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Abstract

A widely used mechanism for computing the topology of any network in the Internet is Traceroute.
Using Traceroute, one simply needs to choose any two nodes in a network and then obtain the sequence
of nodes that occur between these two nodes, as specified by the routing tables in these nodes. Thus, each
use of Traceroute in a network produces a trace of nodes that constitute a simple path in this network.
In every trace that is produced by Traceroute, each node occurs either by its unique identifier or by the
anonymous identifier “∗”. In this paper, we introduce the first theory aimed at answering the following
important question. Is there an algorithm to compute the topology of a network N from a trace set T
that is produced by using Traceroute in N , assuming that each edge in N occurs in at least one trace in
T , and that each node in N occurs by its unique identifier in at least one trace in T ? Our theory shows
that the answer to this question is “No” in general. But if N is a tree, or is a ring with an odd number of
nodes, then the answer is “Yes”. On the other hand, if N is a ring with an even number of nodes, then
the answer is “No”, but if N is a “mostly regular” ring with an even number of nodes, then the answer is
“Yes”.

1 Introduction

Traceroute is arguably the most popular mechanism for computing the topology of a network in the Internet
[3] and [13]. Each use of Traceroute between any two nodes, say nodes x and y, in a network produces a
sequence, also called trace, of nodes that occur, in the network, between x and y as determined by the routing
tables in the network nodes. It follows that each trace, that is produced from using Traceroute between nodes
x and y, does correspond to a simple path between x and y in the network. On the other hand, if the network
has multiple simple paths between nodes x and y, then only one of these paths corresponds to the trace that
is produced from using Traceroute between x and y.

Traceroute can be used to compute the topology of a network N in the Internet as follows [3] :

1. Identify the nodes that occur at the perimeter of network N . We refer to these nodes as the terminal
nodes of N .

2. Use Traceroute between any two terminal nodes of N to produce the trace of nodes that occur between
these two terminal nodes (as determined by the routing tables in the nodes of N ).

3. Put all traces, that are produced in Step 2, together in order to compute the topology of network N .

There are three problems that can hinder computing the correct topology of network N in Step 3. These
three problems are as follows:

(a) Incomplete coverage: It is likely that the set of traces produced in Step 2 do not cover every edge
or every node in the network. And when this happens, the computed topology in Step 3 will not be
correct.

(b) Aliasing of Node Identifiers: A node in a network may have two or more (unique) identifiers and so
such a node may occur by its different identifiers in different traces in the trace set produced in Step
2. This may cause the node to be regarded as multiple nodes and the computed topology in Step 3 to
be incorrect.[7]

(c) Node Anonymity: If a node that occurs in a trace is busy, when this trace is being produced in Step 2,
then the node may decide not to bother announcing its unique identifier in the produced trace. If this
happens, then the node will occur in the trace by an anonymous identifier “∗i”, where i is a positive
integer, rather than by the node’s unique identifier. This in turn may cause the computed topology in
Step 3 to be incorrect.[12]
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In this paper, we focus on the problem of node anonymity, and develop the first theory aimed at answer-
ing the question: “Is there an algorithm to compute the topology of a network from a given trace set of this
network, even when some nodes occur by anonymous identifiers, rather by their unique identifiers, in some
traces in the given trace set?” As we show below, our theory produces a number of surprising and unex-
pected answers to this question. (Note that node anonymity is a serious problem: the topology generated
from the Internet by the iPlane tool, in [8], includes over 9M anonymous nodes (1M after the initial pruning)
along with 230K known nodes.)

In order to develop our theory, we need first to dispose of the other two problems mentioned above:
incomplete coverage and aliasing of node identifiers. We achieve this goal by basing our theory on the
following two assumptions:

(i) Unique Identifiers: Each node in the network has exactly one unique identifier.

(ii) Complete Coverage: Each edge in the network occurs in at least one trace in the given trace set of
the network. Also, each node in the network occurs by its unique identifier in at least one trace in the
given trace set of the network (but the node may appear by an anonymous identifier in other traces in
the given trace set).

Note that the assumption of complete coverage can be somewhat realized if one designates a large
fraction of the nodes in the network (being traced) to be terminal nodes. (Recall Step 1 above.) To some
extent, some missing links can be guessed by using the techniques in [9].

The problem of node anonymity in a given trace set has been discussed in an ad-hoc manner using
unsubstantiated heuristics in [8], [10], and [14]. Similarly, the problem of aliasing of node identifiers has
been discussed in an ad-hoc manner using unsubstantiated heuristics in [5], [6], and [11]. Previous work
related to the subject matter of this paper is discussed in Section 7.

In the next section, we will define terms such as trace and trace set formally, so as to be able to develop
our mathematical treatment of the problem.

2 Network Tracing

A network N is a connected, undirected graph where nodes have unique identifiers. Every node in a network
is designated either terminal or non-terminal. Also, every node is either regular or irregular.

A trace t is generable from a network N iff t is a sequence of nodes in N that represents a simple path
between two distinct terminal nodes in N . If a node that occurs in t is regular, then the node occurs in t by
its unique identifier in t. Otherwise (if the node is irregular), the node occurs in t by an anonymous identifier
∗i, where i is a unique integer in the trace. The first and last nodes of t must occur by their unique identifiers
in t.

As an example, consider network N1 in Figure 1. Note that, for convenience, we adopt the following
notation in all our graphical representations of networks.

1. A terminal node is represented by a box.

2. A non-terminal node is represented by a circle.

3. A regular node x is labeled by its unique identifier “x”.

4. An irregular node x is labeled by the label “x/*”, where x is the unique identifier of the node.

Consider the following node sequences taken from network N1 in Figure 1.
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Figure 1: Network N1

• The node sequence (a, ∗4, c, ∗5) is not a trace that is generable from network N1 : one of the two
terminal nodes in the sequence does not occur by its unique identifier.

• The node sequence (a, b, ∗1, ∗1, e) is not a trace that is generable from network N1 : a trace corre-
sponds to a simple path, hence nodes may not repeat. In this sequence, the node ∗1 occurs twice,
hence there is a loop. This makes the sequence an invalid trace.

• The node sequence (b, ∗1, e) is not a trace that is generable from network N1: this is because there is
no path of length 2 connecting b and e in network N1.

• The node sequence (a, ∗2, ∗4, d) is not a trace that is generable from network N1: one of the two
terminal nodes in the sequence, node d, is not a terminal node in N1.

• The node sequence (a, ∗1, ∗2, ∗3, e) is a trace that is generable from network N1.

Note that a trace t that is generable from a network N is a sequence of nodes that corresponds to a simple
path in N . Thus, there are two ways to write the sequence of nodes in t. For example, t can be written as
(e, ∗1, ∗2, ∗3, a), or it can be written as (a, ∗3, ∗2, ∗1, e). We regard the differences between these two ways
of writing t as immaterial. Later on, when we mention that a trace is of the form (x, . . . , y), we mean that
the trace could also be of the form (y, . . . , x).

For a trace t, we adopt the notation |t| to indicate the number of edges in trace t. For example, if
t = (a, ∗3, ∗2, ∗1, e), then |t| = 4.

A trace set T is generable from a network N iff T satisfies the following five conditions :

1. T is a set of traces, each of which is generable from N .

2. For every pair of terminal nodes x, y in N , T has exactly one trace between x and y.

3. Every edge in N occurs in at least one trace in T .

4. The unique identifier of every node in N occurs in at least one trace in T .

5. T is consistent: for every two distinct nodes x and y, if x and y occur in two or more traces in T , then
the exact same set of nodes must occur between x and y in every trace in T where both x and y occur.

Two comments concerning condition 5 in this definition, the consistency of T , are in order. First, if a
trace set T has two traces of the form (x, ∗2, z) and (u, x, y, z), then from the consistency condition, we can
conclude that node ∗2 is in fact node y.

Second, if a trace set T has a trace of the form (x, ∗2, z), then from the consistency condition, T cannot
have a trace of the form (u, x, ∗5, y, z). This is because the number of nodes between x and z in the first
trace is 1, and their number in the second trace is 2, in violation of the consistency condition.

The network tracing problem is to design an algorithm that takes as input a trace set T that is generable
from a network, and produces a network N such that T is generable from N and not from any other network.
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Figure 2: Network N2

3 Impossibility of Network Tracing

In this section, we show that the network tracing problem is not solvable for general networks.

Theorem 1. There is no algorithm that takes as an input a trace set T that is generable from a network, and
produces as output a network N such that:

• T is generable from N , and

• T is not generable from any other network.

Proof. (By contradiction) Assume that such an algorithm exists. The following trace set T is generable
from network N2 in Figure 2.

{(a, b), (a, ∗1, d), (a, f),
(b, c, d), (b, f),
(d, e, f)}

If T is given as an input to this algorithm, the algorithm will compute network N2 in Figure 2 as the
output. This implies that T is not generable from any other network, which contradicts the fact that T is also
generable from network N3 in Figure 3.

Theorem 1 shows that the network tracing problem is not solvable for general networks. However, as
shown below, the problem is solvable for special classes of networks. One such class of networks is the
class of regular networks defined next.

A network N is called regular iff every node in N is regular. The next theorem states that the network
tracing problem is solvable for regular networks.
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Figure 3: Network N3

Theorem 2. There is an algorithm that takes as an input a trace set T that is generable from a regular
network, and produces as output a regular network N such that:

• T is generable from N , and

• T is not generable from any other regular network.

Proof. The proof of this theorem follows from the fact that every node occurs by its unique identifier in
every trace in a trace set that is generable from a regular network.

In the next two sections, we consider two other special classes of networks, trees and rings, and discuss
whether the network tracing problem is solvable for these two classes.

4 Tracing of Tree Networks

A network N is called a tree if N is acyclic. In this section, we show that the network tracing problem is
solvable for tree networks.

Theorem 3. There is an algorithm that takes as an input a trace set T that is generable from a tree network,
and produces as output a tree network N such that:

• T is generable from N , and

• T is not generable from any other tree network.

Proof. (By construction) We prove Theorem 3 by describing the algorithm that is mentioned in the theorem.
The algorithm consists of the following eight steps:

1. Initially, tree N is empty.
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2. Apply procedure Leaf, discussed below, to compute, from T , the unique identifier of each leaf node
in N .

3. Apply procedure Parent, discussed below, to compute from T , the unique identifier of the parent of
each leaf node in N .

4. For every node y that is the parent of a leaf node x, add to tree N an (undirected) edge between nodes
x and y.

5. For every node y that is the parent of a leaf node x, replace in T each trace of the form (x, ∗i, . . .) by
a trace of the form (x, y, . . .).

6. Shorten the traces in T by replacing in T each trace of the form (x, y, . . .), where x is a leaf node, by
the trace (y, . . .) and by discarding from T each trace that has only one node or is empty.

7. Repeat the algorithm, starting from Step 2, on the trace set T , that results from Step 6, provided that
the resulting set T is non-empty.

8. The algorithm outputs N and terminates when the resulting T from Step 6 is empty.

Next, we specify the two procedures Leaf and Parent that are used in Steps 2 and 3, respectively, of the
above algorithm.

The correctness of procedure Leaf follows from the observation that each leaf node in N occurs as a
terminal node in some trace in T , but the converse is not necessarily true. Procedure Leaf is specified as
follows:

procedure Leaf

for each terminal node y in any trace in T

if T has three traces t = (x, . . . , y), t′ = (y, . . . , z), t′′ = (x, . . . , z), such that |t|+ |t′| = |t′′|
then y is a non-leaf node in N

else y is a leaf node in N

end

The correctness of procedure Parent follows from the observation that the parent of each leaf node in N
must occur by its unique identifier in some trace in T . Procedure Parent is specified as follows:

procedure Parent

for each leaf node x in N,

if T has a trace of the form (x, y . . .), or T has two traces of the form (x, ∗i, z) and (z, y, . . .)
then the unique identifier of the parent of node x is y

end
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5 Tracing of Ring Networks

A network N is called an odd ring iff N consists of one cycle that has an odd number of nodes. It is called
an even ring if it consists of one cycle that has an even number of nodes. In this section, we discuss whether
the network tracing problem is solvable for odd or even ring networks.

Theorem 4. There is an algorithm that takes as an input a trace set T that is generable from an odd ring
network, and produces as output an odd ring network N such that:

• T is generable from N , and

• T is not generable from any other odd ring network.

Proof. (By construction) We prove Theorem 4 by describing the algorithm that is mentioned in the theorem.
The algorithm consists of the following five steps:

1. Construct an unlabeled ring N with n nodes, where n is the number of unique identifiers that occur
in the traces in T . The algorithm terminates when each node in N is labeled by a distinct unique
identifier from those that occur in the traces in T .

2. Choose any trace t = (a, . . . , b) in T . Label any node in N with the unique identifier “a”, and label
the node in N , that is reachable by traversing |t| edges clockwise starting from node a, with the unique
identifier “b”.

3. For every pair of traces t′ = (a, . . . , c) and t′′ = (b, . . . , c) in T ,

if |t| = |t′|+ |t′′| or |t′| = |t|+ |t′′|
then label the node in N , that is reachable by traversing |t′| edges clockwise starting from node a,
with the unique identifier “c”.

else label the node in N , that is reachable by traversing |t′| edges counter-clockwise starting from
node a, with the unique identifier “c”.

4. Note that by the end of Step 3, every unique identifier of a terminal node in a trace in T is used to
label one node in ring N .

5. Consider any trace t′ = (x, . . . , y) in T , and note that |t′| cannot be equal to n/2 since |t′| is a positive
integer, and n is odd. Consequently, one can determine whether any trace t = (x, . . . , y) goes, either
clockwise or counter-clockwise, from node x to node y. Thus, if trace t has a unique identifier z that
has not yet been used to label any node in N , then one can identify the node in N that should be
labeled with z.

In the light of Theorem 4 (that the network tracing problem is solvable for odd ring networks), the next
theorem (that the network tracing problem is not solvable for even ring networks) is some sort of a surprise.

Theorem 5. There is no algorithm that takes as an input a trace set T that is generable from an even ring
network, and produces as output an even ring network N such that:

• T is generable from N , and

• T is not generable from any other even ring network.
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Figure 4: Network N4

Proof. (By contradiction) Assume that such an algorithm exists.The following trace set T is generable from
network N4 in Figure 4. (Note that each node in network N4 is irregular. For convenience, the unique
identifiers of the terminal nodes in N4 are a, b, c . . . and the unique identifiers of the non-terminal nodes in
N4 are 1, 2, 3 . . ..)

{(a, 1, ∗1, 6, ∗2, ∗3, b), (a, ∗4, c), (a, ∗5, ∗6, ∗7, d), (a, ∗8, e), (a, ∗9, ∗10, ∗11, f),
(b, ∗12, ∗13, ∗14, c), (b, ∗15, d), (b, ∗16, ∗17, ∗18, e), (b, ∗19, f),
(c, ∗20, ∗21, 2, ∗22, 3, d), (c, ∗23, ∗24, ∗25, e), (c, ∗26, f),
(d, ∗27, e), (d, ∗28, ∗29, ∗30, f),
(e, ∗31, ∗32, 4, ∗33, 5, f)}

If T is given as an input to this algorithm, the output produced is network N4. This implies that T is not
generable from any other even ring network. This contradicts the fact that T is generable from network N5

in Figure 5.

6 Tracing of Mostly-regular Networks

The network tracing problem for even rings can be solved given the additional constraint that each node
(regular or irregular) has at most one irregular neighbor. We call a network, where each node has at most
one irregular neighbor, a mostly-regular network.

Theorem 6. There is an algorithm that takes as an input a trace set T that is generable from a mostly-
regular even ring network, and produces as output a mostly-regular even ring network N such that:

• T is generable from N , and

• T is not generable from any other mostly-regular even ring network.
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Figure 5: Network N5

Proof. It is sufficient to identify both neighbors of each node to specify the ring completely.
Assume a trace (a, . . . , w/∗, ∗, y, z, . . . , b)
The anonymous node is x. both its neighbors are not irregular, as the ring is guaranteed to be mostly-

regular.
Now if x is non-terminal and y is regular, all traces with x also have y, so there must be a trace of form

(. . . , x, y, . . .).
If x is a terminal and y is regular, then in the traces where it is a terminal x is not anonymous. Some

trace passing through x must cover the edge x− y; this trace is to b. By consistent routing, when a trace is
obtained from x to b, it must have the form x, y, . . . , b.

Hence the regular neighbor of x can always be identified. further, both neighbors of a regular node y can
always be identified - the case where both are regular is obvious; even when a node is irregular, its position
next to a regular node can be identified, as above.

Now as x is irregular, the other neighbor of y, ie z, must be regular. The other neighbor of z, say z1

(whether regular or irregular) is also known to be the neighbor of z (as above : the regular neighbor of an
irregular node can be identified).

By similar reasoning to the case of x (ie, w is terminal/non-terminal) w is identified as being 2 hops
from y. w and z1 are the only two nodes with this description, and the position of z1 is known. Hence the
position of w is the only other one.

The irregular neighbor of x can always be identified. Hence in all cases, both neighbors of any node can
be identified. The topology can be reconstructed.

Encouraged by Theorem 6, one may have hoped that the network tracing problem is solvable for the
whole class of mostly-regular networks. Unfortunately, as shown by the next theorem, this turns out not to
be the case.

Theorem 7. There is no algorithm that takes as an input a trace set T that is generable from any mostly-
regular network, and produces as output a mostly-regular network N such that:

• T is generable from N , and
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• T is not generable from any other mostly-regular network.

Proof. (By contradiction) Assume that such an algorithm exists. The following trace set T is generable
from the mostly-regular network N2 in Figure 2.

{(a, b), (a, ∗1, d), (a, f),
(b, c, d), (b, f),
(d, e, f)}

If T is given as an input to this algorithm, the output produced is network N2. This implies that T is not
generable from any other mostly-regular network. This contradicts the fact that T is also generable from the
mostly-regular network N3 in Figure 3.

7 Discussion and Related Work

Anonymous router resolution is an inherent problem in traceroute based topology mapping studies. Most
of the early work in the area ignores or circumvents the problem. In [3], authors avoid the problem by
stopping a trace toward a destination on encountering an anonymous router on the path; this approach
obviously discards useful information. In [2], authors handle anonymous routers by replacing them either
with arcs connecting the known routers at two ends, or with unique identifiers to treat them as separate
nodes, producing inaccurate maps. The “sandwich” approach used in [1], merges a chain of anonymous
nodes, “sandwiched” between the same pair of known nodes, with each other - thereby losing resolution.

There have been three attacks on the anonymous router resolution problem. Yao et al. formulate it
as an optimization problem [14]: building the smallest possible topology by combining anonymous nodes
with each other under the constraints of trace preservation and distance preservation. They prove that the
optimum topology inference under these conditions is NP-complete, then propose a heuristic to minimize
the constructed topology by identifying anonymous nodes that, when merged, satisfy the two conditions.
This is an O(n5) algorithm; also, its constraint of distance preservation states that the anonymous router
resolution process should not reduce the length of the shortest path between any two nodes in the resulting
topology map. This assumes, besides stable and symmetric routing, the additional constraint that routing is
always along the shortest path.

Jin et al. propose two heuristics to address the problem in [10]. The first one, an ISOMAP based
dimensionality reduction approach, uses link delays or node connectivity as attributes in the dimensionality
reduction process. This is still a O(n3) algorithm; further, they ignore the difficulty of estimating individual
link delays from round trip delays in path traces [4]. The second, a simple neighbor matching heuristic, is
O(n2) but suffers from accuracy problems: it may introduce a high rates of both false positives and false
negatives. Gunes et al. propose their own heuristics in [8] and show good performance, strictly better than
O(n3) for five heuristics they apply in succession.

This paper addresses the problem and provides a theoretical basis for stating which instances of trace
set can be used to compute exactly one network, and which cannot. We give a metric for reduction - the
irregularity number - and bounds on algorithms such as in the above papers. We also give polynomial-time
exact algorithms for several network cases of interest.
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8 Concluding Remarks

We have made two contributions in this paper. First, we formally stated the network tracing problem. Second
we identified network classes for which this problem is solvable and network classes for which the problem
is unsolvable. In particular, we showed that the problem is solvable for the following network classes:

1. regular networks ( Theorem 2)
2. tree networks ( Theorem 3)
3. odd ring networks ( Theorem 4)
4. mostly regular even ring networks ( Theorem 6)

We also showed that the problem is not solvable for the following network classes:

1. general networks ( Theorem 1)
2. even ring networks ( Theorem 5)
3. mostly regular networks ( Theorem 7)

The research in this paper can be extended by weakening the network tracing problem and so making it
solvable for many more classes of networks. As an example, a weak version of the network tracing problem
can be stated as follows: “Is there an algorithm that takes as an input a trace set T that is generable from a
network, and produces a “small” set {N1, . . . , Nk} of networks such that

• T is generable from each network in set {N1, . . . , Nk}, and

• T is not generable from any network not in set {N1, . . . , Nk}?”

In fact, one can view the results of this paper as solving this weak network tracing problem when the
value of k is 1. Solving this problem, when the value of k is 2 or 3 or . . ., remains open and merits further
research.

Finally, recall that our theory of network tracing has so far been based on the two assumptions of unique
identifiers and complete coverage (as discussed in Section 1). It would be interesting to explore ways to
relax these two assumptions while maintaining the effectiveness and elegance of the theory.
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