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Abstract

JavaScript is emerging as the ubiquitous language of choice
for web browser applications. These applications increas-
ingly execute on embedded mobile devices, and thus demand
responsiveness (i.e., short pause times for system activities,
such as compilation and garbage collection). To deliver re-
sponsiveness, web browsers, such as Firefox, have adopted
trace-based Just-In-Time (JIT) compilation. A trace-based
JIT restricts the scope of compilation to a short hot path
of instructions, limiting compilation time and space. Al-
though the JavaScript limits applications to a single-thread,
multicore embedded and general-purpose architectures are
now widely available. This limitation presents an opportu-
nity to reduce compiler pause times further by exploiting
cores that the application is guaranteed not to use. While
method-based concurrent JITs have proven useful for multi-
threaded languages such as Java, trace-based JIT compila-
tion for JavaScript offers new opportunities for concurrency.

This paper presents the design and implementation of a
concurrent trace-based JIT that uses novel lock-free syn-
chronization to trace, compile, install, and stitch traces on a
separate core such that the interpreter essentially never needs
to pause. Our evaluation shows that this design reduces the
total, average, and maximum pause time by 88%, 97%, and
93%, respectively compared to the base single-threaded JIT
system. Our design also improves throughput by 5% on aver-
age and up to 36%, because it delivers optimized application
code faster. This design provides a better end-user experi-
ence by exploiting multicore hardware to improve respon-
siveness and throughput.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Incremental compilers, code gen-
eration.

General Terms Design, Experimentation, Performance,
Measurement

Keywords Just-In-Time Compilation, Multicore, Concur-
rency

1. Introduction

JavaScript is emerging as the scripting language of choice
for client-side web browsers [10]. Client-side JavaScript
applications initially performed simple HTML web page
manipulations to aid server-side web applications, but they
have since evolved to use asynchronous and XML features
to perform sophisticated, interactive dynamic content ma-
nipulation on the client-side. This style of JavaScript pro-
gramming is called AJAX (for Asynchronous JavaScript and
XML). Companies, such as Google and Yahoo, are using it
to implement interactive desktop applications such as mail,
messaging, and collaborative spreadsheets, word processors,
and calendars. Because Internet usage on mobile platforms
is growing rapidly, the performance of JavaScript is crit-
ical for both desktops and embedded mobile devices. To
speed up the processing of JavaScript applications, many
web browsers are adopting Just-In-Time (JIT) compilation,
including Firefox TraceMonkey [5], Google V8 [11], and
WebKit SFE [20].

Generating efficient machine code for dynamic lan-
guages, such as JavaScript, is more difficult than for stati-
cally typed languages. For dynamic languages, the compiler
must generate code that correctly executes all possible run-
time types. Gal et al. recently introduced a trace-based JIT
compilation for dynamic languages to address this prob-
lem and to provide responsiveness (i.e., low compiler pause
times and memory requirements) [7]. Responsiveness is crit-
ical, because JavaScript runs on client-side web browsers.
Pause times induced by the JIT must be short enough not



to disturb the end-user experience. Therefore, Gal et al.’s
system interprets until it detects a hot path in a loop. The
interpreter then traces, recording instructions and variable
types along a hot path. The JIT then specializes the trace by
type and translates it into native code in linear time. The JIT
sacrifices code quality for linear compile times, rather than
applying heavy weight optimizations. This trace-based JIT
provides fast, light-weight compilation with a small memory
footprint, which make it suitable for resource-constrained
devices.

On the hardware side, multicore processors are pre-
vailing in embedded and general purpose systems. The
JavaScript language however lacks a thread model, and thus
all JavaScript applications are single-threaded. This limita-
tion provides the opportunity to perform the JIT and other
VM services concurrently on another core, transparently to
the application, since the application is guaranteed not to
be using it.Unfortunately, state-of-the-art trace-based JIT
compilers are sequential [7, 5, 19], and have not exploited
concurrency to improve responsiveness.

In this paper, we present the design and implementation
of a concurrent trace-based JIT compiler for JavaScript that
combines responsiveness and throughput for JavaScript ap-
plications. We address the synchronization problem specific
to the trace-based JIT compiler, and present novel lock-free
synchronization mechanisms for wait-free communication
between the interpreter and the compiler. Hence, the com-
piler runs concurrently with the interpreter reducing pause
times to nearly zero.

Our mechanism piggybacks a single word, called the
compiled state variable (CSV), on each trace, using it as
a synchronization variable. Comparing with CSV synchro-
nizes all of the compilation actions, including checking for
the native code, preventing duplicate traces, and allowing the
interpretation to proceed, without using any lock.

We introduce lock-free dynamic trace stitching in which
the compiler patches new native code to the existing code.
Dynamic trace stitching prevents the compiler from waiting
for trace stitching while the interpreter is executing the na-
tive code, and reduces the potential overhead of returning
from native code to the interpreter.

We implement our design in the open source Tamarin-
Tracing VM, and evaluate our implementation using the
SunSpider JavaScript benchmark suite [21] on three dif-
ferent hardware platforms. The experiments show that our
concurrent trace-based JIT implementation reduces the to-
tal pause time by 88%, the maximum pause time by 93%,
and the average pause time by 97% on Linux. Moreover,
the design improves the throughput by an average of 2—-7%,
with improvements up to 36%. Our concurrent trace-based
JIT virtually eliminates compiler pause times and increases
application throughput. Because tracing overlaps with com-
pilation, the interpreter prepares the trace earlier for subse-
quent compilation, thus the JIT delivers the native code more

quickly. Consequently, the system traces and compiles more
hot paths during execution. This approach also opens up the
possibility of increasing the code quality with compiler op-
timizations without sacrificing the application pause time.

2. Related Work

Gal et al. proposed splitting trace tree compilation steps
into multiple pipeline stages to exploit parallelism [6]. This
is the only work we can find seeking parallelism in the
trace-based compilation. There are a total of 19 compilation
pipeline stages, and each pipeline stage runs on a separate
thread. Because of data dependency between each stage and
the synchronization overhead, the authors failed to achieve
any speedup in compilation time. We show having a paral-
lel compiler thread operating on an independent trace pro-
vides more benefit than pipelining compilation stages. With
proper synchronization mechanisms, our work successfully
exploited parallelism in the trace-based JIT by allowing trac-
ing to happen concurrently with the compilation, even when
only one compiler thread was used.

Kulkarni et al. explored maximizing throughput of back-
ground compilation by adjusting the CPU utilization level
of the compiler thread [16]. This technique is useful when
the number of application threads exceeds the number of
physical processors and the compiler thread cannot fully uti-
lize a processor resource. They conducted their evaluation
on method-based compilation, though the same technique
can be applied to trace-based compilation. However, because
JavaScript is single-threaded, it is less likely that all the cores
are fully utilized in today’s multicore hardware. Hence, the
effect of adjusting CPU usage levels will not be as significant
as it is in multi-threaded Java programs.

c-AOTC performs an ahead-of-time compilation on the
client side for the embedded systems [14]. When the method
is first called, the compiler runs concurrently with the inter-
preter, and the compiled native code is cached in persistent
memory. The following VM instances later reuse the code
stored in the cache, saving compilation time. Code caching
technique can be combined with our work, but the effect
will not be as high as in method-based compilation. This
is because the code reusable ratio is not as high because the
changes in input may cause specializing types and paths to
change.

A number of previous efforts have sought to reduce com-
pilation pause time in method-based JIT. SELF-93 VM in-
troduced adaptive compilation strategies for minimizing ap-
plication pause time [13]. When a method is invoked for
the first time, the VM compiles it without optimizations us-
ing a light weight compiler. If method invocations exceed a
threshold, the VM recompiles the method with more aggres-
sive optimizations. While the SELF-93 VM provided rea-
sonable responsiveness, it must pause the application thread
for compilation when initially invoked.
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Figure 1. Byte code and native code transition in the trace-
based JIT. Initially, the interpreter interprets on the byte
code. First detected hot path (thick path) is traced forming
a trunk trace. Following hot paths guarded and installed in a
side-exit. The compiler attach the branch trace, which begins
from the hot side-exit to the loop header, to the trunk trace.

Krintz et al. implemented profile-driven background
compilation in the Jalapenio Virtual Machine (now called
Jikes RVM) [15, 2]. In multiprocessor systems, a back-
ground compiler thread overlaps with application execution,
which reduces compilation pause times. Jikes RVM also
applied lazy compilation, where the JIT only compiles the
method on demand within a class instead of compiling every
method in a class at class loading time. When the method is
invoked for the first time before the optimized code is ready,
the VM pauses the application and run the baseline compiler.

These novel techniques have made adaptive compilation
in method-based compilation practical in Java Virtual Ma-
chines, such as Sun HotSpot [17], IBM J9 [18], and Jikes
RVM [1]. However, issues specific for trace-based JIT has
not been successfully evaluated by any previous work.

3. Background
3.1 Dynamic Typing in JavaScript

JavaScript is a dynamically typed language. The type of
every variable is inferred from its content dynamically. Fur-
thermore, the type of JavaScript variables can change over
time as the script executes. For example, a variable may
hold an integer object at one time and later hold a string
object. A consequence of dynamic typing is that opera-
tions need to be dispatched dynamically. While the de-
gree of type stability in JavaScript is the subject of current
studies, our experiences and empirical results indicate that
JavaScript variables are type stable in most cases. This ob-
servation suggests that type-based specialization techniques
pioneered in Smalltalk [4] and later used in Self [12] and Sun
HotSpot [17] have the potential for tremendously improving
JavaScript performance.

3.2 Trace-based JIT Compilation

Hotpath VM is the first trace-based JIT compilation intro-
duced for Java applications in a resource-constrained envi-
ronment [8]. The authors later explored trace-based JIT for
dynamic languages, such as JavaScript [7].

The trace-based JIT compiles only frequently executed
path in a loop. Figure 1 shows an example of how the inter-
preter identifies a hot path, and expands it. Initially, the inter-
preter executes the byte code instructions, and identifies the
hot loop with backward branch profiling which operates as
follows. When the execution reaches the backward branch,
the interpreter assumes it a loop backedge and increments
the counter associated with the branch target address. When
the counter reaches a threshold, the interpreter enables trac-
ing, and records each byte code instruction to a trace buffer
upon execution. When the control reaches back to the ad-
dress where the tracing started, the interpreter stops tracing
and the compiler compiles the trace to native code. As the in-
terpreter is not doing an exact path profiling, the traced path
may or may not be the real hot path. The first trace in a loop
is called a trunk trace.

Instructions are guarded if they potentially diverge from
the recorded path. If a guard is triggered, the native code
side-exit back to the interpreter, and begin interpreting from
the branch that caused the side-exit. The interpreter counts
each side-exit to identify the frequent side-exit. When a side-
exit is taken beyond a threshold, it means the loop contains
another hot path, and the interpreter enables tracing from
the side-exit point until it reaches the address of the trunk
trace. This trace is called a branch trace. A branch trace is
compiled and the code is stitched to the trunk trace at the
side-exit instruction. As the interpreter finds more hot paths,
the number of branch traces grows forming a frace tree.

Since the compilation granularity is a trace, which is
smaller than a method, the total memory footprint of the JIT
is smaller than that of method-based JITs. And because no
control flow analysis is required, start-up compilation time
is less than that of the method-based compilers. However, as
optimization opportunities are limited, the final code quality
may not be as good as code generated by method-based com-
pilation. Therefore, trace compilation is suitable for embed-
ded environments where resources are limited, or the initial
JIT cost is far more important than the steady state perfor-
mance.

4. Design
4.1 Parallelism to Exploit

To design a proper synchronization mechanism to maximize
the concurrency, we must understand what parallelisms can
be exploited. Figure 2 explains an execution flow example
of sequential and concurrent JIT. As the compilation phase
is offloaded to a separate thread, the interpreter is responsive
and making progress while compilation happens, as is com-
mon for generic concurrent JIT compilers. For trace-based
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Figure 2. Example of sequential vs concurrent JIT execu-
tion flow.
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Figure 3. The interpreter state transition at a loop header.

JIT, tracing must precede the compilation phase. If tracing
can happen concurrently with compilation, subsequent com-
pilation may start earlier, and deliver the native code faster.
Furthermore, more hot paths can be compiled during the ex-
ecution. We can expect to achieve throughput improvements
as well as a reduction in the pause time. The concurrent JIT
also opens the possibility to do more aggressive optimiza-
tions without hurting pause time. The following sections ex-
plain how we designed the synchronization to achieve the
parallelism shown in Figure 2.

4.2 Compiled State Variable

In the trace-based JIT compiler, the interpreter changes state
at loop entry points. As shown in Figure 3, when the control
flow reaches a loop entry point, the interpreter must identify
four different states. First, if compiled native code exists for
the loop, the interpreter calls it. The native code executes un-
til the end of the loop or a side-exit is taken. Second, if the
loop has never been traced and the loop is a hot loop, the
interpreter executes byte code with tracing enabled. Identi-
fying hot loop path is explained in Section 3 in detail. Third,
if tracing is currently enabled at the loop header, the inter-
preter disables it and requests compilation. While compiling
the trace, the interpreter continues to execute the program.
Fourth, if the loop is cold, the interpreter increments the as-
sociated counter and keeps on interpreting the byte codes.
Checking all these cases at a loop header requires a syn-
chronization with the compiler thread. Otherwise, race con-

ditions may cause overhead or incorrect execution. For ex-
ample, the interpreter may make duplicate compilation re-
quests, or trace the same loop multiple times. The sim-
plest synchronization method is using a coarse-grained lock
around the checking routine. However, the lock can easily
be contended after the compilation request is made, espe-
cially with a short loop body, because the control reaches
the loop header frequently. We could use a fine-grained lock
for accessing each loop data structure. However, this is also
infeasible because the native code for the loop can change as
the trace tree grows, and holding a lock while executing the
native code would stall the compiler too often.

To overcome these challenges, we design a lock-free
synchronization technique using a compiled state variable
(CSV). A word size CSV piggybacks on each loop data struc-
ture, and it is aligned not to cross the cache line. Thus, stores
to it are atomic. The value of the CSV is defined as shown in
Table 4.2. By following simple but efficient ways of incre-
menting the CSV value, the state check at the loop header
can be done without any explicit synchronization. The initial
value of CSV is zero, and only the interpreter increments O
to 1 when it requests a compilation. As it is a local change,
the interpreter sees the value 1 on the subsequent operations
before the compiler sees the value 1. The compiler changes
the value 1 to 2 after it registers the native code to the loop
data structure. Thus, when the interpreter reads the value 2,
it is guaranteed that the native code is ready to call. There-
fore, the pause time for waiting is almost zero for both the
interpreter and the compiler, maximizing the concurrency.

When the compiler makes a JIT request, the trace buffer
is pushed to a queue before the CSV is incremented to
1. We use a simple synchronized FIFO queue for the JIT
request, because it is normally not contended. However, a
generic, concurrent, lock-free queue for one producer and
consumer [9] could always replace this queue, but we think
it would not affect performance.

4.3 Dynamic Trace Stitching

The trace-based JIT specializes types and paths, and injects
guard instructions to verify the assumptions for the type
and path of the trace. Guards trigger side-exit code if the
assumption is not met, and returns the control back to the
interpreter.

If two or more hot paths exist in a loop, the first hot
path will be compiled normally, but the subsequent hot paths
will frequently trigger guards. As explained in Section 3, the
interpreter traces from the branch that caused the side-exit
(branch trace), and compiles it. As more hot paths are re-
vealed, trunk and branch traces form a trace tree. Recom-
piling the whole trace tree is good for the code quality, but
the compilation time will grow quadratic if the whole trace
tree is recompiled every time a new trace is attached to the
tree. Also, this strategy would keep the trace buffer in mem-
ory for future recompilation, which is infeasible in mem-
ory constrained environments. Instead of recompiling the



Description

Action CSvV

has native code
compilation already requested
Hot loop
Cold loop
Trace enabled

Call native code 2
normal interpretation 1
Enable tracing 0
normal interpretation 0

Disable tracing and request compilation | Oto 1

Table 1. Value of Compiled State Variable(CSV) at a loop header.

whole tree, we use trace stitching technique. Trace stitch-
ing is a technique that compiles the new branch trace only,
and patches the side-exit to jump to the branch trace native
code.

Branch patching modifies code that is produced by more
than one trace. Hence, it is probable that interpreter is ex-
ecuting the native code at the same time that the compiler
wants to patch it. Naive use of a lock around the native code
will incur a significant pause time on both the interpreter and
the compiler. Waiting becomes a problem if time spent in the
native code grows large, reducing the overall concurrency.
The compiler may also make a duplicate copy of the code in-
stead of patching, or delay the patching until the native code
exits to the interpreter. Either method has inefficiencies, and
we propose lock-free dynamic trace stitching for the branch
patching. The key factor of dynamic trace stitching is that a
side-exit jump is a safe point where all variables are synchro-
nized to the memory. We use each side-exit jump instruction
as a placeholder for the patching. When the compiler gen-
erates the native code for the branch trace, both jumping to
the previous side-exit target or jumping to the branch trace
code does not change the program semantic. Therefore, if
the patching is atomic, the compiler can patch the jump in-
struction directly without waiting for the interpreter. If the
branch target operand is properly aligned, patching is done
by a single store instruction. There is no harmful data race
even without any lock. With these benign data races, the in-
terpreter and the compiler run concurrently without pausing.

5. Implementation

We implemented our design in the open-source Tamarin-
Tracing Virtual Machine [19]. TamarinTracing VM con-

forms to the ECMAScript language standard, where JavaScript,

JScript, and ActionScript are all dialect of the ECMAScript
language. Our design implements Gal et al’s sequential
trace-based JIT [7] and targets the 32bit x86 architecture.

In this section, we discuss implementation details not
explained in previous section.

Incrementing the Compiled State Variable The compiled
state variable is piggybacked on both trunk and branch
traces. We aligned the compiled state variable at a word
granularity, and since the cache line is multiple of word size,
CSV does not cross the cache line boundary. Therefore, it
is safe to increment the variable without any lock prefix or

using a compare-and-swap instruction. We simply declared
the CSV volatile to force a memory load.

Dynamic Trace Stitching A direct branch instruction(jmp)
is 5 bytes in 32bit x86, where the last 4 bytes are the branch
target operand. Since the TamarinTracing VM’s JIT com-
piler generates the machine code in reverse order, padding
the branch instruction to align it with the cache line is diffi-
cult. Thus, we used compare-and-swap instruction to replace
the branch target operand of the side-exit jump instruction.

GC Thread-Safety TamarinTracing uses a mark-sweep
garbage collector, called MMGC, to manage application
and VM objects. The current MMGC implementation is not
thread-safe. To make the compiler concurrent, we have to
make MMGC thread-safe or eliminate compiler objects from
the MMGC heap. We choose the later, and use explicit allo-
cation and deallocation in the compiler, i.e., malloc and free.
This change to explicit memory management improves the
throughput by ~10%. To isolate the improvement caused by
modifying the JIT, we use this sequential JIT with explicit
memory management as the baseline of our evaluation in
Section 6. Our concurrent JIT is implemented on top of this
baseline.

Implementation Correctness To validate the correctness
of our implementation, we used Intel Thread Checker to de-
tect harmful race conditions. We also ran the acceptance test
suite used to verify sequential Tamarin VM. Our implemen-
tation passes the same test entries that Tamarin VM passes.
Furthermore, our concurrent JIT runs the same set of Sun-
Spider benchmark suites correctly as compared to sequential
JIT. Therefore, we believe our implementation produces the
same results as the original Tamarin VM implementation.

6. Evaluation
6.1 Experiments Setup
We evaluate our implementation of the concurrent trace-

based JIT on four different configurations:

e Moblin: Moblin (Linux 2.6 kernel) and NPTL pthread
library running on Intel Atom 1.6GHz, which has one
core, and two SMT threads, and a 512KB L2 cache.

e Linux: Ubuntu Linux 2.6 and NPTL pthread library run-
ning on Intel Core 2 Quad 2.4GHz, which has four cores
and two 4MB shared L2 caches.



Benchmarks | Bytecode | Compiled | Compilation | Native | Interpreter | Runtime ‘
(bytes) Traces (%) (%) (%) (ms)
access-binary-trees 697 37 5.4 89.1 55 74
access-fannkuch 823 49 2.4 94.2 33 117
access-nbody 2,202 27 3.5 91.6 49 144
access-nsieve 543 14 1.4 96.8 1.7 56
bitops-3bit-bits-in-byte 414 6 4.0 89.7 6.3 12
bitops-bits-in-byte 385 15 1.5 96.5 2.1 40
bitops-bitwise-and 264 3 0.2 994 0.4 179
bitops-nsieve-bits 586 11 1.4 96.6 2.0 50
controlflow-recursive 504 35 8.3 84.5 7.3 28
crypto-aes 7,004 158 11.4 63.2 25.4 150
crypto-md5 5,470 6 24.6 17.4 58.0 120
math-cordic 832 9 1.8 95.0 3.1 32
math-partial-sums 758 11 1.3 93.2 55 41
math-spectral-norm 841 35 7.8 78.3 13.9 36
s3d-cube 4918 188 8.4 41.6 50.0 155
s3d-morph 573 14 1.5 95.9 2.6 81
s3d-raytrace 7,289 147 9.3 68.1 22.6 170
string-fasta 1,426 22 1.9 95.6 2.5 141
string-validate-input 1,511 28 1.4 96.0 2.6 261

Table 2. Workload characterization of SunSpider benchmarks with sequential Tamarin JIT.

® Windows: Windows XP and Win32 thread libraries run-
ning on Intel Core 2 Duo 2.4GHz, which has two cores
and a 2MB shared L2 cache.

e Mac: Mac OS X Leopard and pthread library on Intel
Core 2 Duo 2.8GHz, which has two cores and a 4MB
shared L2 cache.

Because Linux can be easily configured to reduce noise
to a minimum, we ran 50 runs and averaged the results. On
other configurations, because of the inevitable perturbation
of the OS services, we picked the 10 best runs out of 50 and
calculated the average. We also set the confidence interval
at 95%, assuming Student’s t-distribution on all results to
validate the statistical significance. For easy comparison, all
graphs are presented so that the lower bar represents the
better result.

6.2 SunSpider Benchmarks Characterization

The SunSpider benchmark suite is a set of JavaScript pro-
grams intended to test performance [21]. It is widely used
to test and compare the JavaScript engine on web browsers,
such as Firefox SpiderMonkey, Adobe ActionScript, and
Google V8. Table 2 characterizes the benchmarks in the
Linux configuration.

Figure 4 shows the execution of the components for the
sequential and concurrent JIT. The first bar represents the
sequential JIT, and the second bar shows the interpreter
thread activity in the concurrent JIT. This thread activity
includes the interpreter, native code, and pause time caused
by compilation requests. The third bar shows the compile
time of the compiler thread. The y-axis value for concurrent
JIT is normalized to the sequential JIT total execution time.
Hence, bar 2 less than 100% is the speedup. The compilation
time in bar 2 represents the total pause time in the concurrent
JIT.

In most benchmarks, the concurrent JIT implementation
improves both responsiveness and throughput. The pause

time with the concurrent JIT is negligible, and speedups
are noticeable in many benchmarks. In many cases, speedup
results from the faster delivery of native code. For example,
in crypto-aes, the compilation time in both sequential and
concurrent is about the same, and the amount of speedup
results from the compiler being offloaded. The s3d-cube
benchmark shows the most speedup because the compilation
time in the concurrent JIT is almost twice as much as in
the sequential JIT. The compiler was able to compile more
hot paths since the tracing overlapped with the compilation.
As a result, the time spent in the interpretation is reduced
significantly, which accounts for the speedup.

Notice that the larger, more complex benchmarks (crypto-aes,

crypto-md5, s3d-cube, s3d-raytrace) are influenced
most by the concurrent JIT. This trend indicates that as
JavaScript programs grow in size and complexity, the con-
current JIT is likely to provide more benefits due to an in-
creased fraction of native code execution.

6.3 Responsiveness

We evaluate application responsiveness using total, average,
and maximum pause time. Total pause time for running a
benchmark is a good indicator of the application’s respon-
siveness, and the average reflects the end-user experience.
Many small pauses are better than one big pause in terms
of responsiveness [3]. We compare maximum pause time,
which is the most noticeable pause to the end-user, therefore
we want it to be as low as possible.

Figure 5 demonstrates that our concurrent JIT implemen-
tation reduces both maximum and total pause time signifi-
cantly. The y-axis is the pause time normalized to the pause
time in the sequential JIT. A value of 1.0 means that the
pause time is the same, and 0.1 means the pause time is re-
duced by 90%. Tics at the top of each bar shows 95% confi-
dence interval.

Geometric means in the Linux configuration show that
we reduced the total pause time by 89% and 93% for the
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Figure 4. Average time break down in compilation, native code, and interpretation.

maximum pause time, showing a huge improvement in re-
sponsiveness. Furthermore, the average pause has reduced
by 97% of the sequential JIT. Even in the worst case on
Moblin with the access-fannkuch benchmark, the total
pause time is reduced by 36%. Yet, the average is reduced by
87%, which shows the implementation successfully avoided
long pauses.

As the compilation time per trace grows, it is likely that
the concurrent JIT will reduce the pause time more. Table 2
shows that crypto-md5 has the highest per trace compila-
tion time, compiling six traces for 25% of the execution time.
It also achieves the best reduction in pause time, with 99%
for all three metrics.

6.4 Throughput

Improving responsiveness does not necessarily mean im-
proving throughput. On the other hand, better responsive-
ness often requires sacrificing throughput, e.g., concurrent
garbage collectors versus stop-the-world garbage collectors.
However, we improved throughput as well as the responsive-
ness because our implementation executes the interpreter
and tracing concurrently with the compiler.

Figure 6 shows the speedup for each configuration. The
x-axis is the SunSpider benchmarks and the y-axis is the
speedup normalized to the execution time of the sequential
JIT. The concurrent JIT achieves 2—7% speedup on all plat-
forms on average, and achieves up to 36% on s3d-cube
on Windows. As explained in Section 6.2, the speedup in
s3d-cube is due to increasing the number of compiled
traces.

Another noticeable result is that the concurrent JIT im-
proves performance uniformly. Only three benchmarks on
Moblin, and two benchmarks on Mac have degradations,
The performance variation of crypto-md5 among the plat-
forms is due to the fact that it only spends 17% of the time
in compiled native code, and only compiles six traces. The
remaining 18 programs improve or stay the same on all plat-
forms except for Moblin. This is because SMT threads share
hardware resources and is not fully parallel.

6.5 Effect of Using Multicores on Performance

This section presents the effect of thread scheduling on the
compiler and interpreter threads in multicore systems. A
major difference between multicore and traditional off-chip
multiprocessors is memory latency. Especially in shared-
cache multicore systems, load and store latency is signifi-
cantly less than off-chip multiprocessors. Moreover, shared-
cache multicores bring nonuniformity in load/store latency,
which makes the performance less predictable.

The Intel Core 2 Quad processor that we used for the
Linux configuration is a shared-cache multicore, where each
pair of cores shares a L2 cache. Thus, core 0 and 1 commu-
nicate via the L2 cache, but core 0 and 2 go through the
interconnect network. In the concurrent JIT, the compiler
thread is a producer whose output is transferred to the in-
struction cache in the interpreter thread. Hypothetically, we
can expect that lower communication latency will improve
the performance.

Figure 7 shows how thread assignment influences the
performance. Lack of operating support for hard pinning a
thread to a given core, we could only hint the OS sched-
uler using pthread_setaffinity np provided by NPTL
pthread library. The first bar corresponds to the case when
the compiler and interpreter threads are configured to share
the L2 cache. The second bar represents the case where
the compiler and interpreter do not share caches. The third
bar is measured without any hint to the scheduler. In all
benchmarks, the shared L2 configuration performed the best,
though the benefit is small for most of the benchmarks. How-

ever, a couple of benchmarks, such as bitops-3bit-bits-in-byte,

show a large difference. Performance is slightly stable in the
shared L2 configuration. You can observe that the confidence
interval is the narrowest in this configuration. Therefore, we
recommend putting both compiler and interpreter threads
on cores that share caches if the cache is big enough not to
cause thrashing.

We also compare the total and maximum pause time in
Figure 8. As in the performance comparison, the overall
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Figure 5. Pause time ratios of concurrent vs. sequential JITs.

reduction in total and maximum pause time for the shared L2
configuration is modest, and the measurements are slightly
more stable. Even though improvement in overall pause time
is small, it is as significant as 5% for some benchmarks.

Our results indicate that the choice of the right pair of
cores for the compiler and interpreter threads can influence
performance. The impact may increase in multicore systems
with more complex memory hierarchies.

7. Conclusion

In this paper, we showed that even though JavaScript lan-
guage itself is currently single-threaded, both its throughput
and responsiveness can benefit from multiple cores with our
concurrent JIT compiler. This improvement is achieved by
running the JIT compiler concurrently with the interpreter.
Our results show that most of the compile-time pauses can
be eliminated, resulting in a total, average, and maximum re-
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Figure 7. Effect of performance on various core configurations.

duction in pause time by 88%, 97%, and 93%, respectively.
Moreover, the throughput is also increased by an average
of 5%, with a maximum of 36%. This paper demonstrates
a way to exploit multicore hardware to improve application
performance and responsiveness by offloading system tasks.
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