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Abstract

The threshold degree of a function f : X — {—1,+1}, X C R",is
the least degree of a polynomial ¢ with f(x) = sgn ¢ (x). This notion has
numerous applications in complexity theory and learning theory. Analyzing
the threshold degree is a challenge, with few techniques currently available.

We develop a novel technique for estimating the threshold degree for a
broad and natural class of problems. Specifically, fix nonconstant functions
f:X —{-1,+1}andg:Y — {—1,+1} on any finite or compact infinite
sets X,Y C R". We prove that the conjunction f(x) A g(y) has threshold
degree ©(d) if and only if there exist degree-®(d) rational functions F(x)
and G (y) with supy | f — F| +supy |g — G| < 1. The “if” part is simple and
well-known, and our contribution is to prove its converse. Our results extend
to conjunctions fj A fo A--- A fi of any Boolean functions fi, f2,..., fr and
further to compositions i (fi, f>,. .., fr) for various & such as halfspaces and
read-once formulas. As an application, we prove the conjecture of O’Donnell
and Servedio (2003) that the intersection of two majorities has threshold de-
gree ©(logn). We discuss several other applications in communication com-
plexity and learning.

At the heart of our proof is a novel method for analyzing polynomials
¢ (x, y) that sign-represent a given function f (x) Ag(y), whereby we recover
rational approximants of f and g from any such ¢. This recovery crucially
uses LP duality and succeeds regardless of how tightly x and y are coupled
inside ¢. Also employed here are classical results on compact sets of in-
equalities and a new, optimal lower bound for the rational approximation of
MAJORITY of any given order.
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1 Introduction

Representations of Boolean functions by real polynomials play an important role
in theoretical computer science, with applications ranging from complexity theory
to quantum computing and learning theory. The surveys in [5, 34, 9, 36] offer a
glimpse into the diversity of these results and techniques. In this paper, we focus
on one such representation scheme known as sign-representation. Specifically,
fix a Boolean function f : X — {—1,+1} for some set X C R”, such as the
hypercube X = {0, 1}" or the unit sphere X = S"~!. The threshold degree of f,
denoted deg, (f), is the least degree of a polynomial ¢ (xy,. .., x,) such that

J(x) =sgno(x)

for each x € X. In other words, the threshold degree of f is the least degree of a
real polynomial that represents f in sign.

The formal study of this complexity measure and of sign-representations in
general began in 1968 with the seminal monograph of Minsky and Papert [23].
Among other things, the authors of [23] settled the threshold degree of several
common functions. Since then, the notion of threshold degree has found a variety
of applications in circuit complexity. Paturi and Saks [28] and later Siu et al. [39]
used Boolean functions with high threshold degree to obtain size-depth trade-offs
for threshold circuits. The well-known result, due to Beigel et al. [7], that PP is
closed under intersection is also naturally interpreted in terms of threshold degree.
In another development, Aspnes et al. [2] used the notion of threshold degree and
its relaxations to obtain oracle separations for PP and to give an insightful new
proof of classical lower bounds for AC. Krause and Pudldk [21, 22] used random
restrictions to show that the threshold degree gives lower bounds on the weight and
density of perceptrons and their generalizations, which are well-studied computa-
tional models.

Learning theory is another area in which the threshold degree of Boolean func-
tions is of considerable interest. In this context, low threshold degree translates into
efficient learnability [17, 16]. Specifically, functions with low threshold degree can
be efficiently PAC learned under arbitrary distributions via linear programming.
The current fastest algorithm for PAC learning polynomial-size DNF formulas,
due to Klivans and Servedio [17], is an illustrative example: it is based precisely
on an upper bound on the threshold degree of this concept class. Klivans et al. [16]
showed that intersections of low-weight halfspaces also have low threshold degree,
thereby giving an efficient PAC algorithm for this class as well.

Recently, the notion of threshold degree has also become a versatile tool in
communication complexity. The starting point in this line of research appears to be
the author’s Degree/Discrepancy Theorem [35, 37], which states that any Boolean



function with high threshold degree induces a communication problem with low
discrepancy and thus high communication complexity in almost all models. We
used this result in [35] to show the optimality of Allender’s simulation of AC® by
majority circuits, thus solving an open problem of Krause and Pudlédk [21, §6]. In
follow-up work [38], we combined the notion of threshold degree with other ana-
lytic techniques to settle the communication complexity of symmetric functions in
the unbounded-error model, which is considerably more powerful than the mod-
els above. In a more recent application of the threshold degree, Razborov and
Sherstov [32] proved the separation Z5° ¢ UPP“ in communication complexity,
thereby solving a long-standing open problem due to Babai et al. [3].

Note. Closely related to threshold degree are two other complexity measures
of a sign-representation: density (the number of distinct monomials in the sign-
representing polynomial) and weight (the maximum magnitude of an integer coef-
ficient). These notions have been extensively studied and have found various ap-
plications [6, 40, 22, 16, 18, 20, 10, 30, 31]. We will not have occasion to discuss
them in this paper, however, except for a brief note in Section 8.

1.1 Our Results

In summary, the threshold degree plays a significant role in circuit complexity,
learning theory, and communication complexity. Despite several studies of this
complexity measure [23, 2, 26, 27], it remains poorly understood, and few general
methods are available for bounding it from above or below. The main contribution
of this paper is a novel technique for estimating the threshold degree for a broad
and natural class of problems. Specifically, let fi, f2,..., fr be given Boolean
functions on compact sets X1, X»,..., X C R", respectively. We study Boolean
functions on X; X X» X - -+ X X of the form

h(f1, f2s- - fi)s

where i : {—1,+1}* — {—1,41} is a given combining function. An important
special case is the composition f1 A f> A --- A fx, in other words, the conjunction
of the original functions, each on an independent domain.

To set the stage for our results, consider the special but illustrative case k = 2.
Here we are given functions f : X — {—1,+1}and g : ¥ — {—1,+1} for
some compact sets X,Y C R" and would like to determine the threshold de-
gree of their conjunction, (f A g)(x,y) = f(x) A g(y). A simple and well-known
method [7, 16] for sign-representing f A g is to use rational approximation. Specif-
ically, let p1(x)/q1(x) and p>(y)/q2(y) be rational functions of degree d that ap-



proximate f and g, respectively, in the following sense:

()
q2(y)

p1(x) + sup

su
P QI(x) yey

xeX

Jx) = g(y) (1.1)

Then clearly,
f@) A g(y) =sgn{l + f(x) + g0}

= sgn {1 + P10 + p20y) } (1.2)
q1(x)  q2(y)

Multiplying the expression in braces by the positive quantity g; (x)2¢2(y)? gives

F Ag) = sen{a1(0q?

+ 1O D@0 + P21 ()22 (y) }

whence deg, (f Ag) < 4d. In summary, if f and g can be approximated as in (1.1)
by rational functions of degree at most d, then the conjunction f A g has threshold
degree at most 4d.

The question that we ask in this paper is: does there exist a better construction?
After all, given a sign-representing polynomial ¢ (x, y) for f(x) A g(y), there is no
reason to expect that ¢ arises from the sum of two independent rational functions
as in (1.2). Indeed, x and y can be tightly coupled inside ¢ (x, y) and can interact
in complicated ways. Our main result is that, surprisingly, no such interactions can
beat the simple construction above. In other words, the sign-representation based
on rational functions always achieves the optimal degree (up to a small constant
factor):

Theorem 1.1 (Main Theorem). Let f : X — {—1,+1}andg:Y — {—1,+1}
be given functions, where X,Y C R" are arbitrary finite or compact infinite sets.
Assume that f and g are not identically false. Let d = deg, (f A g) < oo. Then
there exist degree-4d rational functions

pi(x)  p2(y)
a1 (x)" @)

that satisfy (1.1).

Via repeated applications of Theorem 1.1, we are able to obtain analogous
results for conjunctions f1 A fo A --- A fi for any Boolean functions f1, f>,..., fi
and any k. Our results further extend to compositions A (fi,..., fi) for various h
other than 4 = AND, such as halfspaces and read-once AND/OR/NOT formulas.
We defer a more detailed description of these extensions to Section 6, limiting this
overview to the following representative special case.



Theorem 1.2 (Extension to multiple functions). Letr f1, f2,..., fi be noncon-
stant Boolean functions on compact sets X1, Xa,..., X C R", respectively. Let
h:{—1,+1}* = {—1,+1} be a halfspace or a read-once AND/OR/NOT for-
mula. Assume that h depends on all of its k inputs and that the composition
h(f1, fo,..., fr) has threshold degree d < oc. Then there is a degree-D rational
function p;/q; on X;,i = 1,2,...,k, such that

k

> sup

i=1 x€X;

oy Pilxi)
fix) qi(x;) <

where D = 8d log 2k.

Theorem 1.2 is close to optimal. For example, when 7 = AND, the upper bound
on D is tight up to a factor of ©(k log k); for all / in the statement of the theorem,
it is tight up to a factor of poly(k). See Remark 6.4 for details.

Theorems 1.1 and 1.2 contribute a powerful technique for proving lower
bounds on the threshold degree, via rational approximation. Prior to this paper,
it was a substantial challenge to analyze the threshold degree even for composi-
tions of the form f A g. Indeed, we are only aware of the work in [23, 26], where
the threshold degree of f A g was studied for the special case f = g = MAJORITY.
The main difficulty in those previous works was analyzing the unintuitive inter-
actions between f and g. Our results remove this difficulty completely, even in
the general setting of compositions h(f1, f>,. .., fr) for arbitrary f1, fa,..., fir and
various combining functions 4. Specifically, Theorems 1.1 and 1.2 make it possi-
ble to study the base functions fi, f,..., fx individually, in isolation. Once their
rational approximability is understood, one immediately obtains lower bounds on
the threshold degree of h(f1, f2,. .., fx)-

We further note that Theorems 1.1 and 1.2 can be applied with quite limited
information about the rational approximability of the functions involved. To illus-
trate, let rdeg, (1) stand for the least degree of a rational function that approximates
h within ¢ in the uniform (supremum) norm. Then it follows from Theorem 1.1
that

1 .
deg, (fNg) = 7 max min { rdegs(f),rdegl,s(g)}. (1.3)
O<e<l1
Thus, it suffices to estimate rdeg, (f) and rdeg,_, (g) for some value of € in order

to get a lower bound on the threshold degree of f A g. If f and g happen to be the
same Boolean function, then Theorem 1.1 shows that

deg. (f A g) = O(rdeg; > (f)). (1.4)



Here, one just needs to estimate the quantity rdeg, ,,(f). Analogous remarks apply
to the case of multiple functions, in Theorem 1.2.

It is an interesting aspect of Theorems 1.1 and 1.2 that they apply to Boolean
functions fi, f,. .., fr on arbitrary finite or compact infinite sets X1, X,..., Xz C
R". This contrasts with several earlier results in the literature, such as the
work of Nisan and Szegedy [25] and Beals et al. [4] that gives a polyno-
mial relationship between the least degree required for representing a given
function f : {0,1}" — {—1,+1} exactly versus only approximating it pointwise
within 1/3. This equivalence critically depends on the structure of the full hy-
percube and need not hold for a Boolean function on a proper subset X C
{0, 1}". To illustrate, any exact representation of the majority function on the
set X ={x € {0,1}": Y x; < in or ¥ x; > 3n} requires degree n/3, whereas
this function can be approximated on X to within 1/3 by a polynomial of constant
degree.

To illustrate Theorem 1.1, we study the well-known function on {0, 1}" X
{0,1}" given by f(x,y) = MAJORITY(X],...,X;) A MAJORITY(yi,..., V).
Beigel et al. [7] showed that f has threshold degree at most O(logn). In fact,
the same upper bound holds for the intersection of any constant number of major-
ity functions. On the lower bound front, Minsky and Papert [23] proved that f
has threshold degree w(1). O’Donnell and Servedio [26] considerably improved
this lower bound to Q(logn/loglogn). They conjectured that the true answer is
O(logn), meaning that the construction of Beigel et al. is optimal. We settle this
conjecture using Theorem 1.1:

Theorem 1.3 (Intersection of majorities). Ler f : {0,1}" x {0,1}" — {—1,+1}
be given by f(x,y) = MAJORITY (x1,...,X,) A MAJORITY(Y1,...,Yn). Then

deg (f) = Q(logn).

Our techniques are completely different from those used in earlier work [23, 26].

To obtain Theorem 1.3 from Theorem 1.1, we determine, for any given &, the
least degree required for approximating MAJORITY by rational functions within &.
This result appears to be of independent interest:

Theorem 1.4 (Approximation of MAJORITY). Let MAJ, : {0,1}" — {—1,+1}
denote the majority function. For 27" < e < 1, let d(n, ) be the least degree of a



rational function that approximates MAJ,, pointwise within €. Then

2n 1 v A—n
@(10g{m}10g;) lf2 <e<1/2,

logn .

d(n,e) =

We actually derive a more precise statement; see Theorem 7.3. The upper bound
in Theorem 1.4 generalizes well-known earlier constructions [28, 7], all based on
the seminal work of Newman [24]. The lower bound, on the other hand, has not
been previously considered and requires technical novelty. Our solution is based
on casting the rational approximation of MAJORITY as a linear program and con-
structing an explicit solution to its dual. We discuss our techniques in detail in
Section 1.3.

1.2 Additional Applications and Discussion

Functions of the form f; A f2 A --- A f; have important applications in compu-
tational learning theory. It is a central open problem in the area to PAC learn the
intersection of k halfspaces, i.e., Boolean functions of the form f (x1, x2,...,x,) =
sgn(}’ a;x; —0) for fixed reals ay, ay, . . . ,a, 0. This problem is wide open even for
the case k = 2. One promising approach [16], as we discussed earlier, would be to
show that intersections of k halfspaces (k small) have small threshold degree. Our
work shows that this project is exactly equivalent to understanding the approxima-
bility of a single halfspace by rational functions. This has several consequences.
On the upper bound side, it is reassuring to know that the rational approximation
route is optimal and one need not look for more exotic ways to derive a sign-
representation. Another reassuring consequence of our work is that the case k = 2
really is the hardest case to solve, in that a degree-d sign-representing polyno-
mial for the intersection of two halfspaces immediately gives a degree-(8dk log k)
sign-representing polynomial for the intersection of k halfspaces, for any k. (See
Theorem 6.5 for a more general statement.) Thus, it suffices to bound the thresh-
old degree for the case k = 2, by whatever means, in order to solve the general
problem. No such implication was known prior to this paper.

On the lower bound side, much effort has been invested to show the hardness
of learning intersections of halfspaces. Several conditional results have been ob-
tained, both with restrictions on the output hypothesis [8, 1, 15] and without [19].
Unconditional lower bounds are available [20] in less powerful models, such as
the SQ model. However, no unconditional, structural lower bounds are known for



PAC learning the intersection of £ = 2 halfspaces. Our results pave the way to
proving just such a lower bound: it suffices to prove that a halfspace cannot be
approximated pointwise to within 1/3 by a rational function of nontrivial degree.

Intersections of halfspaces also arise naturally in complexity theory. To illus-
trate, the result of Beigel et al. [7] that PP is closed under intersection can be
viewed precisely as an upper bound on the threshold degree of the intersection of
two halfspaces. Using similar techniques, one can prove that the analogue of this
class in communication complexity, known as PP, is also closed under intersec-
tion. These important advances contrast with our poor understanding of UPP*, a
linear-algebraic counterpart of PP with numerous applications to learning, cir-
cuits, communication, and matrix analysis [13, 14, 38, 32]. In particular, it is an
important open problem to prove or disprove the closure of UPP“ under intersec-
tion. In view of the recent techniques in [38, 32], a strong lower bound on the
threshold degree of the intersection of two halfspaces would constitute substantial
progress toward disproving the closure of UPP“ under intersection. Theorems 1.1
and 1.2 in this paper greatly facilitate the former task.

1.3 Our Techniques

Minsky and Paper’s proof [23] of an w (1) lower bound on the threshold degree
of MAJORITY(x,... X;) A MAJORITY(y],...,y,) USes a compactness argument
and basic properties of real univariate polynomials. O’Donnell and Servedio [26]
strengthen this lower bound to a near-optimal Q(logn/loglogn) with a substan-
tially more sophisticated proof. Specifically, the authors of [26] construct an ex-
plicit solution to the dual problem, i.e., an explicit probability distribution on the
Boolean hypercube (an orthogonalizing distribution, as it is sometimes called) with
respect to which the given function has zero correlation with all low-degree mono-
mials.

Our proof of Theorem 1.1 introduces a novel technique that is completely un-
related to the above two approaches. In some sense, our strategy is the exact op-
posite of the approach of O’Donnell and Servedio. Namely, we work directly with
the original, primal problem to show its infeasibility. To carry out this program, we
also end up appealing to linear-programming duality but for a smaller and much
different intermediate problem. The problem in question is that of finding, in the
positive spans of two given matrices, two vectors whose corresponding entries have
comparable magnitude. By an analytic argument, we are able to prove that this in-
termediate problem is precisely the missing link between sign-representation and
rational approximation.

Intuitively, our proof decomposes any sign-representation ¢ (x, y) of the func-
tion f(x) A g(y) into individual rational approximants for f and g. The interme-



diate problem about positive spans is the tool that enables this decomposition of
¢ (x,y), regardless of how tightly the x and y parts are coupled inside ¢. In this
way, we complete the proof without ever constructing an orthogonalizing distri-
bution, explicitly or implicitly. It is this feature of our proof that allows us to
handle conjunctions of arbitrary functions. Indeed, constructing an orthogonaliz-
ing distribution—already a considerable challenge in the seemingly well-structured
case [26] of two majority functions—would probably be altogether unrealistic for
subtler examples.

The above solution refers to functions on finite sets in R". To generalize it to
arbitrary compact sets, we use a classical result [33] from approximation theory
and the theory of linear inequalities. This result states that any infeasible compact
set of strict inequalities has a finite infeasible subset. By suitably formulating sign-
representation and rational approximation as compact sets of such inequalities, we
find ourselves in the familiar finite case which we have already solved.

We conclude by outlining our techniques in Theorem 1.4 on the rational ap-
proximation of MAJORITY. While the upper bound in this theorem extends well-
known previous constructions [28, 7], the lower bound is novel to the best of our
knowledge. Here, the closest previous line of research concerns continuous ap-
proximation of the sign function on [—1, —¢] U [g, 1], which unfortunately gives
no insight into the discrete case. For example, the lower bound derived by New-
man [24] in the continuous setting is based on the integration of relevant rational
functions with respect to a suitable measure, which has no meaningful discrete
analogue. We obtain our discrete lower bounds in a quite different way, by refor-
mulating the discrete case as a linear program and solving its dual from scratch.

1.4 Organization

After a review of necessary preliminaries in Section 2, we start our proof in Sec-
tion 3 with a number of observations and intermediate results. A complete solution
for functions of the form f; A fo A --- A fi on finite sets is given in Section 4.
We generalize this result in Section 5 to conjunctions f; A fo A --- A f; on ar-
bitrary compact sets. Section 6 further generalizes these results to compositions
h(f1, f2,..., fr) for various h as well as states a number of other observations.

In the concluding part of the paper, we illustrate our technique by settling the
threshold degree of the intersection of two majorities, stated above as Theorem 1.3.
Specifically, in Section 7, we prove Theorem 1.4 on the least error achievable by
rational functions of any given degree in approximating MAJORITY. The sought
Theorem 1.3 is then settled in Section 8, along with an optimal lower bound on the
threshold density of the function in question.



2 Preliminaries

Throughout this work, the symbol ¢ refers to a real variable, whereas u, v, w, x,y, z
refer to vectors in R" and in particular {0, 1}”. We adopt the following standard
definition of the sign function:

-1 ifr <O,
sgnt =<0 ift =0,
1 ift > 0.

Equations and inequalities involving vectors in R", such as x < y or x > 0, must
be interpreted component-wise, as usual. We let “log” stand for the logarithm to
base 2.

We view Boolean functions as mappings X — {—1,+1}, where X is an ar-
bitrary set and —1 corresponds to the logical “true.” Given a function f : X —
{—1,4+1} and asubset A C X, we let f|4 denote the restriction of f to A. In other
words, the function f|4 : A — {—1,+1} is given by fa(x) = f(x).

We say that a set X C R" is closed under negation if x € X & —x € X.
Given a function f : X — {—1,+1}, where X C R", we say that f is odd if X is
closed under negation and f(—x) = —f(x) for all x € X.

By the degree of a multivariate polynomial p on R", we shall always mean
the total degree of p, i.e., the greatest total degree of any monomial of p. Given
a function f : X — {—1,+1}, where X C R" is an arbitrary set, the threshold
degree deg, (f) of f is defined as the least degree of a multivariate polynomial p
such that f(x)p(x) > 0 for all x € X. In words, the threshold degree of f is the
least degree of a polynomial that represents f in sign. If no such polynomial p can
be found, we put deg, (f) = oco. Observe that if X is finite, then deg, (f) is finite
as well. Threshold degree is also known in the literature as “strong degree” [2],
“voting polynomial degree” [21], “PTF degree” [27], and “sign degree” [10].

Given functions f : X — {—1,+1}and g : ¥ — {—1,+1}, recall that the
function f Ag: X XY — {—1,+1}is given by (f Ag)(x,y) = f(x) Ag(y). The
function f V g is defined analogously. Observe that in this notation, f A f and f
are completely different functions, the former having domain X x X and the latter
X. These conventions extend in the obvious way to any number of functions. For
example, fi A f A--- A fi is a Boolean function with domain X; X Xp X - - - X Xj,
where X; is the domain of f;. Generalizing further, we let the symbol A (f1,..., fi)
denote the Boolean function on X; X X, X - - - X X} obtained by composing a given
function 2 : {—1,4+1}* — {—1,41} with the functions fi, f>,..., fx. Finally,
recall that the negated function f : X — {—1,+1} is given by f(x) = —f (x).



The symbol P stands for the family of all univariate real polynomials of degree
up to k. The following combinatorial identity is well-known.

Fact 2.1. For every integer n > 1 and every polynomial p € P,_1,

3 (’f) (—='p(i) =0,

i=0

This fact can be verified by repeated differentiation of the real function
n n o
1=y ( ) (—1y" iy
i=0 \!

att = 1, as explained in [26].

2.1 Symmetric Functions

Let S, denote the symmetric group on n elements. Foro € S, and x € {0, 1}", we
let ox denote the string (x4(1),. .., Xsm)) € {0,1}". A function ¢ : {0,1}" — R
is called symmetric if ¢(x) = ¢ (ox) for every x € {0,1}" and every 0 € S,,.
Equivalently, ¢ is symmetric if ¢ (x) is uniquely determined by  x;. Observe that
for every ¢ : {0,1}" — R (symmetric or not), the derived function

Psym(x) = aeEs,, [¢(0x)]

is symmetric. Symmetric functions on {0, 1}" are intimately related to univariate
polynomials, as demonstrated by Minsky and Papert’s well-known symmetrization
argument [23]:

Proposition 2.2 (Minsky & Papert). Ler ¢ : {0,1}" — R be a multivariate
polynomial of degree d. Then there is p € Py such that for all x € {0, 1}",

E [¢p0x)]=p X xi).
o€ES,

An important symmetric function is the majority function on {0, 1}", given by

1 if > x; > n/2,

—1 otherwise.

MAJ, (x) = {

10



2.2 Rational Approximation

Consider a function f : X — {—1,+1}, where X C R” is an arbitrary set. For
d > 0, we define

p(x)
q(x)

R, f) = inf sup
P9 xeX

fx) -

’

where the infimum is over multivariate polynomials p and g of degree up to d such
that g does not vanish on X. In words, R(d, f) is the least error in an approximation
of f by a multivariate rational function of degree up to d. We will also take an
interest in the related quantity

p(x)
q(x)

where the infimum is over multivariate polynomials p and g of degree up to d such
that ¢ is positive on X. These two quantities are related in a straightforward way:

RY(d, f) = inf sup
P9 xeX

fx) -

’

RT(2d,f) <R, f) < R*(, f). 2.1)

The second inequality here is trivial. The first follows from the fact that every ratio-
nal approximant p(x)/q(x) of degree d gives rise to a degree-2d rational approxi-
mant with the same error and a positive denominator, namely, {p(x)q(x)}/q (x)2.

The infimum in the definitions of R(d, f) and R*(d, f) cannot in general be
replaced by a minimum [33], even when X is finite subset of R. This is in contrast
with the more familiar setting of polynomials, where least-error approximants are
guaranteed to exist in any normed linear space.

3 Auxiliary Results

In this section, we prove a number of auxiliary facts about rational approximation
and sign-representation. This preparatory work will set the stage for the proofs of
our main results in later sections.

We start by spelling out the exact relationship between the rational approxima-
tion and sign-representation of a Boolean function.

Theorem 3.1. Let f : X — {—1,4+1} be a given function, where X C R" is
compact. Then for every integer d,

deg, (f)<d & RYWd,.f)<Ll

11



Proof. For the forward implication, let p be a polynomial of degree at most d
such that f(x)p(x) > 0 for every x € X. Letting M = max,cx |p(x)| and m =
min,ey |p(x)|, we have

o -2

m
<l-—<1
M

RYd, f) <
(d, f) < sup i

xeX

For the converse, fix a degree-d rational function p (x)/g(x) such that g(x) > 0
for x € X and

sup | f(x) — & < 1L
xeX (Z(X)
Then clearly f(x)p(x) > Oforall x € X. 0

Our next observation amounts to reformulating the rational approximation of
Boolean functions in a way that is more analytically pleasing.

Theorem 3.2. Let f : X — {—1,+1} be a given function, where X C R" is
compact and deg (f) < oo. Then for every integer d > deg (f), one has

R*d, f) = inf )
B =1 >
>l 241
where the infimum is over all ¢ > 1 for which there exist polynomials p, q of degree
up to d such that

0< %CI(X) < fX)p(x) < cq(x), x e X. (3.1)

Observe that the infimum in the statement of the lemma is over a nonempty set.
For example, one could let p be any degree-d polynomial with f(x)p(x) > O for
x € X, and then put ¢ = 1 and ¢ = max,ex{|p(x)| + [1/p(x)|}.

Proof of Theorem 3.2. Let p,q be arbitrary polynomials of degree up to d that
obey (3.1) for some ¢ > 1. Such polynomials do exist, by the remark preceding
this proof. Then

2c p(x) 2 -1
RTd,f) < - : < .
@) ilelg &) A2+1 qgx)| +1

12



For the converse, we first note that R*(d, f) < 1 by the construction just
given. Fix & > 0 small enough that R*(d, f) + 6 < 1. Take polynomials p, g of
degree up to d such that g is positive on X and

fx) — P <RT(,f)+6.

ex i(x)

xeX

Letting ¢ stand for the right member of this inequality, we find that (3.1) holds with
1 B 5 1+e

= ——— . = . CcC = .

p T .2 D, 9=4g V1%

2 -1 |
/ln s
Cz—|-1 c}lcz—l-l

Hence,
RYd,f)+6=¢c=

where the infimum is as in the statement of the lemma. Letting & — 0 completes
the proof. O

Our next result shows that if a degree-d rational approximant achieves error
€ in approximating a given Boolean function, then a degree-2d approximant can
achieve error as small as £2. The exact constants in this result are important for us.
Asymptotic dependencies of this flavor can be found, for example, in earlier work
by Beigel et al. [7, §3].

Theorem 3.3. Let f : X — {—1,+1} be a given function, where X C R". Let d
be a given integer. Then

2
I
4.1 1+V1—g2
wheree = R(d, f).

Proof. The theorem is clearly true for ¢ = 1. For 0 < € < 1, consider the univari-
ate rational function

44/1 — g2 t

T Vi—e rrd—ey

Calculus shows that

2
£
max |sgnt — S(@)| = <—> .
l—eJr|<l+e 1+V1—¢g2

13



Fix a sequence Ay, As,..., A,,... of rational functions of degree at most d such
that sup ¢y | f(x) — Ap(x)| — € as m — oc. Then

2
. E
Jm sup £ () = SAn()] < (H—lﬁ) |

It remains to note that each S(A,,(x)) is a rational function of degree at most 2d
with a positive denominator. O

Corollary 3.4. Let f : X — {—1,+1} be a given function, where X C R". Then
for all integersd > 1 and realst > 1,

R™(td, f) < R, )"~

Proof. If t = 2% for some integer k, then repeated applications of Theorem 3.3
yield
R*(2Y, f) <RQ@*'d, 1) <+ < RW, )Y

The general case follows because the interval [7/2,¢] contains a power of 2. 0

Recall that a key challenge in this work will be, given a sign-representation
¢ (x,y) of a composite function f (x) A g(y), to suitably break down ¢ and recover
individual rational approximants of f and g. We now present an ingredient of our
solution, namely, a certain fact about pairs of matrices based on Farkas’ Lemma.
For the time being, we will formulate this fact in a clean and abstract way.

Theorem 3.5. Fix matrices A, B € R™*" and a real ¢ > 1. Consider the following
system of linear inequalities in u,v € R":

1
— Au <Bv < cAu,
c

w0, (3.2)
v > 0.
If u = v = 0 is the only solution to (3.2), then there exist vectors w = 0and z > 0
such that
wlA+2"B>c(z"A+wT'B).

Proof. If u = v = 0 is the only solution to (3.2), then linear-programming duality
implies the existence of vectors w > 0 and z > 0 such that wlA > ¢z" A and
z"B > cw T B. Adding the last two inequalities completes the proof. O

14



We close this section with a natural topological property of Boolean functions
on compact sets. This property will be key to extending our main results from finite
sets to arbitrary compact sets.

Theorem 3.6. Let f : X — {—1,+1} be a given function, where X C R" is
compact. If deg, (f) < oo, then the sets £ (=1) and f~'(1) are compact.

Proof. By symmetry, it suffices to prove the claim for f~'(—1). Since f~'(—1) C
X is bounded, it remains to verify its closure. Let x1, x2,. .., X,,... be a sequence
in f~!(—1) such that x,, — x* as m — oo. By hypothesis, there exists a polyno-
mial p such that f(x)p(x) > O for all x € X. By continuity, we have p(x*) < 0,
which means that x* ¢ £~ (1). Since X is closed, we have x* € X and therefore

e X\ fH) = f71(=0. O

4 Solution for the Finite Case

In this section, we prove our main results on conjunctions of Boolean functions
on finite sets. For clarity of exposition, we first settle the case of fwo Boolean
functions, at least one of which is odd. While this case seems restricted, we will
see that it captures the full complexity of the problem.

Theorem 4.1. Let f : X — {—1,+1}and g : Y — {—1,+1} be given functions,
where X,Y C R" are arbitrary finite sets. Assume that { # 1 and g # 1. Let
d =deg, (f Ng). If f is odd, then

RYQ2d,f)+ RV, g < 1.

Proof. We first collect some basic observations. Since f # 1 and g # 1, we have
deg, (f) < d and deg, (g) < d. Therefore, Theorem 3.1 implies that

RYd, f) <1, RYd,g) < 1. 4.1)

In particular, the theorem holds if R (d, g) = 0. In the remainder of the proof, we
assume that R*(d,g) = ¢, where 0 < ¢ < 1.

By hypothesis, there exists a degree-d polynomial ¢ such that f(x) A g(y) =
sgn ¢ (x,y) forall x € X, y € Y. Define

X ={xeX:fx)=-1}.

Since X is closed under negation and f is odd, we have f(x) =1 & —x € X
We will make several uses of this fact in what follows, without further mention.

15



Put

14+ -6
“TVIZa=se

where 6 € (0, 1) is sufficiently small. Since R*(d,g) > (¢ — 1)/(c* + 1), we
know by Theorem 3.2 that there cannot exist polynomials p, g of degree up to d
such that

1
0< Eq(y) <gMpQy) < cq(y), yevr 4.2)

‘We claim, then, that there cannot exist reals a, > 0, x € X, not all zero, such that
1
= Y axp(=x,y) <g() D apxy)<c > ap(—x,y), yeV.
¢ xeX— xeX~ xeX—

Indeed, if such reals a, were to exist, then (4.2) would hold for the polynomials

p(y) =Y ex-ax@(x,y) and g(y) = Y ex- a—xP(—x,y). In view of the nonex-
istence of the a,, Theorem 3.5 applies to the matrices

[o(x.9] g0y

yev,xeX— ey, xex—

and guarantees the existence of nonnegative reals 4, u, for y € Y such that

S o (=x, ) + Y wyg(MP(x,y)

yeYy yey

> ¢ (Z uyp(—=x,y) + 3 )Lyg(y)q&(x,y)) , xeX . (4.3)

yey yey

Define polynomials «, f on X by
a('x) = Z {Ay¢(_X,y)_‘uy¢(xay)},

yeg (-1

/3)()6) = 2 {A’yqb(_x’y)-l_/’ty(p(x’y)}'

yeg~ (D)
Then (4.3) can be restated as
a(x) + B(x) > c{—a(=x) + f(=x)}, xeX.

Both members of this inequality are nonnegative, and thus {a(x) + 8 (x)}2 >
c2{—a(—x)+B(—x)}? for x € X~. Since in addition a(—x) < 0and f(—x) >0
for x € X, we have

{a(x) + )} > Ha(=x)+ (=0}, xeX .

16



Letting v (x) = {a(x) + B(x)}>, we see that

2
R Qd. f) < sup |f o) — S+ 1 X0 — v

<=<1-—¢,
xeX c v(=x)+yx)| 2

where the final inequality holds for all 6 € (0, 1) small enough. O

Remark 4.2. In Theorem 4.1 and elsewhere in this paper, the degree of a multi-
variate polynomial p(xp, x2,...,X,) is defined as the greatest total degree of any
monomial of p. A related notion is the partial degree of p, which is the maximum
degree of p in any one of the variables xi, x2,..., x,. One readily sees that the
proof of Theorem 4.1 applies unchanged to this alternate notion. Specifically, if
the conjunction f(x) A g(y) can be sign-represented by a polynomial of partial de-
gree d, then there exist rational functions F(x) and G (y) of partial degree 2d such
that || f —Glloo + 1€ — Flloo < 1. In the same way, the entire program of this paper
carries over, with cosmetic changes, to the notion of partial degree. Analogously,
our proofs apply to hybrid definitions of degree, such as partial degree over blocks
of variables. Other, more abstract notions of degree can also be handled. In the
remainder of the paper, we will maintain our focus on total degree and will not
further elaborate on its generalizations.

As promised, we will now remove the assumption, made in Theorem 4.1, about
one of the functions being odd.

Theorem 4.3. Let f : X — {—1,+1}and g : Y — {—1,+1} be given functions,
where X,Y C R" are arbitrary finite sets. Assume that f # 1 and g # 1. Let
d =deg, (f Ng). Then

RY(4d, f)+ R (2d,g) < 1 4.4)
and, by symmetry,

RY(2d,f)+ R"(4d,g) < 1.

Proof. It suffices to prove (4.4). Define X’ C R"*! by
X' ={(x1),(-x,—-1):x € X}.

It is clear that X' is closed under negation. Let f' : X’ — {—1,+1} be the odd
Boolean function given by

oo fre b=,
f(x’b)_{—f(—x) ifh=—1.

17



Let ¢ be a degree-d polynomial such that f(x) A g(y) = sgn ¢ (x, y). Fix an input
X € X suchthat f(X) = —1. Then

b)) Ag(y) =sgn{K(1+b)p(x,y) + ¢ (—x, )9 (%, »)}
for a sufficiently large constant K > 1, whence
deg, (f' A g) < 2d.
Applying Theorem 4.1 to f' A g yields
RY(4d, f)+ Rt (2d,g) < 1.
Since R (4d, f) < R (4d, f’) by definition, the proof is complete. O
Finally, we obtain an analogue of Theorem 4.3 for k > 3 functions.

Theorem 4.4. Let f1, fo,..., frt be given Boolean functions on finite sets
X1, X2,..., X C R, respectively. Assume that f; £ 1 fori = 1,2,...,k. Let
d=deg, (fiNfaN A fi). Then

k

Y RY(D, f) <1

i=1
for D = 8d log 2k.
Proof. Since fi, f>,..., fr # 1, it follows that for each pair of indices i < j, the

function f; A f; is a subfunction of fi A fo A--- A fi. Theorem 4.3 now shows that
foreachi < j,

RT4d, fi)+ R*4d, f)) < 1. 4.5)

Without loss of generality, R* (4d, fi) = max;—;__x R (4d, f;). Abbreviate ¢ =
R*(4d, f1). By (4.5),

1
R+(4d,ﬁ)<min{1—e,5}, i=2,3,....k
Now Corollary 3.4 implies that
k k
Y RU(D,f) <e+ Y RY4d, f)'ted < 1. O
i=l i=2
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S Extension to Functions on Compact Sets

Typically, one studies Boolean functions on finite sets. There are cases, however,
when Boolean functions naturally arise on infinite sets, such as the unit sphere
S"~! in learning theory. The purpose of this section is to generalize the results of
Section 4 from finite sets to arbitrary compact sets. We do so by applying compact-
ness and duality arguments to our work in the finite case. We will treat the results
of the previous section in a black-box manner and will not need to reinspect their
proofs.

5.1 Preliminaries

We will be concerned with systems of linear inequalities of the form
(u,x) >0, u€s, (5.1)

for some S C R". We call S the characteristic set of (5.1). The convex hull of a set
S C R", denoted conv S, is the smallest convex set in R” that contains S. Construc-
tively, the convex hull of S is the set of all finite convex combinations of vectors in
S, where by a convex combination of vectors is meant a linear combination with
positive coefficients that sum to 1.

An important ingredient in this section is the following classical result from the
theory of linear inequalities; see Cheney [11, §1.5] for an elegant proof.

Fact 5.1. Let S C R" be compact. Then O € conv S if and only if there does not
exist x € R" such that (u,x) > 0 forallu € S.

Corollary 5.2. Let S C R" be compact. Suppose that the system (u,x) > 0,u € S,
has no solution in x € R". Then there exists a finite subset A C S such that the
system {u,x) > 0, u € A, has no solution in x € R".

Proof. By Fact 5.1, there is a finite subset A C § such that 0 € conv A. Again by
Fact 5.1, the system (u, x) > 0, u € A, has no solution. ]

5.2 Approximation on Compact vs. Finite Sets

Our strategy will be to reduce the problem of rational approximation on a compact
set X to the analogous problem on a finite subset of X. More precisely, we will
show that if a Boolean function f is difficult to approximate on a given compact
set X, then f must be just as difficult to approximate on some finite subset A C X.
This general phenomenon arises frequently in approximation theory [11, 33].
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We start by proving an analogous result for sign-representation, which arises
in this development as a degenerate case of rational approximation. The result on
sign-representation is of independent interest, however, and we state it on its own.

Theorem 5.3 (Sign-representation on compact vs. finite sets). Let a function
f X — {=1,+1} be given, where X C R" is compact and deg (f) < oo. Then
there exists a finite subset A C X such that

deg. (fla) = deg (f).

Proof. Putd = deg,(f) — 1. Let D denote the set of all n-tuples (dy,...,d,) of

nonnegative integers di,...,d, with ) d; < d. Consider the following system of
inequalities in the real variables ay, 4, for (dy,...,d,) € D:
f(x) Zadl,._,,dnxf‘xgz x>0, x € X. (5.2)
D

Since d < deg, (f), this system has no solution. Theorem 3.6 implies that the sets
f~'(—=1)and £~ (1) are compact, which means that the characteristic set of (5.2)
is a compact subset of RP!. In view of the last two observations, Corollary 5.2
implies that some finite subset of the inequalities (5.2) has no solution. In other
words, there is a finite subset A C X with deg, (f|a) = d + 1. Since deg, (f|a) <
deg, (f) = d + 1, the proof is complete. 0

Remark 5.4. The hypothesis that deg, (f) < oo in Theorem 5.3 is necessary since
the restriction of f to any finite subset A C X has finite threshold degree.

We now turn to rational approximation. We will need the following technical
lemma.

Lemma 5.5. Let f : X — {—1,4+1} be given, where X C R" is compact and
deg, (f) < oo. Let d be an integer with d > deg, (f). Then there do not exist
polynomials p, q of degree up to d such that

0< %q(x) < fx)px) <cqx), xeX,
|1+ R*d, f)
TNT-Rr@ Y
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Proof. For the sake of contradiction, suppose that such p and g do exist. By the
compactness of X, there existe > 0 and M > 0 such that

e<qlx) < M, xeX,

and .
EQ(X) +e< f()px) <cq(x) —e, xeX.

In particular, there exists a real b such that 1 < b < ¢ and

1
0<2q(0) < f@pK) Sbgx),  xeX.
Applying Theorem 3.2, we arrive at the following contradiction:

b —1 -1

RTd, f) < <
@ f) b2+1 c2+1

= R*(, ). O

We are now in a position to give the promised result for rational approximation.

Theorem 5.6 (Rational approximation on compact vs. finite sets). Ler f : X —
{=1,4+1} be given, where X C R" is compact and deg, (f) < oco. Then for every
integer d, there exists a finite subset A C X such that

R™d,f)=R"(d, fla). (5.3)

Proof. Abbreviate ¢ = R'(d, f). If ¢ = 1, then this theorem follows from the
previously established Theorem 5.3, in view of Theorem 3.1.

We now examine the complementary case ¢ < 1. Let D denote the set of
all n-tuples (di,...,d,) of nonnegative integers di,...,d, with Y d; < d. Put
¢ = /(I +¢&)/(1—¢) and consider the following system of inequalities in the
2|D| real variables ay, . 4, and by, . 4, for (dy,...,d,) € D:

d q, 1 d d,
F) Y ag,,. axi" - xpm > =Y bg, ax ox, x€X,
D D
d d, d dy
)Y aa,..axy - x <D bg,..a,x" X" x€X, (5.4)
D D
>b x xS0 xeX
di,....dp A n s .
D
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By Lemma 5.5, this system has no solution. Theorem 3.6 implies that the sets
f~'(—=1)and £~ (1) are compact, which means that the characteristic set of (5.4)
is a compact subset of R?/P!. In view of the last two observations, Corollary 5.2
implies that some finite subset of the inequalities (5.4) has no solution. By Theo-
rem 3.2, this gives a finite subset A C X such that

i -1
R (d,f|A)>m=€-
Since R*(d, f|4) < € by definition, the proof is complete. O

5.3 Final Results

Using Theorem 5.6, we will now show that the results of Section 4 are valid for
arbitrary compact sets.

Theorem 5.7 (Main Theorem, two functions). Let f : X — {—1,+1} and
g: Y — {—1,4+1} be given functions, where X , Y C R" are compact sets. Assume
that f # 1 and g # 1. Assume further that d = deg, (f A g) < oco. Then

RT(2d,f)+ R (4d,g) < 1, (5.5)

RT(4d, f) + RT(2d,g) < 1. (5.6)
If in addition f is odd, then

RYQ2d,f)+R"(d,g) < 1. (5.7)

Proof. We prove (5.7) first. By Theorem 5.6, there exist finite subsets A C X
and B C Y such that RY(2d, f) = R*(2d, f|4) and R (d,g) = R"(d, g|g). We
may assume that f|4 # 1, since otherwise we can extend A to contain a point
from f~'(—1). Similarly, we may assume that A is closed under negation and that
glp # 1. Since the restriction of f A g to A X B has threshold degree is d or less,
(5.7) now follows from Theorem 4.1.

The proofs of (5.5) and (5.6) are analogous, except one invokes Theorem 4.3
instead of Theorem 4.1. 0

In the same way, one obtains the following compact analogue of Theorem 4.4.

Theorem 5.8. Let f1, f>,..., fr be given Boolean functions on compact sets
X1, X5,..., Xk C R, respectively. Assume that f; £ 1 fori = 1,2,...,k. Let
d=deg, (fiNfaN A fi). Then

k

> RT(D, fi) <1

i=1
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for D = 8d log 2k.

Proof. Analogous to the proof of Theorem 5.7. O

6 Disjunctions and Other Combining Functions

In Sections 4 and 5, we were concerned exclusively with conjunctions of Boolean
functions. As we will now see, the results of the previous sections apply just as
well to disjunctions and many other combining functions.

Disjunctions are an illustrative starting point. Consider two Boolean functions
f:X —>{-1,+41}andg:Y — {—1,+1}, where X,Y C R" are compact sets
and f, g # —1. Assume further that the function f V g has finite threshold degree,
d. Then, we claim that

R (4d, f)+ R"(4d,g) < 1. 6.1)

To see this, note first that the function f V g has the same threshold degree as its
negation, /' A g. Applying Theorem 5.7 to the latter function shows that

RY(4d,f) + R"(4d,3) < 1.

This is equivalent to (6.1) since approximating a function is the same as approxi-
mating its negation: R™(4d, f) = RT(4d, f) and RT(4d,g) = R*(4d,g). As in
the case of conjunctions, (6.1) can be strengthened to

RTQd,f)+Rt(2d,g) < 1

if at least one of f, g is known to be odd. These observations carry over to disjunc-
tions of multiple functions, f1V oV ---V fi.

The above discussion is still too specialized. In what follows, we consider
composite functions h(f1, fa,..., fi), where h : {—1,+1}* — {—1,+1} is any
given Boolean function. We will shortly see that the results of the previous sections
hold for various & other than 4 = AND and 4 = OR.

We start with some notation and definitions. Let f,h : {—1,+1}* —
{—1,+41} be given Boolean functions. Recall that f is called a subfunction of
h if for some fixed strings y, z € {—1, +1}¥, one has

f@X)=h(...,xi Ny VZzZi...)

for each x € {—1, +1}*. In words, f can be obtained from % by replacing some of
the variables x1, xp, . .., x; with fixed values (—1 or +1).
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Definition 6.1. A function & : {—1,+1}* — {—1,41} is AND-equivalent if for
each pair of indices i, j, where 1 < i < j < k, at least one of the eight functions

Xi A Xj, Xi \Y Xj,
xi N\ X_j, xi V X_j,
Xi N\ xj, xi V xj,
Xi N\ Xj, Xi V Xj
is a subfunction of 4 (x).
Theorem 6.2. Let f1, f>,. .., fr be nonconstant Boolean functions on compact sets

X1, X2,..., X C R, respectively. Let h : {—1,+1}k — {—1,+1} be an AND-
equivalent function. Assume that d = deg (h(f1, f2,..., fx)) < 0o. Then

k
> RT(D, fi) <1
i=1

for D = 8d log 2k.

Proof. Since h is AND-equivalent, it follows that for each pair of indices i < j,

one of the following eight functions is a subfunction of h(fi,..., fr):
finfie Vs
fi N fis fiV fjs
fi N fis fiV fjs
fi N i fiV i

By Theorem 5.7 (and the opening remarks of this section),
RT4d,fi)+ R*4d, f;) < 1.

The remainder of the proof is identical to the proof of Theorem 4.4, starting at
equation (4.5). ]

In summary, the results of the previous sections apply to compositions of the
form h(f1, fa...., fi) for various h. For a function & : {—1,+1}* — {—1,+1} to
be AND-equivalent, # must clearly depend on all of its inputs. This obvious neces-
sary condition is often sufficient, for example when 4 is a read-once AND/OR/NOT
formula or a halfspace. Hence, Theorem 1.2 from the Introduction is a corollary of
Theorem 6.2.

If more information is available about the combining function %, Theorem 6.2
can be generalized to let some of fi,..., f; be constant functions. For example,
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some or all of the functions f1,..., fx in Theorem 5.8 can be identically true. An-
other direction for generalization is as follows. In Definition 6.1, one considers
all the (g) distinct pairs of indices (i, j). If one happens to know that f] is harder
to approximate than f>,..., fi, then one can relax Definition 6.1 to examine only
the k — 1 pairs (1,2),(1,3),...,(1,k). We do not formulate these extensions as
theorems, the fundamental technique being already clear.

Our results so far can be viewed as a technique for proving lower bounds on
the threshold degree of composite functions i (f1, fa,..., fr). We make this view
explicit in the following statement, which is the contrapositive of Theorem 6.2.

Theorem 6.3. Let f1, f,. .., fx be nonconstant Boolean functions on compact sets
X1, Xa,..., X C R, respectively. Leth : {—1,+1}* — {—1,41} be an AND-
equivalent function. Suppose that

k
Y RY(D, fi) =1

i=1

for some integer D. Then

degy (h(f1, f2,. .., fi)) >

. 2
8log2k ©.2)

Remark 6.4 (On the tightness of Theorem 6.3). Theorem 6.3 is close to optimal.
For example, when 7 = AND, the lower bound in (6.2) is tight up to a factor of
O(k log k). This can be seen by the well-known argument [7, 16] described in the
Introduction. Specifically, fix an integer D such that Y RT(D, f;) < 1. Then there
exists a rational function p;(x;)/q;(x;) on X;, for i = 1,2,...,k, such that g; is

positive on X; and
k

> sup

i=1 X€E€X;

Filx) — pi(xi)

<1
qi(x;)

As aresult,

k k
N\ fi(xi) = sgn (k -1+ fi(xi))
i=l i=1

o p,-<x,->)
= k—1 .
sgn( +,§1 qi (x;)

Multiplying the expression in parentheses by the positive quantity [] ¢g; (x;) yields

k

k k
N fi(xi) = sgn ((k — D[] gi(x)+ Y pilxi) 11 ‘Ij(xj)> ,
i=1 i

i=1 i=1 je{lo kN {i}
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whence
deg, (iAo A A fo) <kD.

This settles our claim regarding 4 = AND. For arbitrary AND-equivalent functions
h: {=1,+1}* — {—1,+1}, a similar argument (cf. Theorem 31 of Klivans et
al. [16]) shows that the lower bound in (6.2) is tight up to a factor of poly(k).

We close this section by revisiting the discussion in Section 1.2 on learning
intersections of halfspaces. We have:

Theorem 6.5. Let f : X — {—1,+1} be a given function, where X C R" is
compact. Suppose that f A [ has finite threshold degree. Then for every integer
k>2,

degy (fAfA---Af)< @Bklogk)-degs(f Af). (6.3)
k

Proof. Putd = deg, (f A f). Theorem 5.7 implies that Rt (4d, f) < 1/2, whence
R (8dlogk, f) < 1/k by Corollary 3.4. By the argument in Remark 6.4, this
proves the theorem. O

To illustrate, let € be the concept class of halfspaces on {0, 1}". Theorem 6.5
shows that the task of constructing a sign-representation for the intersection of k
halfspaces reduces to the case k = 2. In other words, solving the problem for k = 2
solves it at once for all k. The dependence on k in (6.3) is tight up to a factor of
16log k, even in the simple case when f is the OR function on 7 bits [23].

7 Rational Approximation of the Majority Function

The study of rational approximation dates back to the remarkable 1877 article by
E. L. Zolotarev [12], a student of P. L. Chebyshev. Interest in the subject was revived
a century later when D. J. Newman [24] obtained surprisingly accurate rational
approximations for several common functions in €[—1, 1], such as |¢| and ¢ for
rational @ > 0. Newman’s discovery inspired a considerable body of work in the
area; see the monograph of Petrushev and Popov [29] for an excellent introduction.

Newman’s work has also found important applications in theoretical computer
science. These applications are based on the rational approximation of sgn¢, ob-
tained from Newman’s approximation of |¢| by dividing by 7, see [28]. Paturi and
Saks [28] used this fact to develop a novel technique for studying the size of thresh-
old circuits. Siu et al. [39] continued this line of work with new lower bounds on
circuit size. Beigel et al. [7] used the rational approximation to the sign function
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to establish the closure of PP under intersection and various other reductions. Kli-
vans et al. [16] used rational approximation to obtain much improved algorithms
for PAC learning intersections of low-weight halfspaces under arbitrary distribu-
tions.

The goal of this section is to determine R (d, MAJ,) for each integer d, i.e.,
to determine the least error to which a degree-d multivariate rational function can
approximate the majority function. We will then combine this result with Theo-
rem 4.3 to prove a conjecture of O’Donnell and Servedio [26]. As is frequently the
case with symmetric Boolean functions such as majority, we first reduce the mul-
tivariate problem of analyzing R (d, MAJ,) to a univariate question. Specifically,
given an integer d and a set S C R, we define

p()
sgnt — ——

RT(d,S) = inf su
5 ()

p.q teS

>

where the infimum ranges over p,q € Py such that g is positive on S. We have:

Theorem 7.1. For every integer d,

RT(d,MAJ,) < RT(d —2,{£1,£2,...,£[n/21}), (7.1)
RT(d,MAJ,) > RT(d,{£1,£2,...,+[n/2]}). (7.2)

Proof. We prove (7.1) first. Fix a degree-(d — 2) approximant p(¢)/q(t) to sgnt
on S = {+£l1,...,£[n/2]}, where g is positive on S. For small 6 > 0, define

_Ppt) =6

A =5 Te

Then As is a rational function of degree at most d whose denominator is positive
on S U {0}. Finally, we have A5(0) = —1 and

t
sgnt _r®

q()

’

lim max | sgnt — As ()| = max
8—0 €S =

which yields the corresponding approximant for MAJ,, namely, As (> x; — |n/2]).

We now turn to the proof of the lower bound, (7.2). Fix a degree-d approximant
P (x)/Q(x) for MAJ,, where Q(x) > 0 for x € {0, 1}". Let & denote the error of
this approximant, ¢ < 1. Then

(I1-8)0x <-P)<U+0X
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whenever Y x; € {0,1,..., [n/2]}, and
(1-8)0Kx) <Px)<U+e)Q0(x)

whenever Y x; € {|[n/2] + 1,...,n}. Now, Proposition 2.2 guarantees the exis-
tence of univariate polynomials p,q € P; such that for all x € {0,1}", one has
P> xi) = Eges, [P(ox)] and g3 xi) = Eqes,[Q(0x)]. In view of the previous
two inequalities for P and Q, we obtain:

(I—&)q@) < —p@) < +e)q@), t=0,1,...,[n/2];
A—-8)q@) <p@t) <A4+e)q@), t=\n/2]+1,...,n.

Thus,
max Sgnt — M &
(=142, % (n/2) qt+n/2D)| =
Since ¢ is positive on {0, 1,...,n}, this completes the proof of (7.2). O

Remark 7.2. The proof that we gave for the upper bound, (7.1), illustrates a useful
property of univariate rational approximants A(t) = p(t)/q(t) on a finite set S.
Specifically, given such an approximant and a point t* ¢ S, there exists an approx-
imant A’ with A’(t*) = a for any prescribed value a and A’ ~ A everywhere on S.
One such construction is

(t —t")p(t) +ad

(t—t*)q)+9o

for an arbitrarily small constant 6 > 0. Note that A’ has degree only 1 higher than
the degree of the original approximant, A. This phenomenon is in sharp contrast to
approximation by polynomials, which do not possess this corrective ability.

A =

Theorem 7.1 states that rational approximation of the majority function is es-
sentially equivalent to rational approximation of the sign function over the corre-
sponding finite support. We give a detailed solution to the latter problem:

Theorem 7.3 (Rational approximation of MAJORITY). Let n,d be positive inte-
gers. Abbreviate R = RY(d,{£1,%2,...,+n}). For 1 <d < logn,

1 1

Forlogn <d < n,
d
R= e ) . —
eXp{ (log(Zn/d))}

R =0.

Ford > n,

Moreover, the rational approximant is constructed explicitly in each case.
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Theorem 7.3 is the main result of this section. We establish it in the next two
subsections, giving separate treatment to the cases d < logn and d > logn (see
Theorems 7.5 and 7.10, respectively). This gives a rather complete answer to how
well rational functions can approximate majority.

Before we delve into the proof of Theorem 7.3, we take a moment to survey
related results. Long before our work, an upper bound of exp{—Q(d/logn)} on
the approximation error for d > logn was known and used in the complexity
literature, e.g., [28, 39, 7, 16]. We improve on that construction and extend it to all
possible d. Our primary contribution in Theorem 7.3, however, is a matching lower
bound on the error for each d. Indeed, it is only the lower bounds of Theorem 7.3
that we need in this paper. Here, we are not aware of any previous work. The
closest previous line of research concerns continuous approximation of the sign
function on [—1, —]U[e, 1], which unfortunately gives no insight into the discrete
case. For example, the lower bound derived by Newman [24] in the continuous
setting is based on the integration of relevant rational functions with respect to
a suitable measure, which has no meaningful discrete analogue. We obtain our
discrete lower bounds in a quite different way, by reformulating the discrete case
as a linear program and providing an explicit solution to its dual.

7.1 Low-Degree Approximation

We start by deriving a method for lower bounds on the approximation error.

Theorem 7.4. Let d be an integer, 0 < d < 2n — 1. Fix a nonempty subset
S C {£1,£2,...,£n} closed under negation. Suppose that there exists a real
a € [0, 1] and a polynomial r € P,_4—1 such that

rt) =0, te€{-n....n}\S, (7.3)
and
(=D'r@) > alr(=0)|,  t€Sn{1,2,....n}. (7.4)
Then .
RY.9 >

Proof. Fix p,q € Py such that ¢ is positive on S. Put

14Q)
sgnt — M

£ = max
tesS
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We assume that € < 1 since otherwise there is nothing to show. For ¢t € SN
{1,2,...,n}, we have

(I—e)q@) < pt) < (1 +&)q() (7.5)

and
(I—&)g(—t) < —p(=1) < (1 +e)q(-1). (7.6)

Consider the polynomial u(¢) = q(¢) +¢g(—t) + p(t) — p(—t). Equations (7.5) and
(7.6) show that fort € SN {1,2,...,n},one has u(t) > 2 —¢&){q@) + q(—1)}
and |u(—1)| < e{q(t) + q(—t)}, whence

2
u) > (— — 1) lu(—1)|, reSn{L,2,...,n}. (7.7)
£
‘We also note that
u() >0, resSn{l,2,...,n} (7.8)

Since r(¢)u(t) has degree at most 2n — 1,
0= én (n2:t> (— ) r(t)u) by Fact 2.1
2
= 3 < " ){(—1)’r(t)u(t) + (—1)’r(—t)u(—t)} by (7.3).
L}

reSn{1,.. n+t

At the same time, inequalities (7.4), (7.7), and (7.8) show that
2
=D'r@u@) > a (E - 1) [r (—t)u(—1)|, teSn{L,2,...,n}.

We immediately obtain o (% — 1) < 1, as was to be shown. O

The method of Theorem 7.4 amounts to reformulating (7.7) and (7.8) as a linear
program and exhibiting a solution to its dual. The presentation above does not ex-
plicitly use the language of linear programs or appeal to duality, however, because
our goal is solely to prove the correctness of our method and not its completeness.

Using Theorem 7.4, we will now determine the optimal error in the approxima-
tion of the majority function by rational functions of degree up to logn. The case
of higher degrees will be settled in the next subsection.

Theorem 7.5 (Low-degree rational approximation of MAJORITY). Let d be an
integer, 1 < d < logn. Then

1 1
exp{—@ (m)} < R+(d,{:f:1,:f:2,,:tl’l}) < CXP{—W}.
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Proof Put A = [n'/?] > 2 and § = {£1,+A,+A%,...,£AY}. Define r €
Py, —q-1 by

r@t) = (— 1)”H(z—Af) I «-o.
ie{—n,..n}\S
Forj=0,1,2,...,d,
|r(AJ)| ]1:[ Alf dHl Al\/> AJ - (oo Ai/Z_ 1>2
|I"( AJ)| iz A] _i_At\/K i=j Al\/i—i-A] Fale Ai/2 41

1 18
>exp{—5 .—}>exp{——},
2 a7 Va

where we used the bound (a —1)/(a+1) > exp(—2.5/a), valid fora > V2. Since
sgnr(t) = (—1)" for positive r € S, we conclude that

(- 1)’r(t)>eXp{—\17}|r( DI, reSnN{L,2,....n}

Since in addition r vanishes on {—n,...,n} \ S, we infer from Theorem 7.4 that
R*(d,S) > exp{—18/VA}.
We now turn to the proof of the upper bound. Following [24, 28], we let

U

p(l — H (l +n(2i—l)/(2d)) .

By considering every interval [0/ @D p+D/Qd)) where i =0,1,...,2d — 1, one
sees that
nl/Qd) 4 q
P(t)/W|P( B, t=12,...,n.

We conclude that R* (d, {£1,42,...,4n}) < 1—n""/4 the approximant in ques-
tion being n =GV {p (1) — p(=0)}/{p(®) + p(=1)}. O

7.2 High-Degree Approximation

In the previous subsection, we determined the least error in approximating the
majority function by rational functions of degree up to logn. Our goal here is to
solve the case of higher degrees.

We start with some preparatory work. First, we need to accurately estimate
products of the form [],; (A’ + 1)/(A’ — 1) for all A > 1. A suitable lower bound
was already given by Newman [24, Lem. 1]:
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Lemma 7.6 (Newman). Forall A > 1,

A1 2(A" — 1)
- > —_— .
1;[1 A1 eXp{A"(A— 1)}

Proof. Immediate from the bound (a+1)/(a—1) > exp(2/a), valid fora > 1. [
We will need a matching upper bound:

Lemma 7.7. Forall A > 1,

OOAi+1< 4
[ =7 <expya”7¢

i=1

Proof. Let k > 0 be an integer. By the binomial theorem, A’ > (A — 1)i + 1 for
integers i > 0. As a result,

N NS ) k+ [525]
ll:IIAf—lg,H?(lJFA—l)g( k )

Also,
ﬁ Al +1 <ﬁ - 2 - 2A
1 — ex .
s A 1 (AK+T — DA Pl T Da—1

0
Setting k = k(A) = L%J , we conclude that

ﬁAi+1<ex C
WA= =P\ a1

where

k(A + [ 25 ] 2A
C=ZL£{(A—1)1n( k(A)A1)+m}<4’ O

We will also need the following binomial estimate.

Lemma 7.8. Put p(t) = [1/_, (t —i — %) . Then

p(=1)
p)

< O(16").
t=1,2,...,n+1
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Proof. Fort =1,2,...,n 4+ 1, we have
2t —2)!'2n — 2t +2)! t'2n + 2t + 1)!

POl = ¢t —Dln—t+ DI’ (=01 = 412t + D!(n + 1)1
As a result,
(2n+2t+1) (2n+l> 6(24")6(22")
‘p(—t) _ ot 2t ntt) _ N N
p(t) 2t + 1 (2t—2>(2n—2t+2> = @(&) ’
t—1 n—t—+1 n
which gives the sought bound. O

Our construction requires the following claim, which we settle in advance.

Lemma 7.9. Let n,d be integers, 1 < d < n/55. Put p(t) = [[¢Z] ¢t — dAN'V/A),
where A = (n/d)'“. Then

pUaN D | {_41n3d_ 8 }
p—dai)y| ” TP mGd) T VA1)

j=l,d

Proof. Fix j =1,2,...,d. Thenforeachi =1,2,...,j — 1,
. . - 1
AN —dAl\/Z>d(AJ*’*% _ 1) > E(j—i)lng,

and thus

j—1 . 1 4 j—1 1
- > - —
1 ( dAT — dA’\/K) P\ " inGu/d) 2
41n3d
> exp {_ln(n/d) } . (7.9)

For brevity, let & stand for the final expression in (7.9). Since d < n/55, we have
ldA | — dA 1WA > 1. As a result,

'p(LdAjJ) >f1:[1dA-i—1—dAi\/K A= gAI/A — dAN
p(—lAA |7 D AN +dAVA D dAIVA +dN
IZVAN — dAVA 4= AATVA — dN

>E]

izi AN+ dAIVA i dANVA 4 dA
ooAi/Z_l 2
-+ (157+7)
i A2 1
8
= 5expy — ,
: p{ x/K—l}
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where the last inequality holds by Lemma 7.7. O
We have reached the main result of this subsection.

Theorem 7.10 (High-degree rational approximation of MAJORITY). Let d be
an integer, logn <d < n — 1. Then

+ = o (it
R™(d,{£l,+£2,...,%n}) —exp{ G)(1(,g(2rz/cl)>}

Also,
RT(n,{£1,42,...,+n}) =0.

Proof. The final statement in the theorem follows at once by considering the ratio-
nal function {p(t) — p(—=1)}/{p (@) + p(—1)}, where p(¢) = [1/_, (t +i).
Now assume that logn < d < n/55. Let

= Log(i/dﬂ AT (S)w'

Define sets

Sy = {*1,+2,..., £k},
Sy ={£ldA'] : i =1,2,....d},
S =851US,.

Consider the polynomial

rit) =(=D"ri@r@ [ -0,

ie{-n,..n}\S
where
k 1 d—1 )
ri) =] (t—i—i), r@) = [[ ¢ —dA'VA).
i=1 i=1
‘We have:
min O SR NS TN . ra(ldAT])
1e8Sn{1,20m} |F(=t) |~ imlok+1 | F1(=i) | i=l,..d |ra(—|dAT])

- __Cd
P\ T log(n/d)
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by Lemmas 7.8 and 7.9, where C > 0 is an absolute constant. Since sgn p(t) =
(—1) for positive t € S, we can restate this result as follows:

Cd
(—1)'r(t)>eXp{—W}|r(—t)|, teSN{L,2,...,n}

Since r vanishes on {—n,...,n} \ S and has degree < 2n — 1 — d, we infer from
Theorem 7.4 that R*(d, S) exp{—Cd/log(n/d)} . This proves the lower bound
for the case logn < d < n/55.

To handle the case n/55 < d < n — 1, a different argument is needed. Let

r(t) = (=" tH( _1_5) H (> -
i=d+2

By Lemma 7.8, there is an absolute constant C > 1 such that

r(t)
r(=t)

Since sgnr(t) = (—1)" fort = 1,2,...,d + 1, we conclude that

>Cc, t=1,2,...,d + 1.

(=D'r@t) > C 4 r(=1), r=1,2,...,d + 1.

Since the polynomial r vanishes on {—n,...,n}\{£1,£2,...,4+(d + 1)} and has
degree 2n — 1 — d, we infer from Theorem 7.4 that

RY(d,{£1,42,...,#d+ D} >C™

This settles the lower bound for the case n/55 <d <n — 1.
It remains to prove the upper bound for the case logn < d < n — 1. Here we
always have d > 2. Letting k = |d /2] and A = (n/k)'/¥, define p € Py by

k k ‘
p@) =l +d[]¢+kA).

i=1 i=1

Fix any point 7 € {1,2,...,n} with p(—t) # 0. Letting i* be the integer with
kAT <t < kATT!, we have

p(t) ~kA! +‘+kA’ ﬁ kAT + kAT ﬁA’-l—l
Ip (=)l ,-ZOkAl*“ iZirp1 kAT — kAT S
- 2(A"—1)
expy ——— ¢ »
PAAA <)
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where the last inequality holds by Lemma 7.6. Substituting A = (n/k)'/*, we
obtain p(t) > A|p(—t)|fort = 1,2,...,n, where

k
= marm )

As aresult, Rt (2k, {£1,+£2,...,+n}) < 2A/(A? + 1), the approximant in ques-
tion being

A2—1 p@)—p(=1)
A+ 1 p@)+p(=1)

8 Threshold Degree of the Intersection of Two Majorities
Consider the function f : {0,1}" x {0,1}" — {—1,+1} given by
fx,y) =MAJ, (x1,...,x,) AMAL, (y1,...,Yn)-

Recall from the Introduction that f has threshold degree at most O(logn), by a
result of Beigel et al. [7]. We now prove that this upper bound is tight, confirming
a conjecture of O’Donnell and Servedio [26].

Theorem 1.3 (Restated from p. 5). Let f : {0,1}" x {0,1}* — {—1,+1} be
given by f(x,y) = MAJ,(x1,...,x,) AMAJ,(y1,...,Yn). Then

degy (f) = Q(logn).

Proof. Theorems 7.1 and 7.3 show that R™ (a logn, MAJ,) > 1/2 for a constant
a > 0. In view of Theorem 4.3, this completes the proof. ]

In addition to threshold degree, several other complexity measures are of in-
terest when sign-representing Boolean functions by real polynomials. One such
complexity measure is density, i.e., the number of distinct monomials in any poly-
nomial that sign-represents a given function. Constructions in [7, 16] show that
the function f(x,y) = MAJ,(x) A MAJ,(y) can be sign-represented by a lin-
ear combination of n?1°€"™ monomials, namely, the monomials of degree up to
O (log n). Klivans and Sherstov [20, Thm. 1.2] complement this with a lower bound
of p®Uogn/loglogn) on the number of distinct monomials needed. Our next result
improves this lower bound to a tight n®02")
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Theorem 8.1 (Threshold density of MAJ A MAJ). Let f : {0,1}" x {0,1}" —
{—1,4+1} be given by f(x,y) = MAJ,(x1,...,x,) A MAJ,(¥1,-..,Yn). Assume
that

k
f(x,y) =sgn (2 li¢i(x,y))

i=1

for some reals Ay,..., A, where each ¢; computes the parity or conjunction of a
subset of the literals X1,X1,...,Xn;s Xn> V1> Y- - - » Yn> Yn- Lhen
k= nQ(logn)‘

Proof. ldentical to the proof of Klivans and Sherstov [20, §3.3, Thm. 1.2], with
the only difference that Theorem 1.3 should be used in place of O’Donnell and
Servedio’s earlier result [26] that deg (f) = Q(logn/loglogn). O
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