use custom classloaders to
allow binary-compatible changes and component-level
changes, respectively. The former targets libraries and
the latter is part of the design of a special-purpose soft-
ware architecture.

Orso et al. [26] support DSU via source-to-source
translation by introducing what amounts to a proxy class
that indirects accesses to objects that could change. This
approach requires updated classes to export the same
public interface—no new non-private methods or fields
can be added to an updated class. A more general lim-
itation of non VM-based approaches is that they are not
transparent—they make changes to the class hierarchy,
insert or rename classes, etc. This approach makes it
essentially impossible to be robust in the face of code
using reflection or native methods. Moreover, the extra
runtime support imposes both time and space overheads.
By contrast, modifying the VM is much simpler, given
its existing services. Our VM approach has no problems
with native methods (since these are updated as well) or
reflection, and it can be much more expressive, e.g., sup-
porting signature changes.

6.3 Dynamic Software Updating for C/C++

Recently several substantial systems for dynamically up-
dating C and C++ programs have emerged that target

server applications [15, 2, 23, 7] and operating systems
components [30, 4, 6, 18, 19]. These systems are more
mature than most of the systems described above, in
some cases with substantial updating experience. The
flexibility afforded by JVOLVE is comparable or superior
to most of these systems. Only Ginseng [23] imposes
fewer restrictions on update timing than JVOLVE, but it
(like most of the above systems) cannot update multi-
threaded programs and need consider language features
for object orientation.

The lack of a VM is a significant disadvantage in the
implementation of DSU for C and C++. For example,
because a VM-based JIT can compile and recompile re-
placement classes, it can update them with no persistent
overhead. By contrast, C and C++ implementations must
use either statically-inserted indirections [15, 23, 30, 4]
or dynamically-inserted trampolines to redirect function
calls [2, 6, 7, 17]. Both cases impose persistent over-
head on normal execution in and of themselves, and can
inhibit optimization. Likewise, because these systems
lack a garbage collector, they either do not update ob-
ject instances at all [17], update them lazily [23, 7] or
perform extra allocation and allocator bookkeeping to be
able to locate the objects at update-time [4]. Both of the
latter two approaches impose time and space overheads
on normal execution, whereas JVOLVE’s VM-based ap-
proach has no a priori overheads. Finally, the fact that C
and C++ are not type-safe greatly complicates efforts to
ensure that updates behave correctly.

7 Conclusions

This paper has presented JVOLVE, a Java virtual machine
with support for dynamic software updating. JVOLVE
is the most full-featured, best-performing implementa-
tion of DSU for Java published to date. To show that
it can support changes that occur in practice, we suc-
cessfully applied updates that correspond to most of a
year-and-a-half’s worth of releases for three programs,
Jetty webserver, JavaEmailServer, and CrossFTP server.
JVOLVE imposes no overhead during a program’s normal
execution—the only overhead occurs at the time of the
update. JVOLVE’s DSU support builds naturally on top of
existing VM services, including dynamic class loading,
JIT compilation, thread synchronization, and garbage
collection. Our results demonstrate that dynamic soft-
ware updating support can be naturally incorporated into
modern VMs, and that doing so has the potential to sig-
nificantly improve software availability.

References

[1] B. Alpern, D. Attanasio, J J. Barton, A. Cocchi, S. Flynn
Hummel, D. Lieber, M. Mergen, T. Ngo, J Shepherd, and

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

(13]

[14]

(15]

[16]

(171

(18]

S. Smith. Implementing Jalapefio in Java. In OOPSLA,
Denver, CO, November 1999.

Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew
Schultz. OPUS: Online patches and updates for security.
In Proc. USENIX Security, 2005.

Miles Barr and Susan Eisenbach. Safe upgrading without
restarting. In Proc. ICSM, 2003.

A.Baumann, J. Appavoo, D. Da Silva, J. Kerr, O. Krieger,
and R. W. Wisniewski. Providing dynamic update in an
operating system. In Proc. USENIX ATC, 2005.

Chandrasekhar Boyapati, Barbara Liskov, Liuba Shrira,
Chuang-Hue Moh, and Steven Richman. Lazy modular
upgrades in persistent object stores. In OOPSLA, 2003.

Haibo Chen, Rong Chen, Fengzhe Zhang, Binyu Zang,
and Pen-Chung Yew. Live updating operating systems
using virtualization. In Proc. VEE, June 2006.

Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-
Chung Yew. POLUS: A POwerful Live Updating System.
In Proc. ICSE, 2007.

P. Cheng, R. Harper, and P. Lee. Generational stack col-
lection and profile-driven pretenuring. In Proc. PLDI,
pages 162—-173, Montreal, Canada, June 1998.

M. Dmitriev. Towards flexible and safe technology for
runtime evolution of java language applications. In
Proceedings of the Workshop on Engineering Complex
Object-Oriented Systems for Evolution, in association
with OOPSLA 2001, October 2001.

Marc Eaddy and Steven Feiner. Multi-language edit-and-
continue for the masses. Technical Report CUCS-015-05,
Columbia University Department of Computer Science,
April 2005.

Edit and continue. http://msdn2.microsoft.com/
en-us/library/bcew296c. aspx.

M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

Stephen Gilmore, Dilsun Kirli, and Chris Walton. Dy-
namic ML without dynamic types. Technical Re-
port ECS-LFCS-97-378, LFCS, University of Edinburgh,
1997.

Michael Hicks and Scott M. Nettles. Dynamic software
updating. Trans. Prog. Lang. Syst., 27(6):1049-1096,
November 2005.

G. Hjélmtysson and R. Gray. Dynamic C++ classes, a
lightweight mechanism to update code in a running pro-
gram. In Proc. USENIX ATC, 1998.

Java platform debugger architecture. This supports class
replacement. See http://java.sun.com/j2se/1.4.
2/docs/guide/jpda/.

Ksplice: Rebootless Linux kernel security updates, 2008.
http://web.mit.edu/ksplice/.

Yueh-Feng Lee and Ruei-Chuan Chang. Hotswapping
linux kernel modules. J. Syst. Softw., 79(2):163-175,
2006.

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

Kristis Makris and Kyung Dong Ryu. Dynamic and adap-
tive updates of non-quiescent subsystems in commodity
operating system kernels. In Proc. EuroSys, March 2007.

Scott Malabarba, Raju Pandey, Jeff Gragg, Earl Barr, and
J. Fritz Barnes. Runtime support for type-safe dynamic
java classes. In Proc. ECOOP, 2000.

Marco Milazzo, Giuseppe Pappalardo, Emiliano Tramon-
tana, and Giuseppe Ursino. Handling run-time updates in
distributed applications. In Proc. SAC, 2005.

Iulian Neamtiu, Jeffrey S. Foster, and Michael Hicks. Un-
derstanding source code evolution using abstract syntax
tree matching. In Proc. International Workshop on Min-
ing Software Repositories (MSR), pages 1-5, May 2005.

Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and
Manuel Oriol. Practical dynamic software updating for
C. In Proc. PLDI, pages 72-83, 2006.

Angela Nicoara, Gustavo Alonso, and Timothy Roscoe.
Controlled, systematic, and efficient code replacement for
running Java programs. In Proceedings of the ACM Eu-
roSys 2008 Conference (EuroSys 2008), April 2008.

D. Oppenheimer, A. Brown, J. Beck, D. Hettena,
J. Kuroda, N. Treuhaft, D. A. Patterson, and K. Yelick.
Roc-1: Hardware support for recovery-oriented comput-
ing. IEEE Trans. Comput., 51(2):100-107, 2002.

Alessandro Orso, Anup Rao, and Mary Jean Harrold. A
technique for dynamic updating of Java software. In Proc.
ICSM, 2002.

Patch the kernel without reboots. http:
//tech.slashdot.org/article.pl?sid=08/04/
24/1334234&from=rss, April 2008. Consists of a lively
technical debate about the benefits and drawbacks of
in-place dynamic updates vs. ones enabled by redundant
hardware.

Tobias Ritzau and Jesper Andersson. Dynamic deploy-
ment of Java applications. In Java for Embedded Systems
Workshop, London, May 2000.

D. Scott. Assessing the Costs of Application Downtime.
Gartner Group, 1998.

C. Soules, J. Appavoo, K. Hui, D. Da Silva, G. Ganger,
O. Krieger, M. Stumm, R. Wisniewski, M. Auslander,
M. Ostrowski, B. Rosenburg, and J. Xenidis. System sup-
port for online reconfiguration. In Proc. USENIX ATC,
June 2003.

Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter
Sewell, and Iulian Neamtiu. Mutatis Mutandis: Safe
and flexible dynamic software updating (full version).
TOPLAS, 29(4):22, August 2007.

The Jikes RVM Core Team. VM performance com-
parisons, 2007. http://jikesrvm.anu.edu.au/
“dacapo/index.php?category=release.

Benjamin Zorn. Personal communication, based on expe-
rience with Microsoft Windows customers, August 2005.

