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Abstract
Most client-side applications running on multicore processors are
likely to be irregular programs that deal with complex, pointer-
based data structures such as large sparse graphs and trees. How-
ever, we understand very little about the nature of parallelism in
irregular algorithms, let alone how to exploit it effectively on mul-
ticore processors.

In this paper, we show that, although the behavior of irregular
algorithms can be very complex, many of them have a generalized
data-parallelism that we call amorphous data-parallelism. The al-
gorithms in our study come from a variety of important disciplines
such as data-mining, AI, compilers, networks, and scientific com-
puting. We also argue that these algorithms can be divided natu-
rally into a small number of categories, and that this categorization
provides a lot of insight into their behavior. Finally, we discuss how
these insights should guide programming language support and par-
allel system implementation for irregular algorithms.

1. Introduction
Science is organized knowledge. — Immanuel Kant

The parallel programming community has a deep understanding
of parallelism and locality in dense matrix algorithms. However,
outside of computational science, most algorithms are irregular:
that is, they are organized around pointer-based data structures such
as trees and graphs, not dense arrays. Figure 1 is a list of algorithms
from important problem domains. Only finite-difference codes use
dense matrices; the rest use trees and sparse graphs. Unfortunately,
we currently have few insights into parallelism and locality in irreg-
ular algorithms, and this has stunted the development of techniques
and tools that make it easier to produce parallel implementations of
these algorithms.

Domain specialists have written parallel programs for some of
the algorithms in Figure 1 (see [6, 22, 31, 32, 46, 53, 56] among
others). There are also parallel graph libraries such as Boost [1]
and Stapl [19]. These efforts are mostly problem-specific, and it is
difficult to extract broadly applicable abstractions, principles, and
mechanisms from these implementations. Automatic paralleliza-
tion using points-to analysis [30] and shape analysis [21, 25] has
been successful for irregular programs that use trees, such as n-
body methods. However, most applications in Figure 1 are orga-
nized around large sparse graphs with no particular structure.

These difficulties have seemed insurmountable, so irregular al-
gorithms remain the Cinderella of parallel programming in spite of
their increasingly important role in applications. We believe that a
new strategy is required to circumvent these difficulties: instead of
continuing to investigate the low-level details of pointer manipu-
lations in irregular programs, we must study the patterns of paral-
lelism and locality in irregular algorithms and use these insights to
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Application/domain Algorithms
Data-mining Agglomerative clustering [60],

k-means [60]
Bayesian inference Belief propagation [44], Survey prop-

agation [44]
Compilers Iterative dataflow algorithms [3],

elimination-based algorithms [3]
Functional interpreters Graph reduction [49], static and dy-

namic dataflow [5, 14]
Maxflow Preflow-push [12], augmenting

paths [12]
Minimal spanning trees Prim’s [12], Kruskal’s [12], Boru-

vka’s [17] algorithms
N-body methods Barnes-Hut [8], fast multipole [24]
Graphics Ray-tracing [20]
Network science Social network maintenance [28]
System modeling Petri-net simulation [48]
Event-driven simulation Chandy-Misra-Bryant algorithm [46],

Time-warp algorithm [32]
Meshing Delaunay mesh generation [10], re-

finement [56], Metis-style graph parti-
tioning [33]

Linear solvers Sparse MVM [23], sparse Cholesky
factorization [22]

PDE solvers Finite-difference codes [23]

Figure 1. Sparse graph algorithms from different domains

guide the development of language, compiler, and runtime systems
support for irregular programs. In this paper, we focus on itera-
tive irregular algorithms, a category that includes all the algorithms
in Figure 1. We exclude divide-and-conquer algorithms from our
study.

This paper makes the following contributions.

• We define a generalized data-parallelism, which we call amor-
phous data-parallelism, and argue that it is ubiquitous in irregu-
lar algorithms. Data-parallelism, defined by Hillis and Steele as
“parallelism [that] comes from simultaneous operations across
large sets of data” [29], is the most important kind of parallelism
in dense matrix algorithms. Unlike data-parallelism in regular
algorithms, which is formulated in terms of distances and di-
rections in iteration spaces [34], amorphous data-parallelism is
defined in a data-centric way [35] in terms of neighborhoods of
data structure elements.

• We show that irregular algorithms such as the ones listed in
Figure 1 can be organized into a small number of categories,
and we argue that these categories provide insight into the
patterns of amorphous data-parallelism in these algorithms.

• We discuss programming language abstractions and systems
support for making it easier to produce parallel implementa-
tions of irregular algorithms. These abstractions are similar in



Figure 2. Iterative graph algorithms

spirit to those in the relational database model in which the
complexities of meta-data such as B-trees and other pointer-
based index structures are hidden from programmers by pro-
viding them with the abstraction of relations, which are just
tabular data. The Google map-reduce model takes a similar ap-
proach [13].

Without loss of generality, the discussion in this paper will be
framed largely in terms of graphs and graph algorithms. Trees are
obviously a special case of graphs. An extreme case of a sparse
graph is a graph with some number of nodes and no edges; if nodes
are labeled with values, this structure is isomorphic to a set or
multiset. At the other extreme, we have cliques, which are graphs
that have an edge between every pair of nodes; these are isomorphic
to square dense matrices.

The rest of this paper is organized as follows. In Section 2, we
introduce high-level abstractions for thinking about irregular algo-
rithms and show how these abstractions permit irregular algorithms
to be organized into a small number of categories. In Section 3, we
introduce the concept of amorphous data-parallelism and show how
it might be exploited. In Section 3.1, we describe a baseline execu-
tion model based on optimistic or speculative execution [?, ?, ?, ?]
that exploits amorphous data-parallelism. In Section 3.2, we de-
scribe how algorithmic structure can be exploited to reduce exe-
cution overheads. Sections 4–6 discuss different categories of ir-
regular algorithms in more detail and show how amorphous data-
parallelism arises in these algorithms. Finally, Section 7 discusses
how these results might guide future research in systems support
for irregular programs.

2. Iterative graph algorithms
This section describes a framework for thinking about iterative
graph algorithms, which is shown in Figure 2. It also introduces
the notions of active nodes, neighborhoods, and ordering, which
are central to the rest of the paper.

2.1 Graphs and graph topology
We use the term graph to refer to the usual directed graph abstract
data type (ADT) that is formulated in terms of (i) a set of nodes V ,
and (ii) a set of edges (⊆ V ×V ) between these nodes. Undirected
edges are modeled by a pair of directed edges in the standard
fashion. In some of our applications, nodes and edges are labeled
with values. In this paper, all graph algorithms will be written in
terms of this ADT.

In some algorithms, the graphs have a special structure that can
be exploited by the implementation. Trees and grids are particularly
important. Grids are usually represented using dense arrays, but
note that a grid is actually a very sparse graph (a 2D grid point that
is not on the boundary is connected to four neighbors).

Figure 3. Active elements and neighborhoods

We will not discuss a particular concrete representation for the
graph ADT. In the spirit of the relational database model, an im-
plementation is free to choose a concrete representation that is
best suited for a particular algorithm and machine: for example,
grids and cliques may be represented using dense arrays, while
sparse graphs may be represented using adjacency lists. For gen-
eral graphs, our implementation uses a logically partitioned graph
representation in which each processor or core is assigned one or
more partitions; the metadata is also partitioned so a processor can
read/write data in its own partition without coordinating with other
processors.

2.2 Active elements and neighborhoods
At each point during the execution of a graph algorithm, there
are certain nodes or edges in the graph where computation might
be performed. Performing a computation may require reading or
writing other nodes and edges in the graph. The node or edge on
which a computation is centered will be called an active element,
and the computation itself will be called an activity. To keep the
discussion simple, we assume from here on that active elements
are nodes. Borrowing terminology from the literature on cellular
automata [57], we refer to the set of nodes and edges that are read
or written in performing the computation as the neighborhood of
that active node. Figure 3 shows an undirected sparse graph in
which the filled nodes represent active nodes, and shaded regions
represent the neighborhoods of those active nodes. Note that in
general, the neighborhood of an active node is distinct from the
set of its neighbors in the graph.

It is convenient to think of an activity as the application of an
operator to the neighborhood of an active element. It is useful to
distinguish between three kinds of operators.

• Morph: A morph operator may modify the structure of the
neighborhood by adding or deleting nodes and edges, and may
also update values on nodes and edges.

• Local computation: A local computation operator may update
values stored on nodes or edges in the neighborhood, but does
not modify the graph structure.

• Reader: A reader does not modify the neighborhood in any way.

We illustrate these concepts using a few algorithms from Fig-
ure 1. The preflow-push algorithm [12] is a maxflow algorithm in
directed graphs, described in detail in Section 5.2. During the ex-
ecution of this algorithm, some nodes can temporarily have more
flow coming into them than is going out. These are the active nodes
(in fact, we borrowed the term “active node” from the literature
on preflow-push algorithms). The algorithm repeatedly selects an
active node n and tries to increase the flow along some outgoing
edge (n → m) to eliminate the excess flow at n if possible; if it
succeeds, the residual capacity on that edge is updated. Therefore,
the neighborhood consists of n and all of its outgoing edges, and
the operator is a local computation operator. Increasing the flow to
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Figure 4. Forming a new link in a social network

m may cause m to become active; if n still has excess in-flow, it
remains an active node.

A second example arises in algorithms that examine social net-
working graphs to determine communities [28]. Nodes in the so-
cial network represent people, and edges connect people who have
communicated directly. Consider the social network in Figure 4(a).
If person A sends an email to person B, who then forwards that
email to person C, person C can now send an email directly to per-
son A, creating a new link in the graph, as seen in Figure 4(b). This
is an example of a morph operator where the neighborhood is a
disconnected portion of the graph.

The final example is event-driven simulation. In this application,
nodes in the graph represent processing stations, and edges repre-
sent channels along which nodes exchange messages with time-
stamps. A processing station consumes incoming messages in time
order, and for each message it consumes, it performs some pro-
cessing that may change its internal state and then produces zero
or more messages on its outgoing edges. In this application, active
nodes are nodes that have messages on their input channels, and the
operator is a local computation operator.

Some algorithms may exhibit phase behavior: they use different
types of operators at different points in their execution. Barnes-
Hut [8] is an example: the tree-building phase uses a morph, as
explained in Section 4.1, and the force computation uses a reader,
as explained in Section 6.

2.3 Ordering
In general, there are many active nodes in a graph, so a sequential
implementation must pick one of them and perform the appropriate
computation.

In some algorithms, the implementation is allowed to pick any
active node for execution. This is an example of Dijkstra’s don’t-
care non-determinism [15], also known as committed-choice non-
determinism. For some of these algorithms, the output is indepen-
dent of these implementation choices. This is referred to as the
Church-Rosser property, since the most famous example of this
behavior is β-reduction in λ-calculus [7]. Dataflow graph execu-
tion [5, 14] and the preflow-push algorithm [12] also exhibit this be-
havior. In other algorithms, the output may be different for different
choices of active nodes, but all such outputs are acceptable, so the
implementation can still pick any active node for execution. Delau-
nay mesh refinement, described in more detail in Section 4.1, and
Petri nets [48] are examples. The final mesh produced by Delaunay
mesh refinement depends on the order in which badly-shaped tri-
angles are chosen for refinement, but all outcomes are acceptable
(note that the preflow-push algorithm exhibits this kind of behav-
ior if the algorithm outputs the minimal cut as well as the maximal
flow).

In contrast, some algorithms dictate an order in which active
nodes must be processed. Event-driven simulation is an example:
the sequential algorithm for event-driven simulation processes mes-
sages in global time-order. The order on active nodes may some-
times be a partial order.

2.4 Programming notation
A natural way to program these algorithms is to use worklists to
keep track of active nodes. Processing an item from a worklist can

create new work, so it must be possible to add items to a worklist
while processing other items of that worklist.

When active nodes are not ordered, the worklist is conceptu-
ally an unordered set, and the algorithm iterates over this set of
active nodes in some order, performing computations. Since oper-
ators may create new active nodes, it must be possible to add new
elements to the set while iterating over it, as is done in Galois set
iterators [37]. In a sequential implementation, one concrete repre-
sentation for a worklist is a linked-list.

For algorithms in which active nodes are ordered, we use an
ordered set iterator that iterates in set order over the set of active
nodes. As before, it must be possible to add elements to the ordered
set while iterating over it. In this case, the worklist is a priority
queue, and one concrete representation is a heap [12].

In describing algorithms, we will use the following notation.

DEFINITION 1. We refer to the following two constructs as un-
ordered and ordered Galois set iterators respectively.

• for each Element e in Set S { B(e) }
The loop body B(e) is executed for each element e of Set S.
Since set elements are not ordered, this construct asserts that in
a serial execution of the loop, the iterations can be executed in
any order. There may be dependences between the iterations,
but any serial order of executing iterations is permitted. When
an iteration executes, it may add elements to S.

• for each Element e in OrderedSet S { B(e) }
This construct iterates over an ordered set S of active elements.
It is similar to the Set iterator above, except that the execution
order must respect the order on elements of S.

Note that these iterators have a well-defined sequential seman-
tics.

2.5 Discussion
The metaphor of operators acting on neighborhoods is reminiscent
of notions in term-rewriting systems, and graph grammars in par-
ticular [16, 43]. The semantics of functional language programs
are usually specified using term rewriting systems (TRS) that de-
scribe how expressions can be replaced by other expressions within
the context of the functional program. The process of applying
rewrite rules repeatedly to a functional language program is known
as string or tree reduction.

Tree reduction can be generalized in a natural way to graph
reduction by using graph grammars as rewrite rules [16, 43]. A
graph rewrite rule is defined as a morphism in the category C of
labeled graphs with partial graph morphisms as arrows: r: L →
R, and a rewriting step is defined by a single pushout diagram as
shown in Figure 5 [43]. In this diagram, G is a graph, and the total
morphism m:L→ G, which is called a redex, identifies the portion
of G that “matches” L, the left-hand side of the rewrite rule. The
application of a rule r:L→ R at a redex m:L→ G leads to a direct
derivation (r,m):G ⇒ H given by the pushout in Figure 5. The
framework presented in this section is more general because the
behavior of operators is not limited to “syntactic” rewrite rules; for
example, it is not clear that Delaunay mesh refinement, described
in Section 4.1, can be specified using graph grammars.

Figure 5. Graph rewriting: single-pushout approach



3. Amorphous data-parallelism
Figure 3 shows intuitively how opportunities for exploiting paral-
lelism arise in graph algorithms. We first consider the case when ac-
tive nodes are not ordered. The neighborhoods of activities i3 and
i4 are disjoint, so these activities can be executed concurrently1.
The neighborhoods of i1 and i2 overlap, but nevertheless, these ac-
tivities can be performed concurrently if elements in the intersec-
tion of the two neighborhoods are not modified by either activity.
These examples suggest the following definition.

DEFINITION 2. Activities i1 and i2 are said to conflict if there is an
element in the intersection of their neighborhoods that is modified
by one of the activities.

If active nodes are not ordered, activities that do not conflict
can be performed in parallel. In general, the only way to determine
neighborhoods is to execute the activities, so it is necessary to use
optimistic or speculative parallel execution.

Figure 6. Conflicts in event-driven simulation

The situation is more complex if active nodes are ordered.
Consider the event-driven simulation shown in Figure 6. Suppose
that in a sequential implementation, node A fires and produces a
message with time-stamp 3, and then node B fires and produces a
message with time-stamp 4. Notice that node C must consume the
message with time-stamp 4 before it consumes the message with
time-stamp 5. In the parallel context, we see that the neighborhoods
for the activities at nodes A and C are disjoint, but it is obvious
that A and C cannot be executed concurrently without violating
the sequential semantics of the program. This example shows the
subtlety of exploiting parallelism when active nodes are ordered
and nodes can become active dynamically (“The flap of a butterfly’s
wings in Brazil can set off a tornado in Texas” [42]). However,
notice that if the message from B to C had a time-stamp greater than
5, it would have been legal to execute the activities at nodes A and
C in parallel! The solution is to adopt the approach used in out-of-
order processors to exploit instruction-level parallelism [26]: when
active nodes are ordered, activities can be executed speculatively
in parallel, but they must commit in order, which ensures that the
sequential semantics of the program is respected while exploiting
potential parallelism.

DEFINITION 3. Given a set of active nodes and an ordering on
active nodes, amorphous data-parallelism is the parallelism that
arises from simultaneously processing active nodes, subject to
neighborhood and ordering constraints.

Amorphous data-parallelism is a generalization of standard
data-parallelism in which (i) concurrent operations may conflict
with each other, (ii) activities can be created dynamically, and (iii)
activities may modify the underlying data structure.

3.1 Baseline execution model
Amorphous data-parallelism can be exploited by using a system
like the Galois system [37]. A master thread begins executing the

1 This is subject to any constraints imposed by the concrete representation
of the graph. We omit this caveat in the rest of the paper.

program. When this thread encounters a Galois set iterator, it en-
lists the assistance of some number of worker threads to execute
iterations concurrently with itself. Threads grab active nodes from
the workset, and speculatively execute iterations, making back-up
copies of all modified objects to permit rollback if a conflict is
detected. Conflict detection and rollback is implemented by the
runtime system using a variation of software transactional mem-
ory [27] that exploits commutativity of abstract data type opera-
tions [37]. Intuitively, each node and edge in the graph has an as-
sociated logical lock that must be acquired by a thread to operate
on that element. If a thread tries to acquire a lock that is already
owned by another thread, a conflict is reported, and the runtime
system takes appropriate action for recovery. Otherwise, locks are
released when the iteration terminates. For ordered set iterators, the
runtime system ensures that the iterations commit in the set order.
All threads are synchronized using barrier synchronization at the
end of the iterator.

We have built a tool called ParaMeter, implemented on top of
the Galois system, that can provide estimates of the amount of
amorphous data-parallelism in irregular algorithms [38]. For algo-
rithms in which active nodes are not ordered, it repeatedly finds a
maximal independent set of activities, and executes all these activi-
ties in a single step. The number of activities processed in each step
is therefore an abstract measure of the parallelism in the applica-
tion, and is called the available parallelism. For ordered work-sets,
the time step at which an activity commits may be different from
the time step at which it is executed. Parameter assign the activity
to the time step in which it executed, provided it ultimately com-
mits. ParaMeter generates parallelism profiles, which are graphs
that show how the number of independent activities varies with the
time step. They can provide substantial insight into the nature of
amorphous data-parallelism, as we discuss later in this paper.

3.2 Exploiting structure to optimize execution
In practice, handwritten parallel implementations of irregular algo-
rithms rarely use the complex machinery described in Section 3.1
for supporting optimistic parallel execution (the Timewarp algo-
rithm [32] for discrete-event simulation is probably the only ex-
ception to this rule). This is because most algorithms have a lot of
structure that can be exploited to avoid using many of these mech-
anisms. As we will see, the classification introduced in Section 2
provides the right framework for describing structure.

DEFINITION 4. A cautious operator is an operator that reads all
the elements in its neighborhood before it modifies any element in
its neighborhood.

Cautious operators have the useful property that the neighbor-
hood of an active node can be determined by executing the operator
up to the point where it starts to make modifications to the neigh-
borhood. Therefore, the neighborhoods of all active nodes can be
determined before any modifications are made to the graph.

3.2.1 Zero-copy implementation
For algorithms in which (i) the operator is cautious, and (ii) ac-
tive elements are unordered, optimistic parallel execution can be
implemented without making data copies for recovery in case of
conflicts. Most of the algorithms with unordered active elements
discussed in this paper fall in this category.

An efficient implementation of such algorithms is the following.
Logical locks are associated with nodes and edges and are acquired
during the read phase of the operator. If a lock cannot be acquired,
there is a conflict and the computation is rolled back simply by
releasing all locks acquired up to that point; otherwise, all locks are
released when the computation terminates. We will refer to this as
a zero-copy implementation.



Figure 7. Logical partitioning

Zero-copy implementations should not be confused with two-
phase locking, since under two-phase locking, updates to locked
objects can be interleaved arbitrarily with acquiring locks on new
objects. Strict two-phase locking eliminates the possibility of cas-
cading rollbacks, while cautious operators are more restrictive and
permit the implementation of optimistic parallel execution with-
out the need for data copying. Notice that if active elements are
ordered, data copying is needed even if the operator is cautious
since conflicting active elements may be created dynamically, as
discussed earlier using Figure 6 as an example.

3.2.2 Data-partitioning and lock coarsening
In the baseline implementation, the workset can become a bottle-
neck if there are a lot of worker threads since each thread must
access the workset repeatedly to obtain work. For algorithms in
which (i) the data structure topology is a general graph or grid (i.e.,
not a tree), and (ii) active elements are unordered, data partitioning
can be used to eliminate this bottleneck and to reduce the over-
head of fine-grain locking of graph elements. The graph or grid
can be partitioned logically between the cores: conceptually, each
core is given a color, and a contiguous region of the graph or grid
is assigned that color. Instead of associating locks with nodes and
edges, we associate locks with regions; to access an element in a
region, a core needs to acquire the lock associated with that region.
Instead of a centralized workset, we can implement one workset per
region, and assign work in a data-centric way: if an active element
lies in region R, it is put on the workset for region R, and it will
be processed by the core associated with that region. If an active
element is not near a region boundary, its neighborhood is likely to
be confined to that region, so for the most part, cores can compute
independently. To keep core utilization high, it is desirable to over-
decompose the graph or grid into more regions than there are cores
to increase the likelihood that a core has work to do even if some
of its regions are locked by other cores.

For algorithms like Delaunay mesh refinement in which (i)
the data structure topology is a general graph or grid, (ii) the
operator is cautious, and (iii) active elements are unordered, an
implementation can use data-partitioning, lock-coarsening, and a
zero-copy implementation. This can lead to extremely efficient
implementations [39].

One disadvantage of this approach is load imbalance since it is
difficult to partition the graph so that computational load is evenly
distributed across the partitions, particularly because active nodes
can be created dynamically. Application-specific graph partition-
ers might be useful; dynamic load-balancing using a strategy like
work-stealing [2] is another possibility.

3.2.3 Scheduling
In the baseline implementation, there is no coordination between
the computations at different active nodes. We call this autonomous
scheduling for obvious reasons. For many algorithms, it is possible
to produce coordinated schedules that exploit parallelism without
using dynamic scheduling of iterations. Figure 8 shows a number of
coordinated scheduling strategies that differ mainly in the binding
time of the scheduling decisions.

iterative
sparse-graph
algorithms

topology ….

operator ….

ordering

unordered

ordered

coordinated

autonomous

compile-time
just-in-time

run-time

Algorithms Parallel Schedules

Figure 8. Scheduling strategies

• Run-time coordination: For algorithms in which (i) the oper-
ator is cautious and (ii) active nodes are unordered, a bulk-
synchronous execution strategy is possible [58]. The algorithm
is executed over several steps. In each step, (i) the neighbor-
hoods of all active nodes are determined by partially execut-
ing the operator, (ii) an interference graph for the active nodes
is constructed, (iii) a maximal independent set of nodes in the
interference graph is determined, and (iv) the set of indepen-
dent active nodes is executed without synchronization. This ap-
proach has been used by Gary Miller’s group to parallelize De-
launay mesh refinement [31]. It can be used even if neighbor-
hoods cannot be determined exactly, provided we can compute
over-approximations to neighborhoods.

• Just-in-time coordination: A more efficient version of run-time
coordination is possible if the algorithm satisfies certain addi-
tional properties. In many algorithms, the graph computation
is inside a time loop, so it has to be performed several times,
and it may be possible to compute the schedule for active nodes
just once. Sufficient conditions are (i) the operator performs lo-
cal computation, (ii) active nodes are unordered, and (iii) active
nodes and neighborhoods depend only on the structure of the
graph and can be determined once the graph structure is avail-
able. This is essentially the inspector-executor approach used in
sparse iterative solvers [62].

• Compile-time coordination: A more efficient version of just-in-
time coordination is possible if the graph structure is known at
compile-time, as is the case with grids. In this case, the schedule
can be determined completely at compile-time. This approach
is used in stencil computations (the graph is a grid) and dense
linear algebra computations (the graph is a clique).

3.3 Discussion
It is possible to define conflicts more aggressively than is done in
Definition 2. For example, the neighborhoods of two activities may
have a node in common, but if the node has multiple variables and
the activities write to different variables in that node, the activities
can be performed in parallel. This situation arises in Jacobi itera-
tion, discussed in Section 5, in which each node has two variables
called old and new. Even if both activities write to the same vari-
able in a node, it may be possible to execute them concurrently if
the updates to that variable commute, as is the case with reduc-
tions. To keep the discussion simple, we have not considered these
variations.

The pattern of parallelism described in this section can be called
inter-operator parallelism because it arises from applying an op-
erator at multiple sites in the graph. There are also opportunities
to exploit parallelism within a single application of an operator
that we call intra-operator parallelism. Inter-operator parallelism is
the dominant parallelism pattern in problems for which neighbor-
hoods are small compared to the overall graph since it is likely that
many activities do not conflict; in these problems, intra-operator
parallelism is usually fine-grain, instruction-level parallelism. Con-
versely, when neighborhoods are large, activities are likely to con-
flict and intra-operator parallelism may be more important. Both
the operator and the sparsity of the graph play a role. Figure 9



Figure 9. Sparsity and inter/intra-operator parallelism

shows a series of graphs with the same number of nodes but with
increasing density from left to right. If the operator updates val-
ues at the neighbors of active nodes, inter-operator parallelism de-
creases and intra-operator parallelism increases as the graph be-
comes denser. In this problem, inter/intra-operator parallelism is an
example of nested data-parallelism introduced by Blelloch in the
context of the functional language NESL [9]. An extreme case is
the factorization of dense matrices: the underlying graph is a clique,
and each factorization step updates the entire graph, as explained in
Section 4.2, so the only parallelism is intra-operator parallelism.

4. Morph algorithms
In this section, we discuss amorphous data-parallelism in algo-
rithms that may morph the structure of the graph by adding or delet-
ing nodes and edges. Although morph operators can be viewed ab-
stractly as replacing sub-graphs with other sub-graphs, it is more
insightful to classify them as follows.

• Refinement: Refinement operations make the graph bigger by
adding new nodes and edges. In particular, algorithms that
build trees top-down, such as Barnes-Hut [8] and Prim’s MST
algorithm [12], perform refinement.

• Coarsening: Coarsening operations cluster nodes or sub-graphs
together, replacing them with new nodes that represent the
cluster. In particular, algorithms that build trees bottom-up, such
as Boruvka’s algorithm [17], perform coarsening.

• General morph: All other operations that modify the graph
structure fall in this category. Graph reduction of functional
language programs is an example.

The type of morph used by an algorithm induces a partic-
ular parallelism profile. Generally, algorithms using coarsening
morphs start out with a high degree of inter-operator parallelism,
but the parallelism decreases as the graph becomes smaller and
smaller. Conversely, refinement algorithms typically exhibit in-
creasing inter-operator parallelism over time, until they run out of
work.

4.1 Refinement
Graphs Delaunay mesh refinement is an important algorithm
used in mesh generation and graphics. The Delaunay triangulation
for a set of points in the plane is the triangulation such that each
triangle satisfies certain quality constraints. For a given Delaunay
mesh, this is accomplished by iterative mesh refinement, which suc-
cessively fixes “bad” triangles (those that do not satisfy the quality
constraints) by adding new points to the mesh and re-triangulating.
Figure 10 illustrates this process; the darker shaded triangles are
“bad” triangles. To fix a triangle, a new point is added at the cir-
cumcenter and some neighbors, known as the cavity, may need to
be re-triangulated. In the figure, the cavities are the lighter shaded
triangles. Re-triangulating a cavity may generate new bad trian-
gles but it can be shown that this iterative refinement process will
ultimately terminate and produce a guaranteed-quality mesh. Dif-

(a) Unrefined Mesh (b) Refined Mesh

Figure 10. Fixing a bad element

1: Mesh mesh = /* read in initial mesh */;
2: Workset ws;
3: ws.add(mesh.badTriangles());
4: for each Element e in ws {
5: if (e no longer in mesh) continue;
6: Cavity c = new Cavity(e);
7: c.expand(); c.retriangulate();
8: Subgraph pre = c.getCavity();
9: Subgraph post = c.getRetriangulatedCavity();
10: mesh.replaceSubgraph(pre, post);
11: ws.add(c.badTriangles());
12: }

Figure 11. Mesh refinement algorithm
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(a) Available parallelism in Delaunay mesh refinement
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(b) Available parallelism in Delaunay triangulation

Figure 12. Available parallelism in two refinement algorithms

ferent orders of processing bad triangles lead to different meshes,
although all such meshes satisfy the quality constraints [10]. Fig-
ure 11 shows the pseudocode for mesh refinement.

Figure 12(a) shows the parallelism profile for this application
when run with an input of 100,000 triangles. As we can see, the
available parallelism increases initially because new bad triangles
are created by each refinement. As work is completed, the avail-
able parallelism drops off. This pattern seems common in refine-
ment codes. Figure 12(b) shows the parallelism profile for another
refinement code, Delaunay triangulation, which creates a Delau-
nay mesh from a set of points, run with an input of 10,000 points.
The parallelism profile is similar in shape.

In Delaunay mesh refinement, the topology is a general graph,
the operator is cautious, and active nodes are not ordered, so imple-
mentations can use autonomous scheduling with zero-copy, data-
partitioning, and lock coarsening. It is also possible to use run-
time coordination [31]. Verbrugge has formulated some mesh re-
finement operations in terms of rewrite rules [59].

Trees Figure 13 shows one implementation of Prim’s algorithm
for computing minimum spanning trees (MSTs) in undirected
graphs. The algorithm builds the tree top-down and illustrates the



1. tree.setRoot(r); //r: arbitrary vertex
//priority queue worklist
//contains edges ordered by edge weights

2. OrderedWorkset ws;
3. for each edge (r,t,weight) do

add (r,t,weight) to ws
4. for each edge (s,t,weight) in ws do //s is in tree
5. {if (t.inTree()) continue;
6. t.setParent(s);
7. for each edge (t,u,weight) do
8. if (! u.inTree())
9. add (t,u,weight) to ws

10. }

Figure 13. Top-down tree construction: Prim’s MST algorithm

use of ordered worksets. Initially, one node is chosen as the “root”
of the tree and added to the MST (line 1), and all of its edges are
added to the ordered workset, ordered by weight (line 3). In each
iteration, the smallest edge, (s, t) is removed from the workset.
Note that node s is guaranteed to be in the tree. If t is not in the
MST, (s, t) is added to the tree (line 6), and all edges (t, u) are
added to the workset, provided u is also not in the MST (lines 7-9).
When the algorithm terminates, all nodes are in the MST.

This algorithm has the same asymptotic complexity as the stan-
dard algorithm in textbooks [12], but it is organized around edges
rather than nodes. The standard algorithm requires a priority queue
in which node priorities can be decreased dynamically. It is un-
clear that it is worthwhile generalizing ordered-set iterators to per-
mit this.

Graph search algorithms such as 15-puzzle solvers implicitly
build spanning trees that may not be minimum spanning trees.
This can be coded by replacing the ordered-set iterator in Prim’s
algorithm with an unordered set iterator.

Top-down tree construction is also used in n-body methods like
Barnes-Hut and fast multipole [8]. The tree is a recursive spatial
partitioning in which each leaf contains a single particle. Initially,
the tree is a single node, representing the entire space. Particles are
then inserted into the tree, splitting leaf nodes as needed to maintain
the invariant that a leaf node can contain at most a single particle.
The work-set in this case is the set of particles, and it is unordered
because particles can be inserted into the tree in any order. The
operator is cautious, so a zero-copy implementation can be used.
In practice, the tree-building phase of n-body methods does not
take much time compared to the time for force calculations (see
Section 6).

4.2 Coarsening
There are three main ways of doing coarsening.

• Edge contraction: An edge is eliminated from the graph by
fusing the two nodes at its end points and removing redundant
edges from the resulting graph.

• Node elimination: A node is eliminated from the graph, and
edges are added as needed between each pair of its erstwhile
neighbors.

• Subgraph contraction: A sub-graph is collapsed into a single
node and redundant edges are removed from the graph.

Coarsening morphs are commonly used in clustering algorithms
in data-mining and in algorithms that build trees bottom-up.

4.2.1 Edge contraction
In Figure 14(a), the edge (u, v) is contracted by fusing nodes u and
v into a single new node labeled uv, and eliminating redundant
edges. When redundant edges are eliminated, the weight on the
remaining edge is adjusted in application-specific ways (in the
example, the weight on edge (m,uv) is some function of the
weights on edges (m,u) and (m, v)). As each edge contraction

Figure 14. Graph coarsening by edge contraction

1: Graph g = /* read in input graph */
2: do { //coarsen the graph by one level
3: Graph cg = new Graph(g); //copy g
4: for each Node n in cg.getNodes() {
5: Edge e = cg.getUnmatchedNeighbor(n);
6: contract(e);
7: }
8: g = cg;
9: } while (!g.coarseEnough());

10: contract(Edge e) {
11: //create representative node l, add it to graph
12: Node l = cg.createNode();
13: //for each neighbor of e.u, add an edge to l
14: for each Node p in g.getNeighbors(e.u) {
15: //add edge (l, p) or adjust weight if edge exists
16: cg.buildEdge(l, p);
17: }
18: // ... repeat for neighbors of e.v ...
19: //remove e.u & e.v from graph
20: cg.removeNode(e.u);
21: cg.removeNode(e.v);
22: }

Figure 15. Edge contraction in Metis

operation affects a relatively compact neighborhood, it is apparent
that, in sufficiently large graphs, many edge contraction operations
can happen in parallel, as shown in Figure 14(b). The darker edges
in the fine graph show the edges being contracted, and the coarse
graph shows the result of simultaneously contracting all selected
edges.

Graphs: Graph coarsening by edge contraction is a key step in
important applications such as graph partitioning. For example,
the Metis graph partitioner [33] applies edge contraction repeatedly
until a coarse enough graph is obtained; the coarse graph is then
partitioned, and the partitioning is interpolated back to the original
graph.

The problem of finding edges that can be contracted in par-
allel is related to the famous graph problem of finding maximal
matchings in general graphs [12]. Efficient heuristics are known for
computing maximal cardinality matchings and maximal weighted
matchings in graphs of various kinds. These heuristics can be used
for coordinated scheduling. In practice, simple heuristics based on
randomized matchings seem to perform well, and they are well-
suited for autonomous scheduling. Figure 15 shows pseudocode
for graph coarsening as implemented within the Metis graph parti-
tioner [33], which uses randomized matching. Each node finds an
“unmatched” edge: an incident edge whose other node has not yet
been involved in a coarsening operation yet (line 5), and then this
edge is contracted. The operator is cautious, and active nodes are
unordered.



1: Graph g = /* input graph */;
2: MST mst = new MST(g); //initialize MST from g
3: Workset ws = new Workset(g.getNodes());
4: for each Node n in ws {
5: Edge e = minWeight(g.getNeighbors(n));
6: Node l = contract(e); //contract edge e, forming l
7: // Add edge e to the MST
8: mst.addEdge(e);
9: //add new node back to worklist
10: ws.add(l);
11: }

Figure 16. Edge contraction in bottom-up tree construction: Boru-
vka’s algorithm for minimum spanning trees
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Figure 17. Available parallelism in Boruvka’s algorithm.
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Figure 18. Graph coarsening by node elimination

Trees: Some tree-building algorithms are expressed in terms of
edge contraction. Boruvka’s algorithm computes MSTs by per-
forming edge contraction to build trees bottom-up [17]. It does so
by performing successive coarsening steps. The pseudocode for the
algorithm is given in Figure 16.

The active nodes are the nodes remaining the graph, and the
MST is initialized with every node in the graph forming its own,
single-node tree (line 2). In each iteration, an active node u finds
the minimum weight edge, (u, v) incident on it (line 5), which is
contracted to form a new node, l, (line 6). This is similar to the
code in Figure 15 with the following exception: if there exist edges
(m,u) and (m, v) in the fine graph, the edge (m, l) in the updated
graph will have weight equal to the minimum weight of the two
original edges. The edge (u, v) is then added to the MST to connect
the two previously disjoint trees which contained u and v (line 8).
Finally, l is added back to the workset (line 10). This procedure
continues until the graph is fully contracted. At this point, the
MST structure represents the correct minimum spanning tree of the
graph.

Figure 17 shows the parallelism profile for Boruvka’s algorithm
run on a random graph of 10,000 nodes, with each node connected
to, on average, 5 others. We see that the amount of parallelism
starts high, but as the tree is built, the number of active elements
decreases and the likelihood that coarsening decisions are indepen-
dent decreases correspondingly.

Interestingly, Kruskal’s algorithm [12] also finds MSTs by per-
forming edge contraction, but it iterates over an ordered workset of
edges, sorted by edge weight.

4.2.2 Node elimination
Graph coarsening can also be based on node elimination. Each step
removes a node from the graph and inserts edges as needed be-
tween its erstwhile neighbors to make these neighbors a clique, ad-
justing weights on the remaining nodes and edges appropriately. In
Figure 18, node u is eliminated, and edges (x, z) and (y, z) are in-
serted to make {x, y, z} a clique. This is obviously a cautious oper-
ator. Node elimination is the graph-theoretic foundation of matrix
factorization algorithms such as Cholesky and LU factorizations.
Sparse Cholesky factorization in particular has received a lot of at-
tention in the numerical linear algebra community [22]. The new
edges inserted by node elimination are called fill since they corre-
spond to zeroes in the matrix representation of the original graph
that become non-zeros as a result of the elimination process. Differ-
ent node elimination orders result in different amounts of fill in gen-
eral, so ordering nodes for elimination to minimize fill is an impor-
tant problem. The problem is NP-complete so heuristics are used in
practice. One obvious heuristic is minimal-degree ordering, which
is a greedy ordering that always picks the node with minimal degree
at each elimination step. After some number of elimination steps,
the remaining graph may be quite dense, and at that point, high-
performance implementations switch to dense matrix techniques to
exploit intra-operator parallelism and locality. A subtle variation of
just-in-time coordination is used to schedule computations; in the
literature, the inspector phase is called symbolic factorization and
the executor phase is called numerical factorization [22].

4.2.3 Sub-graph contraction
It is also possible to coarsen graphs by contracting entire sub-
graphs at a time. In the compiler literature, elimination-based al-
gorithms perform dataflow analysis on control-flow graphs by con-
tracting “structured” sub-graphs whose dataflow behaviors have a
concise description. Dataflow analysis is performed on the smaller
graph, and interpolation is used to determining dataflow values
within the contracted sub-graph. This idea can be used recursively
on the smaller graph. Sub-graph contraction can be performed in
parallel. This approach to parallel dataflow analysis has been stud-
ied by Ryder [41] and Soffa [36].

4.3 General morph
Some applications make structural updates that are neither refine-
ments nor coarsenings, but many of these updates may nevertheless
be performed in parallel.

Graphs: Graph reduction of functional language programs, and
algorithms that maintain social networks fall in this category, as
discussed in Section 3.

Trees: Some algorithms build trees using complicated struc-
tural manipulations that cannot be classified neatly as top-down
or bottom-up construction. For example, when a set of values is
inserted into a heap, the final data structure is a tree, but each in-
sertion may perform complex manipulations of the tree [12]. The
structure of the final heap depends on the order of insertions, but for
most applications, any of these final structures is adequate, so this
is a case of don’t-care non-determinism, which can be expressed
using an unordered set iterator. This application may benefit from
transactional memory because each insertion potentially modifies
a large portion of the heap, but the modifications made by many
insertions may be confined to a small portion of the heap.

5. Local computation algorithms
Instead of modifying the structure of the graph, many graph algo-
rithms operate by labeling nodes or edges with data values and up-
dating these values repeatedly until some termination condition is



(a) 5-point stencil

1: //initialize array A
2: //5-point stencil over A
3: for time = 1, nsteps:
4: for <i,j> in [2,n-1]x[2,n-1]:
5: state(i,j).new=0.20*(state(i,j).old
6: +state(i-1,j).old+state(i+1,j).old
7: +state(i,j-1).old+state(i,j+1).old)
8: //copy result back into A
9: for <i,j> in [2,n-1]x[2,n-1]:

10: state(i,j).old = state(i,j).new

(b) Code for 5-point stencil on n× n grid

Figure 19. Jacobi iteration on a 2D grid

reached. Updating the data on a node or edge may require reading
or writing data values in the neighborhood. In some applications,
data for the updates are supplied externally. These algorithms are
called local computation algorithms in this paper. To avoid ver-
bosity, we assume in the rest of the discussion that values are stored
only on nodes of the graph, and we refer to an assignment of values
to nodes as the state of the system.

Local computation algorithms come in two flavors.

• Structure-driven algorithms: In structure-driven algorithms, ac-
tive nodes are determined completely by the structure of the
graph. Cellular automata [61] and finite-difference algorithms
like Jacobi and Gauss-Seidel iteration [23] are well-known ex-
amples.

• Data-driven algorithms: In these algorithms, updating the value
at a node may trigger updates at one or more neighboring nodes.
Therefore, nodes become active in a very data-dependent and
unpredictable manner. Message-passing AI algorithms such as
survey propagation [44] and algorithms for event-driven simu-
lation [46] are examples.

5.1 Structure-driven algorithms
Grids Cellular automata are perhaps the most famous example
of structure-driven computations over grids. Grids in cellular au-
tomata usually have one or two dimensions. Grid nodes represent
cells of the automaton, and the state of a cell c at time t is a function
of the states at time t− 1 of cells in some neighborhood around c.
A similar state update scheme is used in finite-difference methods
for the numerical solution of partial differential equations, where it
is known as Jacobi iteration. In this case, the grid arises from spa-
tial discretization of the domain of the PDE, and nodes hold values
of the dependent variable of the PDE. Figure 19 shows a Jacobi it-
eration that uses a neighborhood called the five-point stencil. Each
grid point holds two values called old and new that are updated
at each time-step. Many other neighborhoods (stencils) are used in
cellular automata [57] and finite-difference methods. All these al-
gorithms perform unordered iteration over the nodes of a grid using
a cautious operator, so they can be parallelized easily.

A disadvantage of Jacobi iteration is that it requires two arrays
for its implementation. More complex update schemes have been
designed to get around this problem. Intuitively, all these schemes
blur the sharp distinction between old and new states in Jacobi
iteration, so nodes are updated using both old and new values.
For example, red-black ordering or more generally, multi-color
ordering assigns a minimal number of colors to nodes in such a way
that no node has the same color as the nodes in its neighborhood.
Nodes of a given color therefore form an independent set that can
be updated concurrently, so the single global update step of Jacobi
iteration is replaced by a sequence of smaller steps, each of which
performs in-place updates to all nodes of a given color. For a five-
point stencil, two colors suffice because grids are two-colorable,
and this is the famous red-black ordering. These algorithms can

1: Graph g = /* N nodes */
2: Workset ws = /* all nodes in g */
3: for each Node i in ws {
4: for each Node j in g.neighbors(i) {
5: state(i).y = state(i).y + A(i,j)*state(j).x;
6: }
7: }

Figure 20. Sparse matrix-vector product

obviously be expressed using unordered set iterators with one loop
for each color.

In all these algorithms, active nodes can be determined from
the grid structure, and the grid structure is invariant. As a result,
compile-time scheduling can be very effective for coordinating the
computation. Most parallel implementations of stencil codes par-
tition the grid into blocks, and each processor is responsible for
updating the nodes in one block. This minimizes inter-processor
communication. Blocks are updated in parallel, with barrier syn-
chronization used between time steps. In terms of the vocabulary of
Figure 8, this is an example of coordinated, compile-time schedul-
ing.

General graphs The richest source of structure-driven algorithms
on general graphs are iterative solvers for sparse linear systems,
such as the conjugate gradient and GMRES methods. The key
operation in these solvers is sparse matrix-vector multiplication
(MVM) y = Ax in which the matrix A is an N ×N sparse matrix
and x and y are dense vectors. Such a matrix can be viewed as a
graph with N nodes in which there is a directed edge from node i
to node j with weight Aij if Aij is non-zero. The state of a node i
consists of the current values of x[i] and y[i], and at each time step,
y[i] is updated using the values of x at the neighbors of i. This is
simply unordered iteration over the nodes in the graph, as seen in
Figure 20.

The code for sparse MVM is clearly quite similar to the code
for Jacobi iteration in Figure 19. In both cases, the current node
is updated by reading values at its neighbors. The key difference
is that in sparse MVM, the graph structure is not known until
run-time. To handle this, parallel implementations of sparse MVM
use the inspector-executor approach [62]: once the inputs are read,
the structure of A is analyzed to partition the graph and schedule
the parallel execution. As the same A is often used for multiple
MVMs, the cost of partitioning and scheduling at run-time can
be amortized over many iterations. In terms of the vocabulary of
Figure 8, sparse iterative solvers can be handled using coordinated,
just-in-time scheduling.

In some applications, the graph in which local computations
must be performed is known only during the execution of the pro-
gram. The augmenting paths algorithm for maxflow computations
is an example [12]. This is an iterative algorithm in which each iter-
ation tries to find a path from source to sink in which every edge has
non-zero residual capacity. Once such a path is found, the global
flow is augmented by an amount δ equal to the minimal residual
capacity of the edges on this path, and δ is subtracted from the
residual capacity of each edge. This operation can be performed
in parallel as a structure-driven local computation. However, the
structure of the path is discovered during execution, so this com-
putation must be performed either autonomously or by coordinated
scheduling at run-time.

5.2 Data-driven algorithms
In some graph algorithms, the pattern of node updates is not de-
termined by the structure of the graph; instead, updates are made
initially to some nodes, and these updates trigger updates at neigh-
boring nodes, so the updates ripple through the graph in a data-



1: Workset ws = /* nodes with excess flow */;
2: for each Node n in ws {
3: for each Edge e in g.getOutgoingEdges(u) {

//push flow from n along e = (u, v), updating
//capacity of e, record excess flow

4: flow = push(n, e);
5: if (flow > 0) ws.add(e.v);
6: }
7: relabel(n); //raise n’s height if necessary
8: if (n.excess > 0)
9: ws.add(n); //put n back if still active
10: }

Figure 21. Key kernel in preflow-push algorithm
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Figure 22. Available parallelism in preflow-push.

driven fashion. In the parlance of Section 2.2, some nodes begin as
active nodes and processing them causes other nodes to become
active. Examples include the preflow-push algorithm [4] for the
maxflow problem, AI message-passing algorithms such as belief
propagation and survey propagation [44], and discrete-event sim-
ulation [32, 46]. In other algorithms, such as some approaches to
solving spin Ising models [52], the pattern of node updates is de-
termined by externally-generated data such as random numbers.

Data-driven algorithms are naturally organized around worksets
that maintain the sets of active nodes where updates need to be per-
formed. While graph structure is typically less important than in
structure-driven algorithms, it can nonetheless be useful in reason-
ing about certain algorithms; for example, belief propagation is an
exact inference algorithm on trees, but it is an approximate algo-
rithm when used on general graphs because of the famous loopy
propagation problem [44]. Grid structure can be exploited in spin
Ising solvers to reduce synchronization [52]. In this section, we de-
scribe the preflow-push algorithm, which uses an unordered work-
set, and discrete-event simulation, which uses an ordered workset.
Both these algorithms work on general graphs.

Preflow-push algorithm The preflow-push algorithm is used to
solve the maxflow problem in general graphs. The word preflow
refers to the fact that nodes are allowed to have excess in-flow at
intermediary stages of the algorithm (unlike the augmenting paths
algorithm, which maintains a valid flow at all times [12]). These
are the active nodes in this algorithm. The algorithm performs two
operations, push and relabel, on active nodes until termination.

Figure 21 shows the key loop in the preflow push algorithm (for
simplicity, we have omitted the preprocessing and postprocessing
code). The algorithm does not specify an order for applying the
push or relabel operations, and hence it can be expressed using an
unordered workset.

Figure 22 shows the available parallelism in preflow push for
a 512x512 grid-shaped input graph. In preflow push, as in most
local computation codes, the amount of parallelism is governed
by the amount of work, as the likelihood that two neighborhoods
overlap remains constant throughout execution. This can be seen
by the relatively stable amount of parallelism at the beginning of
computation; then, as the amount of work decreases, the parallelism
does as well.

Discrete-event simulation In discrete-event simulation, the goal
is to simulate a physical system consisting of one or more pro-
cessing stations that operate autonomously and interact with other

1: OrderedWorkset ows; //ordered by time
2: ows.add(initialEvents);
3: for each Event e in ows {
4: newEvents = process(e);
5: ows.add(newEvents);
6: }

Figure 23. Discrete-event simulation

stations by sending and receiving messages. Such a system can be
modeled as a graph in which nodes represent processing stations,
and edges represent communication channels between processing
stations along which messages are sent. In most applications such
as circuit simulation or network simulation, a processing station
interacts directly with only a small number of other processing sta-
tions, so the graph is very sparse.

Sequential discrete-event simulation is usually organized around
a data structure called an event list that maintains a list of messages
with their associated times of receipt. At each step, the earliest
message in the event list is removed, and the action of the receiving
station is simulated. This may cause other messages to be sent at fu-
ture times; if so, these are added to the event list. Event-driven sim-
ulation can be written using an ordered set iterator, where messages
are three-tuples 〈value, edge, time〉 and an ordered set maintains
events sorted in time order, as shown in Figure 23.

In the literature, there are two approaches to parallel event-
driven simulation, called conservative [46] and optimistic [32]
event-driven simulation. Conservative event-driven simulation re-
formulates the algorithm so that in addition to sending data mes-
sages, processing stations also send out-of-band messages to update
time at their neighbors. Each processing station can then operate
autonomously without fear of deadlock, and there is no need to
maintain an ordered event list. This is example of algorithm re-
formulation that replaces an ordered workset with an unordered
workset. Time-warp, the optimistic simulation, is essentially an
optimistic parallel implementation of an ordered set iterator. How-
ever, the global event list is eliminated in favor of periodic sweeps
through the system to update “global virtual time” [32].

5.3 Discussion
Iterative methods for computing fixpoint solutions to systems of
equations can usually be formulated in both structure-driven and
data-driven ways. However, the convergence properties are usually
different, so we consider them to be different algorithms. In sim-
ple problem domains, structure-driven and data-driven algorithms
may produce the same final output. A classic example of this is it-
erative data-flow analysis. The system of equations can be solved
by iterating over all the nodes until a fixed point is reached; this
is a structure-driven approach. Alternately, the classic worklist al-
gorithm only processes a node if its predecessors’ output values
changed; this is a data-driven approach [3]. In both cases, the algo-
rithm can be parallelized in the same manner as other local compu-
tation algorithms.

Speeding up local computation algorithms Local computation
algorithms can often be sped up by a preprocessing step that
coarsens the graph. This is the idea behind Allen and Cocke’s
interval-based algorithm for dataflow analysis [3]. This algorithm
performs a preprocessing step in which it finds and collapses inter-
vals, which are special single-entry, multiple-exit loop structures in
the control-flow graph of the program, until an irreducible graph
is obtained. If the irreducible graph consists of a single node, the
solution to the dataflow problem can be read off by inspection.
Otherwise, iterative dataflow analysis is applied to the irreducible
graph.

Some local computation algorithms can be sped up by period-
ically computing and exploiting global information. The global-
relabel heuristic in preflow-push is an example of such an opera-



1: Scene s; //scene description
2: Framebuffer fb; //image to generate
3: Worklist ws = /* initial rays */
4: for each Ray r in ws {
5: r.trace(s); //trace ray through scene
6: ws.add(r.spawnRays());
7: }
8: for each Ray r in ws {
9: fb.update(r); //update image with ray’s contribution
10: }

Figure 24. Ray-tracing

tion. The algorithm maintains a value called height at each node,
which is a lower bound on the distance to the sink. Preflow-push
can be sped up by periodically performing a breadth-first search
from the sink to update the height values with more accurate in-
formation [4]. In the extreme, global information can be used in
every iteration. For example, iterative linear solvers are often sped
up by preconditioning the matrix with another matrix that is often
obtained by a graph coarsening computation such as incomplete
LU or Cholseky factorization [23].

6. Reader algorithms
Algorithms in the reader category perform multiple traversals over
a fixed graph (i.e., the graph structure is fixed and the values stored
at nodes and edges are constant). Each of these traversal operations
may contain some state that is updated, but, crucially, this state
is private. Thus, traversals are independent and can be performed
concurrently. The Google map-reduce [13] model is an example of
this pattern in which the fixed graph is a set or multi-set.

6.1 Examples
Force computation in n-body algorithms like Barnes-Hut [8] is an
example of the reader pattern. The construction of the oct-tree is an
example of tree refinement, as was discussed in Section 4.1. Once
the tree is built, the force calculation iterates over particles, com-
puting the force on each particle by making a top-down traversal of
a prefix of the tree. The force computation step of the Barnes-Hut
algorithm is completely parallel since each point can be processed
independently. The only shared state in this phase of the algorithm
is the oct-tree, which is not modified.

Another classic example of the reader pattern is ray-tracing.
The simplified pseudocode is shown in Figure 24. Each ray is
traced through the scene. If the ray hits an object, new rays may be
spawned to account for reflections and refraction; these rays must
also be processed. After the rays have been traced, they are iterated
over and used to construct the rendered image. Ray-tracing is also
embarrassingly parallel, as is evident from the lack of updates to
the scene information.

These two algorithms hint at a general pattern that underlies
reader algorithms. Each reader algorithm consists of two graphs
and proceeds as follows: for each node n in the first graph, the
nodes and edges of the second graph are traversed, updating the
state of n. Because updates only occur to nodes from the first graph,
and these nodes do not affect one another, the algorithm can be
trivially parallelized. In the case of Barnes-Hut, the first graph is
the set of points (a degenerate graph with no edges), and the second
graph is the oct-tree. In the case of ray-tracing, the first graph is the
set of rays, and the second graph is the scene.

6.2 Enhancing locality
Because reader algorithms are embarrassingly parallel, the primary
concern in achieving efficient parallelization is promoting locality.
A common approach to enhancing locality in algorithms such as
ray-tracing is to “chunk” similar work together. Rays that will prop-
agate through the same portion of the scene are bundled together

and processed simultaneously by a given processor. Because each
ray requires the same scene data, this approach can enhance cache
locality. A similar approach can be taken in Barnes-Hut: particles in
the same region of space are likely to traverse similar parts of the
oct-tree during the force computation and thus can be processed
together to improve locality.

In some cases, reader algorithms can be more substantially
transformed to further enhance locality. In ray-tracing, bundled rays
begin propagating through the scene in the same direction but may
eventually diverge. Rather than using an a priori grouping of rays,
groups can be dynamically updated as rays propagate through a
scene, maintaining locality throughout execution [50].

7. Conclusions and future work
In this paper, we introduced a generalization of data-parallelism
called amorphous data-parallelism and argued that it is ubiquitous
in important irregular algorithms. We also gave a classification
of these algorithms and showed that this classification led to an
execution model that provided insights into the parallelism in these
algorithms and into mechanisms for exploiting this parallelism.

The use of graphs in parallel computing models has ancient
provenance. One of the earliest graphical models is due to Karp
and Miller who introduced parallel program schema for studying
properties such as determinacy and boundedness [51]. The use
of dataflow graphs as an organizational abstraction for parallel
machine architectures is due to Jack Dennis [14]. This work was
later extended by Arvind to the tagged-token dataflow model [5].
In all these models, graphs are representations of computations,
whereas in our model, graphs represent data and can be mutated
by operators.

The world-view presented in this paper provides a unified view
of parallelism in regular and irregular algorithms; in fact, regular
algorithms emerge as just a special case of irregular algorithms.
In some ways, this is like the generalization in mathematics of
metric spaces to general topologies in which notions like distance
are replaced with general notions of neighborhoods and open sets,
so metric spaces become a special (but important) case of general
topologies.

In the restructuring compiler community, it is commonly be-
lieved that compile-time parallelization is the ideal, and that the in-
adequacies of current static analysis techniques can be remedied by
developing more precise analysis techniques. The analysis in this
paper suggests that optimistic or speculative parallelization may be
the only general-purpose way of exploiting parallelism, particularly
in algorithms in which active elements are ordered. In most of the
algorithms discussed in this paper, dependences between activities
are a function of the input data, so static analysis is likely to be
overly conservative. However, we have also shown that for most
algorithms, we do not need the full-blown machinery of optimistic
parallelization as implemented, for example, in transactional mem-
ory (the Timewarp algorithm for event-driven simulation is the only
exception).

In general, algorithms with ordered active elements are more
difficult to parallelize than algorithms with unordered active ele-
ments. For some problems, such as event-driven simulation, the
straight-forward algorithm has ordered active elements, but it is
possible to reformulate the algorithm so that it uses unordered ac-
tive elements. However, the unordered algorithm may have its own
overheads, as in the case of event-driven simulation. It is likely that
this kind of algorithm reformulation is very algorithm-specific, and
that there are no general-purpose techniques for accomplishing this,
but this needs to be investigated.

In the literature, there are many efforts to identify parallelism
patterns [11, 45, 47, 54, 55]. The scope of these efforts is broader
than ours: for example, they include divide-and-conquer algorithms



in their purview, and they also seek to categorize implementation
mechanisms such as whether task-queues or the master-worker ap-
proach is used to distribute work. Most of this work is descriptive,
like the Linnaean taxonomy in biology; in contrast, our approach
is synthetic like molecular biology: we show that there are a small
number of parts from which one can “assemble” a wide range of it-
erative algorithms. Like us, Snir distinguishes between ordered and
unordered work [55]. We make finer distinctions than the Berkeley
dwarfs do. For example, dense matrix algorithms constitute a sin-
gle Berkeley dwarf, but we would put iterative solvers in a differ-
ent category (local computation) than dense matrix factorizations
(morphs), and their parallel behavior is very different. Similarly,
from our world-view, tree construction in Barnes-Hut is classified
differently than particle pushing, whereas in the Berkeley dwarfs,
there is a single category for n-body codes.

We hope that insights into amorphous data-parallelism in irreg-
ular algorithms will spur research into the design of abstract data
types, concrete representations, and synchronization mechanisms.
There is also much compiler and runtime systems work to be done.
The execution model described in Section 3 should be viewed as
baseline parallel implementation, which performs well for many
algorithms. We now need to study hand-parallelized implementa-
tions of irregular algorithms to understand the tricks used by pro-
grammers and figure out how to incorporate them into compilers
and runtime systems. For example, even applications like Delau-
nay mesh refinement that make complex modifications to general
graphs have structure that can be used to reduce synchronization
overheads, as we showed in Section 3.2. For researchers interested
in finding applications for general-purpose optimistic synchroniza-
tion mechanisms like transactional memory [18, 40], our studies
provide examples where such mechanisms might be appropriate.

Algorithms used in compilers are largely irregular graph or tree
algorithms, so it may be possible to parallelize compilers using the
techniques in this paper. This would address a common criticism
of restructuring compiler technology: it is not used to parallelize
compilers themselves (this is humorously referred to as the “not
eating our own dogfood” problem).

Finally, we note that the research methodology used by the
parallel programming community relies heavily on instrumenting
and running large benchmarks programs. In the spirit of Niklaus
Wirth’s motto “program = algorithm + data structure”, we would
argue that it is just as important to study algorithms and data
structures because, while running instrumented programs provides
data, studying algorithms and data structures provides insight.
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