
Inputs of Coma: Static Detection of Denial-of-Service Vulnerabilities
Richard Chang

The University of Texas at Austin

rchang@cs.utexas.edu

Guofei Jiang
NEC Laboratories America

gfj@nec-labs.com

Franjo Ivančić
NEC Laboratories America

ivancic@nec-labs.com

Sriram Sankaranarayanan
NEC Laboratories America

srirams@nec-labs.com

Vitaly Shmatikov
The University of Texas at Austin

shmat@cs.utexas.edu

Abstract
As networked systems grow in complexity, they are in-
creasingly vulnerable to denial-of-service (DoS) attacks
involving resource exhaustion. A single malicious in-
put of coma can trigger high-complexity behavior such
as deep recursion in a carelessly implemented server,
causing extraordinary consumption of CPU time or stack
space and making the server unavailable to legitimate
clients. These DoS attacks exploit the semantics of the
target application, are rarely associated with network
traffic anomalies, and are thus extremely difficult to de-
tect using conventional methods.

We present SAFER, a static analysis tool for detect-
ing potential DoS vulnerabilities in software systems
and identifying the root causes of resource-exhaustion
attacks before the software is deployed. Our tool com-
bines taint analysis with control dependency analysis to
detect high-complexity control structures whose execu-
tion can be triggered by untrusted network inputs.

When evaluated on real-world networked applica-
tions, SAFER discovered previously unknown DoS vul-
nerabilities in the Expat XML parser and the SQLite
library. Furthermore, it uncovered a new attack on a
previously patched version of the wu-ftpd server. This
demonstrates the importance of understanding and re-
pairing the root causes of DoS vulnerabilities rather than
simply blocking known malicious inputs.

1 Introduction
As networked software systems grow more complex,
they are increasingly vulnerable to remote attacks that
exploit unintended functionality and semantic imple-
mentation bugs. Denial of service is one of the most
serious threats. For example, a single malicious packet
containing an “input of death” [18, 4] can crash a target
server by exploiting a known buffer overflow bug.

This paper focuses on sophisticated denial-of-service
(DoS) attacks that deliberately cause resource exhaus-
tion in networked applications. Typically, the attacker
sends a single request or a small number of requests that
exploit the semantics of the target’s implementation to

trigger a computation that results in extraordinary con-
sumption of an internal system resource such as CPU
time or stack space. Because the malicious requests
make the target unavailable by causing it to freeze (or, in
the worst case, crash), we will call them inputs of coma.

Many popular networked systems have fallen vic-
tim to resource-exhaustion attacks, including web
servers [15], FTP servers [39], Samba [32], DNS proxy
servers [11], PHPMailer [29] and the Zend PHP en-
gine [45], XML parsers [21] (the “billion laughs” XML
attack also belongs to this class [14]), and, most recently,
the Red Hat directory server [31].

Detecting software defects that can be exploited to
cause denial of service is a challenging task. Unlike
flooding and distributed DoS attacks, which inundate the
target with a large number of requests, often originating
from an orchestrated network of compromised machines
(see the survey in [24]), inputs of coma are not associ-
ated with any network traffic anomalies and do not in-
volve sending a large number of requests to the server.
They can often be launched by a single attacker with a
single malicious packet.

Unlike server-crashing inputs of death, inputs of coma
do not rely on programming bugs that violate the seman-
tics of the programming language in which the server
is implemented. For example, buffer overflows violate
memory safety or even control-flow integrity. By con-
trast, a maliciously crafted input that induces an expo-
nential number (with respect to input size) of recursive
calls to a regular-expression parsing routine in an FTP
server (as is the case, for example, in the wu-ftpd vul-
nerability described below) does not violate any safety
or integrity property. In fact, the target program does
exactly what it was written to do; unfortunately, the im-
plementers did not realize that their code can be abused
to cause denial of service to legitimate clients.

The goal of this paper is to develop a principled soft-
ware analysis method that can detect DoS vulnerabili-
ties before they are exploited by inputs of coma. The
root causes of CPU, stack, and other internal-resource-
exhaustion vulnerabilities are often design flaws rather

than programming errors. This observation motivates
our approach. Our tool incorporates several resource-
specific analyses which detect high-complexity control
structures such as recursive calls and loops that poten-
tially depend on tainted network inputs and can thus be
exploited by a remote attacker to cause denial of service.

We emphasize the advantages of the static approach to
discovering potential DoS vulnerabilities. First, it helps
identify and fix vulnerabilities during development, be-
fore the software is deployed. Second, conventional de-
fenses against denial of service focus on network moni-
toring; adapting them to detect single-packet attacks that
exploit the target application’s semantics in a non-trivial
way is very difficult, if at all possible. Third, static de-
fenses can help avoid the unwinnable loop of system ad-
ministrators detecting and mitigating DoS attacks in real
time as they are mounted against production servers.

Our contributions. We present a novel static analy-
sis approach to detecting semantic vulnerabilities in net-
worked software which may be exploited to cause de-
nial of service due to resource exhaustion. We focus in
particular on CPU and stack exhaustion. Our approach
has been implemented in a tool called SAFER: Static
Analysis Framework for Exhaustion of Resources.

SAFER currently operates on C programs. We chose
C as the target language because of its popularity for
implementing networked applications and the fact that
there are known resource-exhaustion DoS vulnerabili-
ties in C applications. SAFER employs the CIL static
analysis framework [26] and incorporates several heuris-
tics for identifying loops and recursive calls whose exe-
cution is influenced by untrusted network inputs and for
estimating their complexity.

We evaluated SAFER on several large applications,
including FTP and web servers, an SQL library, and
an XML parser. In addition to detecting known prob-
lems, SAFER uncovered previously unknown denial-
of-service vulnerabilities in the Expat XML server and
SQLite library, as well as a new exploit against wu-ftpd.

The latter exploit, which we will use as our running
example, is particularly interesting. wu-ftpd was previ-
ously patched with a custom input sanitization to prevent
precisely this kind of attack. Our analysis shows that the
patch was insufficient, and a slightly more complex “in-
put of coma” can be used to stage a DoS attack even on
the patched version. This demonstrates the importance
of identifying the root causes of DoS vulnerabilities–that
is, the underlying software design flaws–rather than sim-
ply blocking specific attack inputs.

New wu-ftpd exploit. An example of a CPU exhaus-
tion vulnerability appears in Listing 1, which shows the
relevant portion of a pattern-matching function from the
wu-ftpd implementation of an FTP server (the line num-

bers are for illustrative purposes only and do not corre-
spond to the line numbers in the original code).

This pattern-matching code can be exploited by
sending an input to the wu-ftpd server that causes
amatch() to be called with arguments that induce
a large number of recursive calls. These calls cause
high CPU utilization and prevent other users from ac-
cessing the server. This attack, associated with the
“DIR *************...” input, was discovered
in 2005 [42]. It is worth noting that the initial vulnera-
bility report placed it in the wu fnmatch() function,
rather than its true location, the body of amatch().
The pattern-matching code was subsequently patched
with a custom input sanitization that collapses all con-
secutive wildcard symbols (*) prior to making the re-
cursive call [40].

We applied SAFER to the latest version of wu-ftpd
and, by analyzing its output, discovered a new attack
input, “DIR *{*{*{*{...}*}*}*}*”, that works
against the patched code. (Note that there can be no
legitimate reason for a remote user to input this regu-
lar expression, which is equivalent to the input “DIR
*”.) This attack was not known prior to our analysis.
Its denial-of-service effect is the same as in the original
attack: the process reaches 100% CPU utilization for up
to 10 minutes, making the server unavailable to legiti-
mate users.

This example demonstrates several important features
of semantic resource-exhaustion vulnerabilities, as well
as our approach to detecting them. First, they are sub-
tle. Focusing on specific attack inputs, such as the “DIR
*********...” pattern above, may lead to a misin-
terpretation of the underlying vulnerability and leave the
server exposed to denial-of-service attacks. This exam-
ple also illustrates the danger of custom input sanitiza-
tions. A manual security audit of the source code, con-
ducted without assistance from a tool like SAFER, might
conclude that the code is safe because the input has been
sanitized. Therefore, our analysis should be applied even
to known and patched vulnerabilities, in case the patch
proves insufficient.

Second, the attack does not involve a violation of
memory safety, nor execution of any control paths not
intended by the programmer. The pattern-matching
function is implemented “correctly” in the sense that it
correctly matches strings to regular expressions.

Third, other static analysis approaches (see Section 2)
are unlikely to detect this vulnerability. For example, in
the case of static taint dependency analyses, the set of
source and sink calls is fixed independently of the pro-
gram being analyzed. In the wu-ftpd exploit, however, a
tainted network input does not flow into a fixed sink lo-
cation; in fact, it is not obvious how to express the attack
in terms of source and sink locations. This vulnerability

is not easily expressed as a reachability property, either.
It is not the case that simply reaching the recursive call
leads to a DoS attack; the vulnerability is caused by the
fact that the number of recursive calls is a function of a
tainted value. More specifically, the number of recursive
calls is super-linear with respect to the input length.

1 static int amatch(char *s, char *p)
2 {
3 register int scc;
4 int ok, lc;
5 char *sgpathp;
6 struct stat stb;
7 int c, cc;
8 globbed = 1;
9 for (;;) {

10 scc = *s++ & TRIM;
11 switch (c = *p++) {
12 case ’{’:
13 return (execbrc(p - 1, s - 1));
14 case ’[’:
15 ok = 0;
16 lc = 077777;
17 while ((cc = *p++)) {
18 ...
19 case ’*’:
20 if (!*p)
21 return (1);
22 if (*p == ’/’) {
23 p++;
24 goto slash;
25 }
26 s--;
27 do {
28 /∗ e x p l o i t a b l e r e c u r s i v e c a l l ∗ /
29 if (amatch(s, p))
30 return (1);
31 } while (*s++);
32 return (0);
33 ...
34 }
35 }
36 }

Listing 1: wu-ftpd CPU Exhaustion Vulnerability

Structure of the paper. We discuss related work in Sec-
tion 2. In Section 3, we describe our approach and the
implementation of SAFER. Section 4 addresses the lim-
itations of SAFER. In Section 5, we discuss our experi-
mental evaluation and describe new DoS vulnerabilities
in real-world applications found by SAFER. Section 6
concludes and discusses future work.

2 Related Work
Defenses against DoS. Prior work on defenses against
denial of service focused primarily on network-level de-
tection of traffic anomalies and on filtering of malicious
traffic [3, 13, 17, 44, 37, 34, 5]. While potentially ef-
fective against distributed DoS attacks, these approaches
can only be activated once an attack has been mounted.

By contrast, we focus on a very different class of DoS
vulnerabilities (relatively small, malicious inputs that
cause resource exhaustion in server applications) and
aim to discover their root causes by analyzing the source

code of servers before they are deployed. While this
paper is not about flooding attacks, we believe that the
SAFER framework can be extended to detect semantic
flooding attacks which try to exhaust system resources
by exploiting the target program’s semantics via a se-
quence of well-crafted inputs (see Section 6).

Qie et al. developed a toolkit for making software
systems robust against DoS attacks that exhaust internal
system resources [30]. This work is highly complemen-
tary to ours. The toolkit allows programmers to anno-
tate program locations where resources are acquired and
released, and to declare when resources should be re-
claimed at runtime to recover from resource-exhaustion
attacks. The programmer must analyze the code by hand
in order to add the appropriate annotations. SAFER can
be used in tandem with such a toolkit and help guide pro-
grammers to potentially vulnerable code sections where
resource-management annotations may be needed.

Inputs of coma are related to algorithmic-complexity
DoS attacks that exhaust server resources by leveraging
the disparity between average-case and worst-case be-
havior of certain server algorithms [9]. For example, a
malicious sequence of inputs can be crafted to cause col-
lisions in hash functions used to insert objects into data
structures. Our approach is fundamentally different and
complementary. While [9] relies on manual analysis of
the hash-function implementation, SAFER automatically
performs structural analysis of the entire source code,
without assuming that the vulnerable behavior occurs in
a particular routine. SAFER can be used, for example, to
flag program locations where functions with potentially
vulnerable worst-case behavior are invoked on tainted
inputs; further manual analysis can then verify the pres-
ence of an algorithmic-complexity vulnerability.

Inputs of coma are much harder to detect at the net-
work level than algorithmic-complexity attacks. The at-
tacks against hash functions described in [9] require tens
of thousands of network inputs. With inputs of coma, a
single input is often sufficient for denial of service.

Formal methods have been used to identify computa-
tional asymmetries which can make security protocols
vulnerable to denial of service [23]. This analysis is
done at the level of protocol specifications, i.e., at a
much higher level of abstraction than the source-code-
level analysis in this paper. It is also unlikely to work
with client-server applications of the kind of we consider
(FTP, XML, HTTP) because the server, by design, per-
forms substantial computations in response to requests.
(The threshold beyond which an expensive computation
becomes a denial-of-service attack is, fundamentally, a
judgment call; there is a large “gray area” between obvi-
ously benign and obviously malicious inputs.)

By contrast, our approach performs detailed static
analysis of the source code of server applications in or-

der to detect high-complexity control structures which
may be exploited by malicious network inputs. This is a
very complex class of software vulnerabilities which do
not manifest themselves at the level of network-protocol
specifications. Furthermore, our analysis highlights the
vulnerable section(s) of the source code.

Security applications of static analysis. Our SAFER
tool utilizes many conventional static analysis tools
and techniques, including the CIL front end [26], taint
analysis, and dependency analysis. It is substantially
different, however, from the existing program-analysis
techniques, most of which are based on tainted data-
dependency analysis or reachability analysis [22, 4].

Program-analysis tools have been used with great suc-
cess to detect potential buffer overflows [36, 20], pro-
gram crashes [4], and unsafe memory dereferences [27,
43, 12]. These approaches tend to focus on violations
of the intended program semantics, such as memory
safety [10], control-flow integrity [8, 1], and so on. They
cannot be used to detect semantic resource-exhaustion
vulnerabilities, because the latter do not depend on such
violations. For example, DoS vulnerabilities cannot be
expressed as reachability properties.

Security applications of taint analysis. Taint analysis
techniques have been successfully used to detect many
classes of security vulnerabilities. Dynamic taint anal-
yses [7] monitor how untrusted inputs flow through the
program during execution, and can be used at runtime
to detect when a data value dependent on an untrusted
input flows into a potentially dangerous function call or
instruction without having been properly sanitized. This
can be used, for example, to detect injection attacks [28].
Dynamic taint analysis can also be used at the instruc-
tion level [35, 19, 8] to prevent control transfers based
on tainted data, such as those associated with format-
string and buffer-overflow attacks.

Static taint analyses approximate the set of program
variables that are data-dependent on untrusted inputs by
statically analyzing the program’s source code or com-
piled binary. Because of factors such as aliasing and
polymorphic types, these analyses are often imprecise.
Nevertheless, they have been successfully used to detect
security vulnerabilities, such as cross-site scripting and
SQL injection in web applications [22, 16, 38].

Taint analysis cannot be used directly to find DoS
vulnerabilities because inputs of coma are not charac-
terized by tainted values passed as arguments to certain
functions. Instead, SAFER employs static taint analy-
sis in a novel way by combining it with control depen-
dency analysis to compute the set of program locations
whose execution is influenced by tainted values (this
is fundamentally different from “control hijacking” at-
tacks, such as stack smashing and return-to-libc,

because all control transfers are already present in the
original code). In other words, we focus not on the use
of values that are data-dependent on tainted inputs, but
rather on the potential execution of basic blocks that are
control-dependent on tainted inputs.

3 Static Detection of DoS Vulnerabilities
To detect vulnerabilities that allow a remote attacker
to exhaust CPU or stack resources via inputs of coma,
our SAFER framework uses a novel combination of two
standard program analyses. First, taint analysis is used
to compute the set of program values that are data-
dependent on network inputs. Second, control depen-
dency analysis is used to compute the set of program
statements whose execution may affect whether or not a
given statement is executed. SAFER combines the results
of these analyses to compute the set of program state-
ments whose execution is control-dependent on tainted
values.

Control
dependency

analysis

Taint
analysis

Resource-specifc
analyses

Recursive call
analysis

Tainted-loop
analysis

Warning
analysis

Source
code Resource

exhaustion
warnings

Figure 1: SAFER Architecture

The architecture of SAFER appears in Figure 1.
Our analysis concentrates on loops and recursive calls
because they (especially recursive calls inside loops)
present the easiest targets for CPU- and stack-exhaustion
attacks on C programs. First, SAFER computes the set of
loops and recursive calls whose iterations and activation-
record counts are potentially influenced by network in-
puts. Then, it uses structural analyses to estimate the
complexity of recursion. The results are combined to
generate warnings for all potentially exploitable recur-
sive calls. Finally, the warnings are ranked by estimated
complexity and severity before they are presented to the
user.

We illustrate our framework by showing how each
component analyzes the amatch() function from List-
ing 1. SAFER includes both intraprocedural compo-
nents, which look at each function independently, and
interprocedural components, which analyze the entire
program, crossing function-call boundaries. Each com-
ponent of SAFER is implemented as a CIL analysis built
on top of several generic analyses provided by CIL [26].
In the following, many details of CIL’s intermediate rep-
resentation are simplified for expository clarity. For each
component of our framework, we give an overview, the
analysis algorithm used, and the result of analyzing the

amatch() function.

3.1 Program representation
An imperative program can be represented by a set of
procedures P∪Q, wherein P represents the user-defined
procedures, while Q represents calls to external proce-
dures. Furthermore, there is a distinguished entry pro-
cedure main ∈ P and a set of global variables G. Each
procedure P consists of an intraprocedural control-flow
graph (CFG) (N, E, a, L, retVal, entry, exit), wherein
N is a set of nodes corresponding to program locations,
E ⊆ N × N is a set of edges, a is a function label-
ing each edge in the CFG with an action, L is a set of
procedural formal and local variables, and retVal ∈ L
is a special return value for the procedure. Finally,
entry, exit ∈ N denote the procedure entry and exits, re-
spectively. Actions labeling edges include assignments
to program variables, conditional guards, calls to other
procedures in P ∪Q, and returns from the procedure.

To simplify the exposition, we assume that the pro-
grams are free from pointers and that procedures are
called by value. This is done for expository clarity only;
we do handle pointers in our implementation.

3.2 Control dependency analysis
SAFER employs a classic intraprocedural control de-
pendency analysis which is based on computing post-
dominators for each node in the control-flow graph of
a function [25]. Informally, a CFG node s1 is control-
dependent on s2 if whether s1 is executed depends on
the execution of conditional statements at s2. In our
amatch() example, the recursive call to amatch()
at Line 29 is control-dependent on the while statement
at Line 31 and the case statement at Line 19.

The result of control dependency analysis yields a
map CD : P ×N 7→ 2N , wherein CD(p, n) maps node
n in a procedure p of the program to a subset of nodes
in p, representing conditional statements on which n is
control-dependent. Control dependencies can be com-
puted in time linear in the size of the control-flow graph.
This analysis is run on every function in the program and
the resulting map can be queried for computing control
dependencies.

3.3 Taint analysis
A program variable x is tainted at a node n in a proce-
dure p under a particular context c if and only if there is
some execution that reaches n under the context c such
that the value of x is data-dependent on some user input.

The terms “data-dependent” and “user input” are at
the heart of this definition and will be clarified be-
low. Let I be the set of designated external procedures
through which untrusted inputs arrive to the system (e.g.,
I may contain the procedures that read data from net-

work sockets). Let q(a1, . . . , am) ∈ I be a procedure
returning a value of type t, with possible side effects on
some of its arguments Sq ⊆ {a1, . . . , am} (for clarity,
we will omit our analysis of pointers and side effects).

A user input to the program results from a call to an
external procedure q ∈ I . Such a call yields two types
of user inputs: (a) the return value of the call, and (b) the
side effects, if any, that redefine global variables.

A variable x is said to be data-dependent on y at any
program point if and only if there exists a reaching def-
inition of the form x := e such that e is a program ex-
pression containing y, or some other variable z which is
itself data-dependent on y.

Formally, we wish to compute a relation T (c, p, n, x)
denoting that a variable x is tainted at a node n in pro-
cedure p under a calling context c. This relation is com-
puted using standard interprocedural program analysis,
by applying inference rules until a fixed point is reached.

The rule external-input-taint (shown below) speci-
fies that just after an assignment x := q(), the variable
x may be regarded as tainted in the target node m under
all contexts.

n
x:=q()−−−−→ m, q ∈ Q

T (c, p,m, x)
(external− input− taint)

Some of the taint rules are shown in Fig. 2. The taint
rule for assignment says that, as a result of an assignment
x := y, if y is tainted at the source node, then x is tainted
at the target. The call-taint rule says that, as a result
of a call r(y1, . . . , yk) to an internal procedure r ∈ P ,
if yi were tainted at the call site under some context c,
then the corresponding formal argument argi is tainted
at the entry node of the procedure r under the context
r :: c. The return-taint rule governs the propagation
of a tainted return value from a procedure back to its
call site under an appropriate change of contexts. In our
implementation, we require additional rules for passing
taints for variables which are not affected by a statement
and also for handling variable aliasing due to pointers
and call-by-reference. For clarity, we omit them here.

Implementing taint analysis. We defined taint analy-
sis via a set of rules which specify the interprocedural,
context-sensitive tainting relation T (c, p, n, x). In prac-
tice, however, the number of contexts can be astronomi-
cal even for a medium-sized C program.

Therefore, we use procedure summarization to sum-
marize the effect of a procedure call. Formally, a sum-
mary for a procedure p specifies the transformation of
the relation T (c, q, m, x) at any call site to p, y :=
p(y1, . . . , ym), for a variable x that may alias y, any of
the arguments y1, . . . , ym, or a global variable that is a
side effect of the call to procedure p. The summary for a
procedure p is a Boolean formula that expresses the pos-

n
x:=y−−−→ m, T (c, p,m, y)

T (c, p,m, x)
(assign− taint)

n
x:=r(y1,...,yi,...,yk)−−−−−−−−−−−−−→ m, r ∈ P, T (c, p, n, yi)

T (r :: c, p, entry(r), argi)
(call− taint)

n
x:=r(y)−−−−−→ m, r ∈ P, T (r :: c, r, exit(r), retVal(r))

T (c, p,m, x)
(return− taint)

Figure 2: Some rules for inferring and propagating taints across assignments, procedure calls and returns.

sibility of a variable x being tainted at the exit exit(p) as
a Boolean formula over atomic propositions that range
over the taint-state of the program variables at the en-
try entry(p). The overall taint analysis consists of two
phases: (a) bottom-up summarization, and (b) top-down
taint computation. The first phase computes the sum-
mary for each procedure p assuming that all of its callees
have already been summarized. This is enabled by per-
forming a strongly-connected-component decomposi-
tion of the function call graph. Recursive procedures (in-
cluding mutually recursive sets of procedures) are sum-
marized by treating recursive calls context-insensitively.
Each recursive call and each return from such a call is
treated, effectively, as a go-to statement.

After each procedure is summarized, we revisit the
call graph in the topological order, beginning at main
and computing the actual taint relation T at the entry of
each procedure and therefore at each node of each pro-
cedure. During this topological exploration of the call
graph, we also record the set RF of visited procedures.
The analysis that computes the taintedness relation T for
each procedure is intraprocedural. Calls to other proce-
dures are analyzed using summarization. We thus com-
pute a relation T (n, p, x), which is obtained by joining
the earlier relation T (c, n, p, x) under all possible call-
ing contexts of p. We also define a Boolean relation
TS (n, p), which is true if and only if there exists some
variable x such that there is a use of x on an outgoing
edge from n and T (n, p, x) is true.

The second phase can also be query-driven, i.e., com-
puted in response to queries asking whether a partic-
ular variable x is tainted under a particular context c.
This query-driven computation is enabled by using the
stored summaries and selectively analyzing the proce-
dures called in the context c.

3.4 Warning generation
We now describe the resource-specific analyses which
use taintedness and control-dependency information to
estimate the complexity of recursive calls, and to iden-
tify loops and recursive calls whose execution can be in-
fluenced by a remote attacker.

Tainted-loop analysis

Informally, we want to identify all loops for which the
number of iterations depends on a tainted input. We stat-
ically approximate this set using the information com-
puted by the previously described analyses. We say that
any program loop in which there exists a path leaving the
loop body whose final statement is control-dependent on
a tainted statement inside the loop is a tainted loop. We
compute the set TL of tainted loops via an intraprocedu-
ral analysis (implemented using CIL) which examines
the control-flow graph (CFG) of each loop body in a
given function. Note that the CIL front end detects syn-
tactic loops in C programs and allows other CIL analyses
to access CFG subgraphs corresponding to loop bodies.

For each loop body, we examine all edges that leave
the loop body and check for tainted control dependen-
cies. If any such dependencies exist within the loop
body, we mark the loop as tainted and add it to TL.
In the amatch() example, the for loop at Line 9 is
marked as a tainted loop because there exists a path leav-
ing the loop whose final statement is control-dependent
on a case statement using *p, which has been marked
as tainted. The algorithm for checking loop taintedness
appears in Algorithm 1. SAFER executes it once for each
set of CFG nodes corresponding to a top-level loop body
in each function of the program.

Algorithm 1: ComputeTL(p, L)
Input: a set of CFG nodes L, and a procedure p
for s ∈ L do

if isLoopHead(s) then
ComputeTL(LoopNodes(p, s));

else
for (s, c) ∈ E do

if c 6∈ L then
for d ∈ CD(p, c) do

if TS(d, p) ∧ d ∈ L then
TL← TL ∪ {L};
break;

Recursive call analysis
We now describe the analyses used by SAFER to esti-
mate the complexity of recursive calls and to identify
those whose execution may be influenced by a remote
attacker. SAFER first computes an annotated call graph,
using an interprocedural analysis much like that for com-
puting a standard call graph [25]. The key differences
are that the SAFER call graphs are context-sensitive and
annotated with additional information such as control
dependencies, recursive calling contexts, taintedness in-
formation, and source code information.

The algorithm for computing the annotated call graph
appears in Algorithm 2. The graph consists of function
nodes (with a unique node for every function in the pro-
gram) and call nodes. The children of a function node
are call nodes, which correspond to the calls in the func-
tion body. The call nodes contain information about
the corresponding call sites (name of function, source
code information, etc.). To compute the set of function
nodes, SAFER uses the set of reachable functions RF
computed during the taint analysis. SAFER also main-
tains a mapping from function names to function nodes
in a map called NameMap. When computing the graph,
SAFER also queries the taint analysis and control depen-
dency analysis to check if a call is control-dependent on
a tainted statement. We refer to such calls as tainted
calls. Intuitively, their execution may be influenced by a
remote attacker through tainted inputs.

Algorithm 2: ComputeACG
for f ∈ RF do

t← new FunctionNode;
t.name ← f ;
t.type ← function;
NameMap ← NameMap ∪ (f, t);
for s ∈ CFG(f) do

if isCall(s) then
u← new CallNode;
u.name ← calledFunc(f , s);
u.type ← call;
u.statement ← s;
u.deps ← CD(f , s);
u.recContexts ← ∅;
for d ∈ CD(f , s) do

if TS(d, f) then
u.tainted ← true;

t.children ← t.children ∪ {u}

After computing the annotated call graph, SAFER
computes the set of tainted recursive calls and esti-
mates their complexity. This analysis is performed via
a bounded depth-first search of the annotated call graph.

Finding tainted recursive calls. We identify tainted re-

cursive calls by performing a depth-first search on the
annotated call graph while tracking the current calling
context (Algorithm 3). Every time the search reaches
a tainted call node, SAFER checks whether a call to
the same function exists in the current context. If it
does, the call node is recorded as a tainted recursive call
and added to the corresponding set RC . We bound the
search depth for efficiency (a large program can have
an exponential number of calling contexts under which
a particular call is recursive) and also because in our
benchmarks, we found that most recursive calls were
found at very shallow search depths. In our experiments,
the context depth was limited to 3. An excerpt from the
annotated call graph for wu-ftpd after identifying tainted
recursive calls appears in Figure 3. As we explain in
Section 5, the recursive-calling-context data proved very
useful during our manual analysis of the SAFER warn-
ings and helped discover a new attack input.

func: amatch()
file: glob.c

call: amatch()
line: 29
file: glob.c
tainted: true
recursive contexts: {
[match, amatch:glob.c:395],
[execbrc, amatch:glob.c:366],
...
}

call: execbrc()
line: 13
file: glob.c
tainted: true
recursive contexts: {}

...

Figure 3: Annotated Call Graph Node for amatch()

Estimating complexity of recursive calls. Attacks ex-
ploiting tainted recursive calls can lead to both CPU and
stack exhaustion. Stack exhaustion occurs when a chain
of recursive calls grows so deep that the program runs
out of space for activation records. Attacks of this type
often lead to program crashes. While these are serious
vulnerabilities, their effect is limited to the vulnerable
application. CPU exhaustion attacks can be even more
dangerous because of their potential to affect other ap-
plications sharing the same server. If a single process
begins to consume all available CPU resources, the re-
sult is denial of service to the clients of all applications.

The wu-ftpd vulnerability, which we have been using
as our running example, is a CPU exhaustion vulnerabil-
ity. The depth of recursion is linear in the length of the
attacker-controlled network input, thus stack space is not
exhausted. Unfortunately, the tainted recursive call oc-
curs inside a tainted loop. As a result, the total number
of recursive calls generated by the vulnerable call site is
exponential in the length of the attack input, leading to

CPU exhaustion. (If one imagines the tree of recursive
calls generated from this call site, its depth is linear, but
the total number of nodes is exponential.)

Warnings caused by call structures of this type are of
higher severity because of the potential for CPU exhaus-
tion that could affect all processes on a server. When
computing tainted recursive calls, SAFER also considers
the information provided by the tainted-loop analysis. If
a tainted recursive call occurs within a tainted loop, it
generates a so-called super-linear warning, because of
the potential for super-linear recursive behavior at this
call site. Warnings of this type are collected in the SRC
set (see Algorithm 4).

Algorithm 3: ComputeRCWarnings
for f ∈ RF do

n← NameMap[f];
C ← new Context;
FindTaintedRC (n, C);

Algorithm 4: FindTaintedRC (n, C)
Input: a annotated call graph node n, and a calling

context C
if Size(C) > ContextDepthLimit then

return;
else

if n.type = function then
for p ∈ n.children do

FindTaintedRC (p, c);
else /* n.type = call */

if n.tainted = true ∧C .contains(n.name)
then

n.recContexts ← n.recContexts ∪ C;
RC ← RC ∪ n;
for L ∈ TL do

if n.statement ∈ L then
SRC ← SRC ∪ n;
break;

else
q ← NameMap[n.name];
FindTaintedRC (q ,C .add(n.statement));

return;

4 Limitations and Tradeoffs

Analysis of potential resource-exhaustion vulnerabilities
inevitably involves judgment calls. Unlike obvious cod-
ing bugs such as buffer overflows, software design flaws
that make denial of service possible involve only le-
gitimate memory accesses and execution of code paths
which are already present in the original program.

The objective of SAFER is to flag high-complexity

APR_DECLARE(void) apr_pool_destroy(apr_pool_t *pool)
{

...
while (pool->child)

/∗ pool−>c h i l d i s i n c o r r e c t l y marked
as t a i n t e d because one of ∗poo l ’ s f i e l d s
i s data−dependent on a t a i n t e d v a l u e .
r e c u r s i v e c a l l below i s a f a l s e p o s i t i v e . ∗ /

apr_pool_destroy(pool->child);
...

}

Listing 2: Apache false positive (field insensitivity)

computations which can be triggered by untrusted net-
work inputs. In many cases, they can be exploited to
cause extremely high CPU utilization and/or deep re-
cursion. Nevertheless, the distinction between a “legiti-
mate” computation that just happens to freeze the server
and a denial-of-service vulnerability is fundamentally a
matter of opinion. The system developer must interpret
the SAFER warnings. For example, imagine running our
analysis on a server that decodes and streams video in
response to client requests. By its very nature, it per-
forms high-complexity computations whose execution
is dependent on (tainted) client requests. Without de-
veloper’s comments or annotations (e.g., see [30]) indi-
cating that these high-complexity code segments are be-
nign even though they are control-dependent on tainted
values, SAFER must report them as potential vulnerabil-
ities. We employ user-tunable heuristics to minimize the
number of warnings that are likely to be false positives.

SAFER deliberately sacrifices both soundness and
completeness in order to scale to realistically-sized sys-
tems and detect real vulnerabilities. SAFER may miss
vulnerabilities because it only supports a (realistic) sub-
set of the C language (e.g., we do not analyze function
pointers). False positives may be caused by (i) impreci-
sion of taint analysis, (ii) sanitization of user input, and
(iii) safeguards on the usage of system resources.

Our taint analysis is not field-sensitive, which means
that if any field in a complicated struct is marked as
tainted, we assume all fields in that struct are tainted.
This leads to some false positives where the analysis de-
termines that an attacker may control the value of a field
which is untainted in reality (see Listing 2).

Known denial-of-service vulnerabilities, such as the
original wu-ftpd vulnerability described in Section 1,
are often repaired by adding custom sanitization code,
which checks and/or bounds the amount of computation
due to tainted user inputs. For example, if the vulnerabil-
ity is associated with reading a string from the network
and then iterating over each character while performing
an expensive computation at each iteration, then saniti-
zation may attempt to limit the length of the string.

Traditional approaches for static reasoning about san-
itization [22, 16] are syntactic and thus do not work for

int apr_fnmatch(char *p, char *string, int flags)
{

...
for (stringstart = string;;) {

switch (c = *p++) {
...
case ’*’:

c = *p;
/∗ i n p u t i s s a n i t i z e d by loop ∗ /

while (c == ’*’) {
c = *++p;

}
...
while ((test = *string) != EOS) {

/∗ r e c u r s i v e c a l l below i s a f a l s e p o s i t i v e ∗ /
if (!apr_fnmatch(p, string, flags))

...
}

}

Listing 3: Apache false positive (sanitization)

resource-exhaustion vulnerabilities. Balzarotti et al. [2]
recently proposed a technique for reasoning about saniti-
zation of tainted strings by modeling a set of strings as an
automaton. It may be possible to develop similar tech-
niques for sanitization with respect to CPU and stack
resources. SAFER does not currently model sanitization
of user input, and may thus generate false positives for
potential vulnerabilities which are not exploitable due to
sanitization (see Listing 3).

We emphasize that the mere presence of input saniti-
zation does not mean that the code is safe and may give
a false sense of security. As demonstrated by our exploit
against patched wu-ftpd (discovered using SAFER), san-
itization may simply block a specific attack input, and
the vulnerability remains exploitable by a different in-
put. SAFER flags all functions in the code where san-
itization is necessary. All of them must be audited to
ensure that sanitization is present and effective. There-
fore, even the false positives generated by SAFER should
be carefully analyzed. It is worth noting that the original
report of the DoS vulnerability in wu-ftpd indicated the
wrong function; SAFER flags the correct one.

The third cause of false positives is the presence of
input-independent safeguards in the code that limit con-
sumption of certain system resources. Our analysis
doesn’t consider the feasibility of dangerous executions.
For example, SAFER may statically detect that a recur-
sive call is “expensive” because it is dependent on a
tainted value and inside a tainted loop, but there may be
explicit (see Listing 5) or implicit (see Listing 4) safe-
guards in the code that limit the depth of recursion.

Our practical experience with SAFER, described in
Section 5, demonstrates that SAFER can successfully
discover complex DoS vulnerabilities in systems code,
and that the number of false positives is relatively low
for real-world programs (e.g., 1 warning per 7,500 lines
of Apache code) and thus amenable to manual analysis.

int ap_rgetline_core(char **s, apr_size_t n,
apr_size_t *read, request_rec *r,
int fold, apr_bucket_brigade *bb)

{
...
if (fold && bytes_handled && !saw_eos) {

for (;;) {
...

/∗ False p o s i t i v e due t o i m p l i c i t l i m i t
on r e c u r s i v e c a l l dep th . Inpu t i s no t s a n i t i z e d ,
bu t t h e chain of r e c u r s i v e c a l l s r e t u r n s when a
b u f f e r i s f u l l . There fore , t h e wors t−case dep th of
c a l l s i s a f u n c t i o n of t h i s b u f f e r s i z e , no t
t h e t a i n t e d i n p u t . ∗ /

rv = ap_rgetline_core(&tmp, next_size,
&next_len, r, 0, bb);

...
}

Listing 4: Apache false positive (implicit safeguard)

static int unixOpen(sqlite3_vfs *pVfs,
const char *zPath,
sqlite3_file *pFile, int flags,
int *pOutFlags) {

...
fd = open(zName, oflags,

isDelete?0600:DEFAULT);
if(fd<0 && errno!=EISDIR && isReadWrite &&

!isExclusive) {
flags &= ˜(READWRITE|CREATE);
flags |= READONLY;

/∗ This c a l l can on ly occur a t c a l l dep th 0 ,
a l l e x e c u t i o n s w i th more than 1 r e c u r s i v e c a l l
are i n f e a s i b l e because t h e c a l l c o r r e s p o n d s
t o s i m p l y a t t e m p t i n g t o open t h e f i l e a second
t ime wi th d i f f e r e n t p e r m i s s i o n s . ∗ /
return unixOpen(pVfs,zPath,pFile,flags,pOutFlags);

}
...

}

Listing 5: SQLite false positive (explicit safeguard)

The false positive ratio of SAFER is comparable to other
static security-audit tools, such as those targeting buffer
overflows [36], violations of Unix security rules [6] and
injection vulnerabilities in web applications [16].

5 Experimental Results
We evaluated SAFER on five large, real-world systems:
Apache, wu-ftpd, Expat, SQLite, and Samba. The
results are shown in Table 1. They demonstrate that
our approach scales to realistic programs. In 2 systems,
SAFER rediscovered known DoS vulnerabilities; in 3
systems, SAFER discovered new DoS vulnerabilities.

5.1 wu-ftpd
wu-ftpd is a popular FTP server daemon for Unix sys-
tems, including recent versions of Linux distributions
such as Ubuntu [41]. We used SAFER to analyze the lat-
est version (2.6.2) of wu-ftpd. SAFER reported 3 warn-
ings, all of which correspond to recursive function calls
where the depth of recursion is potentially super-linear
in the size of a tainted input string. Two of the warnings

Program LOC Warnings ConfirmedS-L Total
wu-ftpd 20382 3 3 1
SQLite 63207 6 58 1
Expat 12251 3 3 1
Apache 109650 7 14 0
Samba 131662 15 20 1

Table 1: Experimental Results

were false positives, one due to the field-insensitivity of
our taint analysis and the other due to input sanitization.
The third warning was the amatch() call that we have
been using as the running example throughout this paper.

wu-ftpd attack revisited. Recall the code in Listing 1.
As described earlier, a DoS attack against wu-ftpd was
discovered in February 2005 [42]. This attack results
in CPU exhaustion due to an exponential number of re-
cursive calls while trying to match the malicious “DIR
*********...” pattern. The original mailing-list
message attributed the vulnerability to a recursive call
in the wu fnmatch() function, but SAFER flags the
recursive amatch() call, and our manual analysis con-
firms this call as the source of the vulnerability.

A patch designed to address this vulnerability was
quickly incorporated into wu-ftpd packages used by
Linux distributions [40]. The patch attempts to sanitize
the input by collapsing contiguous blocks of wildcard
symbols (*) into a single wildcard prior to performing
pattern matching.

SAFER’s context-sensitive recursive call analysis re-
ports two calling contexts in which the recursive call
is control-dependent on tainted inputs. See Figure 4
for a simplified version of the warning. By examin-
ing both contexts, we discovered that sanitization can
be nullified by a remote attacker. Our new attack input
“DIR *{*{*{*{...}*}*}*}*” induces an exponen-
tial number of recursive calls to amatch(), just like
the original attack.

Call funcName: amatch, file: glob.c, line: 448
Recursive calling contexts:
1) context start: matchdir
[match:glob.c:280, amatch:glob.c:395,]
2) context start: expand
[execbrc:glob.c:240, amatch:glob.c:366,]

Figure 4: Simplified amatch() warning

In the first calling context, the sanitized pattern is
passed to amatch() without modification. In the sec-
ond context, however, after the sanitization code is exe-
cuted, the pattern string is passed to execbrc(). With

the new attack string, this function essentially “unsan-
itizes” it by removing matching braces, resulting in a
string made up of wildcards (*) only. This string is then
passed to amatch(), causing the same CPU exhaus-
tion as the original attack. We have successfully con-
firmed our new “input of coma” against patched ver-
sions of wu-ftpd, including the latest version available
for Ubuntu [41].

Observe that the input of coma in this case does not re-
quire the attacker to know anything about the file-system
structure of the target. While some legitimate input pat-
terns may trigger expensive computation in the pattern-
matching routine (e.g., those that match directories deep
in the file system), our attack pattern is clearly malicious
and can never occur in a benign FTP query.

This example highlights how subtle DoS attacks can
be and how important it is to understand their root
causes. The original vulnerability report cited an incor-
rect function as the cause and the sanitization patch only
blocked a specific attack input. The fact that it could not
prevent exploitation of the recursive call by a different
“input of coma” demonstrates the need for a principled
approach to detecting and preventing such attacks. A
more effective patch would simply collapse the charac-
ters immediately before the correct recursive call.

5.2 Expat
Expat is a stream-oriented XML parsing library that
has been used by several open-source projects, including
scripting-language implementations (Perl, Python, and
PHP). We applied SAFER to the sample parsing appli-
cation included with the Expat distribution of version
2.0.1, along with the source code of the library itself.
SAFER flagged 3 potentially vulnerable recursive calls.
Our analysis of these warnings led to the discovery of a
previously unknown stack-exhaustion attack against Ex-
pat involving the parsing of Document Type Definitions
(DTD). A malicious remote user can induce arbitrarily
deep recursion in an application that utilizes Expat by
supplying a specially crafted DTD with a deeply nested
element declaration. The application’s call stack will
then be exhausted, crashing the program.

To check that a particular XML file is valid with re-
spect to a given DTD, an XML parser must first parse the
DTD itself. For any application that defines a handler
for DTD elements, Expat parses the DTD via recursive
calls to a function called build node(), which gen-
erates an in-memory representation of a DTD. This re-
cursive call is flagged as vulnerable by SAFER (see List-
ing 6).

Figure 5 shows a sample attack DTD. Attempting to
parse this file with Expat leads to a recursive call chain
whose depth is linear with respect to the number of
nested elements. In practice, an 800-kilobyte DTD file

static void
build_node(XML_Parser parser,

int src_node,
XML_Content *dest,
XML_Content **contpos,
XML_Char **strpos)

{
...
for (i = 0,

cn = dtd->scaffold[src_node].firstchild;
i < dest->numchildren;
i++, cn = dtd->scaffold[cn].nextsib) {

/∗ r e c u r s i v e c a l l t h a t c au se s s t a c k e x h a u s t i o n
when p a r s i n g DTD e n t i t y d e c l a r a t i o n wi th
l o t s o f n e s t i n g ∗ /
build_node(parser, cn, &(dest->children[i]),

contpos, strpos);
}

...
}

Listing 6: Expat Vulnerability

of this form can crash the target application via stack
exhaustion.

<!ELEMENT A (A,(A,(A,(A,(A,(A,(A,
(A,(A,(A,(A,(A,(A,(A,(A,(A,(A,(A,
(A,(A,(A,(A,(A,(A,(A,(A,(A,(A,(A,...

Figure 5: Malicious DTD exploiting Expat vulnerability

5.3 SQLite

SQLite is a software library that implements a database
engine. It has been used in many software systems as an
application-file format, a web-application back end, and
as a component of several operating systems for portable
devices. For the most recent version (3.6.3), SAFER re-
ported 58 warnings, of which 6 were super-linear. Recall
that super-linear warnings are more severe because of
their potential to affect all processes on a system, rather
than just the one in which the vulnerability occurs. The
low number of super-linear warnings makes a detailed
manual analysis feasible. One of the warnings turns out
to be a potentially exploitable DoS vulnerability.

The fact that SQLite is a library and not a standalone
application presents a slight challenge. SAFER uses taint
analysis to model the ways in which a remote attacker
may affect code execution, so normally the starting point
would be some networked application that uses SQLite.
We chose not to analyze any particular web application
because it may only utilize a small part of the library.
Instead, we analyzed the library along with a utility bun-
dled with the SQLite distribution that allows to query
a database from the command line. Therefore, we are
implicitly assuming that all query strings and database
commands are under attacker’s control. The results pro-
duced by SAFER on this benchmark highlight complex

recursive behavior in the library whose execution is trig-
gered by database queries (it is worth noting that in many
web applications, the contents of database queries do
depend on untrusted network inputs). This information
may be used during security audit of the code to sys-
tematically identify all program locations where input
safeguards or sanitization are needed, and to help the
developers verify that all complex recursive behavior is
bounded explicitly or implicitly.

The vast majority of the warnings for SQLite were
systematic false positives due to sanitization. Many of
them correspond to functions that recursively process in-
memory query structures. The SQLite parser has several
safeguards that prevent deeply nested queries from being
processed by SQLite. To eliminate these false positives,
we could have treated all values that pass through cer-
tain sanitization functions as safe (such functions would
need to be annotated by the developer). This syntactic
approach to modeling sanitization, however, can result
in missing attacks, as in the wu-ftpd example.

We also note that these warnings are not false in the
sense that they do correspond to recursive calls which
are control-dependent on tainted input. Developers can
thus focus their auditing and testing effort on ensuring
that recursion is bounded in all of the flagged locations.

SQLite vulnerability. The code is Listing 7 contains
a potentially exploitable recursive call inside the
sqlite3Select() function. This recursive call is
flagged as super-linear because it is inside the body
of a tainted loop. A recursive call is generated on the
call stack for each nested SELECT clause, and the
for loop iterates over the tables in the FROM clause
of the query. Consider the following query: SELECT

* FROM (SELECT * FROM (. . .) as t1) as
t2 JOIN SELECT * FROM (. . .. It attempts to
maximize both the depth of the recursive call and the
number of iterations of the loop.

SQLITE_PRIVATE int sqlite3Select(
Parse *pParse,
Select *p,
SelectDest *pDest

){
...
for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
...

/∗ r e c u r s i v e c a l l t h a t i s v u l n e r a b l e
t o CPU e x h a u s t i o n ∗ /
sqlite3Select(pParse, pSub, &dest);
pItem->isPopulated = 1;

...
}

Listing 7: SQLite vulnerability

The safeguards in SQLite limit the nesting of
SELECT clauses and prevent more than 64 tables from

being joined in the FROM clause. These safeguards,
however, still allow extremely large temporary results
to be generated. Even for a small database consisting
of a single table with 2 rows, a query of the above form
could generate a result set with 264 rows. In practice,
iterating over this result set causes CPU exhaustion for
several minutes. Note that the attacker does not need to
know the database schema in order to mount this attack.
Further analysis reveals that the recursive calls are not
necessary for this attack, but the vulnerability was dis-
covered due to warnings generated by SAFER.

Our analysis of SQLite assumes that the attacker con-
trols all query strings. This assumption may be unrea-
sonable for well-written web applications, but if an ap-
plication using SQLite as its back end were to fall vic-
tim to an SQL injection attack, this vulnerability can
greatly increase the impact of the attack by allowing the
attacker to exhaust CPU resources on the server. A con-
ventional SQL injection attack only affects a single ap-
plication and its database. An SQL injection combined
with a resource-exhaustion attack on a co-hosted appli-
cation may cause denial of service to all clients of all
applications running on the shared server.

5.4 Apache HTTP Server
Apache is a widely deployed web server. It is the sec-
ond largest application (nearly 110,000 lines of code)
that we analyzed using SAFER, demonstrating the scal-
ability of our approach. For the most recent version
(2.2.9) of Apache, SAFER generated only 14 warnings,
none of them corresponding to DoS vulnerabilities. This
false positive rate is substantially better than that of ex-
isting static analysis tools for finding potential security
vulnerabilities [36, 6].

5.5 nmbd (Samba)
Samba is an open-source implementation of the SM-
B/CIFS protocol used to provide file and print services
to networked clients. We analyzed the nmbd daemon
which provides a NetBIOS name server as part of the
3.0.7 release of Samba. We chose this version because
it contains a known CPU exhaustion vulnerability [32].

The nmbd daemon was the largest system we ana-
lyzed (over 130,000 LOC). SAFER reported a total of 20
warnings (15 super-linear). This again demonstrates the
scalability of our approach. Most importantly, SAFER
did detect the known DoS vulnerability. The corre-
sponding source code appears in Listing 8. This vulner-
ability is very similar in nature to the wu-ftpd vulner-
ability as it involves matching filenames with patterns
containing contiguous wildcard (*) characters. SAFER
flagged two different pattern-matching routines that have
essentially the same exponential recursive behavior. The
original vulnerability report only mentions the attack in-

put and the top-level pattern-matching function. A sub-
sequent patch [33] modified the bodies of both functions
to prevent the exponential recursion. While sanitization
worked correctly in this case, SAFER’s analysis is able
to identify the root causes of the vulnerability.

int ms_fnmatch_w(const smb_ucs2_t *pattern,
const smb_ucs2_t *string,
int protocol, BOOL c_s) {

...
while ((c = *p++)) {
switch (c) {
...
case UCS2_CHAR(’*’):
for (; *n; n++) {

/∗ r e c u r i s v e c a l l t h a t i s v u l n e r a b l e t o
CPU e x h a u s t i o n ∗ /

if (!ms_fnmatch_w(p,n,protocol,c_s))
return 0;

}
...

}

Listing 8: Previously discovered Samba vulnerability

6 Conclusions and Future Work
We have presented SAFER, a static analysis tool for de-
tecting potential resource-exhaustion vulnerabilities in
networked software which can be exploited to cause de-
nial of service. SAFER uses novel resource-specific anal-
yses which utilize taint- and control-dependency infor-
mation to identify program branches whose execution
can be influenced by a remote attacker via network in-
puts. SAFER also identifies and estimates the complex-
ity of tainted recursive calls in order to detect CPU-
and stack-exhaustion vulnerabilities. We have applied
SAFER to several real-world systems, including FTP and
HTTP servers and XML parsers. SAFER successfully
discovered known DoS vulnerabilities, as well as three
previously unknown ones.

Future work includes developing analyses for saniti-
zation code, which can help filter out false positives, and
extending our approach to other types of DoS vulnerabil-
ities by augmenting SAFER with new resource-specific
analyses for problems such as non-termination, mem-
ory leaks, and semantic flooding attacks that acquire and
don’t release resources (e.g., TCP SYN floods which ex-
haust the server’s thread pool). Other directions include
automatic generation of attack inputs for the vulnerabil-
ities discovered by SAFER and extending SAFER to lan-
guages such as PHP and Java.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity. In CCS, 2005.

[2] D. Balzarotti, M. Cova, V. Felmetsger, N. Jo-
vanovic, E. Kirda, C. Kruegel, and G. Vigna.

Saner: Composing static and dynamic analysis to
validate sanitization in Web applications. In S&P,
2008.

[3] D. Bernstein. SYN cookies. http://cr.yp.
to/syncookies.html, 1996.

[4] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and
D. Engler. EXE: automatically generating inputs
of death. In CCS, 2006.

[5] M. Casado, A. Akella, P. Cao, N. Provos, and
S. Shenker. Cookies along trust-boundaries (CAT):
Accurate and deployable flood protection. In
SRUTI, 2006.

[6] H. Chen, D. Dean, and D. Wagner. Model checking
one million lines of C code. In NDSS, 2004.

[7] J. Clause, W. Li, and A. Orso. Dytan: a generic
dynamic taint analysis framework. In ISSTA, 2007.

[8] J. Crandall and F. Chong. Minos: control data at-
tack prevention orthogonal to memory model. In
MICRO, 2004.

[9] S. Crosby and D. Wallach. Denial of service via
algorithmic complexity attacks. In USENIX Secu-
rity, 2003.

[10] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner.
Memory safety without runtime checks or garbage
collection. SIGPLAN Not., 38(7):69–80, 2003.

[11] CVE-2005-2316. http://cve.mitre.
org/cgi-bin/cvename.cgi?name=
CVE-2005-2316, 2005.

[12] D. Evans, J. Guttag, J. Horning, and Y. Tan.
LCLint: a tool for using specifications to check
code. SIGSOFT Softw. Eng. Notes, 19(5):87–96,
1994.

[13] T. Gil and M. Poletto. MULTOPS: A data-structure
for bandwidth attack detection. In USENIX Secu-
rity, 2001.

[14] IBM. Configure SAX parsers for se-
cure processing. http://www.ibm.
com/developerworks/xml/library/
x-tipcfsx.html, 2005.

[15] CVE-2003-0718. http://cve.mitre.
org/cgi-bin/cvename.cgi?name=
CVE-2003-0718, 2003.

[16] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a
static analysis tool for detecting Web application
vulnerabilities (short paper). In S&P, 2006.

[17] S. Kandula, D. Katabi, M. Jacob, and A. Berger.
Botz-4-Sale: Surviving organized DDoS attacks
that mimic flash crowds. In NSDI, 2005.

[18] M. Kenney. Ping of Death. http:
//insecure.org/sploits/
ping-o-death.html, 1997.

[19] J. Kong, C. Zou, and H. Zhou. Improving software
security via runtime instruction-level taint check-
ing. In ASID, 2006.

[20] D. Larochelle and D. Evans. Statically detecting
likely buffer overflow vulnerabilities. In USENIX
Security, 2001.

[21] CVE-2008-3281. http://cve.mitre.
org/cgi-bin/cvename.cgi?name=
CVE-2008-3281, 2008.

[22] B. Livshits and M. Lam. Finding security vulnera-
bilities in Java applications with static analysis. In
USENIX Security, 2005.

[23] C. Meadows. A formal framework and evaluation
method for network denial of service. In CSFW,
1999.

[24] J. Mirkovic and P. Reiher. A taxonomy of DDoS
attack and DDoS defense mechanisms. SIGCOMM
Comput. Commun. Rev., 34(2):39–53, 2004.

[25] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, August 1997.

[26] G. Necula, S. McPeak, S. Rahul, and W. Weimer.
CIL: Intermediate language and tools for analysis
and transformation of C programs. In CC, 2002.

[27] G. Necula, S. McPeak, and W. Weimer. CCured:
type-safe retrofitting of legacy code. In POPL,
2002.

[28] A. Nguyen-Tuong, S. Guarnieri, D. Greene,
J. Shirley, and D. Evans. Automatically hardening
Web applications using precise tainting. In ISC,
2005.

[29] CVE-2005-1807. http://cve.mitre.
org/cgi-bin/cvename.cgi?name=
CVE-2005-1807, 2005.

[30] X. Qie, R. Pang, and L. Peterson. Defensive pro-
gramming: using an annotation toolkit to build
DoS-resistant software. In OSDI, 2002.

[31] CVE-2008-2930. http://cve.mitre.
org/cgi-bin/cvename.cgi?name=
CVE-2008-2930, 2008.

[32] CVE-2004-0930. http://cve.mitre.
org/cgi-bin/cvename.cgi?name=
CVE-2004-0930, 2004.

[33] samba-3.0.7-cve-2004-0930.patch. http:
//us5.samba.org/samba/ftp/
patches/security/samba-3.0.
7-CVE-2004-09%30.patch, 2004.

[34] V. Sekar, N. Duffield, K. van der Merwe,
O. Spatscheck, and H. Zhang. LADS: Large-
scale automated DDoS detection system. In Proc.
USENIX, 2006.

[35] G. Suh, J. Lee, D. Zhang, and S. Devadas. Secure
program execution via dynamic information flow
tracking. In ASPLOS, 2004.

[36] D. Wagner, J. Foster, E. Brewer, and A. Aiken.
A first step towards automated detection of buffer
overrun vulnerabilities. In NDSS, 2000.

[37] M. Walfish, M. Vutukuru, H. Balakrishnan,
D. Karger, and S. Shenker. DDoS defense by of-
fense. In SIGCOMM, 2006.

[38] G. Wassermann and Z. Su. Sound and precise anal-
ysis of Web applications for injection vulnerabili-
ties. In PLDI, 2007.

[39] CVE-2005-0256. http://cve.mitre.
org/cgi-bin/cvename.cgi?name=
CVE-2005-0256, 2005.

[40] Debian changelog wu-ftpd (2.6.2-20).
http://packages.debian.org/
changelogs/pool/main/w/wu-ftpd/
wu-ftpd_2.6.2-20/changelog.
html#versionversion2.6.2-19, 2005.

[41] Ubuntu – details of package wu-ftpd in gutsy.
http://packages.ubuntu.com/gutsy/
net/wu-ftpd, 2007.

[42] WU-FTPD file globbing denial of service
vulnerability. http://labs.idefense.
com/intelligence/vulnerabilities/
display.php?id=207, February 2005.

[43] Y. Xie, A. Chou, and D. Engler. ARCHER: using
symbolic, path-sensitive analysis to detect memory
access errors. In ESEC/FSE, 2003.

[44] X. Yang, D. Wetherall, and T. Anderson. A
DoS-limiting network architecture. In SIGCOMM,
2005.

[45] CVE-2007-1285. http://cve.mitre.
org/cgi-bin/cvename.cgi?name=
CVE-2007-1285, 2007.

