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Abstract

A firewall is a packet filter placed at the entrance of a private network. Its function is to examine each
packet that is incoming into the private network and decide, based on the specified rules of the firewall,
whether to accept the packet and allow it to proceed, or to discard the packet. A property of a firewall is
a specified set of packets that is supposed to be accepted or discarded by the firewall. In this paper, we
present the first linear time algorithm to verify whether a given firewall satisfies a given property. The
time complexity of our algorithm is O(nd), where n is the number of specified rules in the given firewall
and d is the number of fields that are checked by the firewall or the property. Our verification algorithm
consists of two passes: a deterministic pass followed by a probabilistic pass. In most cases, the algorithm
correctly determines whether the given firewall satisfies the given property. But in some rare cases, the
algorithm may erroneously determine that the firewall satisfies the property (where in fact it does not).
Using a combination of analysis and extensive simulation, we show that the probability of an erroneous
determination by the algorithm is of the order of 3× 10−5.

1 Introduction

A firewall is a security system that acts as a protective boundary between a private computer network and the
“outside world”, usually the rest of the Internet. Firewalls help make private computer networks invisible to
online attackers and protect them against malicious software - viruses, worms, and Trojan horses.

A firewall is a packet filter that is placed at a point where a private computer network connects to
the Internet. The firewall intercepts each packet that is exchanged between the network and the Internet,
examines the headers of the packet, and based on a sequence of configuration rules in the firewall, takes
action on the packet: it may allow the packet to proceed, drop the packet and notify its sender, or drop it
silently. Then, the firewall may or may not log the action. In this paper, we take the simplified view that a
firewall simply either accepts or discards each packet.

The decision that a firewall implements when it receives a packet depends on the values in the headers
of the packet. A firewall is a sequence of rules; each rule matches certain packets, with specific header
values, and specifies the action (accept or discard) to be taken on the packet. In case there are multiple
rules matching a packet, the first rule (according to the order of the rule sequence) to match the packet takes
precedence. A firewall property is specified by a set of packets and a decision: accept or discard. A firewall
is said to satisfy a property iff the action taken by the firewall on each packet specified by the property
matches the decision specified by the property.

A firewall is an important line of security; for it to be effective, it needs to satisfy the properties the
designers intend the firewall to satisfy. However, a firewall may be required to satisfy very many properties

1



- 10, 000 or more for an industrial firewall - and a slow check may need the whole network to remain offline
until it is completed, resulting in very expensive downtime. If the checks are too slow, an impatient IT
department may simply go online with an improperly configured firewall, and become vulnerable to attacks.
The process, of checking whether a firewall satisfies the properties of interest, needs to be as convenient and
fast as possible.

In this paper, we present a firewall verification algorithm. This algorithm takes a firewall and a property,
and determines whether or not the firewall satisfies the property. The time complexity of our algorithm
is O(nd), where n is the number of rules in the given firewall and d the number of fields checked by the
firewall. In practice, d has a value between 5 and 7, so the time complexity of our algorithm is linear in the
number of rules in the firewall.

Prior algorithms for verifying that a given firewall satisfies a given property (or a query), [1] and [2], have
a time complexity of O(nd) [3]. Thus, our firewall verification algorithm, in the current paper, is the first one
to have a linear time complexity. As a large industrial firewall may easily have more than n = 2, 000 rules,
it becomes significant that our verification algorithm remains tractable in the worst case for large values of
n. (There are other approaches to ensure the correctness of a firewall besides firewall verification. These
approaches include firewall design, firewall analysis and firewall testing. We review these approaches in
Section 10.)

Our verification algorithm for firewalls takes as input a firewall F , represented as a sequence of rules and
a property R, and decides whether F satisfies R. The verification algorithm is based on a novel graphical
representation of the given firewall F , called the rule diagram. The algorithm consists of two passes: a de-
terministic pass, possibly followed by a probabilistic pass. The time complexity of each pass is O(nd). The
deterministic pass takes as input the given firewall F and property R, and produces one of three outcomes:

(a) F satisfies R.

(b) F does not satisfy R.

(c) No conclusion can be reached.

We show that, for several special classes of F and R, the deterministic pass produces either outcome (a)
or outcome (b). In those cases where the deterministic pass produces outcome (c), the

(c1) F satisfies R with a high probability.

(c2) F does not satisfy R.

Thus, if the probabilistic pass produces the outcome (c1 ), it is possible that the decision (that F satisfies R)
is erroneous. We show that the probability of an erroneous outcome when the probabilistic pass produces
the outcome (c1 ) is very small, less than .006.

We have implemented our algorithm and applied it extensively to verify whether a randomly-generated
firewall satisfies a given property. Our experiments, using (80, 000) firewall-property pairs, have showed
that our verification algorithm produces outcome (c1) very rarely, about 0.5% of the time.

Therefore, we conclude that the probability of our verification algorithm producing an erroneous result
is less than .005× .006 = 3× 10−5 .

2 Firewalls, Packets and Properties

In this section, we formally define the three central concepts in this paper, firewalls, packets, and properties.
A field is a variable, whose value is taken from an interval of non-negative integers. Examples of fields

are source IP address, destination IP address, transport protocol, source port number, and destination port
number. The domain of values of the source IP address field, for example, is the interval [0, 232 − 1].
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In this paper, we consider d fields, denoted f1, f2, . . . , fd . The domain of values of any field fj is
denoted by D(fj). Note that D(fj) is an interval of non-negative integers.

A firewall F is a sequence of n rules, where the i-th rule is of the form:

f1 ∈ Si,1 ∧ f2 ∈ Si,2 ∧ . . . ∧ fd ∈ Si,d →< decisioni >

Each Si,j is a non-empty interval of non-negative integers taken from the domain D(fj), and < decisioni >
is either accept or discard. The last rule in a firewall is of the form

f1 ∈ Sn,1 ∧ f2 ∈ Sn,2 ∧ . . . ∧ fd ∈ Sn,d →< decisionn >

Each Sn,j is the domain D(fj) of field fj .
A packet is a d-tuple (p1, p2, . . . , pd), where each pj is an element from the domain D(fj) of field fj .
A packet (p1, p2, . . . , pd) is said to match a rule

f1 ∈ Si,1 ∧ f2 ∈ Si,2 ∧ . . . ∧ fd ∈ Si,d →< decisioni >

in a firewall F iff the predicate p1 ∈ Si,1 ∧ p2 ∈ Si,2 ∧ . . . ∧ pd ∈ Si,d holds.
A firewall F is said to accept, or discard respectively, a packet iff F has a rule that satisfies the following

three conditions:

1. The packet matches the rule.

2. The packet does not match any earlier rule in F .

3. The decision of the rule is accept, or discard, respectively.

A property is of the form:

f1 ∈ T1 ∧ f2 ∈ T2 ∧ . . . ∧ fd ∈ Td →< decision >

Each Tj is a non-empty interval of non-negative integers taken from the domain D(fj) of field fj , and
< decision > is either accept or discard.

A packet (p1, p2, . . . , pd ) is said to match a property

f1 ∈ T1 ∧ f2 ∈ T2 ∧ . . . ∧ fd ∈ Td →< decision >

iff the predicate p1 ∈ T1 ∧ p2 ∈ T2 ∧ . . . ∧ pd ∈ Td holds.
A firewall F is said to satisfy a property

f1 ∈ T1 ∧ f2 ∈ T2 ∧ . . . ∧ fd ∈ Td →< decision >

iff one of the following two conditions holds:

1. < decision >= accept, and every packet that matches the property is accepted by F .

2. < decision >= discard, and every packet that matches the property is discarded by F .

A firewall example F1 , with three rules, is given below:

f1 ∈ [4, 10] ∧ f2 ∈ [5, 7] ∧ f3 ∈ [4, 10]→ accept

f1 ∈ [1, 6] ∧ f2 ∈ [5, 7] ∧ f3 ∈ [5, 7]→ accept

f1 ∈ [0, 10] ∧ f2 ∈ [0, 10] ∧ f3 ∈ [0, 10]→ discard
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Each rule checks the three fields f1 , f2 , and f3 . The domain D(fj) of each field fj is the interval [0, 10].
A packet for firewall F1 is the 3-tuple (1, 7, 5), where f1 = 1, f2 = 7, and f3 = 5. This packet does not
match the first rule in F1 , but matches the second rule in F1, and because the decision of the second rule is
accept, firewall F1 is said to accept the packet.

Three properties of firewall F1, named R1 through R3, are as follows:

R1 : f1 ∈ [3, 9] ∧ f2 ∈ [8, 10] ∧ f3 ∈ [6, 9]→ discard

R2 : f1 ∈ [2, 3] ∧ f2 ∈ [1, 9] ∧ f3 ∈ [6, 9]→ discard

R3 : f1 ∈ [1, 9] ∧ f2 ∈ [4, 9] ∧ f3 ∈ [3, 7]→ accept

Note that packet (1, 7, 5) matches R3 , but does not match R1 or R2 .

3 Rule Diagrams of Firewalls

The rule diagram of a firewall F is a directed acyclic connected graph that represents the rules of F and has
the structure shown in Figure 1. From this figure, the rule diagram of F satisfies the following conditions:

1. The rule diagram has no directed cycles, and no parallel edges.

2. The rule diagram has one node, the root, with no incoming edges.

3. The rule diagram has n terminal nodes, with no outgoing edges, where n is the number of rules in
firewall F . The i-th terminal node is labeled with decisioni , the decision of the i-th rule in firewall
F .

4. Each non-terminal node in the rule diagram is labeled with a field fj .

5. Each edge e is labeled with either one interval (possibly empty) of non-negative integers, or two
intervals of non-negative integers.

6. The rule diagram has n horizontal chains. The i-th horizontal chain corresponds to the i-th rule in
firewall F . For example, the top horizontal chain corresponds to the first rule in firewall F :

f1 ∈ S1,1 ∧ f2 ∈ S1,2 ∧ .. ∧ fd ∈ S1,d →< decision1 >

Similarly, the bottom horizontal chain corresponds to the last rule in firewall F :

f1 ∈ Sn,1 ∧ f2 ∈ Sn,2 ∧ .. ∧ fd ∈ Sn,d →< decisionn >

If i < i′ , then we say that the chain that corresponds to rule i in F precedes the chain that corresponds
to rule i′ in F .

7. Each non-terminal node labeled fj , in a horizontal chain other than the bottom horizontal chain, has
two outgoing edges: a horizontal edge labeled Si,j , which is specified in the i-th rule in firewall F ,
and a vertical or inclined edge labeled Ci,j , which is specified as follows: Ci,j = D(fj)− Si,j

Note that both D(fj) and Si,j are intervals of non-negative integers. Thus, Ci,j is either an interval of
non-negative integers, or the union of two intervals of non-negative integers. Each non-terminal node
labeled fj in the bottom horizontal chain has one outgoing edge labeled Sn,j , which is specified in
the n-th rule in firewall F .
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Figure 1: Structure of the rule diagram of a firewall F

Figure 2: Rule diagram of the firewall F1
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As an example, the rule diagram of firewall F1 in Section 2 is given in Figure 2.

Theorem 1. The rule diagram of a firewall F , with n rules and d fields, has n(d + 1) nodes and (2n− 1)d
edges.

Proof. Each horizontal chain in the rule diagram has d + 1 nodes - one for each field, and one for the
decision. There are n chains - one for each rule. The total number of nodes is n(d + 1).

Similarly, each horizontal chain has d horizontal edges connecting the nodes in the chain. These consti-
tute nd edges. Each chain, except the last, also has d edges which connect the nodes marked with the names
of fields (f1, f2, . . . fn) to the first node (f1) of the next chain. These are another (n− 1)d edges. The total
number of edges is (2n− 1)d.

In the next four sections, we present an algorithm that uses the rule diagram of a given firewall F to
verify whether F satisfies a given property R. This algorithm has two passes.

1. Deterministic Pass: This pass produces any one of the following three outcomes:

(a) F satisfies R.

(b) F does not satisfy R.

(c) No conclusion can be reached.

2. Probabilistic Pass: This pass is performed only when the deterministic pass has outcome (c). When
the probabilistic pass is performed, it produces any one of the following two outcomes:

(c1) F satisfies R with a high probability.

(c2) F does not satisfy R.

The deterministic pass of our firewall verification algorithm is discussed in Sections 4 and 5, whereas
the probabilistic pass is discussed in Sections 6 and 7.

4 Deterministic Pass

The deterministic pass (of our firewall verification algorithm) attempts to deterministically answer the ques-
tion of whether a given firewall F satisfies a given property R. This pass is specified in Algorithm 1.

Applying the deterministic pass algorithm to firewall F1 in Section 2 and to each of the properties R1, R2

and R3 specified in Section 2, we conclude that F1 satisfies R1 , F1 does not satisfy R2 , and no conclusion
can be reached on whether F1 satisfies R3 .

Theorem 2. The time complexity of the deterministic pass algorithm, when applied to a firewall F and a
property R, is O(nd), where n is the number of rules in F and d is the number of fields in a rule (as well as
in R).

Proof. The algorithm computes the intersection of the labels Xi,j and Tj (where Xi,j is either Si,j or Ci,j )
for every rule i and every field j. Each label consists of either one or two integer intervals. Computing the
intersection of two integer intervals takes constant time. Hence in the worst case, as there are n rules and d
fields in a rule, the time consumed for computation is 4nd, which is O(nd).
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Algorithm 1 Deterministic Pass
Input: A firewall F and a property R of F .
Output: Any one of the following outcomes:

(a) F satisfies R.

(b) F does not satisfy R.

(c) No conclusion can be reached.

1: Construct the rule diagram of firewall F , as shown in Figure 1.
2: Let the predicate of property R be:

f1 ∈ T1 ∧ f2 ∈ T2 ∧ .. ∧ fd ∈ Td

For every edge e, outgoing from a node labeled fj , if the label of edge e is the set Xi,j (where Xi,j is
either Si,j or Ci,j ), and if the intersection of Xi,j and Tj is empty, then remove edge e from the rule
diagram.

3: If the earliest terminal node, reachable from the root, is labeled with a decision that differs from the
decision of property R, then report that F does not satisfy R.

4: If all terminal nodes, reachable from the root, are labeled with the same decision as that of property R,
then report that F satisfies R.

5: In all other cases, report that no conclusion can be reached.

5 Effectiveness of the Deterministic Pass

In this section, we show why the deterministic pass is not sufficient to reach a decision whether a firewall
satisfies a property or not (decisions a and b respectively) in all cases. We also report three significant cases
where the deterministic pass is sufficient to determine whether or not a firewall F satisfies a property R.
These three cases are as follows.

1. R is a singleton property.

2. F is a conflict-free firewall.

3. F is an accept-discard firewall, and R has the decision discard.

We describe the three concepts of singleton properties, conflict-free firewalls, and accept-discard fire-
walls, in order after reporting the cases where a deterministic pass does not produce outcome a or b.

Consider property R to have the form

f1 ∈ T1 ∧ f2 ∈ T2 ∧ . . . ∧ fd ∈ Td →< decision >

and rule Ri to have the form

f1 ∈ Si,1 ∧ f2 ∈ Si,2 ∧ . . . ∧ fd ∈ Si,d →< decisioni >

Then a packet
f1 = t1 ∧ f2 = t2 ∧ . . . ∧ fd = td

is said to belong to the predicate of R iff ∧d
i=1ti ∈ Ti.
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We define a rule, whose decision is the same as that of the property R under verification, to be compliant,
and a rule with the opposite decision to be non-compliant. A firewall practises first-match semantics : if
a packet matches multiple rules (Ri, Rii . . .), the decision of the first rule it matches is the decision of the
firewall. Iff the first rule matched by any packet which belongs to the predicate of property R is non-
compliant, the firewall does not satisfy R.

In order to detect the rules which may be matched by packets which belong to the predicate of property
R, we check the intersections of the labels Si,j ∩ Tj for every field value j. If all the intersections are
non-empty, rule Ri matches some packets in the predicate of R.

Further, to detect if a rule matches every packet in the predicate of R, we test the intersection of label
Ci,j ∩ Tj . If a single intersection is non-empty, there are packets in the predicate of R which rule Ri does
not match. This is because Ci,j is the complement of Si,j : iff there is no value of Tj in common with Ci,j

then Tj ⊆ Si,j . If Tj ⊆ Si,j for every field j, every packet in the predicate of R is matched by rule Ri.
This means that the rules following Ri need not be checked to determine whether the given firewall satisfies
property R. Ri is said to completely mask R.

However, suppose that a compliant rule Ri precedes the non-compliant rule Rii. Ri does not match
every packet in the predicate of R, but it does match every packet that Rii matches. Ri is said to mask R
from Rii. As Ri does not completely mask R, the algorithm continues and detects that Rii can match some
packets in the predicate of R. It does not detect that no such packet will be matched by Rii in practice,
because Ri will match them first. Rii is said to be a pseudo-active rule.

The deterministic pass can conclude that the firewall satisfies property R if all the rules detected to match
packets R are compliant. However, the algorithm detects pseudo-active rules as well as the rules which
actually match packets belonging to the predicate of R. It may be possible that the only non-compliant rules
detected (as matching packets in the predicate of R) are pseudo-active. In such a case, the firewall satisfies
property R, but the deterministic pass does not detect this.

The deterministic pass is only allowed to conclude that the firewall does not satisfy property R if the first
rule Rfirst, that matches one or more packets belonging to the predicate of R, is non-compliant. Note that
any packet p which Rfirst can (possibly) match, is guaranteed to be matched by Rfirst. There are no earlier
rules matching packets belonging to the predicate of R, hence no earlier rule that can match p (and prevent
the firewall from executing the decision of Rfirst). As Rfirst is non-compliant, this causes the firewall to
reach the opposite decision from that specified in R in the case of the packet p, a packet that belongs to the
predicate of R. This proves that the firewall does not satisfy R.

5.1 Singleton Properties

A singleton property is one that is only matched by a single packet, i.e. the property has a predicate of the
form

f1 ∈ T1 ∧ f2 ∈ T2 ∧ . . . ∧ fd ∈ Td

where each interval Tj contains a single non-negative integer tj . In this case, the predicate can also be
expressed as

f1 = t1 ∧ f2 = t2 ∧ . . . ∧ fd = td

Theorem 3. If the deterministic pass algorithm is applied to a firewall F and a singleton property R, then
the algorithm is guaranteed to produce either outcome (a) or outcome (b).

Proof. There is exactly one packet which belongs to the predicate of a singleton property R . Consequently,
there is no way a rule Ri can match some of the packets in the predicate of R, but not others. If a rule Ri

masks R from Rii, it completely masks R. There are no pseudo-active rules. Therefore, the deterministic
pass can decide with certainty whether R is satisified or not, and produces either outcome (a) or outcome
(b).
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This result is the basis upon which the probabilistic pass of our algorithm, presented in Section 6, is
founded.

5.2 Conflict-free Firewalls

A firewall F is said to be conflict-free if, for any two rules ri and rj in F , at least one of the following
conditions holds:

1. No packet matches both ri and rj .

2. ri and rj have the same decision.

Theorem 4. If the deterministic pass algorithm is applied to a conflict-free firewall F and a property R,
then the algorithm is guaranteed to produce either outcome (a) or outcome (b).

Proof. If a firewall is conflict-free, any packet p which a rule Rany can possibly match, is guaranteed to be
matched by Rany. Note that no rule Ri preceding Rany can match p; hence, no Ri can mask R from Rany.
Hence there are no pseudo-active rules. If Rany is non-compliant, then the firewall is proved to not satisfy
the property R. If no Rany is non-compliant, then in any case the firewall satisfies property R: it is true for
any firewall F that F satisfies R if all the rules detected to match packets belonging to the property of R are
compliant.

5.3 Accept-discard firewalls

An accept-discard firewall is one in which all the rules with decision accept precede all rules with decision
discard.

Theorem 5. If the deterministic pass algorithm is applied to an accept-discard firewall F and a property R
whose decision is discard, then the algorithm is guaranteed to produce either outcome (a) or outcome (b).

Proof. The property R being verified is a discard property; this means that the discard rules in F are
compliant, and the accept rules are non-compliant. As no compliant rule precedes a non-compliant rule, the
possibility of a compliant Ri masking R from a non-compliant Rii does not arise. Even if a non-compliant
rule Rii is pseudo-active, the rule Ri must itself be non-compliant. F cannot satisfy R. Hence, any non-
compliant rule detected to match a packet belonging to the predicate of R is sufficient proof that F does not
satisfy R. If there are no non-compliant rules thus detected, then F satisfies R anyway: it is true for any
firewall F that F satisfies R if all the rules detected to match packets belonging to the property of R are
compliant. Thus the deterministic pass always terminates with outcome (a) or outcome (b).

This result is important because, in many practical cases, a firewall is designed by specifying packets
to allow, followed by a default rule to discard all packets. Any such firewall is an accept-discard firewall.
(Note that the deterministic pass algorithm is also guaranteed to produce outcome (a) or outcome (b) if it
is applied to a discard-accept firewall, in which all the rules with decision discard precede all rules with
decision accept.)

6 Probabilistic Pass

In the previous section, we discussed several instances of a firewall F and a property R, where the determin-
istic pass applied to F and R produces either outcome (a) or outcome (b). The deterministic pass, however,
can produce outcome (c) in many instances of F and R. In order to handle these cases, we perform the
probabilistic pass, which we detail in this section.
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Theorem 6. Any property R can be decomposed into an equivalent set Q of singleton properties, such that
any firewall F satisfies R iff F satisfies each singleton property in Q.

Proof. (Proof by construction) A property specifies a set of packets, and a decision dec. We take the pred-
icate of property R, and for every packet p : f1 = x1, f2 = x2 . . . fd = xd that matches this predicate,
construct a new singleton rule

f1 = x1, . . . fd = xd → dec

The set of these rules is Q.

We refer to set Q in Theorem 6 as the footprint of property R.
As an example, assume that we need to verify whether or not a given firewall F satisfies the following

property R:
f1 ∈ [1, 2] ∧ f2 ∈ [5, 5] ∧ f3 ∈ [1, 2]→ discard

By Theorem 6, firewall F satisfies R iff F satisfies each of the following singleton properties in the
footprint of R:

f1 = 1 ∧ f2 = 5 ∧ f3 = 1→ discard

f1 = 1 ∧ f2 = 5 ∧ f3 = 2→ discard

f1 = 2 ∧ f2 = 5 ∧ f3 = 1→ discard

f1 = 2 ∧ f2 = 5 ∧ f3 = 2→ discard

Now, by Theorem 3, each singleton property in the footprint of R can be verified using the deterministic
pass, producing either outcome (a) or outcome (b).

It follows from this example that we can determine whether a firewall F satisfies a property R by
decomposing R into the singleton properties of its footprint and verifying whether F satisfies each of these
singleton properties.

However, the number of singleton properties in the footprint of a property can be very large. For exam-
ple, there are 40000 singleton properties in the footprint of the following property:

f1 ∈ [1, 200] ∧ f2 ∈ [5, 5] ∧ f3 ∈ [1, 200]→ discard

To get around this problem, we selectively verify some of the properties in the footprint of R, not all of
them. In our probabilistic pass algorithm, discussed below, we take some small number, namely 4, of values
for each field fj as the sample set of field fj . (Note that our choice of the number 4 was simply because in
real life, firewalls have 5 to 7 fields; the number of properties tested in the probabilistic pass is 4d, as we
consider 4 values for each of d fields, and we wanted to ensure that at least 1, 000 random properties were
tested. 45 = 1, 024, so 4 was the smallest choice satisfying our criterion in the worst case.)

The selection of values is done so as to divide the range of fj in R into 4− 1 = 3 slices, as nearly equal
as possible. In the above example, the range of both f1 and f3 is [1, 200]. We begin by selecting the two
“corner” values 1 and 200. The other two values that we select are

1 + floor (
(200− 1)

3
) = 67 (1)

1 + floor (2× (200− 1)
3

) = 133 (2)

Then the sample set for fields f1 and f3 is {1, 67, 133, 200}.
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Algorithm 2 Probabilistic Pass
Input: A firewall F and a property R of F .
Output: Any one of the following outcomes:

(c1 ) F satisfies R with a high probability.(See Section 7 below.)

(c2 ) F does not satisfy R.

1: For each field fj do a) Let property R contain: fj ∈ [x, x′] b) Define Xj to be the set {x0, x1, x2, x3 }
where, for each i in the range 0..3,

xi = x + floor(i
(x′ − x)

3
)

2: Define p to be the Cartesian product of the Xj sets :

p = X1 × . . .×Xd

(Each element in p is a packet of firewall F .)
3: For each packet (p1, p2, . . . , pd ) in p, compute a corresponding singleton property as follows:

f1 = p1 ∧ . . . ∧ fd = pd→< decision >

where < decision > is the decision of property R. Let q be the set of the singleton properties thus
computed. Note that set q is a subset (usually proper) of Q, the footprint of property R.

4: Use the deterministic pass algorithm to verify whether or not F satisfies every singleton property in set
q.

5: If F satisfies every singleton property in set q, then report that F satisfies property R with high proba-
bility. Otherwise, report that F does not satisfy property R.
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Finally, we verify only the properties, in the footprint, such that the values of their fields are drawn
from the sample sets of the respective fields. For the above property, we now need to verify only 16 sin-
gleton properties instead of 40000. (Note that this pattern of sampling provides random sampling with the
guarantee that no packet is sampled more than once.)

In the probabilistic pass, we need to verify a maximum of 4d singleton properties. By Theorem 2,
verifying each of these takes O(nd) time. We can now state the following theorem:

Theorem 7. The time complexity of the probabilistic pass algorithm, when applied to a firewall F and a
property R, is O(4dnd), where n is the number of rules in F and d is the number of fields checked in F (as
well as in R).

Proof. The proof is provided by the derivation above.

Note that in practice the value of d is around 5. Thus 4d = 1024, a constant factor, and the complexity
of the probabilistic pass is O(nd).

7 Effectiveness of the Probabilistic Pass

In this section, we show that when the probabilistic pass reports that the given firewall F satisfies the given
property R, then the probability that F actually satisfies R is high.

Specifically, let A be the event that F satisfies R, and let B be the event that the probabilistic pass reports
that F satisfies R. Thus, we need to prove that the conditional probability P (A|B) is high. A derivation of
the conditional probability P (A|B) follows:

P (A|B) =
P (AB)
P (B)

=
P (AB)

P (AB) + P (ĀB)

=
P (A)

P (A) + P (ĀB)
, as P (AB) = P (A)

=
P (A)

P (A) + P (Ā)P (B|Ā)

=
P (A)

P (A) + (1− P (A))P (B|Ā)

Thus, to compute P (A|B), we need to estimate the two quantities P (A) and P (B|Ā).
First, we assume that P (A) has the unbiased value of 1

2 . (Note that there are two possibilities - either the
given firewall satisfies the given property, or not. Thus, this assumpion is based on the view that these two
possibilities are equally likely.) In practice, P (A) is close to 1, but we assume 1

2 and show that the algorithm
is highly reliable even under this severe assumption.

Second, we estimate that the value of P (B|Ā) is at most E4d
, where E is the fraction of singleton

properties in the footprint of R that are satisfied by F ,and 4d is the number of singleton properties that are
selected from the footprint of R and shown to be satisfied by F in the probabilistic pass.

It follows that

P (A|B) ≥
1
2

1
2 + (1− 1

2)E4d

=
1

1 + E4d
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This derivation proves the following theorem:

Theorem 8. If the probabilistic pass reports that F satisfies R, the probability that F satisfies R is at least
1

1+E4d .

Proof. The proof is provided by the derivation above.

In practice, the number of fields checked in a firewall is usually between 5 and 7. Thus, for E as high
as 99.5%, and the lowest (worst) value of d = 5, the probability P (A|B) is at least 99.41%. (In the more
practically reasonable case where P (A) = 0.99, P (A|B) rises to over 99.99%. Even E = 99.95% yields
P (A|B) of at least 99.40%.)

8 Experimental Results

In the previous sections, we have presented a linear time firewall verification algorithm, whose time com-
plexity is O(nd), where n is the number of rules in the given firewall and d is the number of fields checked
in the firewall (or the given property). The verification algorithm consists of a deterministic pass followed
by a probabilistic pass (which is run only on the cases where the deterministic pass fails to decide whether
or not the given firewall satisfies the given property). Still, three important questions remain to be answered.
They are:

1. What is the speed of a working implementation of our verification algorithm?

2. The deterministic pass runs 1000 times faster than the probabilistic pass. What percentage of proper-
ties is decided by the deterministic pass alone?

3. There is a probability of error in the case where the probabilistic pass produces outcome (c1 ). How
frequent are these cases?

8.1 Experiment 1

In our first experiment, we generated firewalls with n rules each, where n is varied from 100 to 2000 in steps
of 100. For each value of n, we generated 100 random firewalls. Each generated firewall checks five fields,
and the domain of values for each field is the integer interval [0, 216 − 1]. For each generated firewall, we
used the first 10 rules in the firewall as properties, and applied our deterministic and probabilistic passes in
order to verify whether the generated firewall satisfies each of these 10 properties.

The results of the first experiment are summarized in Table 1. Note that each line in Table 1 represents
the results of 1000 applications of our deterministic and probabilistic passes to verify whether a randomly
generated firewall satisfies a property (which happens to be one of the first 10 rules in the generated firewall).
For instance, the first line in Table 1 indicates that out of 1000 applications,

• 509 produced outcome (a) of the deterministic pass

• 381 produced outcome (b) of the deterministic pass

• 3 produced outcome (c1) of the probabilistic pass

• 107 produced outcome (c2) of the probabilistic pass

The average execution time for each application is 0.0 seconds.
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# Rules Verification Results Time (sec)a(%) b(%) c1 (%) c2 (%)
100 50.9 38.1 0.3 10.7 0.0
200 54.7 34.8 0.6 9.9 0.1
300 53.0 35.9 0.4 10.7 0.1
400 52.0 37.7 0.5 9.8 0.1
500 53.7 35.6 0.6 10.1 0.2
600 54.6 35.1 0.5 9.8 0.2
700 51.0 36.6 0.3 12.1 0.3
800 52.7 34.7 0.7 11.9 0.3
900 53.1 35.2 0.9 10.8 0.4
1000 55.8 34.5 0.4 9.3 0.3
1100 54.6 34.2 0.8 10.4 0.3
1200 52.1 35.8 0.4 11.7 0.4
1300 50.7 38.4 0.2 10.7 0.4
1400 54.2 34.2 0.3 11.3 0.4
1500 54.0 35.0 0.2 10.8 0.4
1600 52.7 36.6 0.9 9.8 0.5
1700 53.4 37.5 1.0 8.1 0.6
1800 54.3 35.3 0.3 10.1 0.5
1900 55.5 34.1 0.2 10.2 0.6
2000 54.2 35.4 0.5 9.9 0.6

Table 1: Results where the first 10 rules in the firewall are used as properties

8.2 Experiment 2

The second experiment is similar to the first experiment, except that for each generated firewall, we used the
last 10 rules in the firewall as properties, and applied our deterministic and probabilistic passes in order to
verify whether the generated firewall satisfies each of these 10 properties.

The results of the second experiment are summarized in Table 2. Again each line in Table 2 represents
the results of 1000 applications of our deterministic and probabilistic passes to verify whether a randomly
generated firewall satisfies a property (which happens to be one of the last 10 rules in the generated firewall).
For instance, the first line in Table 2 indicates that out of 1000 applications,

• 2 produced outcome (a) of the deterministic pass

• 552 produced outcome (b) of the deterministic pass

• 4 produced outcome (c1) of the probabilistic pass

• 442 produced outcome (c2) of the probabilistic pass

The average execution time for each application is 0.1 seconds.

8.3 Experiments 3 and 4

In Experiment 3, as in Experiment 1, the properties we verified were obtained from the first 10 rules. How-
ever, this time the rules were flipped before being used as properties; the predicates of the properties were
left unaltered, but the decision was changed to accept if the original decision of the rule was discard, and
vice versa.
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# Rules Verification Results Time (sec)a(%) b(%) c1 (%) c2 (%)
100 0.2 55.2 0.4 44.2 0.1
200 0.6 56.4 0.0 43.0 0.1
300 0.4 59.7 0.2 39.7 0.2
400 0.1 60.6 0.3 39.0 0.2
500 0.3 56.1 0.3 43.3 0.3
600 1.1 54.7 0.1 44.1 0.4
700 0.3 59.7 0.1 39.9 0.4
800 0.3 55.2 0.5 44.0 0.6
900 0.2 58.7 0.2 40.9 0.6
1000 0.4 57.7 0.6 41.3 0.7
1100 0.3 54.2 0.3 45.2 0.8
1200 0.6 55.6 0.1 43.7 0.8
1300 0.5 57.9 0.3 41.3 0.7
1400 0.4 57.8 0.4 41.4 0.9
1500 0.2 55.5 0.2 44.1 0.9
1600 0.4 55.2 0.1 44.3 1.0
1700 0.7 57.5 0.4 41.4 1.2
1800 0.4 57.3 0.1 42.2 1.1
1900 0.8 55.9 0.4 42.9 1.2
2000 0.6 57.6 0.4 41.4 1.3

Table 2: Results where the last 10 rules in the firewall are used as properties

Expt # Verification results
a(%) b(%) c1 (%) c2 (%)

1 54.4 36.1 0.4 10.1
2 0.5 54.5 0.3 44.2
3 0.1 76.1 0.0 23.8
4 0.3 67.5 0.1 32.1

Table 3: Summary of results
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Similarly, Experiment 4 used the last 10 rules, like Experiment 2, but this time the rules were flipped.
All other details (number of firewalls, number of fields, number of properties) were identical in all four
experiments.

The results from our algorithm are stable with regard to the length of the firewalls considered, after
80, 000 trials, and are summarized in Table 3. From this table, we can answer the three questions which we
posed at the beginning of this section.

1. The execution time of our working implementation, to verify that a given firewall satisfies a given
property, is about 0.5 seconds.

2. A majority of the properties (between 55% and 80%) are verified using the deterministic pass only.

3. The percentage of times that our verification algorithm produces outcome (c1 ) is less than 0.5%.

From Table 3, and from our conclusion of the previous section that the probability of error when our
verification algorithm produces outcome (c1 ) is less than .6%, we conclude that the probability of error our
verification algorithm is less than .005× .006 = 3× 10−5.

Besides verifying the efficiency of the algorithm, our experiments produced an unexpected useful result.
We observe that, unless a property is deterministically proved to be satisfied, the chance of its being satisfied
(and this being found in the probabilistic pass) is extremely low. As the only case where the algorithm can
make an error is for properties that satisfy these conditions, the chance of an erroneous result can be seen
to be vanishingly small. We propose the heuristic of declaring that, if the firewall is not shown to satisfy a
given property in the deterministic pass, it does not satisfy the property. Of course, the probabilistic pass
can be employed where better accuracy is required.

9 Verification of general properties

So far, we have presented algorithms to verify whether a given firewall F satisfies a given property R ,
provided that R has the special form:

f1 ∈ T1 ∧ .. ∧ fd ∈ Td →< decision >

In this form, the predicate of property R is a conjunction of d terms, each term is of the form (fj ∈ Tj), and
each Tj is an interval taken from the domain of field fj . In this section, we argue that our algorithms can
still be applied to verify whether F satisfies R even if the predicate of R is incomplete or has disjunction
and negation operators. For convenience, we carry our argument using the firewall example F1 in Section
2. Recall that firewall F1 has only three fields f1, f2, and f3 , and that the domain of each one of these three
fields is the integer interval [0, 10].

9.1 Incomplete Predicates

Assume that we need to verify whether firewall F1 satisfies the following property R, whose predicate is
incomplete:

f2 ∈ [5, 8]→< decision >

In this case, we can use our algorithms to verify whether F1 satisfies the following equivalent property R′ ,
whose predicate is complete:

f1 ∈ [0, 10] ∧ f2 ∈ [5, 8] ∧ f3 ∈ [0, 10]→< decision >

16



9.2 Disjunctive Predicates

Assume that we need to verify whether firewall F1 satisfies the following property R, whose predicate has a
disjunction:

f1 ∈ [2, 7] ∨ f2 ∈ [5, 8]→< decision >

In this case, we can use our algorithms to verify whether F1 satisfies the following two properties R′

and R′′, whose predicates have no disjunctions:

f1 ∈ [2, 7] ∧ f2 ∈ [0, 10] ∧ f3 ∈ [0, 10]→< decision >

f1 ∈ [0, 10] ∧ f2 ∈ [5, 8] ∧ f3 ∈ [0, 10]→< decision >

If it is concluded that F1 satisfies both R′ and R′′ , we conclude that F1 satisfies the original property R.
Otherwise, we conclude that F1 does not satisfy R.

9.3 Negated Predicates

Assume that we need to verify whether firewall F1 satisfies the following property R, whose predicate has a
negation:

¬f2 ∈ [5, 8]→< decision >

In this case, we can use our algorithms to verify whether F1 satisfies the following two properties R′

and R′′, whose predicates have no negations:

f1 ∈ [0, 10] ∧ f2 ∈ [0, 4] ∧ f3 ∈ [0, 10]→< decision >

f1 ∈ [0, 10] ∧ f2 ∈ [9, 10] ∧ f3 ∈ [0, 10]→< decision >

If it is concluded that F1 satisfies both R′ and R′′ , we conclude that F1 satisfies the original property R.
Otherwise, we conclude that F1 does not satisfy R.

9.4 General Predicates

Assume that we need to verify whether firewall F1 satisfies the following property R, whose predicate has
conjunction, disjunction and negation:

f1 ∈ [2, 7] ∧ ¬(f2 ∈ [5, 8] ∨ ¬f3 ∈ [3, 6])→< decision >

In this case, we can use our algorithms to verify whether F1 satisfies the following two properties R′

and R′′, whose predicates have conjunction only:

f1 ∈ [2, 7] ∧ f2 ∈ [0, 4] ∧ f3 ∈ [3, 6]→< decision >

f1 ∈ [2, 7] ∧ f2 ∈ [9, 10] ∧ f3 ∈ [3, 6]→< decision >

If it is concluded that F1 satisfies both R′ and R′′, we conclude that F1 satisfies the original property R.
Otherwise, we conclude that F1 does not satisfy R.
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10 Related Work

The problem of ensuring that a given firewall is correct is of great importance. This important problem has
been addressed using four approaches: firewall testing, firewall analysis, firewall verification, and firewall
design. We briefly discuss these four approaches next.

1. Firewall Testing: To test a given firewall F , one generates many packets for which the “expected”
decisions of F , accept or discard, are known a priori. The generated packets are then sent to F , and
the actual decisions of F for these packets are observed. If the expected decision for each generated
packet is the same as the actual decision for the packet, one concludes that the given firewall F
is correct. Otherwise, the given firewall F has errors. Different methods of firewall testing differ
in how the testing packets are generated. For instance, the test packets can be hand-generated by
domain experts to target specific vulnerabilities in the given firewall F , or generated from the formal
specifications of the security policy of the given firewall F , as in [4]. A scheme for targeting test
packets for better fault coverage is given in [5]. [6] is a framework to generate packets for testing.

2. Firewall Analysis: To analyze a given firewall F , one applies an algorithm to identify (some or all
of the) vulnerabilities, conflicts, anomalies, and redundancies in the given firewall F . A systematic
method for analyzing firewalls is presented in [7]. The concept of conflicts between rules in a firewall
is due to [8] and [9]. A classification of anomalies, as well as algorithms to detect them, may be found
in [10] and [11]. (This analysis works for verifying the security policies in IPsec and VPN as well
[12].) A framework for understanding the vulnerabilities in a single firewall is outlined in [13], and an
analysis of these vulnerabilities presented in [14]. [15] is a quantitative study of configuration errors
for a firewall. An example of an efficient firewall analysis algorithm is given in FIREMAN [16].

3. Firewall Verification: To verify a given firewall F against a given property R, one applies an algorithm
(similar to the one discussed in this paper) to verify whether or not F satisfies R. The question of
how to query a given firewall and obtain the answer (whether or not it satisfies a given property) is
discussed in [7] and [1]. These algorithms are proved to be O(nd) in [2]. Our paper presents a new,
O(nd) algorithm.

4. Firewall Design: To ensure a firewall does not have vulnerabilities or other problems, it can be de-
signed from the outset using structured algorithms. Such algorithms, that can generate a firewall from
its specification, are provided in [3].

11 Concluding Remarks

We presented in this paper a linear time algorithm for verifying whether a given firewall satisfies a given
property. The time complexity of this algorithm is O(nd), where n is the number of rules in the firewall and
d is the number of fields that are checked in the firewall or the property. Because verifying whether a given
firewall satisfies a given property requires that each conjunct in each rule in the given firewall be compared
with the given property, and because the given firewall has nd such conjuncts, the time complexity of any
other algorithm for firewall verification can not be less than O(nd), the time complexity of our algorithm.

Our verification algorithm consists of two passes: a deterministic pass followed by a probabilistic pass.
The probabilistic pass is executed only when the deterministic pass has the outcome (c), i.e.. it cannot
reach a definite conclusion as to whether the given firewall satisfies the given property or not. There are two
possible outcomes of the probabilistic pass: (c1) and (c2). The (c1) outcome is that the given firewall satisfies
the given property with a high probability, and the (c2) outcome is that the given firewall does not satisfy the
given property. Thus, when our verification algorithm produces outcome (c1 ), there is a possibility that this
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outcome is erroneous. In Section 7, we showed by analysis that the probability of error when our algorithm
produces outcome (c1) is less than .005. Then in Section 8, we showed by simulation that the probability
of our algorithm producing outcome (c1) is less than .006. It follows that the probability of our algorithm
producing an erroneous result is less than 3× 10−5 .

This means that if our algorithm is used to verify that a given firewall satisfies 100, 000 given properties,
then the results of at most 3 of these properties are wrong.

The algorithm presented in this paper is limited to verifying a single firewall. However, we can use this
algorithm in conjunction with the techniques described in [2] in order to verify enterprise networks that have
tens or even hundreds of firewalls.

The task of verifying whether a given firewall satisfies a given property is a fundamental one, and it
can be used to perform other tasks such as the task of checking whether a particular rule in a given firewall
is redundant. The problem, of whether our linear time verification algorithm can lead to a linear time
redundancy checking algorithm, remains open and merits further research.
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