
Operating System Transactions

Donald E. Porter, Indrajit Roy, Andrew Matsuoka, Emmett Witchel
Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712

{porterde,indrajit,matsuoka,witchel}@cs.utexas.edu
TR-08-50, December 16, 2008

Abstract
Operating systems should provide system transactions to
user applications, in which user-level processes execute a
series of system calls atomically and in isolation from other
processes on the system. System transactions provide a
simple tool for programmers to express safety conditions
during concurrent execution. This paper describes TxOS,
a variant of Linux 2.6.22, which is the first operating sys-
tem to implement system transactions on commodity hard-
ware with strong isolation and fairness between transac-
tional and non-transactional system calls.

System transactions provide a simple and expressive in-
terface for user programs to avoid race conditions on sys-
tem resources. For instance, system transactions elimi-
nate time-of-check-to-time-of-use (TOCTTOU) race con-
ditions in the file system which are a class of security vul-
nerability that are difficult to eliminate with other tech-
niques. System transactions also provide transactional se-
mantics for user-level transactions that require system re-
sources, allowing applications using hardware or software
transactional memory system to safely make system calls.
While system transactions may reduce single-thread per-
formance, they can yield more scalable performance. For
example, enclosing link and unlink within a system
transaction outperforms rename on Linux by 14% at 8
CPUs.

1 Introduction
The prevalence of concurrency due to the proliferation of
multicore processors has created a problem for the sys-
tem call API; current operating systems provide insuffi-
cient mechanisms for applications to synchronize these op-
erations. The challenge of system API design is finding a
small set of easily understood abstractions that compose
naturally and intuitively to solve diverse programming and
systems problems. Using the file system as the interface
for everything from data storage to character devices and
inter-process pipes is a classic triumph of the Unix API
that has enabled large and robust applications. In this pa-
per, we show that system transactions are a similar, broadly
applicable abstraction and that transactions belong in the
system-call API. Without system transactions, important

functionality is impossible or difficult to express.
System transactions provide a simple tool for program-

mers to express safety conditions during concurrent execu-
tion. During a system transaction, the kernel insures that
from the user’s perspective, no other transaction or non-
transactional system call occurs. The user experiences se-
rial execution of the transactional code, eliminating race
condtions. Within a system transaction, a series of system
calls either execute completely or not at all (atomicity), and
in-progress results are not visible (isolation). For example,
if one program executes a system transaction that performs
two writes to a file, then any program reading that file ei-
ther sees both writes or neither. System transactions have
a simple interface: the user starts a system transaction with
the sys xbegin()system call, ends a transaction with
the sys xend()system call, and aborts the current trans-
action with the sys xabort()system call.

This paper introduces TxOS, a variant of Linux 2.6.22
that supports system transactions on commodity hardware.
TxOS is the first operating system to support transactions
in which any sequence of system calls can execute atom-
ically and in isolation. Unlike historical attempts to add
transactions to the OS, transactions in TxOS have stronger
semantics, are more efficient, and support a flexible con-
tention management policy between transactional and non-
transactional operations. TxOS is unique in its ability to
enforce transactional isolation even for non-transactional
threads, which is key for making system transactions
practical, allowing the OS to balance scheduling and re-
source allocation fairly between transactional and non-
transactional operations. TxOS achieves these goals by
using modern, software transactional memory (STM) tech-
niques.

Current operating systems address race conditions in
the system API by adding complicated, ad hoc exten-
sions to the API, whereas system transactions provide a
simple, expressive interface for synchronizing access to
system resources. For instance, time-of-check-to-time-of-
use (TOCTTOU) race conditions are easier to exploit on
multicore platforms [41]. In the past few years, Linux
has added file system APIs that take file descriptor argu-
ments to address TOCTTOU races (openat, renameat,
faccessat, and ten others), and it has redesigned

1



its signal-handling API (sigaction, sigprocmask,
pselect, epoll pwait and others). Such APIs are
intended to solve specific races in a concurrent execution
environment, but they have complex semantics and are dif-
ficult to learn and master. System transactions provide a
single, easily understood, general mechanism that can ex-
press safe operations using simpler APIs, such as open
or signal. Instead of fixing particular race conditions
with new system calls, system transactions provide a gen-
eral mechanism to eliminate race conditions completely.

TxOS adds transactions to its system call API, while
TxLinux [36] uses hardware transactions to implement the
same API as unmodified Linux. TxOS does not use hard-
ware transactions at all, and by themselves hardware trans-
actions are not sufficient to implement a transactional sys-
tem call API. This paper describes the challenges to pro-
viding such an API.

TxOS lets user-level transactions make system calls with
full transactional semantics. It provides a simple and se-
mantically complete way for user-level transactions, such
as those provided by hardware or software transactional
memory systems, to access system resources. User-level
transactions cannot make most system calls without vio-
lating isolation because system call results become visible
to the rest of the system. Attempts to address this limitation
are discussed in Section 2.2.1, but they either compromise
transactional semantics or greatly increase the complexity
and decrease the performance of the transactional mem-
ory implementation. In Section 3.4, we show how to co-
ordinate user and system level transactions into a seamless
whole while maintaining full transactional semantics.

To support system transactions, the kernel must isolate
and undo updates to shared resources. This process adds
latency to system calls, but we show that it can be accept-
ably low (13%–327%) within a transaction, and 10% out-
side of a transaction. However, system transactions can
provide better performance scalability than locks as we
show with a web server in Section 5.5, which uses trans-
actions to increase throughput 47% over a server that uses
fine-grained locking.

This paper makes the following contributions:
• Describes a new approach to implementing system

transactions on commodity hardware, which pro-
vides strong atomicity and isolation guarantees, while
maintaining a low performance overhead.

• Demonstrates that system transactions can express
useful safety conditions by eliminating race condi-
tions while maintaining scalable performance. The
performance of TxOS TOCTTOU elimination is su-
perior to the current state-of-the-art user-space tech-
nique [40]. Placing link and unlink in a transac-
tion can outperform rename on Linux by 14% at 8
CPUs.

• Shows how to maintain transactional semantics for

Victim Attacker

if(access(’foo’)){
symlink(’secret’,’foo’);

fd=open(’foo’);
read(fd,...);
...

}

Victim Attacker

symlink(’secret’,’foo’);
sys xbegin();
if(access(’foo’)){

fd=open(’foo’);
sys xend();

symlink(’secret’,’foo’);
read(fd,...);
...

} else { sys xend(); }

Figure 1: An example of a TOCTTOU attack, followed by an
example of eliminating the race with system transactions. The
attacker’s symlink is serialized (ordered) either before or after the
transaction.

user-level transactions that modify system state, and
measures performance for integrating a software and
a hardware transactional memory system with TxOS.
We show that TxOS resolves a memory leak in
genome (a STAMP benchmark [9]) without modifi-
cation of the program or libc.

The paper is organized as follows: Section 2 motivates
system transactions with examples of the problems they
solve. Section 3 describes the design of operating system
transactions within Linux and Section 4 provides imple-
mentation details. Section 5 evaluates the system in the
context of the target applications. Section 6 provides re-
lated work and Section 7 summarizes our findings.

2 Overview and motivation
This section motivates the need for system transactions
by describing how they eliminate race conditions and how
they complete the programming model of user-level trans-
actions.

2.1 Eliminating races for security

Time-of-check-to-time-of-use (TOCTTOU) race condi-
tions are a current source of serious security vulnerabili-
ties, and a good example of the kinds of race conditions
that system transactions can eliminate. Its most (in)famous
instance is the access/open exploit in the UNIX file sys-
tem, illustrated in Figure 1 [6]. The TOCTTOU race also
arises in temporary file creation and other accesses to sys-
tem resources. During a TOCTTOU attack, the attacker

2



changes the file system using symbolic links while a vic-
tim (such as a setuid program), checks a particular file’s
credentials and then uses it (e.g., writes to the file). Be-
tween the credential check and the use, the attacker com-
promises security by redirecting the victim to another file,
perhaps a sensitive system file like the password file. At
the time of writing, a search of the U.S. national vulner-
ability database for the term “symlink attack” yields over
400 hits [31].

System transactions eliminate race conditions. If the
user starts a system transaction before doing their system
calls (e.g., an access and open), then the operating sys-
tem guarantees that the interpretation of the path name
used in both calls will not change during the transaction
(shown in Figure 1(B)). The attacker is serialized either
before or after the transaction.

Eliminating race conditions has motivated the Linux de-
velopers to add thirteen new system calls in 2006 (the
openat family of system calls, also supported by Solaris).
This is not surprising, as Dean and Hu showed that there is
no portable, deterministic solution to TOCTTOU vulner-
abilities without changing the system call interface [11].
Developers continue to plug race condition vulnerabilities
with plans to add the close-on-exec flag to fifteen system
calls for the 2.6.27 version of Linux [13]. The flag elimi-
nates a race condition between calls to open and fcntl.
This ad-hoc strategy to fixing race conditions is not likely
to be effective. Complicating the API to provide security
is a risky approach as code complexity is often the enemy
of code security [5].

To summarize, the current best approaches to eliminat-
ing race conditions on file system names are either:

1. Operate at user level and settle for increasing the
probability of detecting the race [40]

2. Add system calls that operate on open file descriptors,
whose interpretation will not change like a path name
(e.g., openat)

3. Add flags to individual system calls, because
each system call executes atomically (e.g., the
O CREAT|O EXCL flags for open to replace a
stat, open pair)

4. Remove the functionality altogether (usually unac-
ceptable)

System transactions provide a general way to eliminate
race conditions that is easy to use, provides deterministic
safety guarantees, and a natural programming model.

2.2 Completing user-level transaction model

Transactional memory is an alternative to lock-based pro-
gramming. It provides a simpler programming model
than locking while maintaining good performance scal-
ability [19, 22]. Transactional memory is generally im-
plemented either in hardware, building on cache coher-
ence [15, 19, 27], or in software, as a library or as an ex-
tension to the JVM or other runtime system [12, 26].

process records(int f1, int f2) {
// Read records from files in lock step

atomic {
read(f1, buf, 16);//read record
process record(buf, 16);
read(f2, buf, 8);//read record
...

}
}

process records(int fd, char* buf) {
s = xbegin;
if s == ABORT &&

made_syscall(xsw) {
sys xabort();

}
read(fd, buf, 16);//implicit sys xbegin
process record(buf, 16);
read(f2, buf, 8);
...
if(made_syscall(xsw))

sys xend();
else

xend; //hardware instruction

Figure 2: An example to show how user and system transac-
tions coordinate. The top portion is application code with a trans-
actional memory critical region that contains system calls. The
lower portion is pseudo-code for how an HTM system could ex-
pand the code to coordinate the user and system transactions. The
sys xbegin()system call is implicit. The xsw is the transac-
tional status word.

Transactional memory is a technique to manage appli-
cation state (or user state). The data structures within an
application’s address space are the application state. Sys-
tem transactions manage system state. Writes to the file
system or forking a thread are actions that update the sys-
tem state. This section explains the benefits of having OS
support for transactional updates to system state.

2.2.1 Problems with system calls in transactions

Support for arbitrary system calls within a hardware or
software transaction is difficult. For system calls in trans-
actions, anything less than system transactions either fails
to provide transactional semantics or becomes compli-
cated, requiring non-transactional synchronization. Fig-
ure 2(top) shows an example of a transaction that includes
two system calls. Simply making the system calls as part
of the transaction is not acceptable, because a roll back will
cause the system calls to be reexecuted, causing records to
be lost.

Open nesting [28, 29] and escape actions [28, 45] have
been proposed as partial solutions for system calls within
transactions. However, open nesting and escape actions

3



have complicated and fragile correctness requirements to
avoid semantic anomalies [28]. Even accepting compli-
cations, there is debate about how many system calls can
be made safe with these techniques [21]. Finally, no one
claims that these techniques are sufficient to handle system
calls like write or rename, which update system state,
because such calls clearly violate isolation. However, there
are claims that these techniques support idempotent calls
like pread [44] (pread is a variant of read that does
not update the current file position).

Consider the problems implementing Figure 2(top) with
escape actions [28, 45]. Assume that the transaction is
paused before each read system call, and any undo ac-
tions are enqueued during the pause. Each read is un-
done by a seek that rewinds the file position the length
of the read. The problem is that during a roll back both
files cannot be seeked atomically. Assume that a thread is
executing the transaction in the Figure, and the transaction
restarts. As an undo action, the system seeks -8 bytes on
file descriptor f2. Then another thread executes the same
transaction, reading the same files as the transaction that is
rolling back. However, the files are out of sync because f2
has had its file position reset, but the undo action has not
reset f1. It might be possible to fix this example with addi-
tional, non-transactional synchronization, like locking, but
the complexity of the TM system increases sharply, and its
performance is likely to suffer.

Even if all programs were updated to use pread in-
stead of read, and issues relating to seek are ignored,
problems persist. One of the file descriptors in the exam-
ple might refer to a pipe. Reads from a pipe are destruc-
tive. In order to preserve the ability to roll back a transac-
tion, the runtime system would have to buffer the data from
the pipe reads. The runtime would then need to synchro-
nize the contents of the buffer with other threads by non-
transactional means. Again, if it could be made to work,
the complexity of the TM system increases sharply and
maintaining scalable performance would be difficult. By
encapsulating this complexity in the OS, the performance
can be optimized and the effort shared among all TM sys-
tems.

Transactional semantics for the example can be pro-
vided by escape actions and a transactional file system, like
TxF [32] in Microsoft Windows Vista, assuming that both
file descriptors refer to files stored in the transactional file
system. The runtime could start a file system transaction
before the first read and commit the file system transaction
after the user transaction commits. The user-level transac-
tion and the file system transaction would need coordina-
tion for commit, using a protocol similar to TxOS that is
described in Section 3.4). However, if one of the file de-
scriptors refers to a pipe, then file system transactions will
not help. Of course, a transactional file system would also
be unable to roll back any non-file system system call that

happens during the transaction.

At the root of this problem is the fact that the operat-
ing system does not expose a synchronization mechanism
for its resources to applications, and applications cannot
know all of the side effects of a given set of system calls.
TxOS solves these problems by providing a mechanism to
synchronize accesses to system resources and undo all side
effects of uncommitted operations.

2.2.2 Transactional system calls

System transactions provide a mechanism that transac-
tional memory systems can use to safely allow almost any
system call within a transaction. When a TM application
performs an operation that makes a system call, the run-
time will begin a system transaction. Figure 2(bottom)
provides pseudo-code that a hardware transactional mem-
ory system might generate to incorporate system transac-
tions into user-level memory transactions and coordinate
commit. In this example, the transactional memory system
handles buffering and rolling back of the user’s memory
state, and the operating system buffers updates to the file
system. The updates to the file system are committed or
aborted by the kernel atomically with the commit or abort
of the user-level transaction.

In our HTM model, there is a transaction status word
register (xsw) that stores the current transaction identifier
(or zero if there is no transaction) and has a bit for the OS
to set if a system call is made inside a transaction. This bit
remains set across transactional restarts, and it is cleared
by sys xabort()and by a successful sys xend().
The kernel can detect an active transaction during the first
read system call, by reading the current transaction iden-
tifier. It starts a kernel transaction and sets the bit in the
transaction status word indicating a system transaction.
The user application can then check this bit when com-
mitting and make an sys xend()system call if there are
transactional system calls pending, or issue the xend in-
struction directly otherwise. Alternatively the xend in-
struction could automatically trap to the OS, but we elected
to minimize the complexity of the hardware support. The
example would be similar for an STM, though the runtime
would generate an explicit call to sys xbegin(). The
programmer is freed from the complexity of writing and
synchronizing undo actions and need only reason about
transactions.

System transactions thus expand the transactional pro-
gramming model, bringing user-level transactions to a
larger class of applications. The limitations of system
transactions are discussed in Section 3.5. In Section 5,
we evaluate the use of system calls within a transactional
web server running on a Java STM system, and a STAMP
benchmark calling mmap in an HTM.

4



Function Name Description
int sys xbegin
(int restart)

Begin a transaction. If restart is true, OS
automatically restarts the transaction af-
ter an abort. Returns status code.

int sys xend() End of transaction. Returns whether
commit succeeded.

void sys xabort
(int no restart)

Aborts a transaction. If the transac-
tion was started with restart, setting
no restart overrides that flag and does
not restart the transaction.

Table 1: TxOS API

3 TxOS Design
This section outlines the design of system transactions in
TxOS, which is inspired by recent advances in software
transactional memory systems [1, 17, 22, 25]. In particu-
lar, we describe the user-level API for system transactions,
the preservation of isolation on kernel data structures, the
mechanisms for conflict detection and resolution, and the
coordination of user-level transactions with system-level
transactions.

3.1 Overview

A key design goal of TxOS is to expose system transac-
tions to the user without major modifications to existing
code, allowing easy adoption by a variety of applications.
TxOS achieves this by adding three simple but powerful
system calls that manage transactional state, shown in Ta-
ble 1. The sys xbegin() system call starts a system
transaction and the sys xend() system call commits the
transaction. The sys xabort() system call ends the
transaction without committing the updates.

All system calls made within a transaction retain their
current interface. The only change required to use transac-
tions is to enclose the relevant code region with calls to
sys xbegin(), sys xabort(), and sys xend().
Placing system calls within a transaction changes the se-
mantics of when and how their results are published to the
rest of the system. Outside of a transaction, actions on sys-
tem resources are visible as soon as the relevant internal
kernel locks are released. Within a transaction, all updates
are kept isolated until commit time, when they are atomi-
cally published to the rest of the system.

As shown in Figure 2(bottom), calls to sys xbegin()
can be implicit when system transactions are used as part
of a hardware transactional memory system. By using
the transactional status word for communication, the user
transaction minimizes the number of kernel crossings.

3.2 Maintaining isolation

System transactions isolate the effects of system calls un-
til the transaction commits, and they undo the effects of
a transaction if it cannot complete. Specifically, system

transactions isolate the effects of system calls by isolating
the affected kernel data structures directly. This isolation
is performed by adding a level of indirection in the form
of shadow objects or private copies of kernel data struc-
tures that are read or written within a transaction. The
technique of using shadow objects (called lazy version
management) is different from the traditional database ap-
proach of updating in place and using undo logs to pro-
vide transactional semantics (called eager version man-
agement). For example, the first time a kernel object is
encountered within a transaction, a shadow object is cre-
ated for the transaction. For the rest of the transaction, this
shadow object is used in place of the stable object. This
ensures that the transaction has a consistent view of the
system state. When the transaction commits, updates to
shadow objects are copied to their stable counterpart.

In the case of a conflict, the system can abort and retry
a transaction. If a transaction aborts, the shadow copies of
the kernel objects are simply discarded. This is enough to
ensure that the system is in a consistent state. Application
state is maintained by a transactional memory system, or
for simple cases like Figure 1, the programmer can make
a critical region whose memory state does not need to be
restored on a rollback.

Lazy version management is appropriate for the Linux
kernel because eager version management has two major
problems. First, the kernel must support real-time pro-
cesses and interrupt handlers, both of which should not
be forced to wait on a failed transaction to undo its eager
changes to system state (recall that eager version manage-
ment writes the old data to an undo log). Second, maintain-
ing isolation on eager updates requires holding locks for
the duration of the transaction; system locks would need to
be held after a return from a system call (at user level) but
before the transaction ends. Holding system locks while a
thread executes at user level can deadlock the kernel. This
issue is discussed further in Section 6.

TxOS uses an object-based STM, not a word-based
STM. The object-based system requires less bookkeeping
than a word-based system, and works with the current lock-
ing strategy of the kernel. Often, kernel-specific conflict
resolution obtains the benefits of finer granularity. For in-
stance, updates to the reference count or the access time on
an inode do not create conflicts (see Section 4.3 for a full
discussion).

3.3 Conflict detection and resolution

Transactions can conflict with other transactions or non-
transactional operations. We call a process executing a
transaction a transactional process or a transactional (ker-
nel) thread. A transactional process could read a file that
another, non-transactional process is trying to write. If the
write succeeds before the reader commits, the reader no
longer has a consistent view of system state and hence can-
not safely commit. Such conflicting situations must be de-

5



tected and resolved by the system. As we discuss in the im-
plementation section, TxOS detects conflicts by having sta-
ble objects point to active transactions. Modifying stable
objects allows TxOS to detect conflicts between transac-
tions and between transactional non-transactional threads.

Unlike most software transactional memory systems,
TxOS guarantees strong isolation1. Not only are trans-
actions serialized with each other, they are also serialized
with respect to non-transactional operations. Strong iso-
lation adds overhead to non-transactional execution paths
but is easier to reason about if data is ever touched by both
transactional and non-transactional operations [26,38]. For
instance, strong isolation prevents the inadvertent loss of
a non-transactional update by a transaction that is rolling
back. The complexity of execution paths within Linux
makes strong isolation necessary for a kernel developer to
have any hope of reasoning about the system.

3.3.1 Contention Management

Once a conflict is detected between two transactions, TxOS
invokes the Contention Management module to resolve the
conflict. This module implements a policy to arbitrate con-
flicts among transactions, dictating which of the conflicting
transactions may proceed to commit. All other conflicting
transactions must abort.

As a default policy, TxOS adopts the osprio policy used
in TxLinux [36], though TxLinux uses hardware transac-
tional memory for synchronization within the OS rather
than system transactions. Osprio always selects the higher
priority process as the winner of a conflict, eliminating pri-
ority and policy inversion in transactional conflicts. When
processes with the same priority conflict, the older trans-
action wins (i.e., timestamp [34]), guaranteeing liveness
within a given priority level.

3.3.2 Asymmetric conflicts

A conflict between a transactional and non-transactional
thread is called an asymmetric conflict [35]. Unlike trans-
actional threads, non-transactional threads cannot be rolled
back, so the system has fewer options when dealing with
these conflicts. However, TxOS must have the freedom to
resolve an asymmetric conflict in favor of either the trans-
actional or non-transactional thread. Otherwise, asymmet-
ric conflicts will undermine fairness in the system, possibly
starving transactions.

While non-transactional threads cannot be rolled back,
they can often be preempted, which allows them to lose
conflicts with transactional threads. Kernel preemption is
a recent feature of Linux that allows processes to be pre-
emptively descheduled while executing system calls inside
the kernel, unless they are inside of certain critical regions.
In TxOS, non-transactional threads detect conflicts with
transactional threads before they actually update state, usu-
ally when they acquire a lock for a kernel data structure.

1Also called strong atomicity.

A non-transactional thread can simply deschedule itself if
it loses a conflict and is in a preemptible state. If a non-
transactional, non-preemptible process aborts a transaction
too many times, the kernel can still prevent it from starv-
ing the transaction. The kernel places the non-transactional
process on a wait queue the next time it makes a system call
and only wakes it up after the transaction commits.

Within Linux, a kernel thread can be preempted if it is
not holding a spinlock and it is not in an interrupt handler.
TxOS has the additional restriction that it will not preempt
a thread that holds one or more mutexes (or semaphores).
Otherwise, TxOS risks a deadlock with the committing
transaction, which might need that lock to commit. By
using kernel preemption and lazy version management,
TxOS has more flexibility to coordinate transactional and
non-transactional threads than was possible in previous
transactional operating systems.

3.4 Coordinating User and System Transactions

When a user-level TM creates a system transaction, some
care is required to ensure that the two transactions commit
atomically: either they both commit at a single serializa-
tion point or they both roll back.

3.4.1 Lock-based STM requirements

For a lock-based STM to coordinate commits with TxOS,
we use a simplified variant of the two-phase commit proto-
col (2PC) [14]. The details of the protocol are discussed in
Section 4.1. The TxOS commit consists of the following
steps.

1. The user prepares a transaction
2. The user requests that the system commit the transac-

tion through the sys xend()system call
3. The system commits or aborts
4. The system communicates the outcome to the user

through the sys xend()return code
5. The user commits or aborts in accordance with the

outcome of the system transaction
This protocol naturally follows the flow of control be-

tween the user and kernel, but requires the user transaction
system to support the prepared state. We define a prepared
transaction as being finished (it will add no more data to
its working set), safe to commit (it has not currently lost
any conflicts with other threads), and guaranteed to re-
main able to commit (it will win all future conflicts until
the end of the protocol). In other words, once a transac-
tion is prepared, another thread must stall or rollback if it
tries to perform a conflicting operation. In a system that
uses locks to protect a commit, prepare is accomplished
by simply holding all of the locks required for the commit
during the sys xend()call. On a successful commit, the
system commits its state before the user, but any compet-
ing accesses to the shared state are serialized after the user
commit.

Alternatively, the kernel could prepare first. TxOS does

6



not do this because it incurs the overhead of additional ker-
nel crossings, and would require the kernel to exclude all
other processes from prepared resources until the user re-
leases them. Such exclusion is untenable from a security
perspective, as it could lead to buggy or malicious users
monopolizing system resources.

3.4.2 HTM and obstruction-free STM requirements

Hardware transactional memory (HTM) and obstruction-
free STM systems [18] use a single instruction (xend and
compare-and-swap, respectively), to perform their com-
mits. For these systems, a prepare stage is unnecessary.
A more appropriate commit protocol is for the kernel to is-
sue the commit instruction on behalf of the user once the
kernel has validated its workset. Both the system and user
level transaction now commit or abort depending upon the
result of this specific commit instruction.

For HTM support, TxOS requires that the hardware al-
low the kernel to suspend user-initialized transactions on
entry to the kernel. Every HTM proposal that supports an
OS [27,36,45] contains the ability to suspend user-initiated
transactions so that user and kernel addresses do not enter
the same hardware transaction. Doing so would create a
security vulnerability in most HTM proposals. Also, the
kernel needs to be able to commit a user-level transaction.

Figure 2 shows how an HTM can use system transac-
tions. The xbegin instruction writes a non-zero transac-
tion identifier into the transaction status word (xsw) indi-
cating an active user-level transaction. During the transac-
tion’s first system call, the OS reads this register, detects
the active user transaction and starts a system transaction
(with the restart flag equal to false). The OS sets a bit
in the xsw indicating an active system transaction. The
user must check this bit before issuing the xend instruc-
tion and trap into the kernel (via sys xend()) if the bit
is set. During the xend system call, the kernel tries to com-
mit the system transaction and the user transaction using
2PC. The xend instruction, even when issued in the ker-
nel, commits the user transaction because the xsw indicates
an active user transaction but no active kernel transaction.
The kernel then clears the active system transaction bit in
the xsw. If both transactions commit, the kernel returns to
user level. If they do not both commit, the kernel updates
the xsw to indicate transaction failure. The hardware will
then roll back the user transaction once the kernel returns
to userspace.

Though TxOS supports user-level HTM, it runs on
commodity hardware and does not require any special
HTM support itself. Performance could possibly be ac-
celerated using hardware transactional memory, similar to
TxLinux [36]. We leave this question for future work.

3.5 Limitations of system transactions

System transactions, as described in this work, commit
their results to memory. The effects of a successful sys-

tem transaction are not necessarily written to stable storage
synchronously and may not survive a reboot if they have
not been written to stable storage. TxOS uses the seman-
tics of the underlying file system. For example, ext3 would
journal updates at commit time, whereas ext2 would write
them back at its leisure. As part of future work, TxOS’s
transactions could integrate with a transactional file sys-
tem, providing durability for system transactions that ac-
cess the file system.

As currently designed, all buffered updates to kernel
data structures must fit in memory. In our prototype imple-
mentation, transactions that perform very large file writes,
for instance, will deterministically fail if they overflow the
available buffer space. We believe that this can be amelio-
rated in future work by spilling the data to swap space or
unallocated blocks of the file system.

TxOS ensures isolation only within a single system.
Correctly isolating updates to a shared, distributed file sys-
tem, such as NFS, would require extensions to the proto-
col, which we defer to future work. Currently, TxOS can
buffer updates and send them to the server at commit time,
but cannot guarantee that they will be committed atomi-
cally or arbitrate conflicts with other servers.

4 Implementation
System transactions in Linux add roughly 2,600 lines of
code for transaction management, and 4,000 lines for ob-
ject management. TxOS also requires about 2,500 lines of
changes to redirect pointers to shadow objects when exe-
cuting within a transaction and to insert checks for asym-
metric conflicts when executing non-transactionally. The
changes are largely in the virtual file system, the memory
management code, and the scheduling code.

TxOS modified the following Linux data struc-
tures to be able to participate in transactions (de-
scribed in more detail by Bovet and Cesati [8]):
inode, dentry, super block, file, vfsmount,
list head, hlist head, and vm area struct.
These are file system and process address space data struc-
tures, the kernel linked list, and the kernel hashtable im-
plementations. These data structures are modified dur-
ing essential file system and memory management oper-
ations, such as open(), read(), write(), link(),
unlink(), close(), and mmap().

4.1 Managing transaction state

To manage transactional state, TxOS adds a transaction
object to the kernel which stores transactional metadata
and statistics. The transaction object, shown in Figure 3,
is pointed to by the kernel thread’s control block (the
task struct in Linux). A process can have at most one
active transaction, though transactions can flat nest, mean-
ing that all nested transactions are rolled into the enclosing
transaction.

The fields of the transaction object are summarized

7



s t r u c t t r a n s a c t i o n {
a t o m i c t t x s t a t u s ;

/ / l i v e , a b o r t e d , i n a c t i v e
u i n t 6 4 t x s t a r t t i m e ;

/ / t imes t amp f o r c o n t e n t i o n management
u i n t 3 2 r e t r y c o u n t ;
s t r u c t p t r e g s ∗ c h e c k p o i n t e d r e g i s t e r s ;

/ / r e g i s t e r s t a t e a t b e g i n n i n g of t x
w o r k s e t h l i s t ∗w o r k s e t h a s h t a b l e ;

/ / Used f o r c o n f l i c t d e t e c t i o n
d e f e r r e d o p s ;

/ / o p e r a t i o n s d e f e r r e d u n t i l commit
undo ops ;

/ / ops t h a t must be undone a t a b o r t
}

Figure 3: Data contained in a system transaction object, which
is pointed to by the user area (task struct).

in Figure 3. The transaction includes a status word
(tx status), that another thread can update atomically
if it wins a conflict with this thread. The kernel checks the
status word when attempting to add a new shadow object
to its workset and checks it before commit. The workset
hashtable tracks the transaction’s shadow objects.

The transaction stores a start timestamp
(tx start time) that is used to arbitrate conflicts
in favor of the older transaction. Non-transactional
system calls also acquire a timestamp, which they store in
their task struct, for fair contention resolution with
transactions. The retry count field stores the number
of times the transaction aborted.

If a transactional system call reaches a point where it
cannot complete because of a conflict with another oper-
ation, it must immediately abort execution. This is be-
cause Linux is written in an unmanaged language and can-
not safely follow pointers if it does not have a consistent
view of memory. In order to allow roll-back at arbitrary
points during execution, the transaction stores the regis-
ter state on the stack at the beginning of the current sys-
tem call in the checkpointed registers field. If
the transaction is aborted midway through a system call, it
restores the register state and jumps back to the top of the
kernel stack (like the C library function longjmp). Ini-
tially, we attempted to unwind the stack by returning from
each frame and checking return codes, but this was difficult
to program. There are simply too many places to check
for invalid objects or error conditions, and missing any
of them compromises the correctness of the system. Be-
cause a transaction can hold a lock or other resource when
it aborts, supporting the longjmp-style abort involves a
small overhead to track certain events within a transaction
so that they can be cleaned up on abort.

There are certain operations that a transaction must de-
fer until it commits, such as freeing memory and delivering

dnotify events. The deferred ops field stores these
events in a representation optimized for the small number
of these events that are common in our workloads. Sim-
ilarly, some operations must be undone if a transaction is
aborted, such as releasing the locks it holds and freeing the
memory it allocates. These are stored in the undo ops
field.

The workset of a transaction is a private hashtable that
stores references to all of the objects for which the transac-
tion has private copies. Each entry in the workset contains
a pointer to the stable object, a pointer to the shadow copy,
information about whether the object is read-only or read-
write, and a set of type-specific methods (commit, abort,
lock, unlock, release). When a transactional thread adds
an object to its workset, the thread increments the refer-
ence count on the stable copy. This increment prevents the
object from being unexpectedly freed while the transaction
still has an active reference to it. Kernel objects are not
dynamically relocatable, so ensuring a non-zero reference
count is sufficient for guaranteeing that memory addresses
remain consistent for the duration of the transaction.

4.2 Conflict detection

To detect conflicts, TxOS leverages the current locking
practice in Linux and augments stable objects with in-
formation about transactional readers and writers. Con-
flicts may occur when one thread wants to write an object.
A locked object indicates a non-transactional writer. For
all stable objects, TxOS adds a pointer to a transactional
writer, so a non-null pointer value indicates an active trans-
actional writer. An empty reader list similarly indicates
there are no readers. By locking and testing the transac-
tional readers and writer fields, TxOS detects transactional
and asymmetric conflicts. When a thread detects a conflict,
it calls the contention manager to arbitrate. The contention
manager updates the tx status field of a losing transac-
tion to ABORTED.

4.3 Leveraging semantics

Most transaction implementations, including most trans-
actional memory proposals, serialize transactions on the
basis of simple read/write conflicts. A datum cannot be
accessed by multiple transactions if at least one of the ac-
cesses is a write. However, many kernel data structures
have lenient semantics where multiple writes do not con-
stitute a conflict.

TxOS contains special cases where writes are not con-
sidered conflicts or writes are deferred to increase concur-
rency on kernel objects. For example, modifying a refer-
ence count does not cause a transaction to be considered a
writer of an object. Similarly, there are fields in common
file system objects that threads in the kernel memory man-
agement system (kswapd) use to reclaim memory from
the cache file system data. We allow kswapd to freely
modify these fields when the modifications do not inter-

8



57

Stable
Inode

Workset Hash Table

Workset Entry

Tx A

57
Shadow
Inode

57

Stable
Inode

Workset Hash Table

Workset Entry

Tx A

57
Shadow
Inode

Lock Objects Copy Updates to 
Stable Objects

57

Stable
Inode

Workset Hash Table

Tx A

Unlock and Free
Tx Objects

Figure 4: The major steps involved in committing Transaction A with inode 57 in its workset. The commit code first locks the
inode. It then copies the updates from the shadow inode to the stable inode. Finally, Transaction A frees the resources used for the
transactional bookkeeping and unlocks the inode.

fere with a transaction, such as moving a directory entry
to the back of an LRU list. Finally, the access time on an
inode is updated at commit time instead of when the access
occurs.

4.4 Lock ordering

Transactional systems that update in place (eager version
management), like most databases, implement transac-
tional isolation by simply retaining all acquired locks until
the end of the transaction. Avoiding a deadlock in these
systems is difficult because transactions are composed of
independent operations. Each operation needs its own set
of locks. When the first operation acquires a lock, it does
not know if a later operation will need a lock that precedes
it in the global lock order. Database implementations typi-
cally do not order all locks; instead they handle deadlocks
by timing out transactions, which are then aborted, ran-
domly backed-off, and retried.

TxOS uses lazy versioning, so it releases locks on ob-
jects as soon as it makes a private copy. Because the sys-
tem retains a consistent, private copy of the object, it elides
all subsequent lock acquires on the object, offsetting some
synchronization costs. However, all objects must be locked
during commit. Because TxOS knows the objects present
in the committing transaction’s working set, it can lock
them in an order consistent with the kernel’s locking disci-
pline (i.e., by kernel virtual address).

4.5 Commit protocol

When a system transaction calls sys xend(), it is ready
to begin the commit protocol. The flow of the commit pro-
tocol is shown in Figure 4. In the first step, the transaction
acquires all of the locks in the conflict table that protect
objects in its workset. The transaction collects the locks in
the following order:

1. Sorts the workset in accordance with the locking dis-
cipline (kernel virtual address).

2. Acquires all blocking locks on objects in its workset.
3. Acquires any needed global locks (e.g., the

dcache lock).
4. Acquires all non-blocking locks on objects in its

workset.
After acquiring all locks, the transaction does a fi-

nal check of its status word. If it has not been set to
ABORTED, then the transaction can successfully commit
(this is the transactions’ linearization point [20]). If the
user has a corresponding hardware transaction, the kernel
will attempt to issue the xend instruction on its behalf.
If the hardware commit is successful, the kernel will pro-
ceed to commit its state, aborting otherwise. The commit-
ting process holds all relevant object locks during commit,
thereby excluding any transactional or non-transactional
threads that would compete for the same objects.

After acquiring all locks, the transaction copies its up-
dates to the stable objects. The transaction references
are removed from the objects and locks are released in
the opposite order they were acquired. Between releas-
ing spinlocks and mutexes, the transaction performs de-
ferred operations (like memory allocations/frees and deliv-
ering fsnotify events). TxOS is careful to acquire blocking
locks before spinlocks. Acquiring or releasing a mutex or
semaphore can cause a process to sleep, and sleeping with
a held spinlock can deadlock the system.

4.6 Abort Protocol

If a transaction detects that it loses a conflict, it must abort.
The abort protocol is similar to the commit protocol, but
simpler because it does require all objects to be locked at
once. If the transaction is holding any locks, it first releases
them to avoid stalling other processes. The transaction then
iterates over its working set and locks each object, removes
any references to itself from the object’s transactional state,
and then unlocks the object. This allows other transactions
to access the objects in its working set. Next, the transac-

9



tion frees its shadow objects and decrements the reference
count on their stable counterparts. The transaction walks
its undo log to release any other resources, such as mem-
ory allocated within the transaction.

5 Evaluation
This section evaluates the performance and behavior of
TxOS for our case studies: eliminating TOCTTOU races,
scalable atomic operations, and integration with hardware
and software transactional memory.

All of our experiments were performed on a Dell Pow-
erEdge 2900 server with 2 quadcore Intel X5355 proces-
sors (total of 8 cores) running at 2.66 GHz. The machine
has 4 GB of RAM and a 300 GB SAS drive running at
10,000 RPM. TxOS is compared against an unmodified
Linux kernel, version 2.6.22.6—the same version extended
to create TxOS . The HTM experiments were run using
MetaTM [35] on Simics version 3.0.27 [24]. The simu-
lated machine has 16 1000 MHz CPUs, each with a 32k
L1 and 4 MB L2 cache. An L1 miss costs 24 cycles and
an L2 miss costs 350 cycles. We used the timestamp con-
tention management policy and linear backoff on restart.

5.1 Withstanding TOCTTOU attacks

Tsafrir et al. provide the current best solution for with-
standing TOCTTOU attacks by resolving pathnames in
userspace and stat-ing each component of the path k
times [40]. This technique increases the probability of
safe execution, whereas system transactions provide a de-
terministic safety guarantee.

Figure 5 shows the time required to perform an
access/open check as the number of directories in the
path name increase. Because of the extra work involved
in checking each portion of the path in Tsafrir’s technique,
performance does not scale well with path length. TxOS
has better absolute performance than the Tsafrir technique,
and it has better scaling behavior. Its performance is identi-
cal to unmodified Linux. In this case, the user pays nothing
to guarantee the elimination of TOCTTOU races.

To simulate an attack, we downloaded the attacker used
by Borisov et al. [7] to defeat Dean and Hu’s probabilis-
tic countermeasure [11]. This attack code creates memory
pressure on the file system cache to force the victim to de-
schedule for disk I/O, thereby lengthening the amount of
time spent between checking the path name and using it.
This additional time allows the attacker to win nearly ev-
ery time.

Both TxOS and Tsafrir’s technique successfully resist
the attacker. Tsafrir’s technique detects an inconsistent
stat before it completes the check and exits early. The
attack is foiled, but the victim is unable to proceed. TxOS
reads a consistent view of the directory structure and opens
the correct file. The attacker’s attempt to interpose a sym-
bolic link creates a conflicting update that occurs after the
transactional access check starts, so, TxOS puts the at-

Figure 5: Time to run a simple program that performs an ac-
cess/open check for increasing path length (lower is better). We
present unmodified Linux as a baseline (despite not withstanding
a TOCTTOU attack), which overlaps with the line for TxOS .
TxOS provides deterministic safety against TOCTTOU, whereas
Tsafrir’s technique provides only increased probability of suc-
cess.

Figure 6: Time to perform 500,000 renames divided across
a number of threads (lower is better). TxOS implements its
renames as calls to sys xbegin(), link, unlink, and
sys xend(), using 4 system calls for every Linux rename
call. Despite higher single-threaded overhead, TxOS provides
better scalability, outperforming Linux by 14% at 8 processors.

tacker to sleep on the asymmetric conflict.

5.2 Scalable System Calls

System calls like rename and open have been used as
ad hoc solutions for the lack of general-purpose atomic ac-
tions. These system calls have become semantically heavy,
resulting in complex implementations whose performance
does not scale. As an example in Linux, rename has to se-
rialize all cross-directory renames on a single file-system-
wide mutex because finer-grained locking would risk dead-
lock.

Transactions allow simpler, semantically lighter system
calls to be combined to perform heavier weight operations
yielding better performance scalability and a simpler im-

10



Operation Non-TX TX
Over-
head

End to
end

unzip 2KB 3.80M 4.07M 7.37% <1%
unzip 190KB 138M 140M 1.03% <1%

Table 2: Cycle cost of wrapping an unzip operation in a trans-
action for a file containing html text. End to end is the increase
vs the cost of fetching, unzipping, and loading a webpage. All
values are the average of 8 runs.

plementation. Figure 6 compares the unmodified Linux
implementation of rename to calling sys xbegin(),
link, unlink, and sys xend()in TxOS. TxOS has
much worse single-thread performance because it makes
four system calls for each Linux system call. But TxOS
quickly recovers the performance at higher CPU counts,
out-performing rename by 14%. The scalability is di-
rectly due to TxOS using optimistic synchronization, while
Linux uses conservative synchronization and must avoid
deadlock.

5.3 Transactional access to system resources

To demonstrate the utility of system transactions with-
out user-level transactions, we added a system transaction
to Lynx 2.8.6, a console-based web browser. Like most
browsers, Lynx allows websites to send compressed html
to save bandwidth, calling a third party library, zlib, to un-
zip the html. Zlib has a double free corruption bug in ver-
sion 1.1.3 [10]. If Lynx is linked with zlib 1.1.3, a mali-
cious web server can send a gzipped html file exploiting
the zlib bug, causing Lynx to crash. This example does not
use a transactional memory system, so application state is
rolled back using copy-on-write page table support in the
kernel. On an sys xbegin(), the kernel snapshots the
user’s page table and directs all writes during the transac-
tion to new pages. This technique is only appropriate for
single-threaded applications.

System transactions are necessary for Lynx because the
zlib library makes the system calls to read the file being
unzipped. Lynx writes gzipped web pages to a temporary
file and then unzips the file and renders it. The application
programmer simply wraps the call to zlib in a transaction,
and installs a SIGABRT signal handler. The libc malloc
implementation raises a SIGABRT when it detects mem-
ory corruption. If the user visits a compressed webpage
that triggers the zlib bug, the signal handler simply aborts
the transaction. The browser can then display an error mes-
sage rather than crashing, and the user can continue to run
the same instance of Lynx. Since the transactional state is
rolled back, he does not need to worry about corruptions to
the underlying file system or other system state.

In our test case, the overall cost of isolation is quite
small. Table 2 shows that the transactional overhead just
for unzipping a file is 7% for a 2KB file and 1% for a

Execution Time System Calls Allocated Pages
TxOS Linux TxOS Linux TxOS Linux

.05 .05 1,084 1,024 8,755 25,876

Table 3: Execution Time, number of system calls, and allocated
pages for the genome benchmark on the MetaTM HTM simulator
with 16 processors.

190KB file. This overhead is approximately equal to exe-
cuting an empty transaction (an sys xbegin()followed
immediately by an sys xend(), which takes 243K cy-
cles). Lynx performs many operations other than decom-
pression to display a web page, so the end-to-end latency
increase for displaying both web pages is less than 1%.

5.4 HTM with system calls

In this section we evaluate the integration of hardware
memory transactions with TxOS. We use the genome
benchmark from the STAMP benchmark suite [9], which
allocates memory during a transaction. We replace the de-
fault bump allocator with the Hoard allocator [4], which is
optimized for parallel allocation. Linux experiments were
run on version 2.6.16.1.

In this workload, sometimes the allocator makes a sys-
tem call (mmap) to get more memory in a transaction (this
happens both with Hoard and with the bump allocator).
The transaction that calls mmap restarts frequently in this
benchmark. Without TxOS, these additional calls to mmap
leak a large number of memory pages when the user loses
a conflict and rolls back. With TxOS, the mmap is made
part of a system transaction and it is properly rolled back
when the user-level transaction aborts.

Table 3 shows the execution time, number of system
calls within a transaction, and the number of allocated
pages at the end of the benchmark for both TxOS and
unmodified Linux running on MetaTM. TxOS rolls back
mmap in unsuccessful transactions, allocating 3× less heap
memory to the application, without effecting performance.
No source code or libc changes are required for TxOS to
detect that mmap is transactional.

The possibility of an mmap leak is a known prob-
lem [45], with several solutions including open nesting or
a transactional pause instruction. All solutions complicate
the programming model, the hardware, or both. System
transactions address the the memory leak with the simplest
hardware model and user API.

5.5 STM with system calls

In this section, we evaluate the integration of a Java-based
software transactional memory system (DATM-J [3]) with
system transactions. We extend DATM-J to use the system
call API provided by TxOS. The only modification to the
STM is to follow the commit protocol when committing a
user level transaction that invokes a system call, as outlined

11



1 2 3 4 5 6 7
0

500

1000

1500

2000

2500

3000

Number of Server Threads

R
eq

ue
st

s 
S

er
ve

d 
pe

r 
se

c.

 

 

STM+ System Tx
Fine Grained Locking
Coarse Locking

Figure 7: Requests served by the Tornado server when using
DATM-J with system transactions versus locks.

in Section 3.4.
We use Tornado, a multi-threaded web server that is pub-

licly available on sourceforge, to show the benefits of using
system transactions in conjunction with an STM. In Tor-
nado, clients connect to the server and make requests to
read or write data to files hosted on the server. Tornado
has front-end threads that listen to ports and puts incom-
ing connections in a work list. The work list is serviced
by backend threads from a thread pool. Accesses to this
list can be made thread safe by either using an STM or by
using locks.

Since multiple clients may be reading or writing the
same file, file access must be serialized. Serialization pre-
vents a read that is concurrent with a write from seeing gar-
bled data in the file, and prevents multiple writers from cor-
rupting a file. A coarse-grained locking strategy acquires a
read-write lock on the directory that contains these files (a
read-write lock allows concurrent readers). A single lock
is simple but restricts concurrency and hinders scalability.
Fine-grained locking performs better by using a read-write
lock for each file. Multiple locks are more complex and
require lock ordering to avoid deadlock. System transac-
tions provide good performance without the subtleties of
fine-grained locking. Current STMs cannot be used for
this critical region because it makes system calls to read
and write file data.

In our experiments we compare a version of Tornado
that uses locks to the one that uses DATM-J and system
transactions. The coarse-grained locking case uses a single
reader-writer lock on the directory serving the files, while
the fine-grained case uses per-file locks. Both these vari-
ants run on unmodified Linux. Requests are random, with
80% of them reads and the remaining 20% writes. Each
client makes a request for one of the four files in a single
directory. Each file is about 10KB in size. Figure 7 shows

System Call Baseline Transaction Overhead
access 2,005 8,572 327%
open 665 781 17%
read 373 427 14%
write 375 431 17%
link 3,270 12,964 296%

Figure 8: Execution time in processor cycles of common system
calls on unmodified Linux and on TxOS within a transaction.

that the STM version scales better than the locks as the
number of server threads increase. Coarse grained locking
does not scale at all.

Transactions scale better than locks because in this read
dominated workload they allow more threads to concur-
rently access the file system. The STM version performs
up to 4.5× better than coarse grained locking and up to
47% better than fine-grained locking. As the number
of server threads increase, the STM version incurs more
aborts due to contention. For example, the total number
of aborts rise from 6 (0.8% of total transactions) to 492
(18.6% of total transactions) as the number of threads in-
crease from 2 to 7. Of these the transaction aborts due
to system transaction conflicts are 5 and 49 respectively.
All these aborts represent points where concurrent accesses
must be serialized by the runtime system.

5.6 Transaction Overhead

Table 8 shows the average execution times of common file
system operations, both alone and within a transaction.
Overheads are variable, but quite acceptable on the lower
end (13% for read and 16% for write). The higher
overhead on calls such as link mostly reflects the fact
that the implementation has not been tuned.

A key performance concern for TxOS is the perfor-
mance overhead of detecting asymmetric conflicts that is
imposed upon non-conflicting, non-transactional applica-
tions. We measured the performance overhead of these
checks on a benchmark that searches /etc (containing
1,887 files and 8.9MB data) for a string that it does not
find. On unmodified Linux, this takes 2.200s, whereas on
TxOS this takes 2.429s, an overhead of 10%.

6 Related Work
We distinguish system transactions from previous research
in OS transactions, journaling file systems, transactional
file systems, Speculator, and transactional memory.
OS transactions. Locus [42] and QuickSilver [16, 37]
are historical systems that provide some system support for
transactions. The primary goal of these systems is com-
mitting file writes atomically with distributed transactions.
However, to get good performance, they compromise their
isolation semantics. Neither system retains locks on di-
rectories, allowing directory contents to change during a

12



transaction. This introduces the possibility of a time-of-
check-to-time-of-use (TOCTTOU) race condition. Coordi-
nation with user-level transactions (Section 3.4) is another
TxOS feature that requires full isolation, which is not pro-
vided by either historical system.

These systems use two-phase locking and eager version
management. Locking kernel data structures for the du-
ration of a user transaction can deadlock: two transactions
simply acquire the same resources in opposite order. Locus
does not detect deadlock, though it allows pluggable detec-
tion mechanisms, and Quicksilver times out long-running
transactions. Timeouts can starve long-running transac-
tions. TxOS does not have to resort to timing out because it
uses lazy version management, thus it does not hold locks
across system calls. It only holds locks long enough to
copy objects and always acquires them in an ordered fash-
ion.

Quicksilver does not support strong isolation (Sec-
tion 3.3), and hence does not serialize non-transactional
operations with transactional operations. Locus allows
for transactional and non-transactional applications to ac-
cess the same data, but requires an explicit commit by the
non-transactional thread. Uncommitted, non-transactional
records are committed by the next transaction to access
the data. It is unclear what happens to such a record if
the transaction aborts. The current STM literature shows a
number of situations that lead to data structure corruption
when strong isolation is not provided [26, 38]. Because
TxOS allows transactional and non-transactional updates
to kernel data structures, it must provide strong isolation,
lest the kernel data structures become corrupted.

Journaling file systems. Journaling file systems like
ext3 ensure that individual file system actions, like rename,
are atomic. A rename failure on ext2 can leave evidence of
the new file name. The journal ensures that there are no
partial results for individual operations.

Transactional file systems. Microsoft Windows Vista
contains TxF [32], a transactional file system. Transac-
tional file systems have been suggested for Linux, e.g.,
Amino [43]. Unlike journaling file systems, these sys-
tems allow the grouping of multiple operations on files into
transactions. Transactional file systems should be able to
eliminate TOCTTOU races. Amino, however, is build on
top of a database, which presupposes a conventional file
system that lies outside of the transaction system. The
OS boots on a traditional file system that also stores the
database containing Amino’s transactional file system. Up-
dates made by system daemons to system directories are
not seen by Amino.

TxOS provides transactions at the VFS layer, which en-
ables the implementation to work for ext2, proc and tmpfs.
TxF is part of NTFS, and would not enable transactions
on e.g., a FAT file system. System transactions allow the
grouping of non-file system system calls in a transaction

so a program can, for example, write a log record and send
a signal atomically. Such a facility is not possible with a
transactional file system. Ultimately, TxOS could integrate
transactions in the VFS layer with a transactional file sys-
tem.
Distributed transactions. A number of systems, includ-
ing TABS [39], Argus [23], and Sinfonia [2], provide sup-
port for distributed transactional applications at the lan-
guage or library level. These papers make important con-
tributions to developing the transactional programming
model. However, because transactions are implemented at
user level, they cannot isolate system resources, whereas
TxOS can.
Speculator. Speculator applies an isolation and rollback
mechanism to the operating system that is very similar to
transactions. This mechanism allows their system to spec-
ulate past high-latency remote file system operations [30].
Speculator only buffers speculative state in the kernel,
whereas TxOS provides transactional semantics to users.
TxOS arbitrates among transactional and non-transactional
threads and integrates with user-level transactions, both of
which are not part of Speculator.
Transactional memory. System transactions borrow im-
plementation techniques from software transactional mem-
ory systems. TxLinux is a linux kernel that uses hardware
transactional memory (HTM) as a synchronization tech-
nique within the Linux kernel [35, 36]. TxOS is orthogo-
nal to TxLinux. TxOS could use HTM for synchroniza-
tion, but the point of the system is to expose transactions
in the system call API. TxOS runs on currently available
hardware, though future work might improve performance
by using hardware transactional memory mechanisms.
Fault Recovery. Automated fault recovery systems such
as Rx [33] provide a mechanism for check-pointing and
rolling back application state after a failure that is simi-
lar to transactional memory. These systems are designed
to be lightweight in the common case where there are no
failures and do not provide a user interface for isolating
non-faulting actions as TxOS does.

6.1 Future work

This paper has several examples of transactional support
for system calls that operate on the file system, as this is
one of the more natural fits for the transaction program-
ming model. There are portions of the system, such as the
networking and graphical display utilities, where interac-
tion with an external entity, such as another server or the
desktop user, may be required within a transaction. The
correct semantics for system transactions is unclear. De-
ferring all output until commit is a classic approach to this
problem. Yet some systems allow these round-trip com-
munications within transactions [37,39], requiring that the
other end tolerate inconsistencies introduced by a transac-
tion restarting. We plan to investigate this issue in future

13



work as we gain more experience with transactional pro-
gramming in TxOS .

We also plan to explore several additional target appli-
cations in future work, including the interaction of transac-
tions and scheduling to support multi-process transactions
for applications such as shell scripts.

7 Conclusion
Adding efficient transactions to the Linux system call API
provides a general-purpose, natural way for programmers
to synchronize access to system resources, a problem cur-
rently solved in an ad hoc manner. This paper demon-
strates how system transactions can solve a number of
important, long-standing problems from a number of do-
mains, including file system races and supporting system
calls within transactional memory, while maintaining scal-
able performance.

References
[1] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy,

B. Saha, and T. Shpeisman. Compiler and runtime support for ef-
ficient software transactional memory. In PLDI, pages 26–37, Jun
2006.

[2] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Kara-
manolis. Sinfonia: a new paradigm for building scalable distributed
systems. In SOSP, New York, NY, USA, 2007. ACM.

[3] Anonymized. Scalable software transactional memory. Technical
report, http://www.nevercomingdown.com/datmj.pdf, 2008.

[4] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson.
Hoard: a scalable memory allocator for multithreaded applications.
In ASPLOS, 2000.

[5] D. J. Bernstein. Some thoughts on security after ten years of qmail
1.0. In CSAW, 2007.

[6] M. Bishop and M. Dilger. Checking for race conditions in file ac-
cesses. Computing Systems, 9(2):131–152, Spring 1996.

[7] N. Borisov, R. Johnson, N. Sastry, and D. Wagner. Fixing races for
fun and profit: How to abuse atime. In USENIX Security, August
2005.

[8] D. Bovet and M. Cesati. Understanding the Linux Kernel.
O’Reilly Media, Inc., 3rd edition, 2005.

[9] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald, N. Bron-
son, J. Casper, C. Kozyrakis, and K. Olukotun. An effective hybrid
transactional memory system with strong isolation guarantees. In
ISCA. Jun 2007.

[10] CERT Vulnerability Database. Double free bug in zlib compression
library. 2002. http://www.cert.org/advisories/CA-2002-07.html.

[11] D. Dean and A. J. Hu. Fixing races for fun and profit: how to use
access(2). In USENIX Security, pages 14–26, 2004.

[12] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In
DISC, pages 194–208, 2006.

[13] U. Drepper. Secure file descriptor handling. In LiveJournal, 2008.
[14] J. Gray. Notes on data base operating systems. In Operating Sys-

tems, An Advanced Course, pages 393–481. Springer-Verlag, 1978.
[15] L. Hammond, V. Wong, M. Chen, B. Carlstrom, J. Davis,

B. Hertzberg, M. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun. Transactional memory coherence and consistency. In ISCA,
June 2004.

[16] R. Haskin, Y. Malachi, and G. Chan. Recovery management in
QuickSilver. ACM Trans. Comput. Syst., 6(1):82–108, 1988.

[17] M. Herlihy and E. Koskinen. Transactional boosting: A methodol-
ogy for highly-concurrent transactional objects. In PPoPP, 2008.

[18] M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scherer.
Software transactional memory for dynamic-sized data structures.
In PODC, 2003.

[19] M. Herlihy and J. E. Moss. Transactional memory: Architectural
support for lock-free data structures. In ISCA, May 1993.

[20] M. P. Herlihy and J. M. Wing. Linearizability: a correctness con-
dition for concurrent objects. ACM Trans. Program. Lang. Syst.,
12(3), 1990.

[21] O. S. Hofmann, D. E. Porter, C. J. Rossbach, H. E. Ramadan, and
E. Witchel. Solving difficult HTM problems without difficult hard-
ware. In TRANSACT, 2007.

[22] J. Larus and R. Rajwar. Transactional Memory. Morgan & Clay-
pool, 2006.

[23] B. Liskov, D. Curtis, P. Johnson, and R. Scheifer. Implementation
of Argus. SOSP, 1987.

[24] P. Magnusson, M. Christianson, and J. E. et al. Simics: A full sys-
tem simulation platform. In IEEE Computer vol.35 no.2, Feb 2002.

[25] V. Marathe, M. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. S.
III, and M. Scott. Lowering the overhead of nonblocking software
transactional memory. In TRANSACT, 2006.

[26] V. Menon, S. Balensiefer, T. Shpeisma, A. Tabatabai, R. Hudson,
B. Saha, and A. Welc. Single global lock semantics in a weakly
atomic STM. In TRANSACT, 2008.

[27] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
LogTM: Log-based transactional memory. In HPCA, 2006.

[28] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Lib-
lit, M. M. Swift, and D. A. Wood. Supporting nested transactional
memory in LogTM. In ASPLOS, 2006.

[29] J. E. B. Moss. Nested Transactions: An Approach to Reliable Dis-
tributed Computing. PhD thesis, 1981.

[30] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative execution
in a distributed file system. In SOSP, 2005.

[31] NIST. National Vulnerability Database. http://nvd.nist.
gov/, 2008.

[32] J. Olson. Enhance your apps with file system transactions.
MSDN Magazine, July 2007. http://msdn2.microsoft.com/en-
us/magazine/cc163388.aspx.

[33] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs
as allergies—A safe method to survive software failures. In SOSP,
Oct 2005.

[34] R. Rajwar and J. R. Goodman. Transactional lock-free execution of
lock-based programs. SIGARCH Comput. Archit. News, 30(5):5–
17, 2002.

[35] H. Ramadan, C. Rossbach, D. Porter, O. Hofmann, A. Bhandari,
and E. Witchel. MetaTM/TxLinux: Transactional memory for an
operating system. In ISCA, 2007.

[36] C. Rossbach, O. Hofmann, D. Porter, H. Ramadan, A. Bhandari,
and E. Witchel. TxLinux: Using and managing transactional mem-
ory in an operating system. In SOSP, 2007.

[37] F. Schmuck and J. Wylie. Experience with transactions in Quick-
Silver. In SOSP. ACM, 1991.

[38] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. F. Moore, and B. Saha. Enforc-
ing isolation and ordering in STM. PLDI, 2007.

[39] A. Z. Spector, D. Daniels, D. Duchamp, J. L. Eppinger, and
R. Pausch. Distributed transactions for reliable systems. In SOSP,
1985.

[40] D. Tsafrir, T. Hertz, D. Wagner, and D. D. Silva. Portably solving
file TOCTTOU races with hardness amplification. In FAST, pages
189–206, 2008. Best paper award winner.

[41] J. Wei and C. Pu. TOCTTOU vulnerabilities in unix-style file sys-
tems: An anatomical study. In FAST, 2005.

[42] M. J. Weinstein, J. Thomas W. Page, B. K. Livezey, and G. J. Popek.
Transactions and synchronization in a distributed operating system.
In SOSP, 1985.

[43] C. P. Wright, R. Spillane, G. Sivathanu, and E. Zadok. Extending
ACID semantics to the file system. Trans. Storage, 3(2):4, 2007.

[44] L. Yen, J. Bobba, M. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood. Logtm-SE: Decoupling hardware
transactional memory from caches. In HPCA. Feb 2007.

[45] C. Zilles and L. Baugh. Extending hardware transactional mem-
ory to support non-busy waiting and non-transactional actions. In
TRANSACT, Jun 2006.

14


