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Abstract

The individual node of a massively parallel distributed memory cluster is now itself a complex parallel
computer with multiple processors, each of which may have multiple cores and/or hardware accelerators.
We focus on the question of how to effectively code such nodes targeting the problem domain of dense
matrix computations. We argue that the traditional way of programming leads to a level of complexity
that stiffles productivity, performance, and flexibility. We review lessons learned from our own FLAME
project that appear to point to what we consider a more intelligent and desirable design.

1 Introduction

The most widely used linear algebra library, LAPACK, has evolved from the 1970s LINPACK library, and
itself subsequently evolved into the ScaLAPACK library for distributed memory architecture, as detailed in
the recent paper “How Elegant Code Evolves with Hardware: The Case of Gaussian Elimination” [1, 10, 14].
In the conclusion of that paper and recent talks by one of its authors [13], it is pointed out that with the
advent of multicore architectures, a major rewrite of LAPACK is again in order. In this paper, we detail an
alternative design for such libraries that not only has demonstrated itself to address the same environments
as did LAPACK and ScaLAPACK, but appears to be portable to new architectures that now frequently
appear at the heart of the nodes of parallel supercomputers: multi-socket and/or multicore architectures
with or without hardware accelerators (such as multiple GPUs and/or B.E. Cell processors).

2 First Impressions

First, let us address the question of beauty without defining it, by considering the codes in Fig. 1. The first
is representative of code in the Linear Algebra Package (LAPACK) library. The second is representative
of code in our libFLAME library [23] that uses the FLAME/C API [18, 5, 30]. Both compute the LU
factorization with partial pivoting of a matrix, which is equivalent to the familiar Gaussian elimination
with rearrangement of rows as the computation unfolds. In this paper, we will refer to these styles of
coding as LAPACK-style and FLAME-style, respectively.
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DO 20 J = 1, MIN( M, N ), NB

JB = MIN( MIN( M, N )-J+1, NB )

*

* Factor diagonal and subdiagonal blocks and test for exact

* singularity.

*

CALL DGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )

*

* Adjust INFO and the pivot indices.

*

IF( INFO.EQ.0 .AND. IINFO.GT.0 )

$ INFO = IINFO + J - 1

DO 10 I = J, MIN( M, J+JB-1 )

IPIV( I ) = J - 1 + IPIV( I )

10 CONTINUE

*

* Apply interchanges to columns 1:J-1.

*

CALL DLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )

*

IF( J+JB.LE.N ) THEN

*

* Apply interchanges to columns J+JB:N.

*

CALL DLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1,

$ IPIV, 1 )

*

* Compute block row of U.

*

CALL DTRSM( ’Left’, ’Lower’, ’No transpose’, ’Unit’, JB,

$ N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ),

$ LDA )

IF( J+JB.LE.M ) THEN

*

* Update trailing submatrix.

*

CALL DGEMM( ’No transpose’, ’No transpose’, M-J-JB+1,

$ N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA,

$ A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ),

$ LDA )

END IF

END IF

20 CONTINUE

FLA_Part_2x2( A, &ATL, &ATR,

&ABL, &ABR, 0, 0, FLA_TL );

FLA_Part_2x1( p, &pT,

&pB, 0, FLA_TOP );

while ( FLA_Obj_width( ATL ) < FLA_Obj_width( A ) ){

b = min( min( FLA_Obj_length( ABR ), FLA_Obj_width( ABR ) ), nb_alg );

FLA_Repart_2x2_to_3x3( ATL, /**/ ATR, &A00, /**/ &A01, &A02,

/* ************* */ /* ******************** */

&A10, /**/ &A11, &A12,

ABL, /**/ ABR, &A20, /**/ &A21, &A22, b, b, FLA_BR );

FLA_Repart_2x1_to_3x1( pT, &p0,

/* ** */ /* ** */

&p1,

pB, &p2, b, FLA_BOTTOM );

/*-----------------------------------------------------------------------------*/

FLA_Merge_2x1( A11,

A21, &AB1 );

FLA_LU_piv_unb_var5( AB1, p1 );

FLA_Apply_multiple_pivots( FLA_LEFT, FLA_NO_TRANSPOSE, p1, A10,

A20 );

FLA_Apply_multiple_pivots( FLA_LEFT, FLA_NO_TRANSPOSE, p1, A12,

A22 );

FLA_Trsm( FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,

FLA_ONE, A11, A12 );

FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,

FLA_MINUS_ONE, A21, A12, FLA_ONE, A22 );

/*-----------------------------------------------------------------------------*/

FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR, A00, A01, /**/ A02,

A10, A11, /**/ A12,

/* ************** */ /* ****************** */

&ABL, /**/ &ABR, A20, A21, /**/ A22, FLA_TL );

FLA_Cont_with_3x1_to_2x1( &pT, p0,

p1,

/* ** */ /* ** */

&pB, p2, FLA_TOP );

}

Figure 1: Code segments for blocked LU factorization with partial pivoting. Left: LAPACK. Right:
FLAME/C.

3 What Makes Code Desirable?

Beauty is to a large degree in the eye of the beholder, so let us instead focus on what makes the FLAME
code in Fig. 1(right) desirable in the domain of dense matrix computations.

Code is a Representation of an Algorithm Ideally code is a natural representation of the underlying
algorithm for computing the operation being implemented. We sketch how the given blocked algorithm for
computing LU factorization with partial pivoting is often explained and present the algorithm in a notation
that reflects that explanation. This then reveals the implementation in Fig. 1(right) as a translation of the
algorithm to C code, using an API implemented as a collection of library routines.

The blocked algorithm without pivoting that underlies the codes in Fig. 1 is typically explained as
follows: Consider A = LU and partition the matrices into quadrants so that(

A11 A01

A21 A22

)
=

(
L11 0
L21 L22

) (
U11 U01

0 U22

)
=

(
L11U11 L11U12

L21U11 L21U12 + L22U22

)
,

where A11, L11 and U11 are b× b submatrices. Then

A11 = L11U11 A12 = L11U12

A21 = L21U11 A22 = L21U12 + L22U22.
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Algorithm: [A, p] := LUpiv(A) (Blocked)

Partition A→
„

ATL ATR

ABL ABR

«
, p→

„
pT

pB

«
where ATL and pT are empty

while n(ABR) > 0 do
Determine block size b
Repartition„

ATL ATR

ABL ABR

«
→

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A ,

„
pT

pB

«
→

0@ p0

p1

p2

1A
where A11 is b× b and p1 is b× 1»„
A11

A21

«
, p1

–
:=

»„
{L\U}11

L21

«
, p1

–
= LU piv unb

„
A11

A21

«
„

A10

A20

«
:= P (p1)

„
A10

A20

«
(swap)„

A12

A22

«
:= P (p1)

„
A12

A22

«
(swap)

A12 := L−1
11 A12 (trsm)

A22 := A22 −A21A12 (gemm)

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A ,

„
pT

pB

«
←

0@ p0

p1

p2

1A
endwhile

Figure 2: Right-looking blocked LU factorization algorithms with pivoting.

If L and U overwrite the original matrix A as part of the factorization, then these equations suggest
that (1) A11 be overwritten with its LU factors L11 and U11; (2) A21 be overwritten with the solution
of X21U11 = A21; (3) A12 be overwritten with the solution of L11X12 = A12; (4) A22 be updated with
A22 − L21U12. The algorithm proceeds by computing the LU factorization of the updated A22. Pivoting
can be added to this process to yield the algorithm in Fig. 2, which uses a notation that we employ in our
papers.

By comparing the algorithm in Fig. 2 with the code in Fig. 1(right) it becomes obvious that that code
is a direct translation. With the aid of the webpage illustrated in Fig. 3 that generates a code skeleton, it
takes minutes to covert an algorithm expressed as in Fig. 2 to a C implementation as given in Fig. 1(right).

Correctness Code that cannot be determined to be correct is not desirable. The FLAME/C API allows
the algorithm in Fig. 2 to be translated directly into the code in Fig. 1(right). Because of this, if the
algorithm is correct, then we can assert a high degree of confidence in the code. This leaves us to discuss
how to ensure that the algorithm is correct.

In a large number of papers [20, 18, 3], two dissertations [17, 2], and a book [30], we have shown that the
algorithm notation used in Fig. 2 also supports the systematic derivation of these algorithms hand-in-hand
with their proof of correctness. From the mathematical specification of the matrix operation, a family
of loop-based algorithms for computing that operation can be derived to be correct. The methodology is
sufficiently systematic that it has been made mechanical [2]. This allows us to assert an unprecedented
level of confidence in the correctness of our algorithms and, consequently, our code.
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Figure 3: Spark webpage for generating code skeletons [28].

Numerical stability Perhaps the most compelling reason for evolving an existing code as new hardware
arrives is that the numerical properties of a given implementation have been painstakingly established and
that these properties are inherited by a code that is evolved. We note, however, that stability is a property
of the algorithm rather than the implementation. Expressing the algorithm using different notation and the
code using a different API does not change the numerical properties. Moreover, in a recent dissertation [2],
it has been shown that the mentioned systematic derivation of algorithms for dense matrix computations
can be extended to yield a systematic derivation of the numerical stability analysis of the algorithms.

High performance Conventional wisdom dictates that raising the level of abstraction of a code adversely
impacts performance, which is unacceptable to the computational science community.

In the case of dense matrix computations, this conventional wisdom does not hold for a number of
reasons. In blocked algorithms, the cost of tracking submatrices as in Fig. 1(right) is ammortized over
enough computation that performance is virtually unaffected. Also, the FLAME derivation methodology
yields multiple algorithms so that the best algorithm for a given architecture can be chosen (accommodating
multiple algorithms in traditional code is cumbersome). A compelling example of the benefits of families
of algorithms is given in [4]. Finally, in yet unpublished work we have shown that FLAME-style code can
be translated to LAPACK-style code via source-to-source translators, thus removing the last reason not
to code at a higher level of abstraction.
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4 Evolution and Intelligent Design in a Changing Environment

We now discuss how the resulting design, built upon insight and hindsight, supports different situations.

Recursive algorithms Some researchers believe that recursive algorithms can naturally adapt to ar-
chitectures with multilevel memories since eventually submatrices will fit in a given layer of memory [11].
There is strong evidence that loop-based algorithms are inherently more efficient in the domain of dense
linear algebra [31, 19]. Regardless, there will likely be a benefit to combining recursion with loop-based
algorithms. For example, the factorization of the current panel in the algorithms in Fig. 2(right) can itself
be implemented as an invocation of a blocked algorithm (not necessarily the same algorithm) with a smaller
block size.

The paper “How Elegant Code Evolves ...” shows how a dramatic change in LAPACK-style code is
needed to implement a recursive algorithm. By contrast, the code in Fig. 1(right) can implement a purely
recursive algorithm by choosing the block size to be half of the width of matrix A and calling the routine
recursively until the matrix consists of only one column. But it also can combine recursion with iteration
by instead calling itself (or a routine that implements another algorithmic variant of LU factorization) with
a smaller block size. Indeed, our libFLAME library already supports a mechanism which allows arbitrary
recursion, whereby algorithmic variants and block sizes are encoded a priori within the nodes of a control
tree and then decoded by the operation as subproblems execute.

Algorithms-by-blocks It has long been speculated that the time would come when it would become
beneficial to store dense matrices by blocks (e.g., by submatrices that are mapped to contiguous memory)
rather than the traditional row- or column-major order [21]. Coding algorithms when matrices are stored
by blocks greatly complicates implementations when the LAPACK-style of coding is employed.

Adapting the code in Fig. 1(right) to storage-by-blocks is relatively straight forward. The details
related to the matrix A are already encoded in a descriptor (object) and that easily supports a “matrix of
matrices” by allowing elements of the matrix themselves to be matrices. This is then supports (hierarchical)
storage-by-blocks similar to what was proposed in [12].

Details on the extension of the FLAME API that supports matrices stored (hierarchically) by blocks
can be found in [24, 27].

Multithreaded parallelism With the arrival of multicore architectures, how to develop programs for
architectures that can execute multiple threads simultaneously has become a major topic. The FLAME-
style of programming elegantly supports multithreaded parallelism at multiple levels:

• Functionality supported by LAPACK implemented using the FLAME/C API can be linked to multi-
threaded Basic Linear Algebra Subprograms (BLAS, a standard interface for fundamental matrix and
vector computations) libraries [22, 16, 15]. Since the FLAME approach yields multiple algorithms,
an algorithm that casts most of its computation in terms of BLAS operations that parallelize well
can be chosen [4].

• The FLAME methodology can be used to derive algorithms for the BLAS themselves and algorithms
that exhibit parallelism can be chosen. Several runtime mechanisms have been designed so that
minimal or no change the FLAME/C code that implement BLAS operations can be parallelized by
using OpenMP or pthreads [7, 32, 8, 25]
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• Algorithms-by-blocks can be used to expose operations on submatrices as DAGs that can then be
scheduled out-of-order much like superscalar architectures schedule individual operations. It is shown
to be very elegantly supported by the FLAME-style of coding [7, 27]. This is also recognized by
LAPACK-related developers [6].

A flexible style of programming is particularly important when targeting multicore architectures since
it is now knows how these architectures will change even in the next five years.

As a measure of how flexible the FLAME-style of coding is, consider that it took two of our collabo-
rators a weekend to convert all level-3 BLAS (matrix-matrix operations) from sequential implementations
implemented with the FLAME/C API to implementations of algorithms-by-blocks interfaced to a runtime
system that schedules suboperations to threads, as detailed in [9].

Distributed memory architectures The design of FLAME as a development methodology and API
has its roots in the Parallel Linear Algebra Package (PLAPACK) [29]. The PLAPACK API hides the
details of indexing specifically to overcome the complexity that can become nearly unmanageable when
programming distributed memory architectures yielding code that is very similar to that presented in
Fig. 1(right).

Targeting exotic architectures There is currently a lot of interest in using architectures like the
B.E. Cell processor and GPUs as linear algebra accellerators by farming out the most compute intensive
operations to such processors. The donation of a system with four NVIDIA Tesla processors to our
collaborators at Univ. Jaume I provided an opportunity to evaluate how easily the FLAME-style of coding
can be adapted to an uncharted environment. In [26] we describe how very respectable performance
was easily attained for an operation closely related to LU factorization: the Cholesky factorization of a
Symmetric Positive Definite matrix.

5 Conclusion

In computer sciences, as in any science, there are periods during which discovery is incremental and periods
of insight that radically change our understanding. The field is distinguished from, for example, physics
in that there are no laws of programming like there are laws of nature. When we gain insight into how to
program, we can change the rules we follow. This means that programs need not evolve with a change in
demands. A complete or partial redesign can, and we argue should, be embraced.
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