
A Software Architecture for Mixed-Language Debuggers

Byeongcheol Lee
UT Austin

bclee@cs.utexas.edu

Martin Hirzel
IBM Hawthorne
hirzel@us.ibm.com

Robert Grimm
New York University

rgrimm@cs.nyu.edu

Kathryn S. McKinley
UT Austin

mckinley@cs.utexas.edu

Abstract

Source-level debuggers improve productivity by helping
developers control and inspect program execution. Al-
though many programs use multiple languages, build-
ing mixed-language debuggers remains a challenge and
debugging mixed-language programs is at best painful.
This paper introduces Lamp, a software architecture
for building mixed-language debuggers. Lamp defines
a debugger agent and a uniform interface to single-
language component debuggers with standard features.
The Lamp agent orchestrates execution and single-
language component debuggers. To demonstrate the
architecture, we implement Blink, a debugger for Java
and C programs. Blink is portable: it supports multi-
ple operating systems (Windows and Linux), multiple
JVMs (Sun and IBM), and multiple C compilers (GNU
and Microsoft). Blink is scalable: its new implemen-
tation effort scales proportionally to its new features,
adding 7 thousand lines of code to 80 thousand for jdb

and a million for gdb. Blink is efficient: debugging
is as fast as with jdb. These results demonstrate that
Lamp is a practical architecture for developing mixed-
language debuggers that can greatly ease developing cor-
rect mixed-language software.

1 Introduction

Programmers spend a lot of their time debugging.
Debuggers let users examine state and provide fine-
grained control over an executing application [9]. Al-
though many applications are written in multiple lan-
guages, debugger support for them remains limited.
For example, Java programs make many calls to and
from native C code, as shown in Table 1. Native
code gives Java access to platform specific function-
ality, legacy libraries, and low-level efficient imple-
mentations [6]. However debugging them is currently
painful [12, 13]. For instance, if you use just jdb, you
can not set a breakpoint in your C code. If you man-
ually attach both jdb and gdb, then you must have

SPECjvm98 Java C →
benchmark → C Java

compress 159 873

db 317 3,939

jack 83 383

jess 300 1,774

mtrt 25,853 53,165

javac 1,828 2,808

mpegaudio 17 144

DaCapo Java C →
benchmark → C Java

antlr 19,378 37,782

bloat 228,731 456,564

eclipse 280,959 401,213

fop 11,465 22,566

hsqldb 49 549

jython 361 1,638

luindex 46,537 81,087

lusearch 160,768 1,342

pmd 913 10,420

xalan 25,528 45,961

Table 1. Dynamic language transitions with
JNI, using Jikes RVM and the GNU classpath
libraries. Sun’s and IBM’s JVM and libraries
yield similar results.

the foresight to set all C breakpoints when stopped in
C, and vice versa for Java. Neither debugger can in-
spect the state of other’s runtime systems. Worse yet,
if stopped in C, gdb cannot inspect the Java stack to
tell you where you came from.

To develop correct mixed-language applications,
programmers need a debugger that understands and
controls the entire application, supports specification
of breakpoints regardless of the current breakpoint lan-
guage, provides fine-grained execution control when
crossing between language barriers, and inspects the
state of both languages at a single breakpoint. Build-
ing a mixed language debugger is difficult because lan-
guages may have different execution modes. For exam-
ple, Java runs in a managed runtime with just-in-time
compilation and garbage collection, while C is gener-
ally unmanaged and compiled ahead of time. Prior
mixed-language debuggers such as Sun Studio dbx [11],
the .NET debugger [10], and XDI [8] extend a single
execution-mode debugger.

This paper presents Lamp, a new software archi-
tecture for composing debuggers to provide implemen-
tation scalability and portability. Lamp defines (i) a
standard interface to component single-language de-
buggers and (ii) a debugger agent to act on its be-

1

half in the debuggee process. Lamp requires a well-
defined FFI (foreign function interface), such as JNI
(the Java native interface), to be able to interpose in
language transitions. Interposition, together with de-
bugger context switching, are the basic functionality on
which Lamp builds to provide mixed-mode debugging.

As proof of concept, we implement Blink, a debug-
ger composed of Java and C debuggers. Blink’s im-
plementation scales with its new functionality. It adds
only 7,000 lines of code to the single-language debug-
gers (e.g., 80K for jdb and 1,000K for gdb). Blink
supports multiple operating systems (Windows and
Linux) and composes multiple debuggers. We show
that Blink is portable by demonstrating it with Sun
and IBM JVMs, and gdb and Microsoft cdb C debug-
gers. As far as we know, Blink supports more platforms
than any other mixed-mode debugger. We show that
Blink is functional on all supported platforms with a
range of feature tests, such as stepping across language
boundaries, context and data examination, and mixed-
language expression evaluation. We measure Blink’s
performance and show it has negligible overhead. Blink
is more portable than other approaches because it can
use platform-specific debuggers, rather than extending
a single debugger. These demonstrations show that
composition is a practical approach for designing de-
buggers, which can in turn ease development of correct
mixed-language software.

2 Related Work
The closest tools to Blink are Sun Studio dbx and
the .NET debugger, which are proprietary commercial
mixed-mode debuggers that coordinate managed (Java
or C#) and unmanaged (C/C++) code in the same
system. Unfortunately, neither has published their ap-
proach; we summarize based on their user manuals and
blogs [10, 11]. Both debuggers are restricted to their
respective vendor’s operating systems and language im-
plementations. Blink is more portable, running on di-
verse operating systems (Windows and Linux) and lan-
guage implementations (Sun and IBM Java VMs, and
GNU and Microsoft C compilers). We believe both
Sun Studio dbx and the .NET debugger started out as
unmanaged debuggers that were then extended with a
managed mode, while our Lamp architecture composes
managed and unmanaged debuggers without modifying
them, and Blink proves the concept.

The XDI research debugger augments the JVM’s
debug interface to accommodate native debugging of
mixed Java and C programs [8]. It is less portable than
Blink because it requires JVM modifications not avail-
able in standard JVMs. Other efforts rely on orches-
trating separate debuggers, but do not provide full sup-

port for debugging mixed languages. White shows how
to manually orchestrate Java and C debuggers [12, 13],
and Chauvin partially automates this process [3]. How-
ever, both of these approaches limit the user to a sin-
gle debugger context, e.g., the user cannot single-step
across language transitions or examine state in one lan-
guage when at a breakpoint in another. Our approach
provides full-featured mixed-language debugging, e.g.,
stepping, state examination, and setting breakpoints,
regardless of the current language context. For exam-
ple, Lamp supports evaluation of mixed-language ex-
pressions, whereas none of the prior commercial or re-
search systems can respond to mixed-language queries.

The GNU compiler for Java, gcj, indirectly sup-
ports mixed-language debugging by precompiling both
Java and C code into native executables [2]. But most
Java programs are developed on JVMs rather than gcj,
and this approach is less portable than Blink.

Reentrancy. The Lamp architecture uses an agent,
which executes code on behalf of the debugger in the
user’s process. Like other agent-based debuggers, this
architecture is vulnerable to reentrancy problems [9].
For example, the user may set a breakpoint in a C li-
brary that the application and the JVM share. The
user expects the breakpoint to be reached through
a normal JNI call, but this breakpoint may also be
reached by code implementing JVM services. For ex-
ample, IBM’s J9 shares some C libraries with applica-
tions. It is unsafe to evaluate user expressions during
JVM services, since expressions may call back to Java
where the JVM may not expect Java code. For exam-
ple, malloc() may be triggered by object allocation
and the object will be in an inconsistent state. To de-
tect this case, the agent can keep state about language
transitions to ensure that the program reaches each
breakpoint through the foreign function interface and
only break in this case. We leave checking for this con-
dition to future work. Other agent-based mixed-mode
debuggers face the same difficulty [3, 8, 13], and it is a
hotly debated topic [10].

3 Lamp Software Architecture

This section describes debugging requirements, mixed-
language debugging challenges, and our novel software
architecture for composing debuggers.

Standard interactive debugger features. The
goal of debugging is to find and correct a defect (erro-
neous code) that causes an infection (erroneous data)
that spreads and leads to a failure (erroneous out-
put) [14]. Rosenberg identifies the following essential
features for tool support in this quest [9]:

2

Execution control: Startup/teardown, breakpoints,
and single stepping, e.g., run, break, step,
continue, exit.

Context management: Source code and call stack
inspection, e.g., list, backtrace.

Data inspection: Variable viewing and expression
evaluation, e.g., print, eval.

PingPong.java

1. class PingPong {

2. static { System.loadLibrary("PingPong"); }

3. public static void main(String[] args) {

4. jPing(3);

5. }

6. static int jPing(int i) {

7. if (i > 0)

8. cPong(i - 1);

9. return i;

10. }

11. static native int cPong(int i);

12. }

PingPong.c

13. #include <jni.h>

14. JNIEXPORT jint JNICALL Java_PingPong_cPong(

15. JNIEnv* env, jclass cls, jint i

16.) {

17. if (i > 0) {

18. jmethodID mid = (*env)->GetStaticMethodID(

env, cls, "jPing", "(I)I");

19. (*env)->CallStaticIntMethod(

env, cls, mid, i - 1);

20. }

21. return i;

22. }

Figure 1. JNI mutual recursion example.

Mixed-language debugging challenges. Figure 1
shows an example of a mixed-language program. It
mixes Java and C using JNI, the Java native in-
terface [6]. Java calls C (Line 8) by calling an
empty method (Line 11) implemented by a C func-
tion (Line 14). C calls Java (Line 19) by using reflec-
tion on a JNIEnv* pointer. Debugging mixed-language
programs is painful because the single-language debug-
gers do not provide standard features across different
languages. For instance, jdb can not set a C break-
point, and gdb can not set a Java breakpoint. To
move the program execution from a Java breakpoint
to a C breakpoint, the user has to rerun the debug-
ging session, which is at best tedious if the program
is slow and at worst almost useless if the program is
non-deterministic.

gdb/cdb
Driver

Controller

jdb Driver

jdb gdb/cdb

Agent

Java Code C Code

Mixed-Language Debugger

Mixed-Language Debuggee

FFI

Figure 2. Lamp software architecture.

Lamp architecture and requirements. Lamp
composes single-language debuggers and introduces
an agent to coordinate them. Figure 2 illustrates
this structure. The single-language debuggers sup-
port standard features such as breakpoints and expres-
sion evaluation for their language, and Lamp builds
on those to provide mixed-language debugging. We
specify a standard interface to each feature that the
component debuggers should provide.

In software tools composition, scalability means that
the amount of code needed for an extension is propor-
tional to the functionality added [7]. Lamp is scalable
because it reuses existing functionality from component
debuggers and requires new code only for new function-
ality. This scalability pays off as portability : if the com-
ponent debuggers are portable, then the composed de-
bugger only requires moderate additional porting effort
at language transitions. Likewise, Lamp’s scalability
pays off as accuracy (debugging true to source seman-
tics despite of compiler optimizations [9, 15]): again,
the difficult accuracy challenges are taken care of by
the component debuggers.

Lamp only relies on component debuggers to control
their own language; they do not need to understand
any of the other languages’ semantics or runtime envi-
ronment. To manage this isolation, the Lamp agent re-
quires that the interface between the languages is well-
defined enough to interpose on language transitions.
The agent manages the component debuggers and ex-
ecution. It must keep track of the current language
context and the mixed-language calling context. To
coordinate execution, context management, and data
inspection at run time, the agent must provide:

3

Language transition interposition: It must inter-
cept transitions between languages in the program
to perform actions on behalf of the debugger.

Debugger context switching: It must transfer con-
trol between the single-language debuggers, and
between them and the program.

Table 2 correlates the agent requirements with the de-
bugging features they support.

Agent requirement Interactive debugger feature
Context Execution Data

management control inspection

Language transition detection X X
Debugger context switching X X X

Table 2. Agent requirements vs. features.

Language transition interposition. In order to
maintain a fully accurate stack at every breakpoint and
to remain in control when single stepping reaches a lan-
guage boundary, Lamp interposes on all language tran-
sitions, which requires a well defined foreign function
interface (FFI). The concrete interposition implemen-
tation depends on the particular FFI, and Section 4
describes our implementation for the Java Native In-
terface (JNI).

Debugger context switching. A key challenge for
mixed-language debugging is to control execution or
examine data in one language while stopped in another.
Assuming Java and C, the possible control states are:
(i) in Java code, (ii) in the Java debugger, (iii) in C
code, and (iv) in the C debugger. If the Java code
hits a break point, control goes to the Java debugger.
Without an agent, there is no way for the user to, for
example, set a breakpoint in C code because the C
debugger is dormant and cannot accept requests.

Debugger context switching transfers control be-
tween the controller, the component debuggers, and
the application, in order to execute user commands
that can not be satisfied in the active language. The
example in Figure 3 illustrates the difficulty and our so-
lution. Each vertical line in Figure 3 is a process, with
the currently active process marked by a box overlay-
ing the line. Horizontal arrows show control transfers
between processes. From top to bottom, the applica-
tion starts out executing Java code and hits a Java
breakpoint, which activates jdb. Now, suppose the
user requests a gdb debug action. Without giving con-
trol to gdb, gdb cannot accept any user input. Blink
initiates a debugger context switch to gdb by using the
jdb expression evaluation feature to call the debugger

Java Codejdb C Code gdb/cdb

ret2j

j2c

cont

cbreak

jbreak

Blink Debugger Agent

Application

JDB

GDB/CDB in JDB

JDB

Application

Control
State

Figure 3. Debugger context switching exam-
ple, using j2c helper function to switch from
jdb to gdb/cdb. Blink also has a c2j helper
function for switching in the other direction.

agent method j2c. The method j2c is a Java method
that uses JNI to call C, and has a breakpoint in the C
part of the code. When execution hits the C break-
point, gdb is activated, and can perform the debug
action requested by the user. When complete, gdb’s
continue returns from the C code and Java method,
at which point jdb wakes up again, since the expression
evaluation has completed. The user can either request
additional debugging actions in Java or C, or resume
normal application execution with continue.

Mixed-language expression evaluation. Some
debuggers support a REPL (read-eval-print loop),
which reads a language expression from the user, eval-
uates it with respect to the current program state,
and prints the result. Lamp generalizes this feature
by allowing a mixed-language expression, which nests
subexpressions from multiple languages with a lan-
guage toggle operator borrowed from Jeannie [5]. We
are not aware of prior mixed-language debuggers sup-
porting this feature. Section 5 describes Lamp’s mixed-
language expression evaluation in detail.

4 Blink Mixed-mode Java/C Debugger

Blink is a portable mixed-mode Java/C debugger and
an instance of the Lamp architecture. This section
presents our experience with implementing Blink.

4.1 Blink Debugger Agent
The Blink debugger agent is a dynamically linked

library that includes both Java code and native code

4

executing in the same JVM that runs the user’s appli-
cation. The JVM loads and initializes the Blink agent
through the JVMTI [1]. Blink triggers debugger agent
actions through the expression evaluation features of
the component debuggers: as far as the component de-
buggers are concerned, these are simply method calls
in the application process. The rest of this section de-
scribes how the Blink debugger agent satisfies the two
Lamp requirements.
Debugger context switching. Blink supports
switching the context between its component debug-
gers as shown in Figure 3. The helper functions j2c
and c2j are part of the Blink debugger agent, and have
hardcoded internal breakpoints. The internal break-
points force the application to surrender control to the
respective debugger.
Language transition interposition. The Blink
agent must interpose on language transitions to report
full mixed-language stack traces and to remain in con-
trol when single-stepping between languages. Figure 4
shows the four possible transitions between Java and C.

Java C
j2c-return

j2c-call

c2j-return

c2j-call

Java Native Interface
in JVM

Figure 4. Transitions between Java and C.

j2c-call: Line 8 in Figure 1 is an example of a call
from Java to C. It looks just like an ordinary method
call, and in fact, with virtual methods, the same call
in the source code may sometimes call native meth-
ods and sometimes Java methods. But as it turns out,
Java virtual machines dispatch all native calls through
a central location in the JVM code. The Blink agent
discovers this location during start-up by reading a re-
turn address from any Java native method body. For
instance, the return address at Line 16 in Figure 1
points to the JVM’s internal transition from Java to
C. To interpose on all j2c-calls, the Blink agent sets a
breakpoint at this JVM-internal location.

j2c-return: A j2c-return is a return from a C
function to a Java method. It looks just like an ordi-
nary function return, and in fact, the same C function
can be called both from Java and C. Blink interposes
on this transition by setting a breakpoint in the most
recent Java frame on the stack, which it discovers us-
ing the JVM’s facility of walking all Java stack frames
even when they are interspersed with C frames.

c2j-call: All calls from C to Java go through a
JNI interface function, such as CallStaticIntMethod
in Figure 1 Line 19. To interpose on c2j-calls, Blink in-
struments these interface functions. All interface func-
tions reside in a struct of function pointers pointed to
by variable JNIEnv* env in Line 15 of Figure 1. Dur-
ing initialization, Blink replaces the function pointers
by pointers to wrappers. For example, the wrapper for
CallStaticIntMethod is:

int wrapperCallStaticIntMethod(args) {

before c2j call();

originalCallStaticIntMethod(args);

after j2c return();

}

c2j-return: The same wrappers that interpose
c2j-calls also interposes c2j-returns, as shown above.

4.2 Context Management
One basic debugger principle from Rosenberg’s book

is “context is the torch in the dark cave” [9]. Users,
unable to follow all the billions of instructions executed
by the program, feel like they are being taken blind-
folded into a dark cave in search of a bug. When the
program hits a breakpoint, the debugger must provide
context.

Source line number information. The most im-
portant question in debugging is “where am I”, and
debuggers answer it with a line number. The Java com-
pilers provide line number information to jdb, and the
C compiler provides line number information to gdb or
cdb. Blink does not need to add any additional func-
tionality to handle the mixed-language case.

Calling context backtrace. While “where am I” is
the most important question, “how did I get here” is
a close second. Debuggers answer this question with
a calling context backtrace, which shows the stack of
function calls leading up to the current location. The
JNI code in Figure 1 is an example of mixed-language
calls that produce a mixed-language stack. In the be-
ginning, the main method at Line 4 calls the jPing
method with argument 3, yielding the following stack:

main:4→ jPing(3):7

Since i = 3 > 0, control reaches Line 8, where the Java
method jPing calls a native method cPong defined in
C code as function Java_PingPong_cPong:

main:4→ jPing(3):8→ cPong(2):17

The C function cPong calls back up into Java
method jPing by first obtaining its method ID in

5

Line 18, then using the method ID in the call to
CallStaticIntMethod in Line 19:

main:4→ jPing(3):8→ cPong(2):19→ jPing(1):7

Finally, after one more call from jPing to cPong, the
mixed-language mutual recursion comes to an end, be-
cause it reaches the base case where i = 0:

main:4→ jPing(3):8→ cPong(2):19

→ jPing(1):8→ cPong(0):17

At this point, the stack contains multiple and alter-
nating frames from each language. Unfortunately, the
single-language debuggers only know about a part of
the stack each, because each language implementation
uses its own calling conventions. The Java debugger
shows all Java fragments, with gaps for C parts of the
stack:

main:4→ jPing(3):8→ ?(C)→ jPing(1):8→ ?(C)

The C debugger has even less information. It only
shows the bottom-most C fragment, and knows nothing
about preceding Java or C frames:

?(Java/C)→ cPong(0):17

To recover the missing C stack frames, Blink needs to
seed partial C stack walks at the end of each C fragment
of the stack, in other words, at calls from C to Java. Us-
ing language transition interposition from Section 4.1,
Blink instruments j2c-calls to push the current frame
pointer and return address on a shadow stack, and in-
struments j2c-returns to pop the shadow stack. Later,
when the user requests a stack trace, Blink obtains
partial stack walks from the C debugger starting from
these frame pointers and return addresses. Discover-
ing the return address and frame pointer depends on
the calling conventions, and is thus nonportable. This
amounts to a couple of assembly instructions, which
we implemented and tested separately for each plat-
form. For the running example in Figure 1, the partial
C stack walks yield:

?(Java)→ cPong(2):19→ ?(Java)→ cPong(0):17

Interleaving the above with the Java stack yields:

main:4→ jPing(3):8→ cPong(2):19

→ jPing(1):8→ cPong(0):17

Blink thus recovers the full stack and reports it to the
user as needed. These implementation details will vary
for other languages and their debuggers.

4.3 Execution Control
If context is the torch in the dark cave, then execu-

tion control is the means by which the user can get from
point A to B in the cave when tracking down a bug.
The debugger controls execution by starting up, tear-
ing down, setting breakpoints, and stepping through
program statements in the application.

Start-up and tear-down. During start-up, the
Blink controller starts the program in the JVM and
attaches both jdb and either gdb or cdb. It does this
largely by automating White’s instructions [12], but
in addition, it loads and initializes the Blink debugger
agent. To load the agent, Blink uses JVMTI and the
-agentlib JVM command line argument. To initialize
the agent, Blink issues internal commands, such as for
identifying the breakpoint location for j2c-call transi-
tion interposition. After all processes are set up and
connected, but before the user program commences,
Blink puts the user in charge with a command prompt.
When the program terminates at the end of a debug-
ging session, Blink tears down jdb and gdb/cdb and
then exits.

Breakpoints. Breakpoints are the answer to the
question “how do I get to a point in program execu-
tion.” Users set breakpoints to inspect program state
at points they suspect may be erroneous. The debug-
ger’s job is to detect when the breakpoint is reached
and then transfer control to the user. One of the key
challenges for a mixed-language debugger is to set a
breakpoint when the location is in a language that is
not currently active. This functionality requires the
debugger to transfer control to the other language de-
bugger, set the breakpoint, and return control to the
current language debugger. Blink takes the breakpoint
request from the user, and checks if the request is for
Java or C. If the current language does not match
the breakpoint language, Blink switches the debugging
context to the target language. The breakpoint request
is redirected to the Java or C component debugger.

Single stepping. Once the application reaches a
breakpoint, the question is “what happens next”.
Users want to single step though the program, exam-
ining control flow and data values to find errors. Sin-
gle stepping advances the application execution to the
next dynamic source line. If the next line is a method
call, debuggers offer step into, or simply step, which
steps to the first line in the callee, and step over, or
next, which treats the entire call as one step, exe-
cuting the application until it reaches the return from

6

the method. The challenge for mixed-language single-
stepping is that while jdb can step through Java and
gdb or cdb can step through C, they lose control when
stepping into a call to the other language or returning
to a caller from the other language.

Blink avoids this problem as follows: it sets internal
breakpoints at language transitions, so if the current
component debugger loses control in a single-step, the
other component debugger immediately gains control,
and Blink remains in charge. Blink only enables the
breakpoints on transitions from the current language
to the other language. Furthermore, when the user
requests step-over as opposed to step-into, Blink only
enables return breakpoints as opposed to both call and
return breakpoints. Note that Blink does not make
any attempts to decode the current instruction, but
rather aggressively sets needed breakpoints just in case
the single-step causes a language transition. This ap-
proach greatly decreases debugger development effort,
since accurate Java single-stepping requires interpret-
ing the semantics of all byte codes, and accurate C
single-stepping requires platform-dependent disassem-
bly.

Once Blink enables the necessary internal break-
points, it implements single-stepping by issuing the cor-
responding command to jdb or gdb. There are three
possible outcomes:

• The component debugger’s single-step remains in
the same language. Blink performs no further ac-
tions.
• The component debugger’s single-step causes a

language transition, which an internal breakpoint
intercepts. Blink steps from the internal break-
point to the next line.
• An exceptional condition, such as a segmention

fault, occurs. Blink abandons single stepping.

In any case, Blink declares the single-step to be com-
plete and disables all internal breakpoints, as usual for
breakpoint algorithms [9].

4.4 Data Inspection

Once the user brought the execution to an interest-
ing point, the main question becomes “is the current
state correct or infected.” This question is hard to
answer automatically, so data inspection answers the
simpler question “what is the current state.” Blink
delegates the inspection of application variables, in-
cluding locals, parameters, statics, and fields, to the
component debugger for the current language, which
provides the most local origin for a variable. If, how-
ever, the first component debugger does not recognize

CompoundData.java

1. import java.util.Vector;

2. public class CompoundData {

...

15. public static native void parse(

int size, double[] doubles, Vector strings);

16. }

CompoundData.c

...

20. JNIEXPORT void JNICALL Java_CompoundData_parse (

JNIEnv *env, jclass cls, jint size,

jdoubleArray doubles, jobject strings

) {

...

Figure 5. JNI compound data inspection ex-
ample.

the variable, Blink tries the other component debugger.
Blink also provides more advanced data inspection fea-
tures described in Section 5.

5 Mixed-language Expressions
The more powerful a debugger’s data inspection fea-
tures, the easier it is for the user to determine whether
they are on the right track to a bug. For example, gdb
provides expression evaluation with a read-eval-print
loop (REPL). An interactive interpreter evaluates ar-
bitrary source language expressions based on the cur-
rent application state. While implementing a language
interpreter requires a significant engineering effort, ex-
pression evaluation makes it easier to see at a glance
whether the current state is infected, especially if the
evaluator supports function calls and side effects. Be-
sides debugging, expression evaluation is also useful
for testing, program understanding, and rapid proto-
typing, as users of languages with REPLs will readily
attest. Finally, debuggers that offer expression evalua-
tion are easier to compose; for example, jdb, gdb, and
cdb are composable into Blink because their expression
evaluation permits debugger context switching.

Lamp advances the state of the art of expres-
sion evaluation by accepting mixed-language expres-
sions, which nest subexpressions from multiple lan-
guages using a language toggle operator. Blink im-
plements mixed-language expressions written in Jean-
nie [5], which toggles between Java and C using a back-
tick (‘). For example, in Figure 5 Line 20, the current
language is C, and variable strings is an opaque ref-
erence to a Java object. Single-language expression
evaluation could only print its address, which is not

7

helpful for debugging. But the mixed-language expres-
sion (‘strings).size() toggles to the Java language
and then invokes the Java method size, returning the
length of the Java vector, which is much more meaning-
ful for the user. Mixed-language expression evaluation
makes data inspection more convenient.

Lamp requires two basic features in the debugger
agent to support expression evaluation:

Convenience Variables: store the results of an ex-
pression evaluation in temporary variables.

Mixed-language data transfer: translates and
transfers data between the different languages.

5.1 Convenience variables
Application variables are named locations, in which

application code stores data during execution. Con-
venience variables are additional named locations pro-
vided by the debugger, which store data for later use
in a debugger session. Convenience variables behave
like variables in many scripting languages: they are
implicitly created upon first use, and have global scope
and dynamic types. Besides user-defined convenience
variables, debuggers can also have internal convenience
variables, for example, to hold intermediate results
during expression evaluation. In the mixed-language
case, the debugger must remember not only the val-
ues of convenience variables, but also their languages.
Since gdb already provides convenience variables (writ-
ten “$var”), Blink just reuses them for storing C val-
ues. Unfortunately, both jdb and cdb lack this feature.
Blink makes up for this deficiency by implementing its
own convenience variables in the debugger agent, using
a table that maps from names to values and languages.
The table is polymorphic to support dynamic typing.

5.2 Mixed-language data transfer
The Blink agent transfers data from a source lan-

guage to a target language by first storing it in an ar-
ray in the source language. It then uses a helper JNI
function to read from the array and returns the value
in the target language. One complication is that the
array and the retrieval function must have the correct
type, since the semantics of a value depend on its type
and language. For example, an opaque JNI reference in
C needs to be converted to a pointer in Java; a struct or
union in C, on the other hand, does not have a direct
correspondence in Java. Mixed-language data trans-
fer is the only case where Blink must discover enough
type information to treat the value appropriately. In
the case of C values, gdb provides exactly what Blink
needs: the whatis command finds the type of an ex-
pression without executing it, and in particular, with-
out causing any side effects or exceptions. In the case

of Java values, jdb lacks the necessary functionality, so
Blink emulates it using a simple work-around. Blink
just needs to know whether it is dealing with a prim-
itive value, such as a number, character, or boolean,
or with a reference to a Java object or array. To dis-
cover this information, Blink instructs jdb to evaluate
an expression that passes the value as a parameter to
a helper method accepting java.lang.Object. If the
call succeeds, the value is a reference. If the call has
the wrong type, jdb will refuse to execute it, and will
not cause any side effect. In this case, Blink catches
the error message and treats the value as a primitive.

5.3 Expression Evaluation
This section explains each step of Blink’s read-eval-

print loop.

Reading. As suggested by Rosenberg, the “read”
stage of Blink’s REPL reuses syntax analysis code from
a compiler [9]. But instead of just using the Java and C
grammars, it reuses the grammar from Jeannie [5]. The
Jeannie grammar is written in Rats!, a parser generator
that uses packrat parsing for expressiveness and per-
formance, and uses a module system to support scal-
able composition of parsers [4]. Jeannie’s grammar is
a composition of Java and C grammars, and Blink’s
expression grammar further augments it with user con-
venience variables, which look like identifiers starting
with a dollar sign ($).

=

x +

$y `

z

Java r-value

Java r-value

Java r-value

C r-value

Java r-value

Java l-value

Figure 6. Reading the expression x = $y +
‘z when the current language is Java.

Instead of annotating the abstract syntax tree
(AST) with types, Blink only annotates the AST with
two pieces of information: the language (Java or C) of
each node, and whether each node is an r-value (read-
only) or an l-value (written-to on the left-hand side of
an assignment). Figure 6 shows how Blink annotates
the AST for the expression “x = $y + ‘z”, assuming
that the current language is Java. Node x is an l-value,
since it is the left operand of the assignment =. Node z

8

is C-language because z’s parent is the language toggle
backtick ‘.

Blink uses the component debuggers for symbol res-
olution. As is usual in debuggers, application symbols
such as variable and function names are resolved rela-
tive to the current execution context. User convenience
variables, on the other hand, have global scope and do
not require context-sensitive lookup.

Evaluating. The interpreter visits the AST in
depth-first left-to-right post-order. It is important that
each node be executed exactly once and in the right
order, to ensure the semantics in the presence of side
effects, and to surprise users the least when an excep-
tional condition, such as a segmentation fault, cuts ex-
pression evaluation short.

=

x +

$y `

z

"99 bottles"

" bottles"

localRef$3

99

delayed

"99 bottles"

Figure 7. Evaluating the expression x = $y +
‘z when the current language is Java.

Figure 7 shows how Blink evaluates each AST node
for the example code “x = $y + ‘z”, assuming that
the convenience variable $y currently stores the num-
ber 99, and the C application variable z currently
stores an opaque JNI local reference localRef$3. In
this example, all leafs are variables, which Blink eval-
uates as described in Section 4.4. In general, leafs can
also be literal values, which Blink uses directly without
lookup. At inner nodes, Blink needs to perform evalu-
ation actions. For the language toggle operator ‘ Blink
performs a mixed-language data transfer as described
in Section 5.2. For Figure 7, Blink discovers that the
JNI reference localRef$3 on the C side refers to the
Java string " bottles" on the Java side. For other
operators, such as + and = in Figure 7, Blink falls back
on the REPL in the component debugger. Note that in
general, an inner node may be a call to a user function
and may thus execute arbitrary user code.

To evaluate an expression one AST node at a time,
Blink needs temporary storage for subexpression re-
sults. For r-values, Blink evaluates the node, then
stores the result in an internal convenience variable.

For l-values, Blink evaluates their children, but delays
their own evaluation. These l-values are evaluated later
as part of their parent, which is by definition an assign-
ment, such as = in Figure 7.

Printing. When expression evaluation reaches the
root of the tree, Blink prints the result. As recom-
mended by Rosenberg, Blink disables user breakpoints
for the duration of expression evaluation, because the
user would probably be confused and surprised when
the expression hits a breakpoint in a callee [9]. But
there may be other exceptional conditions during ex-
pression evaluation, such as a Java exception or a C
segmentation fault. In this case, Blink aborts the eval-
uation of the current expression, and the debug session
continues at the fault point instead. Whether expres-
sion evaluation terminates normally or aborts, Blink
always nulls out internal convenience variables for sub-
results, and re-enables all user breakpoints.

6 Results
We evaluate Blink’s scalability, functionality, portabil-
ity, and performance and report our result here.

6.1 Scalability
Blink’s implementation effort is scalable, because

new code implements new functionality and exist-
ing functionality is borrowed from the single-language
debuggers. To quantify this claim, we count non-
blank and non-comment SLOC (source lines of code).
Lines of code are an indirect metric for estimating the
amount of effort to develop and maintain a software
package.

IA32

Linux

Hotspot J9

cygwin Windows

PowerPC

JikesRVM

4,435
Controller

SLOC
+1,826
Agent
jdb driver
cdb driver

+ 6 1 6
cdb driver

Platforms

Figure 8. Scalable composition in Blink.

Figure 8 shows scalability of debugger composition
in Blink. The basic composition framework costs 4,435
SLOC, and we added 1,826 SLOC to support our ini-
tial configuration: Sun Hotspot JVM running on the
Linux/IA32 architecture. Once we paid this modest

9

1,826 SLOC, we did not need to implement any new
features as we expanded the supported platforms such
as IBM J9, cygwin, and Windows. We plan to add sup-
port for the Power PC architecture and for Jikes RVM
and expect to need additional effort to handle the
Power PC calling conventions.

For ideal scalable debugger composition, the graph
in Figure 8 should be flat, since we did not implement
any new features. However, there is a small additional
cost, and there are two reasons. First, our native agent
code contains small non-portable platform specific code
to deal with the native call stack. Second, cdb exposes
a different user interface than the richer gdb, and we
implemented an adaptation layer to uniformly support
either gdb on GNU platforms or cdb on Windows.

Debugger SLOC #Files

Blink 6,867 29
Controller (front-end) 4,435 21
Agent - java (back-end) 237 3
Agent - C (back-end) 682 2
jdb driver (back-end) 382 1
gdb driver (back-end) 515 1
cdb driver (back-end) 616 1

Java debugger - jdb 86,579 769
jdb (user-interface) 18,360 122
JDI (front-end) 16,983 256
JDWP Agent (back-end) 40,171 356
JVMTI (back-end) 11,065 35

C debugger - gdb 6.7.1 1,017,086 2,331
gdb 419,921 1,524
include 32,039 215
bfd 286,981 398
opcodes 278,128 194

Table 3. SLOC (source lines of code).

Table 3 shows the sizes of Blink, jdb, and gdb and
their components. The jdb counts are for the jdb
1.6 source code in demo/jpda/examples.jar of the
Sun JDK 1.6.0-b105. The JDI counts are for the JDI
implementation in the Eclipse JDT. The JDWP and
JVMTI counts are for corresponding subdirectories of
the Apache DRLVM. Blink uses just 6,867 SLOC to ef-
fectively compose two existing Java and C debuggers.
The SLOC of the existing debugger packages are 13 to
150 times larger than Blink’s.

6.2 Functionality and Portability
We developed a number of primitive tests that cover

the functionality of Blink. To demonstrate portability,
we performed each of these test in different operating
systems, JVMs, and with different C debuggers.

Context Management: This test sets two break-
points, at jPing (PingPong.java:7) and cPong
(PingPong.c:17) in Figure 1. During execution, the
application stops at each of these breakpoints twice,
and each time, the test uses the backtrace command.

Execution Control: This test first sets a breakpoint
at the main method of the mutual recursion example in
Figure 1. From there, the test repeatedly uses the step
command until the end of the program. This exercises
all cases of mixed-language stepping: both calls and
returns, from both Java and C to the other language.

Data Inspection: This test first sets a breakpoint in
a nested context of two example programs in the Blink
regression test suite1. When the application hits the
breakpoint, the test evaluates a variety of expressions,
covering primitive and compound data, pure expres-
sions and assignments, language transitions, and user
function calls.

Results: Currently, all functionality tests succeed for
the following configurations:{

Sun JVM
IBM JVM

}
+

{
Linux
Cygwin

}
+gdb

The “Cygwin” case is using Windows, but with the
GNU C compiler instead of the Microsoft C compiler.
We also tested Blink with Microsoft’s C compiler and
Microsoft’s C debugger:{

Sun JVM
IBM JVM

}
+Windows+cdb

In these configurations, context management and exe-
cution control are fully supported, but data inspection
is only partially supported, because cdb’s expression
evaluation features are less powerful than those of gdb.

6.3 Performance
To measure the performance impact of Blink, we

ran several large Java programs inside the debugger
and measured runtimes. In Figure 9, we normalize it
to the runtime with just jdb as a baseline, to cap-
ture any additional overheads that Blink might incur.
The experiments use the JVM and jdb from Sun’s
JDK 1.6.0 03-b05 and gdb version 6.6. The initial heap
size is 512MB, and the maximum heap size is 1GB. The
experiments use a Pentium D 3.2GHZ running Linux
2.6.20. Each benchmark iterated once. The results are

1We omit the programs here for space reason.; the interested
reader can find them in the open-source distribution of Blink, as
CompoundData.java/c and JeannieMain.jni.

10

the median of 25 trials, because the adaptive optimiz-
ing compiler and garbage collector added some varia-
tion to the runtime.

co
m

pr
es

s

je
ss

ra
yt

ra
ce db

ja
va

c

m
pe

ga
ud

io
n

m
tr

t

ja
ck

an
tlr

bl
oa

t

ch
ar

t

ec
lip

se fo
p

hs
ql

db

jy
th

on

lu
ni

nd
ex

lu
se

ar
ch

pm
d

xa
la

n

G
eo

M
ea

n

0.90

0.95

1.00

1.05

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Figure 9. Blink’s performance relative to jdb.

Figure 9 shows the results. Blink is 1% faster than
jdb on average in spite of incurring various overheads
(starting up and tearing down multiple single-language
debuggers; running multiple processes; and adding a
debugger agent inside the application, which overrides
all C→ Java transitions and adds two more indirec-
tions). The negligible overhead can be explained by
the fact that the compositional debuggers are mostly
inactive while the application runs at full speed. A
counter-intuitive result is that some benchmarks ap-
pear to speed up a little; we believe that this slight
anomaly is caused by locality effects or other inter-
actions in the complicated software stack. Even with
this performance anomaly, the results vary by only 9%
across all benchmarks.

7 Conclusions

Debugging is one of the most difficult tasks in software
development. It requires a knack for formulating the
right hypotheses about bugs, and it requires the disci-
pline to systematically verify or falsify hypotheses until
the cause of the bug is found [14]. The analogy of a
“dark cave” is apt, since debugging can be scary, and
without the right tools, it can be a bumpy and aimless
journey through twisted passages [9]. Single-language
developers have long had good debugging tools to help
them navigate the cave systematically. But mixed-
language developers have been left in the dark, because
it was difficult to write a good mixed-language debug-
ger. We propose and evaluate a new way to build
mixed-language debuggers more easily using scalable
composition [7]. We use our insights to develop Blink,
a debugger for Java and C. The open-source release of

Blink is available as part of the xtc package:

http://www.cs.nyu.edu/~rgrimm/xtc/

Blink is full-featured and portable across different
JVMs, operating systems, and C debuggers. Fur-
thermore, Blink includes an interpreter (read-eval-print
loop) for mixed-language expressions, thus providing
users with a powerful tool not just for debugging, but
also for testing, program understanding, and prototyp-
ing.

References

[1] JVM tool interface. java.sun.com/javase/6/docs/

technotes/guides/jvmti, June 2006.
[2] P. Bothner. Compiling Java with GCJ. http://www.

linuxjournal.com/article/4860, Jan. 2003.
[3] M. Chauvin, P. Ombredanne, and F. Granade.

Support seamless debugging between JDT and CDT.
http://wiki.eclipse.org/Support_seamless_

debugging_between_JDT_and_CDT, Google Summer
of Code project, 2007.

[4] R. Grimm. Better extensibility through modular syn-
tax. In Proc. 2006 PLDI, pages 38–51, June 2006.

[5] M. Hirzel and R. Grimm. Jeannie: Granting Java
native interface developers their wishes. In Proc. 2007
OOPSLA, pages 19–38, Oct. 2007.

[6] S. Liang. The Java Native Interface: Programmer’s
Guide and Specification. Addison-Wesley, June 1999.

[7] N. Nystrom, X. Qi, and A. C. Myers. J&: Nested
intersection for scalable software composition. In Proc.
2006 OOPSLA, pages 21–36, Oct. 2006.

[8] V. Providin and C. Elford. Debugging native methods
in Java applications. In EclipseCon User Conference,
Mar. 2007.

[9] J. B. Rosenberg. How Debuggers Work: Algorithms,
Data Structures, and Architectures. John Wiley &
Sons, 1996.

[10] M. Stall. Mike Stall’s .NET debugging blog. http:

//blogs.msdn.com/jmstall/default.aspx.
[11] Sun Microsystems. Debugging a Java applica-

tion with dbx. http://docs.sun.com/app/docs/doc/
819-5257/blamm?a=view, 2007.

[12] M. White. Debugging integrated Java and C/C++
code. http://www.ibm.com/developerworks/java/

library/j-jnidebug/index.html.
[13] M. White. Integrated Java technology and C debug-

ging using the Eclipse platform. In JavaOne Confer-
ence, Nov. 2006.

[14] A. Zeller. Why Programs Fail: A Guide to Systematic
Debugging. Morgan Kaufmann, Oct. 2005.

[15] P. Zellweger. Interactive source-level debugging. PhD
thesis, Xerox Parc Palo Alto Research Center, Tech-
nical Report CSL-84-5, 1984.

11

