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Abstract: This paper argues for a new approach to build-
ing Byzantine fault tolerant systems. We observe that
although recently developed BFT state machine replica-
tion protocols are quite fast, they don’t actually tolerate
Byzantine faults very well: a single faulty client or server
is capable of rendering PBFT, Q/U, HQ, and Zyzzyva
virtually unusable. In this paper, we (1) demonstrate that
existing protocols are dangerously fragile, (2) define a
set of principles for constructing BFT services that re-
main useful even when Byzantine faults occur, and (3)
apply these new principles to construct a new protocol,
Aardvark, which can achieve peak performance within
25% of that of the best existing protocol in our tests and
which provides a significant fraction of that performance
when the network is well behaved and up to f servers
and any number of clients are faulty. We observe useful
throughputs between 11706 and 38667 for a broad range
of injected faults.

1 Introduction
This paper is motivated by a simple observation: al-
though recently developed BFT state machine replication
protocols have driven the costs of BFT replication to re-
markably low levels [1, 10, 13, 20], the reality is that they
don’t actually tolerate Byzantine faults very well. In fact,
a single faulty client or server can render these systems
effectively unusable by inflicting multiple orders of mag-
nitude reductions in throughput and even long periods
of complete unavailability. Performance degradations of
such degree are at odds with what one would expect from
a system that calls itself Byzantine fault tolerant—after
all, if a single fault can render a system unavailable, can
that system truly be said to tolerate failures?

System Peak Performance Faulty Client
PBFT [10] 61710 0
QU [1] 23850 crash
HQ [13] 7629 inc†

Zyzzyva [20] 65999 0
Aardvark 38667 38667

Fig. 1: Observed Peak throughput of BFT systems in fault-free
case and when a single faulty client submits a carefully crafted
series of requests. We detail our measurements in Section 7.2.
† The HQ implementation does not implement the error han-
dling steps necessary to protect against the desired faulty client
behavior.

To illustrate the extent of the problem, Figure 1 shows
the measured performance of a variety of systems both
in the absence of failures and when a single faulty client
submits a carefully crafted series of requests. As we
show later, a wide range of other behaviors—faulty pri-
maries, recovering replicas, etc.—can have a similar im-
pact on performance. We believe that these bona-fide
collapses are byproducts of a single-minded focus on de-
signing BFT protocols with ever more impressive best-
case performance. While this focus is understandable—
after years in which BFT replication was dismissed as
too expensive to be practical, it was important to demon-
strate that high performance BFT is not an oxymoron—it
has led to protocols whose complexity undermines ro-
bustness in two ways: (1) the protocols’ design includes
fragile optimizations that allow a faulty client or server
to knock the system off of the optimized execution path
to an expensive alternative path and (2) the protocols’
implementation often fails to handle properly all of the
intricate corner cases, so that in practice the protocols
are even more vulnerable than they appear on paper.

The primary contribution of this paper is to put for-
ward a case for a new approach to building BFT systems.
Our goal is to change the way BFT systems are designed
and implemented by shifting the focus from construct-
ing high-strung systems that maximize best case perfor-
mance to constructing systems that to offer acceptable
and predictable performance under the broadest possible
set of circumstances—including when faults occur.

The last row of of Figure 1 shows the performance of
Aardvark, a new BFT state machine replication protocol
whose design and implementation are guided by this new
philosophy.

Taking inspiration from the restricted maxi-min strat-
egy of maximizing the worst case payoff across all
games [28], Aardvark optimize system performance
across both gracious intervals—when the network is syn-
chronous, replicas are timely and fault-free, and clients
correct—and uncivil execution intervals in which net-
work links and correct servers are timely, but up to
f = b n−1

3 c servers and any number of clients are faulty.
In some ways, Aardvark is very similar to traditional

BFT protocols: Clients send request to a primary who
relays requests to the replicas who agree on the request
before responding to the client just like PBFT, Zyzzyva,
HQ, QU, ZZ, Paxos, Mencius, Scrooge, High throughput
BFT, etc. In other ways Aardvark is very different.
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Aardvark utilizes signatures for authentication where
previous systems have gone to great pains to avoid them;
Aardvark performs regular view changes where previous
systems have treated view changes as an option of last
resort; Aardvark relies on point to point communication
where previous systems have received significant bene-
fits from utilizing IP multicast.

These design decisions directly challenge conven-
tional wisdom. As Castro observes, “eliminating signa-
tures and using MACs instead eliminates the main per-
formance bottleneck in previous systems [29, 22].” [9].
All view changes distract the system from process-
ing new requests—regular view changes institutional-
ize overhead. To renounce IP-multicast is to give up
throughput, deliberately.

Surprisingly, Aardvark’s counter-intuitive choices im-
pose only a modest cost on its peak performance. As
Figure 1 illustrates, Aardvark sustains peak throughput
of 38667 requests/second, which is within 20% of the
best performance we measure on the same hardware for
four state of the art protocols. At the same time, Aard-
vark’s fault tolerance is dramatically improved. For a
broad range of client, primary, and server misbehaviors
we prove that Aardvark’s performance remains within a
constant factor of its best case performance. Testing of
the prototype shows that these changes significantly im-
prove robustness.

Once again, however, the main contribution of this pa-
per is not the Aardvark protocol itself. It is instead a
new approach that can—and we believe should—be ap-
plied design of other BFT protocols. In particular, we
(1) demonstrate that existing protocol are fragile, (2) ar-
gue that protocols should be designed using the restricted
maxi-min criteria, and (3) demonstrate by constructing
Aardvark that the restricted maxi-min approach is viable:
we gain qualitatively better robustness at only modest
cost to best-case performance.

In Section 2 we describe our system model and the
guarantees appropriate for high assurance systems. In
Section 3 we expand on the need to rethink Byzantine
fault tolerance and identify a new set of design principles
for BFT systems. In Section 4 we present an overview
of the design of Aardvark. In Section 5 we describe in
detail the important portions of the Aardvark protocol. In
Section 6 we present an analysis of Aardvark’s expected
performance. In Section 7 we present our experimental
evaluation. In Section 8 we discuss related work.

2 System model
We assume the Byzantine failure model where faulty
nodes (servers or clients) may behave arbitrarily [23]
and a strong adversary that can coordinate faulty nodes
to compromise the replicated service. We do, however,
assume the adversary cannot break cryptographic tech-
niques like collision-resistant hashing, message authen-

tication codes (MACs), encryption, and signatures. We
denote a message X signed by principal p’s public key as
〈X〉σp . We denote a message X with a MAC appropriate
for principals p and r as 〈X〉µr,p . We denote a message
containing a MAC authenticator, a an array of MACs ap-
propriate for verification by every replica, as 〈X〉~µr

Our system ensures its safety and liveness properties if
at most f = b n−1

3 c replicas are faulty. We assume a finite
client population, any number of which may be faulty.

We assume an asynchronous network and the exis-
tence of synchronous intervals during which messages
are delivered with a bounded delay.

Definition 1 (Synchronous interval). During a syn-
chronous interval any message sent between correct pro-
cesses is delivered within a bounded delay T if the sender
retransmits according to some schedule until it is deliv-
ered.

3 Recasting the problem
The theoretical foundation of modern BFT state machine
replication rests on an impossibility result and on two
principles that assist us in dealing with it. The impos-
sibility result, of course, is FLP [15], which states that
no solution to consensus can be both safe and live in an
asynchronous systems if nodes can fail. The two princi-
ples, first applied by Lamport to his Paxos protocol [22],
are at the core of Castro and Liskov seminal work on
PBFT [9]. The first states that synchrony must not be
needed for safety: as long as a threshold of faulty servers
is not exceeded, the replicated service must always pro-
duce linearizable executions, independent of whether the
network loses, reorders, or arbitrarily delays messages.
The second recognizes, given FLP, that synchrony must
play a role in liveness: clients are guaranteed to receive
replies to their requests only during intervals in which
messages sent to correct nodes are received within some
fixed (but potentially unknown) time interval from when
they are sent.

Within these boundaries, the engineering of BFT pro-
tocols has embraced Lampson’s well-known recommen-
dation: “Handle normal and worst case separately as a
rule because the requirements for the two are quite dif-
ferent. The normal case must be fast. The worst case
must make some progress” [24]. Ever since PBFT, the
design of BFT systems has then followed a predictable
pattern: first, characterize what defines the normal (com-
mon) case; then, pull out all the stops to make the system
perform well for that case. While different systems don’t
completely agree on what defines the common case [17],
on one point they are unanimous: the common case in-
cludes only gracious executions, defined as follows:

Definition 2 (Gracious execution). An execution is gra-
cious iff (a) the execution is synchronous with some
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implementation-dependent short bound on message de-
lay and (b) all clients and servers behave correctly.

The results of this approach continue to be spectac-
ular. Since Zyzzyva last year reported a throughput of
over 85,000 null requests per second [20], several new
protocols have further improved on that mark [17, 30].

Despite these impressive results, we argue that the cur-
rent practice of aggressively tuning BFT systems for the
common case of gracious execution, a practice that we
have engaged in with relish [20] is increasingly mis-
guided, dangerous, and even futile.

It is misguided, because it encourages the design of
systems that fail to deliver on their basic promise: to
tolerate Byzantine faults. While providing impressive
throughput during gracious executions, today’s high-
performance BFT systems are satisfied with guarantee-
ing “some progress” in the presence of Byzantine fail-
ures, effectively retreating to the weak liveness guarantee
imposed by FLP. Unfortunately, as we previewed in Fig-
ure 1 and show in detail in Section 7.2, these guarantees
are weak indeed. Although current BFT systems can sur-
vive Byzantine faults without compromising safety, we
contend that a system that can be made completely un-
available by a simple Byzantine attack can hardly be said
to tolerate Byzantine faults.

It is dangerous, because it encourages fragile
optimizations— design choices that speed up the com-
mon case at the cost of exposing the system to the poten-
tial for more Byzantine attacks. Fragile optimizations are
harmful in two ways. First, as we will see in Section 7.2,
they make it easier for a faulty client or server to knock
permanently the system off its hard-won optimized exe-
cution path and enter a alternative, much more expensive
one. Second, they weigh down the system with subtle
corner cases, increasing the likelihood of buggy or in-
complete implementations.

It is (increasingly) futile, because the race to optimize
common case performance has reached a point of dimin-
ishing return where many services’ peak demands are al-
ready far under the best case throughput offered by ex-
isting BFT replication protocols. For such systems, good
enough is good enough, and further improvements in best
case agreement throughput will have little effect on end-
to-end system performance.

We believe instead that the engineering of BFT sys-
tems should be guided by a new principle, inspired by the
maxi-min strategy of maximizing the worst case payoff
across all possible games. In our view, a BFT system ful-
fills its obligations when it provides acceptable and de-
pendable performance across the broadest possible set of
executions, including executions with Byzantine clients
and server. In particular, the temptation of fragile opti-
mizations should be resisted: according to our maxi-min
principle, a BFT system should be designed around an

execution path that has three properties: (1) it provides
acceptable performance, (2) it is easy to implement, and
(3) it is robust against Byzantine attempts to push the sys-
tem away from it. Optimizations for the common case
should be accepted only as long as they don’t endanger
these properties.

Clearly, a literal interpretation of the maxi-min prin-
ciple is meaningless in an asynchronous system, where
FLP tells us the worst case does not guarantee any live-
ness. This is no excuse to cling to gracious executions
only, however. In particular, there is no theoretical rea-
son why BFT systems shouldn’t be expected perform ad-
equately in what we call uncivil executions:

Definition 3 (Uncivil execution). An execution is
uncivil iff (a) the execution is synchronous with some
implementation-dependent short bound on message de-
lay, (b) up to f servers and an arbitrary number of clients
are Byzantine, and (c) all remaining clients and servers
are correct.

Hence, we propose to build BFT systems around a re-
stricted maxi-min strategy aimed at maximizing the sys-
tem’s performance during uncivil executions. Although
we recognize that this approach is likely to reduce the
best case performance, we believe that for a BFT system
a limited reduction in peak throughput is preferable to the
devastating loss of availability that we report in Figure 1
and Section 7.2.

Increased robustness may come at effectively no addi-
tional cost as long as a service’s peak demand is below
the throughput achievable through restricted maxi-min:
as a data point, Aardvark, the new protocol based on re-
stricted maxi-min that we describe in the rest of the pa-
per, reaches a peak throughput of 38667 req/s.

Similarly, when systems have other bottlenecks, Am-
dahl’s law limits the impact of changing the performance
of agreement. For example, we report in Section 7 that
PBFT can execute about 62,000 null requests per second,
suggesting that agreement consumes 16.1µs per request.
If, rather than a null service, we replicate a service for
which executing an average request consumes 100µs of
processing time, then peak throughput with PBFT would
be about 8613 requests per second. If, instead, agreement
were accomplished via a protocol with double the over-
head of PBFT (e.g., 32.2µs per request), peak throughput
would still be about 7564 requests/second. In this hypo-
thetical example, doubling agreement overhead reduces
peak end-to-end throughput by about 12%.

4 Aardvark: BFT through re-
stricted maxi-min

Aardvark is a new BFT protocol designed according to
the restricted maxi-min principle. Aardvark consists of 3
stages: request distribution, agreement, and view change.
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This is the same basic structure of PBFT [10] and its
direct descendants [21, 35, 34, 20, 6], but Aardvark re-
examines it with the intent of providing acceptable per-
formance to the broadest set of executions. Because of
this, we decided to model the basic structure of Aard-
vark after PBFT—the BFT protocol with the most expan-
sive notion of what defines a gracious execution. Every
step of the protocol, however, is revisited with the goal of
achieving an execution path that satisfies the three prop-
erties outlined in the previous section: acceptable perfor-
mance, ease of implementation, and robustness against
Byzantine disruptions.

The three key ideas that Aardvark relies upon are (1)
signed client requests, (2) resource isolation, and (3) reg-
ular view changes.

Signed client requests. Clients use digital signatures
to authenticate their requests. Digital signatures provide
non-repudiation and ensure that all correct replicas make
identical decisions about the validity of each client re-
quest, eliminating a number of expensive and tricky cor-
ner cases found in existing protocols that make use of
weaker (though faster) MAC authenticators [4] to au-
thenticate client requests.

As we mentioned in the Introduction, digital sig-
natures are generally seen as too expensive to use.
Aardvark only uses them for client requests. Replica-
to-replica and replica-to-client communication rely on
MAC authenticators. Replica communication does not
introduce dangerous corner cases because it is quorum
driven—while a single replica may be faulty, the quorum
is collectively guaranteed to be correct, ensuring that the
system stays on the correct path. Using MAC authenti-
cators for replica messages is important because of the
asymmetric costs of signature schemes; signature gener-
ation is significantly less expensive than verification.

Because of the additional costs associated with veri-
fying signatures in place of MACs, Aardvark needs to
guard against new denial-of-service attacks where the
system receives a large numbers of requests with signa-
tures that need to be verified are received. Our imple-
mentation (1) uses a hybrid MAC-signature construct to
put a hard limit on the number of faulty signature veri-
fications a client can inflict on the system and (2) forces
a client to complete one request before issuing the next,
limiting the number of correct signature verifications a
client can inflict on the system.

Resource isolation. Aardvark explicitly isolates net-
work and computational resources.

As illustrated by Fig. 2, Aardvark uses separate NICs
and wires to connect each pair of replicas. This is nec-
essary to prevent a faulty node from breaking the “good
network” assumption, as happened when a single broken
NIC shut down the immigration system at LAX [11].

Replica
Replica

Replica

Replica

Clients

Fig. 2: Physical network in Aardvark.

As Figure 3 shows, Aardvark uses separate work
queues for messages from clients and individual repli-
cas. Employing a separate queue for client requests
prevents client traffic from drowning out the replica to
replica communications required for the system to make
progress. Similarly, employing a separate queue for each
replica allows Aardvark to schedule message handling
fairly, ensuring that a replica is able to gather efficiently
the quorums it needs to make progress.

Past protocols achieve significant throughput gains
from hardware multicast because of the quantity of all-
to-all communication in replication protocols. The deci-
sion to abandon multicast incurs a performance hit, as
shown in Section 7, and limits fault scalability as the
number of network connections required by the system is
O( f 2). Smarter network controls with rate-limited mul-
ticast and resource reservations are potential paths to re-
ducing this overhead while providing the necessary iso-
lation. Such approaches, while still requiring redundant
network components to avoid a single point of failure,
may reduce overheads below O( f 2).

Isolating computational resources allows Aardvark to
leverage separate hardware threads to process incoming
client and replica requests. Taking advantage of inherent
hardware parallelism allows Aardvark to reclaim part of
the costs paid to verify signatures on client requests.

Regular view changes. In order to prevent a primary
from achieving tenure and exerting absolute control on
system throughput, Aardvark invokes the view-change
operation on a regular basis. Replicas monitor the perfor-
mance of the current primary, slowly raising the level of
minimal acceptable throughput over time. If the current
primary fails to provide this required amount of through-
put, replicas initiate a view change.

The key properties of this technique are:
1. During uncivil intervals, system throughput remains

high even when replicas are faulty. Since a primary
maintains its position only if it achieves some increas-
ing level of throughput, Aardvark bounds throughput
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Clients

Replica

Replica

Replica

NIC

NIC

NIC

NIC

Verification

Replica 
Processing

Fig. 3: Architecture of a single replica. The replica utilizes a
separate NIC for communicating with each other replica and a
final NIC to communicate with the collection of clients. Mes-
sages from each NIC are placed on separate worker queues.

C

0

1

2

3

REQUEST        PRE−PREPARE        PREPARE         COMMIT        REPLY

1 2 3 4 5

6

Fig. 4: Basic communication pattern in Aardvark.

degradation due to a faulty primary.

2. Eventual progress is guaranteed when the system is
eventually synchronous.
Past protocols have treated view change as an option of

last resort that should only be used in desperate situations
to avoid letting throughput drop to zero. Performing
view changes regularly introduces periods of time dur-
ing which new requests are not being processed, but the
benefits of evicting a misbehaving primary outweigh the
periodic costs associated with performing view changes.

5 Protocol description
Figure 4 shows the agreement phase communication pat-
tern that Aardvark shares with PBFT. Variants of this
pattern are employed in other recent BFT RSM proto-
cols [1, 13, 17, 20, 30, 34, 35]. We organize the following
discussion around the major steps of the protocol. These
steps correspond to the numbered steps in Figure 4.

5.1 Request distribution
The fundamental challenge in the request-distribution
phase of Aardvark is transferring requests from the
clients to the servers. It is extremely important that,
upon receiving a request, every replica is able to make
the same decision about the authenticity of the request.
We ensure this property by signing requests.

1. Client sends a request to a replica.

A client c requests an operation o be performed by the
replicated state machine by sending a request message
〈〈REQUEST,o,s,c〉σc , c〉µc,p to the replica p it believes to
be the primary. If the client does not receive a timely
response to that request, then the client retransmits the
request 〈〈REQUEST,o,s,c〉σc , c〉µc,r to all replicas r. Note
that the request contains the client sequence number s
and is signed with signature σc. The signed message is
then authenticated with a MAC for the intended recipient
with µc,r.

Upon receiving a client request, a replica verifies the
request. Request verification takes the following se-
quence of steps as illustrated by Figure 5:

1. Blacklist check. If the sender c is not blacklisted, then
proceed to step 2. Otherwise discard the message.

2. MAC check. If µc,p is valid then proceed to step 3.
Otherwise discard the message

3. Sequence check. Examine the most recent cached re-
ply to c. If the request sequence number s is the next
sequence number expected from the client c proceed
to step 4. Otherwise

3a. Retransmission check. Replicas utilize an expo-
nential backoff to limit the rate of client reply re-
transmissions. If a reply has not been sent to c re-
cently, retransmit the last reply sent to c. Otherwise
discard the message.

4. Redundancy check. Examine the most recent cached
request from c. If no request from c with sequence
number s has previously been verified, then proceed to
step 5. Otherwise

4a. Once per view check. If an identical request has
been verified in a previous view, but not processed
during the current view, then process the request.
Otherwise discard the message.

5. Signature check. If σc is valid process the request.
Otherwise blacklist the node x that authenticated µx,p
and discard the message.
Primary and non-primary replicas process requests

in different ways. A primary adds requests to a PRE-
PREPARE message that is part of the three-phase com-
mit protocol described in Section 5.2. A non-primary
replica r processes a request by authenticating the signed
request with a MAC µr,p for the primary p and send-
ing the message to the primary. Non-primary replicas
forward each request to the current primary once; repli-
cas discard any requests it has previously received. Note
that non-primary replicas will retransmit requests mul-
tiple times provided that a view change occurs between
retransmissions.

Note that a REQUEST message that is verified as au-
thentic might contain an operation that the underlying
replicated service rejects due to an access control list
(ACL) or other service-specific security violation. From
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Fig. 5: Decision diagram followed by replicas verifying a client
request.

the point of view of Aardvark, such messages are valid
and should be executed at a well-defined point in the lin-
earizable execution of the underlying service, which may
execute the request by generating an error code, for ex-
ample.

A node p only blacklists a sender c of a
〈〈REQUEST,o,s,c〉σc , c〉µc,p message if the MAC µc,p is
valid but the signature σc is not. A valid MAC is suf-
ficient to ensure that routine message corruption is not
the cause of the invalid signature sent by c, but rather
c has suffered a significant fault or malicious behavior.
A replica discards all messages it receives from a black-
listed sender and removes the sender from the blacklist
after 10 minutes to allow reintegration of repaired ma-
chines.

Resource Scheduling: Client requests are neces-
sary to provide input to the RSM while replica-to-replica
communication is necessary to process those requests.
Aardvark leverages seperate worker queues for client re-
quests and replica-to-replica communication to limit the
fraction of replica resources that clients are able to con-
sume, ensuring that a flood of client requests is unable
to prevent replicas from making progress on requests al-
ready received.

We deploy our prototype implementation on dual pro-
cessor machines. We assign one core to verify client re-
quests and the second to run the replica protocol. This

explicit assignment not only allows us to isolate re-
sources but also to take advantage of parallelism to mask
the additional costs of signature verification.

Maxi-min analysis: Our focus in applying the re-
stricted maxi-min design principle to Aardvark is ensur-
ing that the performance of Aardvark is good when the
network is well behaved. We evaluate the effectiveness
of our design by systematically considering the costs a
faulty client can impose on the system. Two imporant
factors in this analysis are the costs of individual mes-
sages and of collections of messages.

There are five actions that can consume significant
replica resources: receive message, verify MAC, retrans-
mit cached reply, verify signature, and process request.
The costs a replica pays to process a client request in-
crease as the request passes each successive check in the
verification process, but the rate at which a client can
trigger these costs becomes more restricted at each step.

Starting from the final step of the decision diagram,
the design ensures that the most expensive message a
client can send is a correct request as specified by the
protocol, and it limits the rate at which such requests
can trigger expensive signature checks and processing to
the maximum rate a correct client can submit such re-
quests. The sequence check (3) ensures that a client can
trigger signature verification or request processing for a
new sequence number only after its previous request has
been successfully executed. The redundancy check (4)
prevents repeated signature verifications for the same se-
quence number by caching each client’s most recent re-
quest. The exactly once check (4a) permits repeated pro-
cessing of a request only across different views to ensure
progress. Finally, the signature check (5) ensures that
only requests that will be accepted by all correct replicas
are processed.

Moving up the diagram, replicas respond to retrans-
mission of completed requests paired with valid MACs
by retransmitting the most recent reply sent to that client.
The retransmission check imposes an exponential back-
off on retransmissions, limiting the rate at which the re-
transmissions actually occur. To help a client learn the
sequence number it should use, a replica resends the
cached reply at this limited rate for both requests that are
from the past but also for requests that are too far into the
future.

MAC verifications occur on every incoming message
that claims to have the right format unless the sender is
blacklisted, so processing to receive messages and ver-
ify MACs are effectively limited only by the network’s
ability to deliver messages.

Protecting against a client capable of flooding the net-
work is beyond the scope of this paper, but it is an area of
active research [32, 25]. Our goal is to ensure that Aard-
vark’s replication protocol does not increase its vulnera-
bility to client attack. Like existing systems, the best that
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Aardvark can hope for under network flooding attacks is
to maintain throughput in proportion to the percentage
of correct client requests that are delivered to the replica.
Aardvark achieves that goal through the early discard of
messages and explicitly limiting the rate at which client
induced retransmissions and expensive verifications oc-
cur.

5.2 Agreement
Once a request has been transmitted from the client to
the current primary, the replicas must agree on the re-
quest’s position in the global order of operations. Aard-
vark replicas coordinate with each other using a standard
three phase commit protocol [10]. Aardvark follows the
restricted maxi-min design principle by adding explicit
resource scheduling to limit a faulty replica’s ability to
slow progrss. The protocol continues from step 2 of the
communication pattern in Figure 4.

2. Primary forms a PRE-PREPARE message
containing a set of valid requests and sends the
PRE-PREPARE to all replicas.

The primary creates and transmits a 〈PRE-PREPARE,
v,n, 〈REQUEST,o,s,c〉σc〉~µp message where v is the cur-
rent view number, n is the sequence number for the
PRE-PREPARE and the authenticator is valid for all repli-
cas. Note that although we show a single request as part
of the PRE-PREPARE message, multiple requests can be
batched in a single PRE-PREPARE [10, 16, 20, 21].

3. Replica receives PRE-PREPARE from the
primary, authenticates the PRE-PREPARE, and
sends a PREPARE to all other replicas.

Upon receipt of a 〈PRE-PREPARE, v,n,
〈REQUEST,o,s,c〉σc〉~µp message from primary p,
replica r verifies the authenticity of the message. The
verification process r follows to verify the PRE-PREPARE
message is similar to the one for verifying requests. If
r has already accepted the PRE-PREPARE message, r
discards the message pre-emptively. If r has already
processed a different PRE-PREPARE message with n′ 6= n
during view v, then r discards the message. If r has not
yet processed a PRE-PREPARE message for n during
view v, r first checks that the appropriate portion of the
MAC authenticator ~µp is valid. If the replica has not
already done so, it then checks the validity of σc. If
the authenticator is not valid r discards the message. If
the authenticator is valid and the signature is invalid,
then the replica blacklists the primary and requests a
view change. If, on the other hand, the authenticator
and signature are both valid, then the replica logs the
PRE-PREPARE message and forms a 〈PREPARE, v,n,
h,r〉~µr to be sent to all other replicas where h is the digest
of the set of requests contained in the PRE-PREPARE

message.

4. Replica receives 2 f PREPARE messages that
are consistent with the PRE-PREPARE message
for sequence number n and sends a COMMIT
message to all other replicas.

Following receipt of 2 f matching PRE-PREPARE mes-
sages from non-primary replicas r′ that are consistent
with a PRE-PREPARE from primary p, replica r sends a
〈COMMIT,v,n,r〉~µr message to all replicas. Note that the
PRE-PREPARE message from the primary is the 2 f +1st

message in the PREPARE quorum.

5. Replica receives 2 f + 1 commit messages,
commits the pre-prepare, and send a REPLY
message to the client.

After receipt of 2 f + 1 matching 〈COMMIT,v,n,r′〉~µr′

from distinct replicas r′, replica r commits and executes
the request before sending 〈REPLY, v,u,r〉µr,c to client c
where u is the result of executing the request and v is the
current view.

6. The client receives f + 1 matching REPLY
messages and accepts the request as com-
plete.

We also support Castro’s tentative execution optimiza-
tion [10], but we omit these details here for simplicity.
They do not introduce any new issues for our restricted
maxi-min analysis.

Resource Scheduling: Aardvark relies on the mul-
tiple physical network connections and incoming work
queues to isolate traffic from individual replicas. This
separation serves two purposes, it allows Aardvark repli-
cas to ensure fairness in handling messages and it allows
Aardvark replicas to silence other replicas that are abus-
ing the network.

When there are incoming messages to be processed
from multiple replicas, the receiving replica processes
those messages in a round robin fashion. The fairness
provided by round robin scheduling ensures that at most
n− 2 messages are processed between the time a mes-
sage is received and when it is processed and prevents
messages from a single faulty replica from drowning out
messages from other replicas while facilitating the effi-
cient collection of quorums of PREPARE and COMMIT
messages.

The separation of network resources also allows repli-
cas to pull the plug on a faulty replica that is overag-
gressive in network transmission by disabling interrupts
on the network card connected to the faulty node. In
our prototype, we disable a network connection when a
replica’s rate of message transmission in the current view
is a factor of 20 more than any other replica. After dis-
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connecting a replica for flooding, replicas reconnect the
replica after 10 minutes, or when another replica is dis-
connected for flooding.

Maxi-min analysis: We now consider the Aardvark
design under the restricted maxi-min design principle by
considering the impact that single messages and excep-
tional message volume from a faulty primary or replica
can have on the system.

Non-primary replicas send PREPARE and COMMIT
messages to each other, but do not act on received PRE-
PARE or COMMIT messages until there are a quorum of
consistent messages. The use of quorums is fundamen-
tal for maintaining safety and has a significant beneficial
impact on performance. Specifically, since replicas do
not act until they have received messages from a quorum
of other nodes, a single faulty replica is unable to cause
another replica to perform actions it would not take any-
way.

Since no individual message can cause undue harm to
the system, a faulty replica’s best chance to harm Aard-
vark is based on flooding other replicas with messages to
impose additional MAC authentications and system in-
terrupts. The round robin scheduling of incoming mes-
sages ensures that a faulty replica will be unable to ac-
tively prevent messages from other replicas from being
delivered or processed. Incoming messages also impose
costs in the form of system interrupts, the negative im-
pact of system interrupts caused by a flooding replica are
negated by turning the corresponding NIC off.

The primary has responsibilities that are not shared by
other replicas. We discuss Aardvark’s response to these
additional challenges in Section 5.3.

Catchup messages. State catchup messages are not in-
cluded in the description above. The state catchup mes-
sages are used to bring slow replicas back up to speed;
the basic strategy is that a replica advertises its cur-
rent state, and the other replicas respond with parts of
their state that it may be missing. These messages of-
fer chances for faulty replicas to impose significant load
on other replicas since they do not require a quorum of
messages to trigger work.

Aardvark extends its resource scheduling to explic-
itly deprioritize the handling of status messages as long
as the system is making progress. The only time it is
necessary to bring a slow replica up to speed is when
the lack of responses prevents the system from making
progress. Therefore, there are two scenarios under which
Aardvark replicas process infrastructure messages: dur-
ing view changes and when no other messages are avail-
able to process. As a result, processing catchup messages
never slows the system.

5.3 View changes
Employing a primary to order requests enables batch-
ing [10, 16] and avoids the need to trust clients to obey a

backoff protocol [1, 12]. However, because primaries are
responsible for selecting which requests to execute, the
system throughput is at most the throughput of the pri-
mary. The primary is thus in a unique position to control
both overall system progress [5, 6] and the throughput
observed by individual clients.

The fundamental challenge to safeguarding perfor-
mance against a faulty primary is that a wide range of pri-
mary behaviors can hurt performance. For example, the
primary can delay processing requests, discard requests,
corrupt clients’ MAC authenticators, introduce gaps in
the sequence number space, unfairly delay or drop some
clients’ requests but not others, etc.

Hence, rather than designing specific mechanism to
defend against each of these threats, past BFT sys-
tems [10, 20] have relied on view changes to replace an
unsatisfactory primary with a new, hopefully better, one.
Past systems trigger view changes conservatively, only
changing views when it becomes apparent that the cur-
rent primary is unlikely to allow the system to make even
minimal progress.

Aardvark utilizes the same view change mecha-
nism described in PBFT [10]; in conjunction with the
agreement protocol this is sufficient to ensure eventual
progress. Aardvark changes the conditions under which
view changes are initiated. Aardvark augments the view
changes required to ensure liveness with additional cri-
teria based on the recent current system performance to
limit a faulty primary’s ability to adversely impact both
the overall throughput and fairness.

5.3.1 Adaptive throughput
Replicas monitor the throughput of the current primary,
if a replica judges the primary’s performance to be insuf-
ficient then the replica initiates a view change. In order
to make this assessment, replicas in Aardvark expect two
things from the primary: regular progress in the form of
PRE-PREPARE messages and high throughput over every
checkpoint interval.

Following the completion of a view change, each
replica starts a hearbeat timer that is reset whenever the
next valid PRE-PREPARE message is received. If a replica
does not receive the next valid PRE-PREPARE message
before the heartbeat timer expires, the replica initiates
a view change. To ensure eventual progress, Each time
a view change is initiated due to the heartbeat timer, a
replica doubles the heartbeat timer. Once the timer is
reset because a PRE-PREPARE message is received, the
replica resets the heartbeat timer back to its initial value.
The heartbeat timer is application and environment spe-
cific, our implementation utilizes a hearbeat of 40ms.
The regular PRE-PREPARE heartbeats ensure that repli-
cas reach the next checkpoint interval promptly.

Replicas keep track of system throughput every check-
point interval by recording the number of requests ex-
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ecuted during that interval and measuring its duration.
Replicas keep track of the peak throughput they observe
during the previous n views. When a new view starts,
replicas establish a required throughput value of 90% of
the maximum peak during the previous n views.

At each checkpoint interval, the replica compares the
observed throughput to the required throughput; if the
observed throughput is less than the required through-
put then the replica initiates a view change. After an
initial grace period, 5s in our deployment, the replica
begins increasing the required throughput by a factor of
0.01 every checkpoint interval. By tightening the screws
on the primary, the primary is forced to provide consis-
tently higher levels of service or be replaced. Since there
is a limit to the throughput that is possible in the sys-
tem — either through saturation or reaching the limit of
client requests, the primary will eventually fail this check
and be replaced, restarting the process with the next pri-
mary. Conversely, if the system workload changes, the
required throughput adjusts over n views to reflect the
performance that a correct primary can provide.

Maxi-min analysis: Adaptive view changes limits the
damage a faulty primary can impose. The adaptive view
change and PRE-PREPARE heartbeats allow faulty pri-
maries two fundamental options: they can provide sub-
standard service and be replaced promptly or remain pri-
mary for an extended period of time and provide service
comparable to what a non-faulty primary would provide.

A faulty primary that does not make any progress will
be caught very quickly by the heartbeat timer and sum-
marily replaced. In order to avoid being replaced due
to missing the heartbeat timer, a faulty primary must
make consistent process towards the next checkpoint in-
terval. Once the checkpoint interval has been reached, a
faulty primary is replaced unless it provides the required
throughput, which is at least a fraction of the throughput
a correct primary would provide. While the primary can
remain just ahead of the required throughput, if it does so
as long as possible it will provide the system with 95%
of the throughput expected from a correct replica while
it is primary.

5.3.2 Fairness
In addition to hurting overall system throughput, pri-
maries are able to control which requests are processed.
A faulty primary could consequently be unfair to a spe-
cific client (or set of clients) by neglecting to order re-
quests from that client. In order to minimize the magni-
tude of unfairness in the system, replicas track fairness of
request ordering. When replicas receive a request from
a client that they have not seen in a PRE-PREPARE mes-
sage, they add the message to their request queue and
record the sequence number k of the most recent PRE-
PREPARE that they have received during the current view
before forwarding the request to the primary. The replica

monitors future PRE-PREPARE messages for that request,
and if it receives a PRE-PREPARE for sequence number
k + 2c where c is the number of clients before receiving
a PRE-PREPARE that includes a request from that client
then it declares the current primary to be unfair and ini-
tiates a view change.

Maxi-min analysis: A faulty primary can delay pro-
cessing a correct client’s request from when the primary
initially receives the client’s request until the client’s re-
transmission time fires and it sends its request to all repli-
cas. Once f + 1 replicas forward that client request, the
primary must order it within 2c sequence numbers or a
view change occurs.

6 Analysis
In this section, we analyze the throughput characteristics
of Aardvark when the number of client requests is large
enough to saturate the system and a fraction g of those
requests is correct. We show that Aardvark’s throughput
during long enough uncivil executions is within a con-
stant factor of its throughput during gracious executions
of the same length.

For simplicity, we restrict our attention to an Aard-
vark implementation on a single core machine with a
processor speed of κ GHz. We consider only the compu-
tational costs of the crypto operations—verifying signa-
tures, generating MACs, and verifying MACs, requiring
θ, α, and α respectively. Since these operations track
closely message transmission and reception, we expect
similar results when modeling network costs explicitly.

We begin by computing Aardvark’s peak throughput
during a gracious view, i.e. a view that executes within
a gracious execution. To assess the loss in throughput
incurred by Aardvark during uncivil executions, we pro-
ceed in two steps. First, we bound the throughput during
uncivil views in which the primary is correct. Then, we
show that Aardvark limits the additional drop in through-
put that can be caused by faulty primaries.

Theorem 1. Consider a gracious view during which
the system is saturated, all requests come from correct
clients, and the primary generates batches of requests of
size b. Aardvark’s throughput is then at least κ

θ+ (4n−2b−4)
b α

operations per second.

Proof. We examine the actions required by each server
to process one batch of size b. For each request in the
batch, every server verifies one signature. The primary
also verifies one MAC per request. For each batch, the
primary generates n− 1 MACs to send the PrePrepare
and verifies n−1 MACs upon receipt of the Prepare mes-
sages; replicas instead verify one MAC in the primary’s
PrePrepare, generate (n− 1) MACs when they send the
Prepare messages, and verify (n− 2) MACs when they
receive them. Finally, each server first sends and then
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receives n− 1 Commit messages, for which it generates
and verifies a total of n− 2 MACs, and generates a fi-
nal MAC for each request in the batch to authenticate
the response to the client. The total computational load
per request is thus θ + (4n+2b−4)

b α at the primary, and
θ + (4n+b−4)

b α at a replica. The system’s throughput at
saturation during a sufficiently long view in a gracious
interval is thus at least κ

θ+ (4n+2b−4)
b α

requests/sec.

Lemma 1. Consider an uncivil view in which the pri-
mary is correct and at most f replicas are Byzantine.
Suppose the system is saturated, but only a fraction of
the requests received by the primary are correct. The
throughput of Aardvark in this uncivil view is within a
constant factor of its throughput in a gracious view in
which the primary uses the same batch size.

Proof. Let θ and α denote the cost of verifying, respec-
tively, a signature and a MAC. We show that if g is the
fraction of correct requests, the throughput during un-
civil views with a correct primary approaches g of the
gracious view’s throughput as the ratio α/θ tends to 0.

In an uncivil view, faulty clients may send unfaith-
ful requests to every server. Before being able to
form a batch of b correct requests, the primary may
have to verify b/g signatures and MACs, and correct
replicas b/g signatures and an additional (b/g)(1− g)
MACs. Because a correct server processes messages
from other servers in round robin order, it will pro-
cess at most two messages from a faulty server per
message that it would have processed had the server
been correct. The total computational load per re-
quest is thus 1

g (θ + b(1+g)+4g(n−1+ f )
b α) at the primary,

and 1
g (θ + b+4g(n−1+ f )

b α) at a replica. The system’s
throughput at saturation during a sufficiently long view
in an uncivil interval with a correct primary thus at least

gκ

θ+ (b(1+g)+4g(n−1+ f )
b α

requests per second: as the ratio α/θ

tends to 0, the ratio between the uncivil and gracious
throughput approaches g.

Theorem 2. For sufficiently long uncivil executions and
for small f the throughput of Aardvark, when properly
configured, is within a constant factor of its throughput
in a gracious execution in which primaries use the same
batch size.

Proof. First consider the case in which all the uncivil
views have correct primaries. Assume that in a properly
configured Aardvark tbaseViewTimeout is set so that during
an uncivil interval, a view change to a correct primary
completes within tbaseViewTimeout . Since a primary’s view
lasts at least tgracePeriod , as the ratio α/θ tends to 0, the
ratio between the throughput during a gracious view and
an uncivil interval approaches g tgracePeriod

tbaseViewTimeout+tgracePeriod

Now consider the general case. If the uncivil inter-
val is long enough, at most f /n of its views will have
a Byzantine primary. Aardwark’s PrePrepare heartbeat
provides two guarantees. First, a Byzantine server that
does not produce the throughput that is expected of a
correct server will not last as primary for longer than
a grace period. Second, a correct server is always re-
tained as a primary for at least the length of a grace pe-
riod. Furthermore, since the throughpiut expected of a
primary at the beginning of a view is a constant fraction
of the maximum throughput achieved by the primaries
of the last f + 1 views, faulty primaries cannot arbitrar-
ily lower the throughput expected of a new primary. Fi-
nally, since the view change timeout is reset after a view
change that results in at least one request being executed
in the new view, no view change attempt takes longer
then tmaxViewTimeout = 2 f tbaseViewTimeout . It follows that,
during a sufficiently long uncivil interval, the through-
put will be within a factor of tgracePeriod

tmaxViewTimeout+tgracePeriod

n− f
n

of that of Lemma 1, and, as α/θ tends to 0, the ratio
between the throughput during uncivil and gracious in-
tervals approaches g tgracePeriod

tmaxViewTimeout+tgracePeriod

(n− f )
n .

7 Evaluation
We evaluate the performance of Aardvark, PBFT, HQ,
Q/U and Zyzzyva on a local Emulab cluster [33] located
at UT Austin. This cluster consists of machines with dual
3GHz Intel Pentium 4 Xeon processors, 1GB of memory,
and 1 Gb/s Ethernet connections.

The codebases used to report our results are provided
by the respective systems’ authors. James Cowling pro-
vided us the December 2007 public release of the PBFT
codebase [7] as well as a copy of the HQ codebase. We
used version 1.3 of the Q/U codebase, provided to us
by Michael Abd-El-Malek in October 2008 [29]. The
Zyzzyva codebase is the version used in the SOSP 2007
paper [20]. Whenever feasible, we rely on the existing
pre-configurations for each system.

Our evaluation makes three points: (a) despite our
choice to utilize signatures, change views regularly, and
forsake IP multicast Aardvark’s peak throughput is com-
petitive with that of existing systems; (b) existing sys-
tems are vulnerable to significant disruption as a result
of a broad range of Byzantine behaviors; and (c) Aard-
vark is robust to a wide range of Byzantine behaviors.

7.1 Aardvark
Aardvark’s peak performance is competitive with that of
state of the art systems as shown in Figure 7.1. Aard-
vark’s throughput tops out around 38667 operations per
second, while Zyzzyva and PBFT observe maximum
throughputs of 65999 and 61710 operations per second
respectively.

Figures 7 and 8 explore the impact of regular view
changes on the latency observed by Aardvark clients in
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.

an experiment with 210 clients each issuing 100,000 re-
quests. Figure 7 shows the per request latency observed
by a single client during the run. The periodic latency
spikes correspond to view changes. Most view changes
complete in under 200ms; higher spikes indicate cases in
which multiple view changes occurred successively. Fig-
ure 8 shows the CDF for latencies of all client requests in
the same experiment. We see that 99.99% of the requests
have latency under 15ms, and only a small fraction of
all requests incur the higher latencies induced by view
changes.

7.1.1 Putting Aardvark together
Aardvark incorporates several key design decisions that
enable it to perform well in the presence of Byzantine
failure. We study the performance impact of these deci-
sions by measuring the throughput of several PBFT and
Aardvark variations, corresponding to the evolution be-
tween these two systems. Figure 9 reports these peak
throughputs.
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Fig. 8: CDF of request latencies for 210 clients issuing 100,000
requests with Aardvark servers.

System Peak Performance
Aardvark 38667
PBFT 61710
PBFT w/ client signatures 31777
Aardvark w/o signatures 57405
Aardvark w/o adaptive throughput 39771

Fig. 9: Peak throughput of Aardvark and incremental versions
of the Aardvark protocol

While requiring clients in PBFT to sign requests re-
duces throughput by 50%, we find that the cost of requir-
ing Aardvark clients to use the hybrid MAC-signature
scheme imposes a modest 33% hit to system throughput.
Splitting work across queues makes it easy for Aardvark
to utilize the second processor in our test bed machines,
which reduces the additional costs Aardvark pays for re-
quiring signatures to authenticate client requests.

Peak throughput for Aardvark with and without the
adaptive throughput timers is equivalent and within the
experimental error. The reason for this is rather straight-
forward: when both the new and old primaries are non-
faulty, a view change requires the same amount of work
as a single instance of consensus. Aardvark views are
sufficiently long that the throughput costs associated with
performing a view change are negligible.

7.2 Evaluating faulty systems
In this section we evaluate Aardvark and existing sys-
tems in the context of failures. It is impossible to test
every possible Byzantine behavior; consequently we use
or knowledge of the systems to construct a set of work-
loads that we believe to be close to the worst case for
Aardvark and other systems. While other faulty behav-
iors are possible and may stress the evaluated systems in
different ways, we believe that our results are indicative
of both the frailty of existing systems and the robustness
of Aardvark.
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7.2.1 Faulty clients
We focus our attention on two aspects of client behavior
that have significant impact on system throughput: regu-
lar request dissemination and network flooding.

Request dissemination. Figure 1 in the introduction
explores the impact of faulty client behavior related to
request distribution on PBFT, HQ, Zyzzyva, and Aard-
vark. We implement different client behaviors for the
different systems in order to stress the design decisions
the systems have made.

In PBFT and Zyzzvya, the clients send requests that
are authenticated using MAC authenticators. The faulty
client includes an authenticator on requests so that the
primary will successfully verify the request, but the ver-
ification process will fail for all other replicas. When the
primary includes the client request in a PRE-PREPARE
message, the replicas are unable to verify the request.
The specified procedures for addressing this problem is a
“view change like protocol” in PBFT and a conflict reso-
lution procedure in Zyzzvya that blocks system progress
and requires replicas to generate signatures. In theory
these procedures should have a noticeable, though finite,
impact on performance. In particular, PBFT progress
should stall until a timeout forces a new view ([8] pp. 42–
43), at which point other clients can make some progress
until the faulty client stalls progress again. In Zyzzyva,
the servers should pay extra overheads for signatures and
view changes. In practice the throughput of both systems
drops to 0. In Zyzzyva this is because the reconciliation
protocol is not fully implemented; in PBFT the client be-
havior results in repeated view changes, and we have not
observed our experiment to finish. In both PBFT and
Zyzzyva, we see the potential for performance degrada-
tion due to protocol design. This potential is magnified
in practice by the difficulty of implementing all complex
corner cases correctly.

In HQ, our intended attack is to have clients send cer-
tificates during the WRITE-2 phase of the protocol with
inconsistent MACs. The specified response is a signed
WRITE-2-REFUSED message. We expect the signature
generation to noticeably impact performance. Unfortu-
nately, the HQ implementation is a prototype intended
to be used to compare the normal case performance to
that of PBFT, and the replica processing necessary to de-
fend system safety against faulty MACs from clients is
expressly not implemented.

QU clients, in the lack of contention, are unable to in-
fluence each other’s operations. During contention, repli-
cas are required to perform barrier and commit opera-
tions that are rate limited by a client-initiated exponen-
tial back off. During the barrier and commit operations,
a faulty client that sends inconsistent certificates to the
replicas can theoretically complicate the process further.
We implement a simpler scenario in which all clients are

System Peak Performance Network Flooding
PBFT 61710 crash
QU 23850 21197
HQ 7629 0
Zyzzyva 65999 crash
Aardvark 38667 7873

Fig. 10: Observed peak throughput of BFT systems in the fault
free case and under heavy client retransmission load.

correct, yet they issue conflicting requests to the repli-
cas. In this setting with only 20 clients, QU provides 0
throughput. QU’s focus on performance in the absence of
failures and contention makes it especially vulnerable in
practice—clients that issue contending requests can dec-
imate system throughput, whether the clients are faulty
or not.

To avoid corner cases where different replicas make
different judgments about the legitimacy of a request,
Aardvark clients sign requests. In Aardvark, the clos-
est analogous client behaviors to those discussed above
for other systems are sending requests with a valid MAC
and invalid signature and sending requests with invalid
MACs. We implement both attacks and find the results
to be comparable. We report the results for requests with
invalid MACs. Our focus on the restricted maxi-min de-
sign pattern limits our vulnerability to faulty clients.

Network flooding. In Figure 10 we demonstrate the
impact of a single faulty client that floods the replicas
with messages. In PBFT, Zyzzyva, Aardvark, and QU
we instrument a client to repeatedly send 9k byte mes-
sages to the replicas. In HQ a client repeatedly requests
TCP connections.

HQ, PBFT, and Zyzzyva suffer dramatic performance
degradation as their incoming network resources are con-
sumed by the flooding client. In the case of HQ ev-
ery incoming TCP connection on the replica is allocated
to the spamming client. PBFT and Zyzzyva both en-
counter problems as the incoming client requests drown
out the replica communication necessary for the systems
to make progress.

QU performs well under the client flooding attack
largely because we were unable to implement a mech-
anism to interfere with the RPC library they use for com-
munication in the available time. We do, however, show
a minimal degradation in performance due to increased
consumption of network bandwidth.

In the case of Aardvark, the decision to use separate
NICs and work queues for client and replica requests
ensures that a faulty client is unable to prevent replicas
from processing requests that have already entered the
system. The throughput degradation observed by Aard-
vark tracks the fraction of requests that replicas receive
that were sent by non-faulty clients.
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System Peak Throughput 1 ms 10 ms 100 ms
PBFT 61710 5041 4853 1097
Zyzzyva 65999 27776 5029 crash
Aardvark 38667 38542 37340 37903

Fig. 11: Throughput during intervals in which the primary de-
lays sending PRE-PREPARE message (or equivalent) by 1, 10,
and 100 ms.

System Starved Normal
Throughput Throughput

PBFT 1.25 1446
Zyzzyva 0 1718
Aardvark 358 465

Fig. 12: Average throughput for a starved client that is shunned
by a faulty primary versus the average per-client throughput for
any other client.

7.2.2 Faulty Primaries

In systems that rely on a primary, the primary controls
the sequence of requests that are processed during the
current view.

In Figure 11 we show the impact on PBFT, Zyzzyva,
and Aardvark of primaries that delay sending PRE-
PREPARE messages by 1, 10, and 100 ms respectively.
The throughput of both PBFT and Zyzzyva degrades dra-
matically as the slow primary is not slow enough to trig-
ger their view change conditions. With an extremely
slow primary, Zyzzyva eventually succumbs to a mem-
ory leak exacerbated by holding on to requests for an ex-
tended period of time. The throughput achieved by Aard-
vark indicates that adaptively performing view changes
in response to observed throughput is a good technique
for ensuring performance.

In addition to controlling the rate at which requests are
inserted into the system, the primary is also responsible
for controlling which requests are inserted into the sys-
tem. Figure 12 explores the impact that an unfair pri-
mary can have on the throughput for a targeted node.
In the case of PBFT and Aardvark, the primary sends
a PRE-PREPARE for the targeted client’s request only af-
ter receiving the the request 9 times. This heuristic was
selected because it keeps the PBFT primary from trigger-
ing a view change and demonstrates dramatic degrada-
tion in throughput for the targeted client in comparison
to the other clients in the system. Aardvark’s fairness
detection and periodic view changes limit the impact of
the unfair primary. For Zyzzyva, the unfair primary ig-
nores messages from the targeted client entirely. The re-
sulting throughput is 0 because replicas in the Zyzzyva
implementation do not forward received requests to the
primary.

System Peak Throughput Replica Flood
HQ 7629 0
PBFT 61710 251
QU 23850 21197
Zyzzyva 65999 0
Aardvark 38667 11706

Fig. 13: Observed peak throughput and observed throughput
when one replica floods the network with 9k byte messages.

7.2.3 Non-Primary Replicas
We implement a faulty replica that blasts network traffic
at the other replicas and show the results in Figure 13.
The HQ attacker again repeatedly opens TCP connec-
tions, consuming all of the incoming connections on the
other replicas. In the other four systems, the attacker
blasts 9KB messages at the other replicas. PBFT and
Zyzzyva again show very low performance as the incom-
ing traffic from the spamming replica displaces much of
the legitimate traffic in the system, denying the system
of both requests from the clients and also replica mes-
sages required to make progress. Aardvark’s utilization
of separate worker queues ensures that the replicas re-
ceive the messages necessary to make progress, though
the throughput is lower than expected.

8 Related work
We are not the first to notice significantly reduced per-
formance for BFT protocols during periods of failures or
bad network performance or to explore how timing and
failure assumptions impact performance and liveness of
fault tolerant systems.

Singh et al. [31] show that PBFT [10], Q/U [1],
HQ [13], and Zyzzyva [20] are all sensitive to network
performance. They provide a thorough examination of
the gracious executions of the four canonical systems
through a ns2 [27] network simulator. Singh et al. ex-
plore performance properties when the participants are
well behaved and the network is faulty; we focus our at-
tention on the dual scenario where the participants are
faulty and the network is well behaved.

Aiyer et al. [5] and Amir et al. [6] note that a slow
primary can result in dramatically reduced throughput.
Aiyer et al. combat this problem by frequently rotating
the primary. Amir et al. address the challenge instead
by introducing a pre-agreement protocol requiring sev-
eral all to all message exchanges and utilizing signatures
for all authentication. Their solution is designed for en-
vironments where throughout of 800 requests per second
is considered good.

PBFT [10], Q/U [1], HQ [13], and Zyzzyva [20] are
recent BFT replication protocols. These systems focus
on optimizing performance during gracious executions
and collectively demonstrate that BFT replication sys-
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tems can provide excellent performance during gracious
executions. We instead focus on increasing the robust-
ness of BFT systems by providing good performance
during uncivil executions. Hendricks et al. [18] explore
the use of erasure coding to make BFT replicate stor-
age more efficient; their work emphasizes increasing the
bandwidth and storage efficiency of a replication proto-
col similar to Q/U and not the fault tolerance of the un-
derlying protocol.

A number of researchers have explored the impact of
weakening or strengthening timing assumptions for dis-
tributed protocols. Keidar and Shraer [19] propose a
general approach for evaluating the impact of different
timing assumptions on consensus performance. Aguil-
era et al. [2] and Malkhi et al. [26] explore the limits
of what assumptions are needed for liveness for consen-
sus and leader election. Conversely, Aguilera et al. [3]
explore how small strengthenings on timing assump-
tions can yield algorithms more suitable for real-time,
mission-critical systems, and Dutta et al. [14] explore
how quickly consensus can be achieved under eventual
synchrony.

9 Conclusion
We claim that high assurance systems require BFT pro-
tocols that are more robust to failures than existing sys-
tems. Specifically, BFT protocols suitable for high as-
surance systems must provide adequate throughput dur-
ing uncivil intervals in which the network is well behaved
but an unknown number of clients and up to f servers are
faulty. We present Aardvark, the first BFT state machine
protocol designed and implemented to provide good per-
formance in the presence of Byzantine faults. Aardvark
gives up some throughput during gracious executions, for
significant improvement in performance during uncivil
executions.
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