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Abstract: This paper presents Pheme1, a peer-to-peer
data synchronization protocol that can be used to con-
struct new distributed file systems that share data across
collections of devices with limited, varying, or intermit-
tent connectivity.

The suitability of Pheme for such environments is
not matched by existing protocols. With current tech-
nology trends, devices will almost-always be connected
to a server or to another device, synchronizing differ-
ent sets of data as they please. Existing protocols often
assume a coarse-grained synchronization model which
makes changing the data set of an already established
synchronization stream expensive. Pheme introduces
fine-grained synchronization so that devices can cheaply
change the data set they want to synchronize while they
are connected to the other device. In addition, it uses
a new dependency summary vector (DSV) scheme to
detect conflicts with no extra overhead despite network
interruptions and exposes flexible commit mechanisms
to allow applications to implement their own commit
schemes.

Because Pheme provides developers with various syn-
chronization options, systems can be built that send the
right data via the right network paths and dramatically
outperform traditional client-server or server-replication
protocols. At the same time, Pheme is more efficient than
existing similarly flexible protocols like PRACTI – we
observe several orders of magnitude of bandwidth sav-
ings in some experiments.

1 Introduction
This paper addresses a simple question: How can a repli-
cation protocol support the diverse needs of personal
and mobile storage environments? Users are increas-
ingly storing and accessing data from a large collection
of devices with vastly different network capabilities in-
cluding laptops, phones, eBooks, media-players, set-top
boxes. These devices sometimes operate independently,
but they sometimes share data with a local server, a cloud
server, or with other devices. The key challenge for file
systems targeting personal and mobile environments is
the diversity the environment presents both in the dimen-
sion of device characteristics i.e. mobility, connectivity,
and storage capacity, and in the dimension of application
needs i.e. consistency, performance, and availability.

1Pheme is the Greek goddess of fame, renown, and gossip. She has
been described as she who initiates and furthers communication.

Our vision is to construct a synchronization protocol
that meets these needs of a wide range of applications
targeting this environment. PRACTI [1] comes close.
PRACTI allows devices to store different subsets of data
(partial replication) and to synchronize with any other
device (topology independence) while providing flexible
consistency guarantees (any consistency) at reasonable
costs. It provides synchronization optimizations that pro-
vide good performance, including partial replication of
both data and metadata, separation of meta-data and data
synchronization, and a hybrid log-based and state-based
synchronization protocol.

Unfortunately, PRACTI has a significant limitation
that makes it less than ideal in this environment.
PRACTI, like many other existing protocols [17, 19], as-
sumes a coarse-grained synchronization model – once
two devices have a synchronization stream established,
it is expensive to change the data set they want to syn-
chronize. The coarse-grained model works well for envi-
ronments in which devices operate in disconnected mode
most of the time and occasionally connect with another
device or a server to synchronize data. However, con-
sidering current technology trends where devices have
more than one networking capability, such as WiFi, 3G,
and Bluetooth, we expect that devices will be most of
the time connected to another device or a server. In
such environments, the coarse-grained model falls short.
Devices may dynamically change the synchronization
set due to a user or application directive. Also, com-
mon replication techniques such as callbacks and de-
mand caching require fine-grained changes to the syn-
chronize set between two devices. The workaround is to
establish separate synchronization streams for every new
synchronization set. However, the workaround, has high
overheads because redundant consistency information is
sent on each stream (explained in Section 4). For other
protocols [17, 19], establishing separate streams does not
provide any ordering guarantees between the updates re-
ceived on different streams.

We present Pheme, a new synchronization protocol
that supports both coarse-grained and fine-grained syn-
chronization. In order to support fine-grained synchro-
nization, Pheme uses a new technique to multiplex syn-
chronization requests on to a single stream – if two nodes
have a synchronization stream established and a request
to synchronize a new data set is received, the new data set
is added to the same stream. Synchronization streams in
Pheme maintain the prefix property [19] and send up-
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dates in causal order. The technical challenge lies in
maintaining the prefix property and causal consistency
even when new data sets are incorporated into the stream.

Pheme is also able to naturally deal with other chal-
lenges imposed by the environment.

Disconnections are common in such environments.
On reconnection, it is necessary to detect conflicting up-
dates so that appropriate mechanism can be invoked to
reconcile the differences. Pheme employs a new depen-
dency summary vector (DSV) scheme to detects conflicts
without putting any extra network or storage overhead.
In fact, the scheme is as efficient as existing protocols,
but unlike some [17], the overheads do not increase with
network disconnections.

No all applications have the same consistency or
durability requirements. Some applications may require
stronger consistency guarantees, such as serializability,
when devices are connected to a server, or that all up-
dates be marked as tentative until they reach a specific
device [19]. Pheme incorporates a flexible commit mech-
anism for applications to implement their own commit
schemes. In fact, Pheme takes advantage of the causal-
ity of synchronization to propagate commit information
in casual order making it easier to implement stronger
consistency semantics.

This paper presents details of Pheme and evaluates
it under different synchronization scenarios. Details of
how to implement specific replication policies with the
Pheme mechanisms can be found elsewhere [2]. We
demonstrate that Pheme an ideal choice for synchro-
nization in mobile environments: Pheme is able to sup-
port a wide range of synchronization options efficiently.
Pheme, like PRACTI, provides significant speedup and
bandwidth savings when compared to traditional client-
server and server-replication protocols. However, unlike
PRACTI, Pheme provides up to tens of times of band-
width savings for workloads that dynamically establish
fine-grained subscriptions.

2 Design Requirements
Replication engines targeting personal and mobile en-
vironments must deal with the diversity the environ-
ment presents in terms of device mobility, connectivity
and storage capacities. In addition, applications have
vastly different consistency, availability and performance
needs.

The key challenge for a replication protocol is to be
sufficiently flexible and efficient so as to greatly simplify
the development of replication engines for this environ-
ment. In particular, it must support the following fea-
tures:
• Partial replication: Every device may store different

subsets of data, either due to storage limitations or user
preference. Ideally, the protocol should allow any de-
vice to store any subsets of data.

• Wide range of consistency semantics: Users’ natural
expectations is to see updates to different objects in
order. Also, different applications have different con-
sistency requirements. The protocol should allow ap-
plications that require strong consistency guarantees
to provide them, whereas others should not have to
pay the availability or performance costs of the con-
sistency guarantees they do not need.

• Arbitrary synchronization topologies: It is often nec-
essary for a device to be able to directly synchronize
with a nearby peer when connectivity to the server is
limited. The protocol should allow any device to carry
out synchronization with any other node.

• Various synchronization options: Every replication
system may have different synchronization require-
ments. The protocol must provide sufficient options so
that policies implement synchronization schemes with
the best tradeoffs including: the separation of data
and meta-data paths so that a device can inform an-
other device about an update without having to send
the entire update, log-based and state-based synchro-
nization so that the system can pick the one which is
better suited for the experienced workload, and, most
important, dynamic synchronization establishment so
that two devices can efficiently synchronize a new data
set while the synchronization of another set is taking
place.

• Incremental progress: Network interruptions are com-
monplace in mobile environments. The protocol must
make sure that synchronization makes progress de-
spite network disruptions.

• Conflict detection: Due to network partitions, a data
item may be concurrently updated at multiple de-
vices. The protocol must detect conflicting updates so
that applications can invoke the appropriate resolution
mechanisms.

• Application-specific commit policies: Some applica-
tions differentiate between tentative and committed
writes and implement their own commit policies. The
protocol must allow engines to implement their own
commit policies easily.

• Low overheads: Network and resource limited devices
are common in this environment. The flexible protocol
should be competitive with non-flexible, hand-crafted
protocols.
In short, the synchronization protocol must allow any

device to synchronize any subset of data with any other
node and provide options to chose either data or meta-
data and log-based or state-based synchronization while
detecting conflicts and supporting application specific
commit policies at reasonable costs. Previous efforts pro-
vide a subset of these requirements [8] [10] [11] [15].
Because they do not provide the whole set of features,
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they impose restrictions on how synchronization should
be carried out and thus cannot be used as general-purpose
protocols.

Pheme is the first to provide the whole list of flexibil-
ity to system designers. The details of how Pheme sup-
ports these features is presented in later sections. Build-
ing a replication engine with Pheme becomes as simple
as specifying when, where and which node to synchro-
nize with and with what options. Details on how to build
replication engines with Pheme is provided in [2]

3 System Model
Objects and time. Data are stored as objects identified
by unique object identifier strings. Sets of objects can
be compactly represented as interest sets that impose a
hierarchical structure on object IDs. For example, the
interest set “/a/*:/b” includes object IDs with the prefix
“/a/” and also includes the object ID “/b”.

Pheme heavily relies on Lamport’s clocks [12] and
version vectors to keep logical time and consistency in-
formation. Every node maintains a time stamp, lc@n
where lc is a logical counter and n the node identifier.
To allow events to be causally ordered, the time stamp
is incremented whenever a local update occurs and ad-
vanced to exceed any observed event whenever a remote
update is received. Every node also maintains a version
vector, currentVV , that indicates all the updates, local or
remote, it is aware of.

Whenever an object is updated, the update is divided
into an invalidation and a body. An invalidation contains
the object ID and the logical time of the update. A body
contains the actual data of the update.

Update log, object store and consistency module.
Every node stores local or received invalidations in an
update log in casual order. In order to prevent the log
from becoming arbitrarily large, the node truncates older
portions of the log when the log hits a locally config-
urable size limit and maintains a version vector, omitVV ,
to keep track of the cut-off time.

The object store stores the latest bodies of objects the
node chooses to replicate along with per-object meta-
data used to ensure consistency of that data (described
later).

The consistency module keeps track of other consis-
tency information in a concise manner by organizing ob-
jects into hierarchical interest sets and storing the infor-
mation on a per-interest set basis. Details of the consis-
tency information maintained is provided in Section 4.2.

Failures. Pheme ensures progress despite network dis-
connections and device failures. On reconnection after
a network disruption, synchronization continues where it
left off. On recovery after a failure, the device consults
the log to reconstruct its consistency state. Pheme does
not handle byzantine failures.

4 Synchronization
Pheme carries out synchronization between two nodes
via ordered, unidirectional. Pheme uses techniques used
by past protocols including peer-to-peer synchroniza-
tion [7, 8, 19, 21, 22] via log exchange [19] and state ex-
change [17], separation of invalidations and bodies [1,
11], causal propagation of updates [1, 19] and summa-
rization of unwanted meta-data [1]. However, to meet all
its design requirements, Pheme introduces a new tech-
nique: multiplexing synchronization requests on a single
stream while maintaining the casual order.

In this section, we describe the synchronization pro-
tocol and provide details of the processing that occurs at
a node when updates are sent and received.

4.1 Protocol Overview
Say a node wants to receive updates to a subset of data
from another node. In addition to the updates, it is also
necessary to send enough information to give each appli-
cation the flexibility to enforce whatever level of consis-
tency it needs. Synchronization in Pheme tries to keep
that information to a minimum.

Synchronization streams. Suppose all the objects
stored in Node A lie in the interest set, A.IS and Node
A knows about all updates to A.IS up to its current time,
A.currentVV . Node A wants to receive new updates to
A.IS and requests a synchronization stream from node B.

If node B stores the same objects as A, i.e. A.IS =
B.IS, synchronization is simple. Node B just sends all
the updates it has that occurred from A.currentVV to
B.currentVV in causal order. The updates are sent in
causal order because a causal stream provides flexibil-
ity for applications to implement a wide range of weaker
or stronger consistency guarantees with little additional
overhead. In addition, a causal stream is incremental, i.e.
in case of disconnection, the synchronization can con-
tinue where it left off.

Gap markers. Because of partial replication, however,
different nodes may store different subsets of data. In
other words, Node B may not store all the objects that
Node A wants. In addition to sending all the updates to
objects in A.IS, Node A must warn Node A if there are
any causal gaps – updates that have occurred to objects
that Node A cares about but Node B does not have. Node
B sends a gap marker [1] in that case. Gap markers can
be seen as a summary of multiple updates. They summa-
rize updates that occurred to a set of objects, targetSet,
between a start time, startVV , and an end time, endVV .
Note that start and end time are partial version vectors
rather than full version vectors.

Gap markers must be sent in two cases. First, the
sender, Node B, does not know about the updates the re-
ceiver, Node A, has asked for. Second, gap markers are
sent for updates to objects Node A did not ask for so that
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Fig. 1: Diagram comparing the messages sent on invalidation streams without and with multiplexing.

Node A can pass on the knowledge of the gaps in its in-
formation to another node, Node C, that it synchronizes
with in the future. It is this propagation of gap markers
allows Pheme to simultaneously support partial replica-
tion, topology independence, and still support a broad
range of consistency semantics.

An synchronization stream consists of a start time,
stream.startVV , and a causally ordered series of up-
dates and gap markers. Every stream is associated with
a stream.VV that keeps track of the logical time progres-
sion of the stream.

Dynamic synchronization. Next, what if Node A de-
cides that it wants to synchronize more objects? Say
Node A already has a synchronization stream established
for A.IS from Node B and it wants get updates for ob-
jects in A.newIS from the time A.newIS.startVV . A sim-
ple approach would be to establish a new stream for
A.newIS. The problem is that a lot of redundant in-
formation will be sent – in order to ensure that each
stream provides a causally ordered series of events from
stream.startVV , each must include gap markers for any
omitted events and Node A may receive gap markers for
the same updates twice. If Node A creates a large num-
ber of subscriptions, then redundant information is sent
on each stream.

Pheme reduces the overheads of dynamic synchro-
nization requests by multiplexing requests on to a single
stream. Since updates on the stream are sent in causal
order, simply sending updates to A.newIS from the cur-
rent logical time of the stream stream.VV will not work
because that would not “fix the gap” that Node A has for
A.newIS from A.newIS.startVV to stream.VV . Instead,
Node B “pauses” the stream at stream.VV and sends a
catchup stream which includes all updates for A.newIS

from A.newIS.startVV to stream.VV that node B knows
about. After catchup, node B continues sending invali-
dations for A.IS and A.newIS and gap markers for every-
thing else starting from stream.VV . Figure 1 illustrates
the multiplexing of the stream.

State-based synchronization. Pheme also supports
state-based synchronization by sending a checkpoint of
the final state of objects in an interest set instead of
sending an ordered log of updates. A checkpoint con-
sists of a gap marker for A.IS from A.stream.startVV to
B.currentVV and the latest meta-data of objects in A.IS
updated between stream.startVV and B.currentVV . In
case of a multiplexed catchup stream, a checkpoint con-
sists of the meta-data of objects in A.newIS updated be-
tween A.newIS.startVV and stream.VV .

Log and checkpoint synchronizations have different
tradeoffs. The bandwidth requirement for log synchro-
nization is always proportional to the number of updates
that occurred to objects in the subscription set. Log
synchronization is useful for incrementally and contin-
uously exchanging updates between pairs of nodes. On
the other hand, the bandwidth requirement for check-
point synchronization is proportional to the number of
objects updated. Hence, for a small frequently updated
subscription set, a checkpoint synchronization might a
better option. Also, a log synchronization is impossible
to execute if the update log has been truncated beyond
the start time of the subscription. i.e. the subscription re-
quires invalidations that are older than what is currently
stored in the log. The only option is to fall back on check-
point synchronization.

Invalidation and body streams. Pheme separates
meta-data and data synchronization by having separate
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Messages sent on an invalidation stream
Subscription start SS, startVV
Checkpoint SS, per-obj meta-data, IS gap information
Invalidation objId, offset, length, timeStamp
Gap marker targetSet, startVV, endVV
Catchup start SS, VV
Catchup end VV

Messages sent on an body stream
Body objId, offset, length, timeStamp, data

Fig. 2: Components of different messages sent on subscription
streams.

invalidation and body streams. Invalidation streams
propagate meta-data of updates that occurred after
startVV in causal order. Body streams are simply un-
ordered streams of the bodies of updates that occurred
after startVV . Ordering body streams is unnecessary be-
cause received bodies are applied to the object store only
after their corresponding invalidations are received. The
causality of invalidation streams is sufficient to guarantee
consistency.

The separation of invalidation and body streams en-
ables meta-data and data to propagate via different paths.
Nodes can choose to receive bodies of the updates they
care about, leading to better bandwidth efficiency. Also,
a node can quickly and cheaply inform other nodes about
an update, via an invalidation, without having to send the
entire update.

4.2 Protocol In Action
This section describes the protocol in action. It explains
how a node initiates synchronization (via subscriptions),
the state maintained at each node, and the processing car-
ried out when messages are received.

Subscriptions. A synchronization request is called a
subscription and is associated with a subscription set that
specifies the set of objects, SS, a node is interested in
synchronizing and a start time, startVV , which indicates
that only the updates that occurred after that time should
be sent. Subscriptions between two nodes are multi-
plexed on a single update stream. A subscription has two
phases: a catchup phase in which the sender sends all
updates to objects in the subscription set from the start
time startVV to the sender’s currentVV , and a connected
phase in which the sender forwards any new updates it
receives.

For invalidation subscriptions, in the catchup phase,
the subscription can either carry out log-synchronization
– with invalidations and gap markers sent causally
over the stream, or checkpoint-synchronization – with
a checkpoint of the object meta-data sent instead. In
the connected phase, only invalidations and gap mark-
ers are sent. In particular, an invalidations stream can
be made up of the following messages:- a subscription
start message that includes the subscription start time,
startVV , and the subscription set, SS; a checkpoint of the
the sender’s metadata for SS; invalidations of updates to

objects in SS that the sender knows about; gap markers
of updates out of SS or if the sender is missing invali-
dations of updates to SS; and perhaps a catchup stream,
enclosed by catchup start and catchup end messages, if a
new subscription set is multiplexed to the stream. Figure
2 provides details of the messages sent.

A body stream simply consists of bodies of updates
that occurred after the startVV of each subscription mul-
tiplexed on it.

Node state. Every node maintains state to keep track
of its logical time and the consistency of the objects it
stores. Whenever it receives messages over streams, it
updates the consistency state and the object store accord-
ingly. In particular, a node, Node A, maintains the fol-
lowing state:
• currentVV : Node A maintains a version vector that

indicates the latest update it has seen, either via an in-
validation or via a gap marker. This implies that Node
A is not aware of any updates after currentVV .

• stream.VV : For every invalidation stream, Node A
maintains a logical time that includes the last update
and all the causally preceding updates received on
the stream. It implies that Node A has seen, either
via invalidations or gap markers, all events from the
stream.startVV to stream.VV .

• IS.noGapVV : For every interest set, Node A main-
tains a noGapVV that indicates that Node A has
seen all updates and no gaps to the interest set un-
til this time. IS.noGapVV is maintained in the con-
sistency module. For a particular interest set IS1, if
IS1.noGapVV < currentVV then the interest set is
considered gapped – Node A is missing one or more
invalidations that affect IS1 between IS1.noGapVV
and currentVV . Hence, consistency cannot be assured
for reads of objects in IS1.

• ob j.timeStamp: For every object currently stored,
Node A stores the timestamp of the latest invalidation
it has received for the object.

• ob j.isValid: A flag, stored for every object, that indi-
cates whether the node stores the body of the latest in-
validation it has received for the object. If the isValid
flag is not set, the object is considered invalid and the
consistency cannot be assured for a read of that ob-
ject, because the body is older than the invalidation
received.
In fact, causal consistency can be guaranteed for reads

to valid objects in not gapped interest sets. Because the
interest set is not gapped, the node is aware of all the
causal updates to the object up to currentVV and the va-
lidity implies that the node is actually storing the body
of the latest causal update. Furthermore, causal consis-
tency provides a baseline over which stronger guarantees
like sequential consistency or linearizability can easily be
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added [26]. On the other hand, applications that do not
require causal consistency have the option of accessing
data even from gapped interest sets.

A checkpoint for a subscription set SS consists of no-
GapVV information for every enclosed interest set, and
the object meta data i.e. (timestamp, isValid) for every
object updated after startVV .

Processing received updates. When a receiver re-
ceives messages on the stream, in addition to updating
the log and the store, the key job for the receiver is to
make sure that the consistency state is correctly updated.

In order to eliminate the need for updating
IS.noGapVV every time an invalidation or gap marker
is received, we introduce the concept of “attaching” an
interest set to a stream. An interest set is “attached”
to a stream if no gap markers for the interest set have
been received on the stream, i.e. IS.noGapVV includes
stream.VV . The consistency module keeps track of
which streams an interest set is attached to by maintain-
ing a IS.attachedStreams set. If a gap marker, GM is re-
ceived on a stream, the GM.targetSet is “detached” from
the stream by explicitly storing its noGapVV in the con-
sistency module.

An invalidation stream is, therefore, processed as de-
scribed in Figure 3.

Processing a body stream is simple. When a node
receives a body, it will check if the body.timeStamp
matches local times stamp for the object, ob j.timeStamp.
If there is a match, it implies that the body corresponds
to the latest received invalidation for the object and the
body is put into the store. If the body is older than the
timestamp, then the body is discarded. If the body is
newer than the timestamp, it implies that its correspond-
ing invalidation has not been received yet. Instead of
discarding it, the body is stored in a body buffer and is
applied to the store when its corresponding invalidation
arrives.

Sending updates. For invalidation subscriptions, a
sender iterates through the entries in its log from the sub-
scription start time stream.startVV to currentVV . In-
validations and gap markers of updates to objects in
stream.SS are sent as is. Invalidations of object not in
stream.SS are summarized into gap markers before be-
ing sent. For checkpoint catch-up, the sender creates a
checkpoint by looking through the object store and con-
sistency module and sends per-object state of objects up-
dated after stream.startVV and the noGapVV informa-
tion on the stream.

When a body subscription is initiated, the sender
searches through the object store and sends bodies of
all valid objects that are in stream.SS and whose times-
tamp is newer than stream.startVV . Note that bodies
of invalid objects are not sent because the object store
keeps track only of latest timestamp per object and once

a body has been invalidated, it could be much older than
stream.startVV .

5 Conflict Detection
Conflict detection is an important feature for synchro-
nization protocols. An object may be independently up-
dated on multiple nodes leading to diverging versions.
Updates are considered to be conflicting if there is no
causal relationship between these updates. Such conflicts
need to be detected so that appropriate resolution, either
automatic or manual, can be invoked to resolve the dif-
ferences and achieve eventual consistency [11] [23].

Existing protocols [1, 6, 9, 14] often store or transmit
extra information for the sole purpose of conflict detec-
tion. For mobile environments where network bandwidth
and storage capacity can be limited, it is important that
such information be minimal. Fortunately, Pheme can
detect conflicts without having to store or transmit any
extra information – it simply derives the information it
needs from the state already maintained for consistency.

Conflict detection is carried out as described below.
If no conflict is detected, the received update is ap-
plied, else the conflict flag set and all the information
is stored in a special file for resolution. Pheme provides
mechanisms for conflict detection, but it leaves conflict
resolution to application specific policies. For conve-
nience, Pheme provides a last-writer-wins policy by de-
fault. Other resolution mechanisms can be implemented
and plugged into the protocol.

Dependency summary vectors. Pheme uses a depen-
dency summary vector (DSV) scheme for conflict detec-
tion. A dependency summary vector (DSV) is a vec-
tor associated with an update that summarizes all the
causally preceding updates to the object being updated.

In particular, a DSV of a update U ,
• includes the timestamp of all causally preceding up-

dates to the object.

• may include the timestamp of the current update, U .

• may include the timestamps of updates to other ob-
jects.

• excludes any updates that are causally ordered after U .
Note that, there is not necessarily a unique DSV for a

single update. For example, suppose all the causally or-
dered updates on an object are (1@A),(3@A),(10@B).
The two possible DSVs for the the second update (3@A)
are < 1@A,9@B > and < 2@A,6@B > but not <
0@A,9@B > or < 3@A,10@B > because the former
does not include the first update and the latter does not
exclude the third update.

Conflict detection becomes as simple as comparing
the write times and the DSVs for two updates. In order
to detect whether two different updates U1 and U2 to the
same object conflict, we carry out the following compar-
isons: If U1.ts is included in U2.dsv, then U1 causally
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if received message is a subscription start message, SubStart then
//set up subscription stream:
stream.SS⇐ subStart.SS
stream.VV ⇐ subStart.VV

else if received message is an invalidation, I then
//update log, timing state and per object state:
store I in update log
update stream.VV to include I.timeStamp.
update currentVV to include I.timeStamp.
ob j.timeStamp⇐ I.timeStamp
ob j.isValid ⇐ f alse

else if received message is a gap marker, GM then
//update log, timing state and interest set state:
store GM in update log
update stream.VV to include GM.endVV .
update currentVV to include GM.endVV .
check for intersecting set
IIS⇐ stream.SS∩GM.targetSet
if IIS 6= /0 then

// detach IIS from the stream
IIS.noGapVV ⇐ min(IIS.noGapVV,GM.startVV −1)
stream.SS⇐ stream.SS\IIS
remove stream from IIS.attachedStreams

end if
else if received message is a checkpoint, CP then

//apply received meta-data to local structures
for all IS in CP do

update local IS.noGapVV to include CP.IS.noGapVV
end for
for all object metadata in CP do

if CP.ob j.metadata is newer than local.ob j.metada then
update local.ob j.metadata to include CP.ob j.metadata

end if
end for

else if received message is a catchup start message, CStart then
//switch to catchup mode
stream.pendingSS⇐Cstart.SS
stream.pendingVV ⇐Cstart.VV
for all invalidation or gap markers recevied do

process as above, except, update pendingVV instead of stream.VV
end for

else if received messages is a catchup end message, CEnd then
//switch to normal mode
if stream.pendingVV equals or includes stream.VV then

//attach stream.pendingSS to the stream.
stream.SS⇐ stream.SS∪ stream.pendingSS
add stream to consistencyModule.pendingSS.attachedStreams

end if
end if

Fig. 3: Pseudocode for processing invalidation streams.
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precedes U2, by definition. Similarly, if U2.ts is included
in U2.dsv, then U2 causally precedes U1. Otherwise, U1
and U2 are marked as conflicts.

Deriving DSVs. It would be inefficient to transmit a
DSV with each update and store a DSV with each ob-
ject. Pheme therefore derives DSVs from the meta-data
already maintained by the synchronization protocol. In
order to do that, it ensures that a node is aware of all the
previous updates to the object before it is updated. Any
new update (a local write or a received invalidation) can
only be applied if there is no gap in the object update in-
formation (i.e. the enclosing interest set is not gapped).

By definition noGapVV of an interest set covers all
the causally preceding updates to the objects in the in-
terest up to that time. Hence, for an object in the inter-
est set, noGapVV includes all the causally preceding up-
dates to that object. If the interest set is not gapped, then
the noGapVV and so the DSV is equal to currentVV .

To determine the DSVs of received invalidations,
Pheme takes advantage of the causal property of the
stream: For a received invalidation, all the causally
preceding updates have been already received, and any
newer updates will not arrive before the current received
invalidation. streamVV includes all the current and all
causally preceding updates. The DSV for invalidations in
connected phase is streamVV . For invalidations received
during log synchronization, the DSV is pendingVV , and
for updates received via a checkpoint, the DSV is the re-
ceived noGapVV .

Detecting conflicts. Pheme detects conflicts by com-
paring the timestamp and the DSV of the received inval-
idation with the locally stored object timestamp and the
noGapVV of the enclosing interest set. Conflicting up-
dates are flagged and logged for the application or the
user to handle.

6 Flexible Commit Mechanisms
Commit policies are required when applications differ-
entiate between tentative and committed writes [19] or
when applications need to provide stronger consistency
guarantees [5] [24]. Commit policies greatly differ from
system to system. For example, Golding’s algorithm [5],
requires heartbeats to be sent to commit updates. How-
ever, it may not be able to commit updates when dur-
ing periods of disconnection. Bayou [19] employs a pri-
mary commit protocol in which a single server is respon-
sible for committing writes. Since the final total order
is dependent on the commit order, Bayou’s commit pro-
tocol requires repeated roll-back and reapplication of re-
ordered updates if the commit order does not match the
original write order.

The key characteristic of Pheme’s commit mecha-
nisms is that they do not require reordering of already
received updates. In Pheme, the final order reflects the

write order rather than the commit order. Pheme exposes
a commit operation that commits a previous update by
assigning commit time to the update. The commit time
does not impose any order on the update; it simply is
a record that the update was committed. For example,
Node A receives two concurrent updates u1 and u2 to the
same object and because of the last-writer-wins policy,
orders u1 before u2. In Pheme, even if u2 is committed
before u1, in the final order, u2 is still ordered after u1.
Therefore, Node A does not need to reorder the updates.
In Bayou, however, the final order reflects the commit
order and so u2 would have to be reordered before u1.

In addition, Pheme transmits commit information
via invalidation subscriptions, maintaining causal order
among commits. Because of the casual order, a node can
ensure that its view of committed data is consistent with
that of the committing node by reading only committed
updates. Say there are two updates to different objects,
u1 and u2. Node A commits both updates but u2 is com-
mitted before u1. Node A then synchronizes with Node
B. If there is no ordering guarantees among the commit
information sent, there is a possibility that due to network
disconnection, Node B will get the commit information
for u1 but not for u2. In Node B’s view, u1 was com-
mitted before u2 which is different from that of Node
A. Maintaining consistent view of committed data is of
utmost importance for implementing strong consistency
semantics.

The commit mechanisms provide a building block
over which various commit schemes and stronger consis-
tency semantics can be implemented including primary-
commit [19] and Golding’s algorithm [5]. In fact, the
mechanisms allow any node to commit an update. How-
ever, we expect that applications will restrict the set of
nodes that can commit a write. We have used these mech-
anisms to guarantee serializability in a client-server envi-
ronment. The implementation details and the proof can
be found in [3].

Details. The commit operation takes in object ID,
ob jId, and the time stamp, targetTimeStamp of the up-
date to be committed. The operation is assigned a com-
mit time, commitTime, and a commit invalidation is gen-
erated. Note that a commit invalidation is propagated
along invalidations subscriptions and summarized into
gap markers like any other invalidation.

The object store maintains the commit information
for each object, including an isCommitted flag and a
commitTime. When a commit invalidation CI is re-
ceived, the local object timeStamp is compared with
CI.targetTimeStamp. If they match, then the object is
committed, i.e. ob j.isCommitted flag is set to true and
the ob j.commitTime is set to CI.commitTime. When a
checkpoint is generated, the commit information is in-
cluded in the per-object meta-data.
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6.1 Implementing A Primary Commit
Scheme

Consider a primary commit scheme in a client-server
system – clients write to objects and the server is respon-
sible for committing writes. In Pheme, this scheme can
be implemented as follows: Every client has subscrip-
tions to and from the server. Whenever a client writes
to an object, an invalidation is propagated to the server
via an invalidation subscription. The server commits the
updates as it receives the invalidations, and the commit
invalidation is propagated back to the client via an in-
validation subscription. An invalidation stream from the
server to Node A will include commit invalidations of
Node A’s writes, invalidations of writes by other nodes
followed by, after some lag, the commit invalidations for
those writes.

Because all the writes are committed by the server,
the commit time reflects the server’s view of the data. If
the client only reads committed objects, its view of the
data will be consistent with that of the server. Even if a
client receives an update directly from another client, it
cannot access that update unless the server has received
and committed the update.

7 Evaluation
In this section, we examine whether Pheme lives up to its
promise of being a protocol that can meet the needs of a
wide range of applications. We carry out our investiga-
tions by evaluating the three properties of the protocol as
follows:
• Synchronization: We evaluate how well Pheme per-

forms with traditional workloads with coarse-grained
synchronization and with workloads with multiple
fine-grained synchronization.

• Conflict detection: We evaluate overheads associ-
ated with conflict detection and compare it to existing
schemes.

• Commit mechanisms: We evaluate the cost for sup-
porting the flexible commit mechanisms.
We carry out our investigations on a Pheme pro-

totype implemented with Java and BerkeleyDB. We
demonstrate that like PRACTI, Pheme provides signifi-
cant speedup and bandwidth savings when compared to
traditional client-server and server-replication protocols.
However, unlike PRACTI, Pheme provides up tens of
times of bandwidth savings for workloads that dynam-
ically establish fine-grained subscriptions.

7.1 Synchronization
Pheme falls under the class of protocols that support
the “PR-AC-TI” properties. The PRACTI paper has
demonstrated that by sending the right data on the right
paths, this class of protocols can improve availability
and achieve orders of magnitude more efficiency than
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Fig. 5: Bandwidth required to synchronize 10 percent of a data
set via server-replication and Pheme.

client-server and server-replication protocols for some
key workloads. The efficiency stems from the fact that
such protocols do not put any restrictions on how syn-
chronization should take place. Nodes have the flexibil-
ity to retrieve updates over a fast connection from nearby
peers instead of the server and to choose the data they
want to synchronize instead of having to synchronize all
objects.

Instead of repeating the same in-depth experiment as
PRACTI, we validate that Pheme demonstrates the sim-
ilar benefits and then evaluate the benefits of Pheme’s
efficiency by comparing against PRACTI.

Benefits of topology independence. Client-server or
hierarchical protocols have the restriction that synchro-
nization only occurs via specific nodes, for example a
client can only synchronize with a server. Since Pheme
supports topology independence, clients can retrieve up-
dates from other peers based on availability and the cost
of doing so. Significant benefits are achieved if the con-
nection between clients is faster than the connection to
the server or if the server is unavailable.

Figure 4 measures the time it takes to retrieve an ob-
ject on a cache miss. For the client-server protocol, the
object is retrieved from the server. However, with Pheme
the object is retrieved from a nearby client. The client is
connected to the server via a 1Mb/s 300ms RTT connec-
tion, and to other clients via a 100Mb/s 10ms RTT. As
the figure illustrates, Pheme can achieve up to 15 times
more efficiency.
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Benefits of partial replication. In this experiment, we
compare a Bayou-like server replication protocol with
Pheme. Node A stores 500 objects of size 3KB, each
of which have been updated. Node B is only interested
in 10 percent of the data and synchronizes with Node A
via the server-replication protocol and Pheme. Figure 5
demonstrates that Pheme achieves significant bandwidth
efficiency when compare to the server-replication proto-
col because of its support for partial replication.

Log vs. checkpoint synchronization. Figure 6 com-
pares the bandwidth cost for log and checkpoint synchro-
nization. A set of 500 objects were updated uniformly
and invalidation subscriptions are established separately
for each object As the figure illustrates, the synchroniza-
tion cost both options are proportional to the number of
updates when each object is not updated more than once.
Checkpoint synchronization does worse because the size
of the meta-data sent in a checkpoint is slightly larger
than a gap marker sent for log synchronization. How-
ever, when an object is updated multiple times, check-
point catchup outperforms log synchronization.

Cost of flexible consistency. We first evaluate the cost
Pheme pays to support flexible consistency. For systems
that require weak consistency such as coherence, they
simply send updates without gap markers. For systems
that require strong consistency, they need to send gap
markers to ensure casual semantics over which stronger
guarantees can be implemented. In particular, we quan-
tify the cost of sending gap markers in an invalidation
stream. Figure 7 compares the number of messages per
update between a coherence-only system and Pheme. In
a coherence-only system, only updates to objects in the
synchronization set are sent on the stream. On the other
hand, Pheme also sends gap markers for updates outside
the subscription set. For a bursty workload, say if 9 out
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of 10 updates occur to objects in the subscription set, a
gap marker is only sent after nine invalidations. In the
worst case workload, Pheme sends a gap marker after
every invalidation. Thus, Pheme sends at most twice the
number of messages when compared to a coherence only
system. However, since gap markers are significantly
smaller than actual bodies, the overhead remains within
reasonable bounds.

Multiple subscriptions. Efficient support for multi-
ple dynamic subscriptions is important because they are
used to implement demand caching with per-object call-
backs [11]. For example, each time a client caches a new
object, it creates a new subscription for that object.

We compare the efficiency of establishing multiple
dynamic subscriptions. A varying number of single-
object invalidation subscriptions are established with
PRACTI and Pheme. Figure 8 depicts the bandwidth
costs for subscription establishment for the ideal case,
PRACTI and Pheme. In the ideal case, only the object is
sent for every subscription request. PRACTI establishes
a separate invalidation stream for each request. Other
than subscription start and end messages, gap markers
are sent on each stream. Pheme multiplexes subscrip-
tion requests on a single stream - only the catchup start,
the object and catchup end messages are sent for each
request. The major cost saving comes from the reduc-
tion of redundant gap markers received by a node. Since
both PRACTI and Pheme are implemented in Java, the
inefficiency of Java serialization does affect the band-
width cost. However, it is not difficult to see that Pheme
achieves comes much closer to ideal when compared to
PRACTI.

Worst-case overheads. We evaluate the worst-case
overheads for Pheme. For every object, in addition to the
data, Pheme stores a write time stamp, a commit time
stamp, a valid flag and a commit flag. Pheme also main-
tains a version vector, noGapVV , for every interest set in
the consistency module. In the worst case, every interest
set only covers a single object, hence the worst-case stor-
age overhead is O(N×R) for N objects with R-element
version vector per object.
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Consider a subscription established between two
nodes for a subscription set SS with s objects. Say, p
updates occurred before the subscription was established
and q updates occurred until the subscription is discon-
nected.

An invalidation subscription with log synchronization
will send a start version vector, p invalidations during
catchup and q in the connected phase and the number of
gap markers depending on workload. Gap markers store
partial version vectors. Hence if a gap maker summa-
rizes K updates, it has at most min(R,k) elements. In
the worst case, on an invalidation subscription, there is
a gap marker between every two updates, and hence the
overhead is O((p+q)×R).

With checkpoint synchronization, the sender sends
per-object meta-data for updated objects and noGapVV s
for every interest set in SS during catchup. In the con-
nected phase, q invalidation are sent. In the worst case,
the checkpoint includes meta-data and a noGapVV for
every object in SS and there is a gap marker after ev-
ery invalidation in the connected phase. The worst-case
overhead O((s+q)×R).

A body subscription, during catchup, includes the lat-
est bodies of updated objects in SS and in the connected
phase bodies of all updates to SS. Every body is sent with
its timestamp. In the worst case, all object in the SS are
sent. Hence, the overhead is O(s+q).

7.2 Cost for conflict detection and commit
For conflict detection, Pheme utilizes the consistency in-
formation already maintained and hence exerts no ex-
tra overhead. However, for several conflict-detection
schemes, the amount of book-keeping information in-
creases with network disruptions. For Pheme, the book-
keeping information remains the same because the num-
ber of interest sets a node maintains is not affected by
disruptions. Hence, for k interest sets, the storage over-
head is O(N + k×R). If invalidations subscriptions are
disrupted, they simply re-start where they left off incur-
ring extra version vector overhead due to the resending of
subscription start time. Hence, in the worst case, for log
synchronization, there is a version vector overhead per
update sent and for checkpoint synchronization, there is
a version vector overhead per object sent.

Given the amount of flexibility that Pheme supports,
the conflict detection costs are reasonable, see Figure 9.
In fact, the overheads of conflict detection is comparable
to existing state-of-the-art approaches that do not provide
such flexibility.

Despite the flexibility afforded by the commit mech-
anism, the overheads is minimal. For every commit,
one commit invalidation is generated which contains two
time stamps. Therefore, the overhead is O(1) per com-
mit. For N objects, a commit time stamp is stored per
object, so the storage overhead of O(1) per object.

8 Related Work
What sets Pheme apart from other synchronization proto-
cols is that Pheme is a peer-to-peer protocol that supports
partial replication, is able to provide consistency guaran-
tees, and provides flexible synchronization options.

Client-server-based [11] and hierarchy-based [4] pro-
tocols have limited use in mobile environments because
they do not support arbitrary synchronization topologies.

Existing peer-to-peer synchronization protocols sup-
port arbitrary synchronization topologies but they fall
short of providing other requirements. For example,
Bayou [19], one of the most influential peer-to-peer pro-
tocols in the literature, often cannot be applied in such
environments because it does not support partial repli-
cation of data. Peer-to-peer protocols that support par-
tial replication such as WinFS [17], Rumor [8], Ficus[7],
Pangaea [21], give up on cross-object consistency and
only support single object coherence. Some of them
support only state-based or log-based synchronization,
making them less flexible switch to the scheme with bet-
ter tradeoffs for different scenarios. Some systems, tar-
geting personal environments, employ peer-to-peer com-
munication as a conduit to a repository, such as Foot-
loose [15] and OmniStore [10], or to improve perfor-
mance and availability [18], rather than for data synchro-
nization.

Segank [22], a mobile storage system, supports partial
replication with peer-to-peer synchronization and consis-
tency guarantees. However, it requires users to always
carry with them a device that holds the latest meta-data.
It employs a multi-cast like solution to request and locate
data, which could lead to high network costs.

PRACTI [1] is another peer-to-peer synchronization
protocol that resembles Pheme. PRACTI uses impre-
cise invalidations to propagate consistency information
in same way as Pheme uses gap markers. However, it
uses previous time stamps for conflict detection which
do not work well for checkpoint-synchronization. Pheme
provides better efficiency of dynamic synchronization re-
quest, a conflict detection scheme that supports synchro-
nization flexibility, and flexible commit policies.

There are three main approaches for conflict detec-
tion: previous stamps [1, 6], hash histories [9], and ver-
sion vectors [8] [11] [15] [16] [20] [25][21]. Both previ-
ous stamps and hash histories impose per-update storage
overhead and might have false negatives under certain
scenarios. Version vectors can accurately detect conflicts
but impose a one vector per object overhead which is
prohibitive when the number of replicas is large.

Predecessor vectors with exceptions (PVE) [14] and
vector sets [13] are variations of the version vectors ap-
proach employed by WinFS [17] to reduce the total num-
ber of version vectors maintained and communicated.
PVEs can reach an unbounded size if synchronizations
are frequently disrupted making them unsuitable for en-
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Storage lower bound O(N×R) O(N +R) O(N +R) O(N + k×R) O(N + k×R)
Storage upper bound O(N×R) unbounded O(N×R) O(N + k×R) O(N + k×R)
Network lower bound O(p×R) O(p+R) O(p+R) O(p+R) O(p+R)
Network upper bound O(p×R) unbounded O(N×R) O(p×R) O(N×R)

Fig. 9: Storage and network overheads under network disruptions for a node with N objects, p recent updates and R-element version
vectors. For Pheme, the node stores k interest sets.

vironments with intermittent connections. Vector sets
maintain predecessor vectors for subsets of data and in
the worst case, have overheads equivalent to a simple
version vector scheme. Pheme’s dependency summary
vectors (DSV) are actually equivalent to predecessor vec-
tors. However, due to the properties of the synchro-
nization protocol, instead of storing DSVs, explicitly in
a data structure, Pheme derives them from the consis-
tency meta-data already stored. In addition, the meta-
data stored and sent during synchronization does not in-
crease with network disruptions. Section 7 evaluates the
overheads of Pheme and demonstrates that Pheme’s over-
heads are equivalent to other state-of-the-art schemes.

9 Conclusion
Pheme is a peer-to-peer data synchronization protocol
that can be used to construct new distributed file systems
targeting personal and mobile environments.

Pheme’s suitability for this environment stems form
four key properties. First, its synchronization mecha-
nism is able to support synchronization of any subsets of
data between any peers, with support for both log-based
and state-based exchange. Second, its support for fine-
grained synchronization yields superior performance in
scenarios with always-connected devices. Third, its con-
flict detection scheme is able to support synchronization
flexibility with minimal overhead and performs as well as
current schemes. Fourth, its flexible commit mechanisms
eliminate reordering and rollback of writes and enable
applications to implement their own commit schemes.

We conclude that Pheme realizes our vision of a pro-
tocol that can more than adequately meet the needs of
a wide range of applications targeting mobile environ-
ments.
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