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Abstract

The cloud computing paradigm, which involves distributed

computation on multiple large-scale datasets, will become

successful only if it ensures privacy, confidentiality, and

integrity for the data belonging to individuals and organi-

zations.

We present Airavat, a novel integration of decentralized

information flow control (DIFC) and differential privacy

that provides strong security and privacy guarantees for

MapReduce computations. Airavat allows users to use ar-

bitrary mappers, prevents unauthorized leakage of sensi-

tive data during the computation, and supports automatic

declassification of the results when the latter do not violate

individual privacy.

Airavat minimizes the amount of trusted code in the sys-

tem and allows users without security expertise to perform

privacy-preserving computations on sensitive data. Our

prototype implementation demonstrates the flexibility of

Airavat on a wide variety of case studies. The prototype

is efficient, with run-times on Amazon’s cloud computing

infrastructure within 25% of a MapReduce system with no

security.

1 Introduction

Large-scale distributed computations on data from multiple

sources, enabled by programming models such as MapRe-

duce and commonly referred to as cloud computing, are

increasingly popular. The ultimate promise of cloud com-

puting is based on its envisioned ubiquity: every Internet

user will contribute his or her individual data and obtain

useful services from the cloud. For example, a user’s click-

stream can be used to provide targeted advertising, while

health-care applications of the future may use an individ-

ual’s DNA sequence to develop tailored drugs and other

personalized medical treatments.

Performing distributed computation on sensitive individ-

ual data raises serious privacy concerns. High-visibility

privacy fiascoes were caused recently by public releases of

anonymized individual data, such as AOL search logs [23]

and the movie-rating records of Netflix subscribers [40].

The datasets in question were released to support legitimate

data-mining and collaborative-filtering research, but naı̈ve

anonymization turned out to be easy to reverse in many

cases.

A user of a cloud computing environment faces several

threats to his or her data. For example, consider a medi-

cal patient who is deciding whether to participate in a large

health-care study. First, she may be concerned that a care-

less or malicious application operating on her data as part

of the study may expose it—for instance, by writing it into

a world-readable file that will then be indexed by a search

engine. Second, she may be concerned that even if all com-

putations are done correctly and securely, the result itself

(e.g., the aggregate health-care statistics computed as part

of the study) may leak sensitive information about her per-

sonal medical record.

These privacy concerns present an interesting challenge

to the cloud computing vision. Most platforms for large-

scale distributed computation are designed without special

consideration for the privacy, confidentiality, or integrity

of individual inputs. Yet it is unlikely that people and or-

ganizations will allow their data to be used in such com-

putations without strong security and privacy guarantees.

How to design a practical system that supports efficient

distributed computations and, at the same time, assures all

contributors that their privacy will not be compromised, is

an important research question. In this paper, we aim to

answer it.

We design and implement a practical system for large-

scale distributed computation that provides rigorous pri-

vacy and security guarantees to the individual data own-

ers whose information has been used in the computation.

Our system augments MapReduce with novel protection

mechanisms, which combine decentralized information-

flow control (DIFC) and differential privacy. DIFC secures

storage and computation done in the MapReduce frame-

work, guaranteeing that no unauthorized data accesses or

leakages occur during the processing. Differential privacy

guarantees that the results of aggregate computations do

not leak too much information about the individual inputs,

at the cost of adding some random noise with a minor im-

pact on the accuracy of the protected computations. DIFC

and differential privacy are useful in and of themselves, but

they have a further benefit when combined. Differential

privacy provides a precise, mathematical basis for DIFC

declassification.

Our approach minimizes the amount of trusted code in

the system and enables individuals and organizations who

do not have security and privacy expertise to contribute

their proprietary data to large-scale MapReduce compu-
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tations. At the same time, our approach assures that the

privacy and integrity of their data is not violated.

Our contributions. We present Airavat,1 a system for

MapReduce computations that provides end-to-end confi-

dentiality, integrity, and privacy guarantees using a combi-

nation of DIFC and differential privacy.

First, we demonstrate how to integrate DIFC into the

MapReduce framework, paying particular attention to the

division of labor between the MapReduce framework, the

distributed file system and the operating system. Airavat

uses DIFC to ensure that the system is free from unautho-

rized storage channels, such as mappers that leak data over

unsecured network connections or leave it in unsecured lo-

cal files.

Second, we show how to carry out privacy-preserving

computations in the MapReduce framework. Airavat pro-

vides several trusted initial mappers and trusted reducers,

and allows users to insert their own mappers while dynam-

ically ensuring differential privacy.

Third, Airavat automatically ensures that as long as dif-

ferential privacy holds, the classification level of a result

can be safely reduced in the DIFC framework (e.g., secrecy

label may be removed, while keeping the integrity label).

Fourth, we implement several important data-mining

and data-analysis algorithms using an Airavat prototype

based on the Hadoop framework [1], executing in Ama-

zon’s EC2 compute cloud environment. Our experimental

evaluation shows that the case-study algorithms, including

clustering and classification, provide privacy, while pro-

ducing answers that are within 95% accuracy and run times

within 25% of an exact, non-privacy preserving computa-

tion.

Together, these contributions demonstrate that differen-

tial privacy can be cleanly combined with the DIFC secu-

rity model and integrated into the MapReduce framework.

Airavat provides a practical basis for secure, privacy-

preserving, large-scale distributed computations.

2 Motivation

Recent advances in cloud computing have generated

widespread user interest in storing sensitive data in cloud

environments and allowing computations on this data.

Krohn et al. argue that DIFC is the correct mechanism

to use in such distributed settings, allowing users to re-

tain control over their data while minimizing the number

of trusted components [27].

MapReduce [13] is a programming model for dis-

tributed computation. It can be efficiently executed on a

large number of commodity computers, as would be found

in a data center or compute cloud. Because MapReduce

was originally intended to run within a single data cen-

ter, it has no integrated security model. Currently, running

MapReduce in a compute cloud gives only the rudimentary

1The all-powerful king elephant in Indian mythology, known as the

elephant of the clouds.

authentication that comes with a cloud account.

DIFC is a mandatory access control model that allows

data owners to protect the secrecy and integrity of data

items by labeling them with appropriate protection cate-

gories. A DIFC implementation ensures that all uses of the

data comply with the protection labels, thus providing end-

to-end security guarantees. For example, DIFC makes it

easy to enforce a policy where, after reading secret data,

all of a process’ output is secret. The process can no longer

communicate over an unsecured network connection and

any file it writes is labeled secret. Such a strong policy

cannot be implemented with the discretionary access con-

trol model currently provided by compute clouds.

Access control does not address every privacy concern of

potential MapReduce users. In a typical large-scale com-

putation such as calculating health-care statistics or ana-

lyzing Web searches of thousands of users, the result of

the computation depends on all inputs. If processed solely

within the DIFC framework, the result will be labeled with

all of the data owners’ labels and cannot be made public.

Fortunately, DIFC enables the creators of a category

to declassify data belonging to that category (this makes

DIFC more powerful and programmable than the informa-

tion flow control policies developed in the 1970s for mili-

tary computers [14,24]). Of course, all instances of declas-

sification must be audited to ensure that the declassified

values do not leak too much sensitive information. While

DIFC greatly reduces the amount of code that must be au-

dited, in large-scale distributed computing scenarios, users

who are not security and privacy experts may find even this

limited analysis quite challenging. So when is it safe to

publish the result of a computation on data originating from

multiple owners?

In this paper, we use differential privacy to provide a

framework for privacy-preserving computations, a method

that is easy to use even by non-experts. Differential pri-

vacy is a powerful methodology for reasoning about and

achieving privacy when computing on large datasets [16].

First, it gives a robust, composable definition of privacy.

The output of a computation should not depend too much

on any single input. This definition naturally bounds the

amount of information the computation leaks about any of

its inputs. Second, differential privacy can be achieved by

adding random noise to the output of a function. The mech-

anisms for adding the random noise do not depend on the

specifics of the function’s implementation, nor (in contrast

to methods such as k-anonymity) on the syntactic proper-

ties of the internal data representation.

Differential privacy has a synergetic relationship with

DIFC in our system. In addition to enabling a large vari-

ety of privacy-preserving computations (whose implemen-

tations are secured by DIFC), differential privacy provides

a sound basis for reducing the classification level of the re-

sulting outputs.

Airavat is the first system to combine the access control

benefits of the DIFC model with the privacy guarantees of

2



the differential privacy model. Airavat reduces the secrecy

labels on the results of MapReduce computations only if it

can guarantee that privacy will be preserved. Integrity la-

bels are not affected. By contrast with the traditional DIFC

model, the user does not need to write and audit custom

declassifying code for each computation. It is sufficient to

specify a bound on information leakage.

TCB and adversary model. Airavat trusts the underly-

ing hardware and assumes that the OS correctly imple-

ments DIFC. For Linux, that means trusting the whole OS,

but for an OS like HiStar [49] or Asbestos [46] the TCB

for DIFC is smaller than the entire kernel. Airavat relies on

the Java virtual machine to enforce independence of map-

pers provided by the user (see Section 5.2.2 for the defini-

tion and discussion of independent mappers). Airavat runs

trusted exporter processes (Section 5.1.2) on all machines

that access the network. These processes mediate access

to the network, exactly like DStar [50]. Airvat also runs

a trusted process on data storage nodes that forks off dis-

tributed file system helper processes with the appropriate

labels (Section 6.1).

We assume that the adversary has full knowledge of the

algorithm that a computation provider runs on Airavat. He

may attempt to access the input, intermediate, and output

files or to reconstruct the values of the individual inputs

from the result of the computation. Apart from the TCB

outlined above, Airavat is designed to withstand active ad-

versaries, including untrusted users who supply malicious

mapper computations.

After we present the technical background for Airavat

(Section 3), we present an overview of its programming

model (Section 4). Then, we illustrate its use in an example

(Section 4.5).

3 Background

This section provides the background information on

MapReduce, decentralized information flow control

(DIFC), and differential privacy.

3.1 MapReduce

MapReduce [13] is a framework for performing data-

intensive computations in parallel on commodity comput-

ers. A MapReduce computation reads input files that are

split into multiple chunks. Each chunk is assigned to a

mapper that reads the file as a sequence of (key, value)

pairs, performs some computation on them and outputs a

list of pairs possibly from a different domain. In the next

phase, reducers combine the values belonging to each dis-

tinct key according to some function and write a result into

an output file. The framework ensures fault-tolerant exe-

cution of mappers and reducers while scheduling them in

parallel on any machine (node) in the system. In MapRe-

duce, combiners are an optional processing stage before the

reduce phase. They are a performance optimization, so for

simplicity, our model does not support them.

We define one MapReduce operation as a single mapper

phase followed by a single reduction phase. A MapRe-

duce computation consists of multiple operations. MapRe-

duce operations read their initial input from a distributed

file system, and write their final output to it. Intermediate

computation can use the local file system and access the

network. The distributed file system uses the local file sys-

tem on the compute nodes for storage. To secure a MapRe-

duce computation, Airavat secures access to the distributed

file system, the local file system and the network.

Data providers supply the input data for MapReduce

computations. Computation providers supply the code that

operates on the data.

3.2 DIFC

Decentralized information flow control (DIFC) is a manda-

tory access control paradigm that allows users to specify

how data can propagate through a system. Using the ter-

minology of Krohn et al. [26], DIFC uses labels to denote

the sensitivity of data while capabilities allow the princi-

pals to acquire or drop labels. A label L is a set of tags,

where tags are a compact identifier drawn from a large but

arbitrary domain. We will use the term “entity” to denote

either a data item, or a principal.

Each entity x has an associated secrecy label(Sx) and an

integrity label(Ix). A tag t in the secrecy label Sx means

that the entity either contains or has accessed information

tagged with t. Similarly, a tag t in the integrity label Ix

means that the entity itself is endorsed by tag t. Intuitively,

the secrecy label is used to prevent data leakage while the

integrity label is used to prevent data corruption.

In addition to labels, each principal p has a capability

set Cp. This set determines what tags can be added or re-

moved by the principal from its labels. If the principal has

the t+ capability, then it can add tag t to its labels. To re-

move a tag t from its label, the principal should have the t−

capability. Intuitively, the t+ capability is used to classify

or endorse, while the t− capability is used to declassify or

de-endorse. We will refer to C+
p and C−

p as the add and

remove capabilities present in Cp.

DIFC is decentralized because any principal can create a

new secrecy or integrity tag. The principal obtains both the

plus and minus capability for the tag when it creates a new

one. Creating a new tag creates a new category of taint that

the system propagates to entities along with the data. Tra-

ditional IFC systems only allowed system administrators

to create new tags, which made the systems difficult to ad-

minister and to program effectively. DIFC systems are in-

tended to eliminate information leaks via storage channels,

but cannot eliminate timing channels [28] or probabilistic

channels [43].

Label change. Formally, a principal p can change its la-

bel from L1 to L2 if it has the capability to add the addi-

tional tags in L2 and can drop the tags that are not present

in L2:

(L2 − L1) ⊆ C+
p and (L1 − L2) ⊆ C−

p
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Label reduction. We call any label change that causes

an entity’s label to become less restrictive a label reduc-

tion. For example, removing a security tag from a file’s la-

bel is a label reduction. In traditional DIFC systems, label

reductions happen in trusted, hand-audited code. In Aira-

vat, labels can be reduced if the labeled value (typically,

the result of an aggregate computation on a large dataset)

satisfies differential privacy. When we say that in Airavat

differential privacy is the basis for “declassification,” this

is really a shorthand for the more general notion of label

reduction.

Flow restriction. Information can flow from an entity x
to y if the following rule is satisfied:

Sx ⊆ Sy and Iy ⊆ Ix

The above rule enforces the LaPadula secrecy model of no

read up, no write down [5] and Biba’s integrity model of no

read down, no write up [7]. Notice that the flow restriction

rule applies to the current labels of the entities. A principal

may acquire or drop its labels using the label change rules

so that it may perform an operation in compliance with the

flow restriction (e.g., a principal may remove a secrecy tag

before writing to an unlabeled file).

3.3 Differential Privacy

In cloud computing, large-scale distributed computations

operate on data items which originate from different

sources and belong to different principals. To reason about

privacy of individual pieces of data and to make safe deci-

sions about reducing the classification level of the results of

aggregate computations, we must answer the fundamental

question about what it means for a computation to preserve

the “privacy” of its inputs.

Airavat uses the recently developed framework of differ-

ential privacy to answer this question. There are several

recent surveys on differential privacy [16–19]. Intuitively,

a computation on a set of inputs is differentially private

if, for any of its input elements, the computation produces

roughly the same result whether this element is included in

the input dataset or not. Formally, a randomized computa-

tion F satisfies ǫ-differential privacy (where ǫ is the privacy

parameter) if for all datasets D and D′ which differ on at

most one element, and for all outputs S ⊆ Range(F),

Pr[F(D) ∈ S] ≤ exp(ǫ) × Pr[F(D′) ∈ S]

Here probability is taken over the randomness of the com-

putation F . The privacy parameter ǫ can be intuitively in-

terpreted as the upper bound on the amount of information

leaked by the computation about any of its inputs. We call

ǫ the privacy bound.

There are several reasons why differential privacy is

the right notion of privacy for cloud-computing scenarios.

First, unlike other notions of privacy (briefly surveyed in

Section 8), it is composable: a composition of two differ-

entially private computations is also differentially private

(of course, ǫ may increase). Second, differential privacy

does not make arbitrary assumptions about the adversary.

When satisfied, it holds regardless of the auxiliary or back-

ground knowledge that the adversary may possess. Dif-

ferential privacy is a relative rather than absolute notion:

it assures the owner of any individual piece of data that

the same privacy violations, if any, will occur whether this

piece of data is included in the aggregate computation or

not. Therefore, no additional privacy risk arises from par-

ticipating in the computation.

While differential privacy may seem like a relatively

weak guarantee, stronger properties cannot be achieved

without making an unjustified assumption that certain in-

formation will never be available to the adversary [16, 17].

Superficially plausible but unachievable definitions include

“the adversary does not learn anything about the data that

he did not know before” [12] and “the adversary’s pos-

terior distribution of possible data values after observing

the result of the computation is close to his prior distribu-

tion” [21].

We emphasize that in contrast to syntactic properties

such as k-anonymity (see Section 8), differential privacy is

a property of the computation rather than the data. There-

fore, it is a good fit for distributed-computation scenarios

considered in this paper. Furthermore, it provides a sound

basis for declassifying the results of aggregate computa-

tions because, if the computation is differentially private,

it is guaranteed not to reveal “too much” about any of its

inputs.

3.3.1 Function sensitivity

Differential privacy is intimately related to the concept of

function sensitivity, which measures the maximum differ-

ence between the value of a function on any two inputs.

For function f : D → Rk, the sensitivity of f is

∆(f) = max
D,D′

‖f(D) − f(D′)‖1

for any D,D′ differing in at most one element. In this

paper, we will be primarily interested in functions that pro-

duce a single output, i.e., k = 1.

Note that many common functions have low sensitiv-

ity. For example, a function that simply counts the num-

ber of elements satisfying a certain predicate has sensitiv-

ity 1. Similarly, the sensitivity of a function that sums up

elements of a dataset, all of which come from a bounded

range, is the maximum value in that range. Intuitively, the

less sensitive a function, the less noise needs to be added

to mask the dependence of its output on any input and thus

achieve differential privacy.

3.3.2 Laplacian noise

There are many mechanisms for achieving differential pri-

vacy [4, 19, 20, 35]. In this paper, we will use the mecha-

nism that adds Laplacian noise to the output of the compu-
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tation:

f(x) + (Lap(∆f/ǫ))k

where Lap(∆f/ǫ) is a symmetric exponential distribution

with standard deviation
√

(2)∆f/ǫ.

3.3.3 Privacy budget

It may appear desirable to provide an absolute privacy

guarantee that holds regardless of the number and nature of

computations carried out on the data. Unfortunately, an ab-

solute privacy guarantee cannot be achieved for meaning-

ful definitions of privacy. A fundamental result by Dinur

and Nissim [15] shows that the entire dataset can be de-

coded after at most a linear number of queries unless so

much noise is added as to render the answer useless. This

is a serious, but inevitable limitation of interactive privacy

mechanisms. Non-interactive mechanisms either severely

limit the utility of the data, or make unrealistic assumptions

about the adversary’s knowledge (see [18] and Section 8).

Informally, the differential privacy mechanisms we use

in this paper ensure that no more than an ǫ amount of in-

formation is leaked by the computation about any single

input. The bounds compose: if each of n computations has

the privacy bound of ǫ, then their composition has the pri-

vacy bound of n × ǫ. By contrast, syntactic mechanisms

such as k-anonymity can reveal the data completely if ap-

plied more than once [22]. When computations are done in

parallel on disjoint data, only the worst bound counts.

The composability of differential privacy naturally gives

rise to the concept of a “privacy budget” [20, 34]. The

data provider sets a limit on the total permitted informa-

tion leakage in advance. Each differentially private com-

putation with a privacy bound of ǫi results in subtracting ǫi

from this budget. Once the privacy budget is exhausted, no

more results can be automatically declassified. The need to

pre-specify a limit on how much computation can be done

over a given dataset does constrain some usage scenarios.

We emphasize, however, that there are no definitions of pri-

vacy that are robust, composable, and achievable in prac-

tice without such a limit.

4 Programming model

In this section, we provide an overview of how data and

computation providers can use Airavat for secure, privacy-

preserving computations.

4.1 Data provider

Data providers store data on a distributed file system and

provide labels for the files. Data can also be labeled at a

finer granularity than files using schemas (Section 5.1.1),

which allow labeling of individual data records.

To allow automatic reduction of labels on the final out-

put of computations that satisfy differential privacy, data

providers must specify the privacy bound, the privacy bud-

get, and the reduction label for their data. All of these val-

ues are public. As explained in Section 3.3, the privacy

bound ǫ limits how much the result of the computation may

depend on any single input.

The privacy budget is associated with the provider’s

dataset, as opposed to a specific computation. Each dif-

ferentially private computation reduces the overall privacy

budget by the privacy bound on that computation [20, 34].

Once the privacy budget is exhausted, no more automatic

declassification can take place. As long as the privacy bud-

get is not exhausted, the reduction label is removed from

the labels associated with the result of the (differentially

private) computation. A data provider who uses several

categories of secrecy may have the result partially declas-

sified by removing some, but not all, of the labels.

4.2 Computation providers

Computation providers (in this section called users) write

the mappers and reducers executed by Airavat. In general,

access control within mappers and reducers is enforced us-

ing conventional DIFC. The computation proceeds with a

fixed set of labels.

If the data provider has approved the use of differential

privacy on their data (e.g., to automatically reduce the label

of the result), Airavat restricts which mappers and reduc-

ers can be used in the computation. Airavat must know

the function implemented by each reducer to add the ap-

propriate random noise to its output and achieve differen-

tial privacy. Because it is difficult to determine the func-

tion computed by arbitrary code, Airavat supplies trusted

reducers for operations that are common in data-analysis

applications, such as sum and select.

Users can provide arbitrary mappers. To rely on differ-

ential privacy, however, they must specify the sensitivity

limit of each mapper. This limit is needed to calculate the

appropriate random noise added by the reducer to achieve

differential privacy (Section 3.3.1). Rather than attempt to

divine the sensitivity of arbitrary user code, Airavat simply

takes the user-provided sensitivity limit and enforces it at

runtime. If the output produced by the user-provided map-

per exhibits greater sensitivity than the pre-specified limit,

Airavat changes the output so that it remains within the

limit. This change to the output can compromise the cor-

rectness of the mapper (since the sensitivity limit provided

by the user is inconsistent with his or her code), but not the

privacy guarantee given to the data owner. The details of

this issue are discussed in Section 5.2.1.

4.3 Workflow

MapReduce computations in Airavat start with an Airavat-

supplied mapper. The initial mapper must be trusted be-

cause it reads the data schema, which specifies how indi-

vidual data records are labeled (see Section 5.1.1 for de-

tails). The initial mapper also provides a sampling of input

data to allow multiple queries to be composed in parallel,

which reduces the amount of noise needed to achieve dif-

ferential privacy (see Section 3.3.3).

So long as a user computation starts with a trusted map-
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Figure 1: High level architecture of Airavat, trusted components

are starred.

per and uses trusted reducers, the result of the computa-

tion can have its label reduced using differential privacy

(as long as the overall privacy budget for the dataset is not

exhausted). The user can supply arbitrary mapper stages

that do not need to be audited. This creates a powerful

and flexible computation platform that retains the provable

guarantees of differential privacy.

4.4 Are differentially private results meaningful?

Some computations are difficult to make differentially

private. Functions that are highly sensitive to specific

inputs—for example, locating an interesting subsequence

within a DNA sequence or determining the presence of a

specific word in a Web page—require so much noise that

the output is no longer a meaningful function of the input.

In such computations, Airavat uses conventional DIFC la-

bels to safeguard both the data and the final output.

Many common data-analysis functions have low sensi-

tivity and can be successfully computed while satisfying

differential privacy [19]. In general, if a function satisfies

Lipschitz continuity (a stronger condition than regular con-

tinuity), then it can be computed in a differentially private

manner with a small loss in accuracy [20].

4.5 Example: data-mining computations

As an example of Airavat in use, consider the Netflix Prize

challenge, which invites users to design a better recommen-

dation algorithm for the Netflix movie rental service. We

envision contestants receiving accounts on EC2. They are

allowed to participate only if they run the digitally signed

Airavat versions of Linux and Hadoop, with the signatures

checked by the EC2 virtual machine monitor. Figure 1

shows the high level architecture of Airavat.

The Netflix data set consists of 100M ratings by 480,000

users for 17,770 movies. One of the basic computations

is to measure the average rating of a given movie. This

must be done in a way that hides the rating assigned to the

movie by any given user. Suppose that the privacy bound

is set to ǫ = 0.2. Data in Section 7 show that for a sample

of movie ratings, this privacy bound can give results that

are 95% accurate (for highly rated movies) compared to

non-privacy-preserving computations. The actual accuracy

depends upon how many users rated a movie. For movies

that are heavily rated, Airavat needs to add less noise to

mask the effect of any particular user hence the accuracy of

the result is high. Netflix’s privacy budget may impose the

global limit of 5,000 computations. The reduction label is

the entire secrecy label attached by Netflix to the input files,

meaning that the result is made public since the secrecy

label is entirely removed.

Each contestant starts their computation with a trusted

mapper that extracts the relevant records from the actual

dataset. Subsequent mappers provided by the contestants

need not be audited. The system will add enough random

noise to make the output differentially private.

Even though the contestants’ mappers are not con-

strained, our system is able to limit the amount of infor-

mation leakage to the bound provided by Netflix. Net-

flix does not need to provide a declassification module

that must understand the results produced by each user-

provided MapReduce computation. Therefore, there is no

risk of declassifying too much and no cost to develop and

audit such a module. Furthermore, contestants’ code can

operate on unmodified data (with leakages prevented by

DIFC), eliminating the need to change their algorithms to

work with sanitized or perturbed records.

5 Design

This section describes the design of Airavat, the semantics

of DIFC in a MapReduce environment, and how Airavat

provides differential privacy.

5.1 DIFC in the Hadoop infrastructure

We describe the design of making the Hadoop file system

and MapReduce framework DIFC aware. First, we briefly

describe the Hadoop distributed file system (HDFS).

HDFS. HDFS provides distributed and fault tolerant data

storage that can run on large clusters. It is designed to be

efficient for applications that work on large datasets and

have write-once, read-many characteristics. Specific de-

tails on HDFS can be found at the Hadoop website [1].

An HDFS cluster consists of a single master server

called NameNode that stores metadata associated with files

and that manages the file system namespace. There are

multiple DataNode servers that store the actual contents of

the file. Each file is internally stored as multiple blocks

typically 64MB in size. These blocks are replicated over

multiple datanodes for fault tolerance. The NameNode re-

sponds to client requests for file system operations, includ-

ing the mapping of blocks to DataNodes. The DataNodes

serve read and write requests to the client (see Figure 2). To

avoid the NameNode becoming a bottleneck, HDFS never

allows client data to flow through it. HDFS also supports

rudimentary file permission checks.

5.1.1 Labeled files

Files in HDFS are labeled with secrecy and integrity la-

bels that are managed by the HDFS code. HDFS labels

are mapped to local OS labels by each local system (Sec-
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Figure 2: Simplified view of interaction of a client with the

Hadoop file system. All network communication is encrypted and

include labels of the participants.

tion 6.1). In a cloud computing environment, it is natural

to have very large files, whose individual records have het-

erogeneous labels. Such files are protected by the union of

the labels of the data they contain. However, most compu-

tations read only certain records from the file, and Airavat

does not want to taint the computation with the complete

label of the file. To alleviate this problem, Airavat uses a

schema.

Schema. In Airavat, each HDFS file has an optional

schema file that describes both the data layout and a map-

ping between fields and labels. For example, a file might

have multiple lines where each line is a record consisting

of two parts, a user’s name and a web query string. The

file might have a secrecy label, {S(u, q)}, indicating that it

contains user identity information protected by secrecy la-

bel u and query strings protected by secrecy label q. How-

ever, the schema provides Airavat with enough information

that, if the computation uses only query strings, then the

output is labeled {S(q)}.

To use schemas, the user must specify an Airavat trusted

initial mapper. The mapper first extracts the relevant parts

of the data from the file and uses the schema to label this

intermediate data.

5.1.2 DIFC on the network

Airavat borrows several mechanisms from DStar [50] to

map the DIFC mechanisms of a single node to a networked

environment. The Airavat environment is significantly sim-

pler than DStar because it assumes that the compute nodes

exist within a single administrative domain. All hosts

have public/private key pairs and all hosts have access to a

trusted mapping service that provides certificates mapping

from network (IP) address to public key.

Exporter. On every MapReduce node and every user

node, a trusted exporter process runs, whose job is to map

from the network-visible label space to the OS-local label

space. As in DStar, the exporter translates between the

DIFC protection of the local system and the cryptographic

protection of data on the network. All messages in the sys-

tem are encrypted and have labels. An exporter can pass

a capability to another exporter by encrypting it with their

own private key (for integrity) and the public key of the

recipient (for secrecy).

File operations. When a client creates a labeled file, she

has to first give the associated capabilities to both the Na-

meNode and the DataNodes where the data is kept. The

capabilities allow the HDFS nodes to create the labeled

files and to serve any future requests to read the file. First,

the NameNode creates the file in the file system names-

pace. The client can then query the NameNode for a free

block and stream the data to the DataNode that will hold

the block. On receiving data from the client, the DataN-

ode informs the NameNode after writing the block in its

local file system. If the NameNode later replicates blocks

to other DataNodes, the NameNode has to first confer the

capabilities to those nodes. For file reads and writes, the

client first contacts the NameNode, which may deny access

if the client does not have the correct labels. If the check

succeeds, the client is provided with the list of DataN-

odes where the files reside. In Airavat, the DataNodes also

check the labels before the client may read or write the file.

5.1.3 MapReduce computation

In Airavat, the client submits a MapReduce job, provid-

ing the code for the mappers and reducers. Airavat sim-

plifies the DIFC model for the computation by disallowing

the computation from changing its labels—the computa-

tion has no capabilities. The client retains the capabilities

and can use them, for example, to provide initial labels for

the computation.

Eliminating capabilities from the MapReduce com-

putation significantly decreases the complexity of the

DIFC mechanisms without compromising flexibility. If a

MapReduce computation needs to change its labels after

some number of operations, then the user can split it into

two computations, deferring label change to an optional

post-processing step. When using a schema, a computa-

tion need only have the labels of the data records it reads.

5.2 Differential privacy model

For differentially private computations, Airavat requires

the data provider to set the privacy bound ǫ and the pri-

vacy budget, PB . The computation provider can write her

own mapper but has to declare the sensitivity of her map-

per, SC . Airavat dynamically enforces that the sensitivity

of the mapper does not exceed SC by tracking the effect

of each input to the mapper, and clamping down the output

value if it would violate the declared sensitivity. While this

may result in incorrect output, it preserves privacy.

5.2.1 Enforcing sensitivity

In this section we discuss how Airavat tracks and enforces

the sensitivity limit. Determining the sensitivity of arbi-

trary code is difficult. To make it tractable, we restrict the

types of reducers that can be used in the system. Aira-

vat only allows four types of reducers—SUM, COUNT,

MEAN, and MEDIAN. These reducers are trusted implemen-

tations of the functions with the same name.
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Figure 3: Example of a MapReduce operation when the reducer

is a SUM. Trusted components are shaded.

Consider the case when the reducer is SUM. As shown

in Figure 4, we assume that the mapper receives an input

record r, and outputs a set of pairs with elements of the

form (ki, vi). In the reduce phase, the reducer outputs the

sum of values after grouping them on distinct keys. If all

the keys ki were distinct, then the input r affects the output

of a key ki by at most vi. Note that the presence or absence

of r can change the output sum of ki by vi. According

to the declared sensitivity limit, an input can change the

output by at most SC . So Airavat ensures that vi < SC ,

otherwise it changes vi to be a number less than SC before

the final reducer step.

To measure the effect of each input record, Airavat has

a sensitivity meter associated with each mapper. The sen-

sitivity meter tracks the sensitivity using a data structure

SM(r, ki). Intuitively, SM(r, ki) is the effect of the

input record r on the final output associated with key ki. In

the above example, SM(r,ki)=vi.

For each output (ki, vi) of a particular input r, the sensi-

tivity meter updates its state using the following rule:

SM(r, ki) = SM(r, ki) + g(vi)

Here, g depends on the type of the reducer. For the reducer

COUNT, g is defined as the constant function g(x) = 1,∀x.

For the remaining reducers, g is the identity function.

Example. Consider the case where the input consists of

a single record r, the program contains one mapper, and

it outputs {(k1, 10), (k1, 6), (k2, 4). If the reducer is any-

thing apart from COUNT(figure 3), then the sensitivity with

respect to k1 is 16 (10 + 6), and 4 for k2. Intuitively, the

presence or absence of k1(k2) affects the output by at most

16(4). If the reducer type is COUNT, then sensitivity of this

particular execution is 2 for key k1 and 1 for k2. COUNT

only measures the cardinality of a set.

Privacy groups. Definitions of differential privacy apply

to each record individually and provide privacy guaran-

tees for each record. They determine the sensitivity of a

function by measuring the effect of a record’s presence or

absence. However, to provide privacy guarantees that are

meaningful in practice, it is sometimes important to group

data and calculate sensitivity with respect to the group. For

example, in the AOL dataset each record is a search made

by a particular user. For this dataset, we would like our

privacy guarantee to apply to the user, not to an individual

record.
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Figure 4: Details of the input used by the sensitivity meter.

Trusted components are shaded.
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Gen.
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Figure 5: Simplified overview of sensitivity calculation and

noise generation for a given MapReduce computation. Trusted

components are shaded.

Airavat provides the ability to group records and to thus

guarantee differential privacy to groups. The user can pro-

vide a program that takes a record as input and emits the

group id, gid, for that record. This code also executes

with the labels of the computation to prevent it from leak-

ing data. We modify the sensitivity meter to track the effect

of each group instead of just a record. As shown in figure 4,

the sensitivity meter uses gid as an index in the data struc-

ture SM(gid,ki).

Providing privacy for each record is a special case where

each record has its own group identifier. Airavat assumes

that each record belongs to at most one group.

Aggregating sensitivity frommultiple mappers. A sin-

gle MapReduce operation may run mappers on many dif-

ferent machines. Input elements from the same privacy

group may go to different mappers. Airavat must there-

fore merge the state of multiple sensitivity meters. In the

reduce phase, each reducer fetches the data from all the

sensitivity meters. The reducer merges them and finds the

maximum sensitivity amongst all groups for each key. If

this value is less than the declared bound SC , then the re-

ducers can reduce the label of the result after adding noise

generated as Lap(SC/ǫ). If the sensitivity is exceeded, then

Airavat forces the final reducer to pick values less than SC

instead of the value provided by the mapper. Figure 5 gives

a overview of the how the sensitivity enforcement is inte-

grated with the MapReduce framework.

5.2.2 Trusted reducers and independent mappers

To enforce the sensitivity bound, we must limit the effect

that any input can have on the output. There is no way

to determine a reasonable bound on the effect, for map-
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pers and reducers that are complete black boxes. Instead,

we impose restrictions on the mappers and the reducers.

Airavat provides a small set of trusted reducers (e.g., SUM)

whose sensitivity is known.

For mappers, Airavat must ensure that each invocation of

a mapper is independent from the effects of any previous

(key,value) pairs from the input. Independence ensures that

the dynamic sensitivity calculation does not underestimate

the sensitivity of an input record. For example, Airavat

disallows the case where a mapper stores a pair (k1, v1)
for input r1 and then uses v1 when computing the output

for input record r2. Then the effect of r1 is not just v1,

but also depends on the output corresponding to r2. Calcu-

lating sensitivity for non-independent mappers is difficult,

so Airavat makes sure that each invocation of a mapper is

independent. As described in Section 6.4, we modify the

JVM to dynamically detect whether a mapper is indepen-

dent or not. For non-independent mappers, Airavat does

not reduce the label of the output.

The initial mapper is trusted and can be used to partition

or select data from the input files. This mapper need not be

independent because it outputs labeled files that are then

used as inputs to the main computation.

What can Airavat compute privately? Given the re-

strictions on the mapper and reducer functions, it is nat-

ural to ask which computations can Airavat execute with

differential privacy. Airavat is powerful enough to allow

differentially private computation of all algorithms in the

statistical query model [25], including various data mining

algorithms such as k-Means, Naive Bayes, principal com-

ponent analysis, and linear classifiers such as perceptrons.

We demonstrate our claim by showing that Airavat can

implement the SuLQ primitive introduced by Blum et. al.

[8]. In that paper, Blum et. al. show that the SuLQ prim-

itive can be used to compute any algorithm in the statisti-

cal query model. Algorithm 1 depicts the structure of the

SuLQ primitive. The user makes a query g to the database

that returns a noisy version of the result. Figure 6 gives

the corresponding MapReduce operation in Airavat for this

SuLQ primitive. Intuitively, the mapper evaluates the pred-

icate g on each data record while the reducer sums the val-

ues and adds the appropriate noise. Thus, any algorithm

that can be written in the SuLQ framework using this prim-

itive can be computed in a distributed and parallelized fash-

ion using Airavat.

Algorithm 1 SuLQ Algorithm A(R)

Require: a query (g:D → [0,1])

Return
∑

i g(di) + Noise

5.2.3 Multiple MapReduce operations

Sometimes a single computation may involve a pipeline of

multiple MapReduce operations. In such cases, the sys-

tem needs to determine the effect of the initial data on

map(Key k1, Val v1){
...

output (k2, g(v1))

}
reduce(Key k2, List l2){

...

for e in l2:

newVal.add(e)

newVal.add(Airavat.getNoise(ǫ, S))

output(newVal)

}

Figure 6: Pseudo code of how to implement the SuLQ primitive

in Airavat.

the final output after it has undergone multiple transforma-

tions through the different MapReduce operations. Loosely

speaking, the sensitivity of such a composition can be esti-

mated by the sensitivity of the final MapReduce operation.

To simplify the discussion let us assume that a mapper

outputs only one (key,value) pair for a given input and the

reducer is SUM. Abusing notation, a MapReduce operation

on input set T can be thought of as

H1(T ) =
∑

x∈T

kf1(x)

Here the mapper is the implementation of f1 while
∑k

is

the reducer that groups the output of the mapper by keys,

k, and sums the individual values. The result of applying

H1 on set T is a set of elements, H1(T ), not necessarily

just a single number.

A pipeline of two MapReduce operations, H1 followed

by H2, where the input is the set T1 is the composition

H2(H1(T1)). Expanding, we can write the final output set

O as:

O =
∑

y∈T2

kf2(y) where T2 =
∑

x∈T1

kf1(x)

If f2 is bounded by B then the sensitivity of the com-

position is at most B. Notice that the presence or absence

of any element in T1 can affect the final output by atmost

B. This bound is not tight because T2 may be a restricted

domain for f2 such that the value B is never achieved.

If the mapper in H1 can output p1 different keys for any

one input record the sensitivity of the composition is B ·p1.

Intuitively, the p1 different keys may later on get combined

in H2 which will contribute at most B · p1 in the final out-

put. Generalizing this, if there are n MapReduce opera-

tions in the pipeline and a mapper in operation i emits a

maximum of pi keys on any input and the final mapper

function is bounded by B, then the sensitivity of the com-

position is at most B ·
∏

pi.

5.3 Handling timing channels

A malicious user may attempt to leak data by introduc-

ing mappers that act as timing channels. For example, a

mapper code could take longer to output data if it has read
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sensitive data. To handle these cases, Airavat requires the

computation provider to give an estimate of the execution

time. The final output is delayed to match this estimate.

[ iR FIXME: If the computation does not finish, what

value do you output? Btw, the Amazon account logs

will show the resources used including the time. ]

6 Implementation

Airavat consists of custom modifications to the Hadoop

MapReduce framework, Hadoop file system (HDFS), and

Hadoop network protocols. It includes a custom JVM for

running user-supplied mappers , certified reducers, and a

kernel module to add DIFC support to the Linux operating

system. This section describes how we modified Hadoop

to create Airavat. In our prototype, we modify 4, 000 lines

of code in HDFS, 2, 000 lines of code in the MapReduce

framework and 500 lines of code in the JVM.

6.1 Hadoop distributed file system

We have modified HDFS to support DIFC. We require that

the NameNode and the DataNodes run on a DIFC-aware

OS. We use the Laminar OS [42] in our prototype.

We modified the HDFS inode structure to hold the la-

bel of the file. Inodes are stored in the NameNode server.

Any request for a file operation by a client is validated

against the inode label. These checks consist of the rules

given in Section 3.2. In the DataNodes, we modified the

block information structure to contain the HDFS label of

the file to which the block belongs. Each block is stored

in the local file system protected by the OS labels. The

block information contains this mapping of the HDFS la-

bel to the local OS label. The DataNode daemon is trusted

and acquires the OS labels needed to read a block, by using

these mappings.

HDFS exports a hierarchical namespace. We enforce the

rule that secrecy increases with depth, while integrity de-

creases. As in Flume [26], when a client creates a labeled

file, she first creates an empty file with the same labels,

taints herself with the label to acquire private data, and then

writes it to the newly created file in HDFS. This technique

prevents a client from leaking information through the file

name. As described in Section 5.1.3, the mappers and re-

ducers in Airavat are not given capabilities to add or drop

labels. Hence they cannot use the method of pre-creating

files and then tainting themselves with a label. To cir-

cumvent this problem, Airavat first creates the MapReduce

output directory (${mapred.output.dir} in Hadoop)

when the computation is launched. This output directory is

protected by the labels of the computation. Any mapper

or reducer can write labeled intermediate or final output

files inside this directory without having to pre-create those

files.

6.2 MapReduce framework

In Airavat, the MapReduce computation runs with the la-

bels that are provided by the client when the computation is

launched. The client can only confer those labels for which

she has the add capability. At a high level, the MapReduce

framework reads the list of input files, splits the data into

chunks and spawns mappers to process each chunk. We

modified the framework so that it uses labels while inter-

acting with the HDFS to read and write files.

Intermediate outputs from the map phase are written into

labeled files. This use of labeled files ensures that only

principals with the correct labels can read them. If a map-

per or reducer only processes a particular record of the in-

put, the intermediate labels might be shorter (less restric-

tive) than the labels of the original input. After the map

phase, the reducers fetch the output from the mappers via

the HDFS. These read requests are validated against the

labels of the files.

6.3 Determining sensitivity and noise

As described in Section 5.2.1, each mapper has an as-

sociated sensitivity meter. The sensitivity meter keeps

track of the sensitivity for each group and key pair,

SM(gid,key). For every (input key,value) pair

the SM(gid,key) is updated by the rule in Section 5.2.1.

In Hadoop, the MapRunner class invokes the map func-

tion. This class calls the trusted code to determine the gid

of each input record.

For efficiency, we use a hash table to implement the data

structure SM. The size of the hash table is pre-determined

and fixed. So, the sensitivity can be inflated by false colli-

sions if there are a very large number of groups. Note that

this is not a correctness problem and does not break the

guarantees of differential privacy. Airavat might, however,

falsely conclude that the mapper breaches the declared sen-

sitivity bound of SC . In the degenerate case where each

record belongs to a group of its own, the sensitivity me-

ter can be simplified to keep only the state SM(key). We

simply track the record that has the maximum effect for

a given key. The modified update rule, after observing

each output of the form (ki,vi) from different inputs, is

SM(ki)=max{SM(ki),g(vi)}.

At the completion of the map task, each mapper writes

the data structure SM(gid,key) to a labeled file. Each

reducer then fetches the SM(gid,key) from all map-

pers and merges them together. The reducer then calcu-

lates the maximum sensitivity over all groups Sg and de-

termines if this sensitivity is within the pre-defined bound

SC . The noise is calculated from the Laplace distribution,

Lap(SC/ǫ). If the calculated sensitivity exceeds SC , then

the reducer first chooses a value within the SC sensitivity

limit before combining values.

6.4 Ensuring independent mappers

While calculating the sensitivity of the input data, we as-

sume that each invocation of the mapper function is inde-

pendent from the effects of any previous input data. A map-

per is stateful if it writes a value to storage during a map

invocation and then uses that value in a later invocation. To
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ensure that the mapper invocations are independent, Aira-

vat must track accesses to files, the network and memory

objects.

For files and the network, we use the simple rule that a

map function is not allowed to access them. These checks

are enforced by the operating system. Note that we allow

the mapper to access the files and the network during its

initialization. Mappers can override the configure()

function to initialize themselves. This function is executed

once after the mapper is loaded, using Java reflection.

For memory objects, we add access checks to two types

of data: objects, which reside on the heap, and statics,

which reside on the global pool. We had to modify the

Java virtual machine to enforce these checks. In our pro-

totype, we use Jikes RVM 3.0.0 2, a Java-in-Java research

virtual machine. Airavat prevents mappers from writing

static variables. This restriction is enforced dynamically

by using write barriers that are inserted whenever a static

is accessed. Next, we modified the object allocator to add

a word to each object header. This word points to a 64-bit

number called the invocation number (ivn). The

Airavat JVM inserts read and write barriers for all objects.

Before each write, the ivn of the object is updated to the

current invocation number. Before a read, the JVM checks

if the object’s ivn is less than the current invocation num-

ber. If so, then the mapper is assumed to be stateful and

a corresponding exception is thrown. After this exception,

the current map invocation is re-executed. The final output

of the MapReduce computation is labeled and can only be

declassified using traditional DIFC methods.

Jikes RVM is not mature enough to run code as large

and complex as the Hadoop framework. We therefore use

the Hadoop Streaming feature to ensure that mappers run

on Jikes while the remaining part of the framework exe-

cutes on Sun JVM. The streaming utility forks a trusted

Jikes process that loads the mapper using reflection. The

Jikes process then executes the map function for each in-

put provided by the streaming utility. The streaming util-

ity communicates with the Jikes process using stdin and

stdout. This communication is secured by the standard

DIFC pipes provided by the operating system.

7 Evaluation

In this section, we evaluate the performance and accuracy

of different MapReduce computations run using Airavat.

Table 1 provides an overview of the benchmarks used. K-

Means and Naive Bayes use the public implementations

from Apache Mahout3. These experiments show that com-

putations in Airavat have a low overhead, less than 25%
compared to those running on unmodified Hadoop.

7.1 Airavat overheads

The experiments were run on Amazon EC2 with a cluster

instance of 20 machines. This machine limit is imposed by

2www.jikesrvm.org
3www.lucene.apache.org/mahout/
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Figure 7: Normalized execution time of benchmarks when run-

ning on Airavat, compared to execution on Hadoop. Lower is

better.
Benchmark Sens.

Data(KB)

#Mappers Analysis

Time

JVM

over-

head

AOL 780 19 5.9% 18.7%

Netflix 700 19 1.3% 14.2%

k-Means 120 30 7.1% 14.1%

Naive Bayes 98 23 8.7% 20.2%

Matrix Mult. 72 18 3.2% 20.6%

Table 2: Details of the analysis performed by the sensitivity me-

ter, including size of data generated by the sensitivity meter, per-

centage of the total time spent processing sensitivity information

and the JVM overhead for checking independence of mappers.

Amazon for basic service users. EC2 also does not allow

customers to run their own kernels, so we could not use

the DIFC OS. Therefore, we also ran identical benchmarks

on a 16 core local machine, with the DIFC OS. Overheads

incurred due to the OS was less than 1%, across all the

benchmarks. The benchmarks had to be adapted to work

with Hadoop Streaming (as mentioned in the previous sec-

tion).

Figure 7 breaks down the execution time for each bench-

mark. The values are normalized to the execution time of

the applications running on unmodified Hadoop. The graph

depicts the percentage of the total time spent in the differ-

ent phases like map, sort, and reduce. The category Other

mainly represents the phase where the output data from the

mappers is copied by the reducer. Note that the copy phase

generally overlaps with the map phase. The benchmarks

show that Airavat slows down the computation by less than

25%.

Table 2 presents results related to the sensitivity analysis

for each benchmark. We measured the amount of data that

had to be passed by the sensitivity meter to the reducer. In

all the benchmarks this data is less than 0.01% of the input

to the computation, indicating that the approach is scalable.

In cases where each input record belongs to a group of its

own (as in k-Means), the optimization of Section 6.3 brings

down the generated data to a small constant value. Across

all the benchmarks the sensitivity analysis took less than

9% of the total computation time. The JVM instrumenta-

tion adds upto 21% overhead in the map phase.
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Benchmark Privacy Grouping Reducer Primitive #MapReduce Operations Accuracy Parameter

AOL queries Users MEAN Single Avg. user count

Netflix recommendation system Individual Rating COUNT, SUM Multiple RMSE

k-Means Individual points COUNT, SUM Multiple, till convergence Intra-cluster variance

Naive Bayes Individual articles SUM Multiple Misclassification rate

Matrix multiply Individual rows SUM Single Frobenius Norm

Table 1: Details of the benchmarks, including the grouping of data, type of reducer used, number of MapReduce phases, and the

parameter used to measure accuracy.
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Figure 9: Effect of privacy bound on RMSE in Netflix rec-

ommender system. Lower is better.

7.2 Queries on AOL dataset

The AOL search logs released in 2006 contains about 20

million web queries from 650K AOL users. While the user

identifiers were replaced with numbers, the web queries of-

ten provide unique identifiers, turning this release into a

privacy fiasco. We perform two types of computation on

this dataset. The first takes a list of keywords and outputs

the total occurrences of the keywords in the search logs.

The second computation returns the number of unique

users who searched for any of the given 5 keywords. In

both cases, the aim of Airavat is to guarantee privacy to the

users who made the searches. The sensitivity value of the

first computation is the maximum number of times a key-

word may appear in any one user’s search. In the second

case, the sensitivity is 1 because the presence or absence of

a user increases or decreases the number of the unique user

count by at most one.

Figure 8 measures the accuracy of output as we vary the

privacy factor ǫ. The curve shows that accuracy decreases

when ǫ decreases because we added more noise. Also, pop-

ular keywords (keyword occurrence high) are more robust

to noise than those that are uncommon.

7.3 Privacy preserving recommendation system with

Netflix dataset

The Netflix data set consists of 100M movie ratings by

480K users to 17,770 movies. Users rate a movie on a scale

of 1 to 5. Collaborative Filtering which works by aggre-

gating the past behaviour of users, is an attractive solution

for generating recommendations. Intuitively, the goal of

recommendor system is to predict the missing ratings to

movies by users based on ratings by other users to that

movie or based on ratings to other movies by the same user.

In this experiment we implement a differentially private

recommendor system based on Netflix data set, we adopt

the differential privacy construction from [36]. The con-

struction gurantees a relaxed form of differential privacy

called (ǫ, δ)-differential privacy and masks the presence or

absence of a single rating, there by providing per-rating

privacy. The recommendor system is divided into two

phases: in the first phase, privacy preserving computations

are done on the private data to generate a covariance

matrix that shows the correlation between every pair of

movies; in the second phase, the non-private covariance

matrix, Cov and a weights matrix, Wgt are released to a

prediction algorithm like SVD or kNN.

In Airavat, all the data files used in first phase are tagged

with DIFC labels to prevent leakage of private data. The

file containing the covariance matrix and the weights

matrix are unlabelled and can be released without leaking

any private information. From this point, to predict ratings

by user u, the prediction algorithm will use only Cov,

Wgt and ratings by u and does not need to look up ratings

by other users.

We use k-Nearest Neighbor (kNN) method of Bell and

Koren [6], with Wgt matrix as the similarity matrix, we

use the same parameters used in [36]: βm =15, βp =20,

B = 1, and k = 20 with varying Gaussian noise parameter,

θ. Our results are summarized in Figure 9. The results

obtained are in line with the results obtained in [36]

7.4 Clustering Algorithm: k-Means

The k-Means algorithm clusters input vectors into k par-

titions. The partitioning aims to minimize the sum of the

intra cluster variance. We use Lloyd’s iterative heuristic to

compute k-Means. The input consists of a set of vectors

and an initial set of cluster centers. The algorithm pro-

ceeds in two steps [8]. In the first step, the cardinality of

each cluster is calculated. In the second step, all the points

in the new cluster are added up and then divided by the

cardinality derived in the previous step. This gives the new

cluster centers. Figure 10 shows the map and reduce func-

tions to estimate the cardinality of the clusters.

Figure 8 plots the accuracy of the k-Means algorithm as

we change the privacy factor. We assume that each point
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Figure 8: Effect of privacy bound on accuracy in (a) AOL queries, and (b) k-Means and Naive Bayes. Higher is better.

map(String key, String value){
...

Vector point=decode(value);

String id=Cluster.findClosetCenter(point);

output(id,1);

}
reduce(String id, List cardinality){
..

for p in cardinality:

size+=p;

output(id, size+Airavat.getNoise(ǫ, S));

}

Figure 10: Pseudo code of mapper and reducer to approxi-

mate the size of clusters

belongs to a different user whose privacy has to be guaran-

teed. The sensitivity of the query that computes the cluster

size is one. However, the sensitivity for calculating the ac-

tual cluster centers is the maximum value of any coordinate

over all points. We measure the accuracy of the algorithm

by computing the intra-cluster variance.

7.5 Classification Algorithm: Naive Bayes

Naive Bayes is a simple probabilistic classifier that applies

the Bayes Theorem with assumptions of strong indepen-

dence. During the training phase, the algorithm is given a

set of feature vectors and the class labels to which they be-

long. The algorithm creates a model, which is then used in

the classification phase to classify a new unseen vector.

Figure 8 shows the accuracy vs. privacy bound graph.

We used the 20newsgroup dataset 4, which consists of dif-

ferent articles represented by words that appear in them.

We train the classifier on one partition of the dataset and

test it on another. The privacy bound affects the noise that

is added to the model in the training phase. We measure

the accuracy of the classifier by looking at the number of

articles that were miss-classified.

7.6 Matrix Multiplication

A number of data mining algorithms (like SVD) use matrix

multiplication of the form AT A as a basic step. This can be

written as a summation,
∑

i xT
i xi, that fits naturally in the

MapReduce framework [10]. We wrote a microbenchmark

4http://people.csail.mit.edu/jrennie/20Newsgroups/

that computes AT A. Each row belongs to a different user.

If each element of the matrix is bounded by B, then the

sensitivity of the computation is bounded by B2. We use

the Frobenius norm (Euclidean distance for matrices) as

the accuracy metric. Our experiments show that the eigen-

vectors calculated on the noisy matrix are fairly robust to

the noise added.

7.7 Summary

This section empirically makes the case that Airavat sup-

ports a variety of algorithms that can be written in a pri-

vacy preserving manner with acceptable accuracy loss.

Many MapReduce programs (including those developed as

community-wide efforts) can henceforth be run securely

without the need for auditing them or their results. We re-

strict the reducers to the implementations that sum up the

results. However, Airavat is also flexible because it can use

traditional DIFC mechanisms to secure arbitrary mapper

or reducer while inflicting modest overheads. This flexibil-

ity will benefit developers of more sophisticated algorithms

that cannot be expressed using our stock reducers.

8 Related work

This section surveys relevant related work in decentralized

information flow control and differential privacy.

Decentralized information flow control (DIFC) Infor-

mation flow control mechanisms were developed to pro-

vide end-to-end security in military systems [14, 24]. My-

ers et. al. proposed the decentralized model for informa-

tion flow control enabling users to label their data and also

declassify it [38]. Recent research has focused on building

secure systems using language level constructs [37,39,44],

the operating system [26, 46, 49] or both [42]. Airavat

adopts the labeling scheme used in Flume [26] to denote

the sensitivity of data and limit its access by principals.

We note that these systems provide security for applica-

tions that run on a single machine.

Secure program partitioning [48] assumes that hosts in a

distributed setting may have different trust levels. It parti-

tions a program, mapping the code and data to different

hosts while upholding the security policy specified with

labels. Swift applies similar techniques to partition web

applications [9]. In contrast, Airavat does not partition
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programs and assumes that all hosts pose a homogeneous

threat to user data.

DStar is a framework that extends DIFC to an arbitrary

network of machines [50] using local OS DIFC support and

cryptography over the network. Airavat uses several DStar

mechanisms including a trusted exporter process that reg-

ulates network access and certificates to bind IP addresses

to host public keys (see Section 5.1.2), but Airavat makes

the simplifying assumption that all hosts reside in the same

administrative domain.

Differential privacy McSherry proposed a system

of differential privacy via Privacy Integrated Queries

(PINQ) [34]. PINQ provides a set of primitive data op-

erations in the LINQ framework, each of which is imple-

mented to provide differential privacy. It supports com-

putations that are compositions of their primitives. While

our definitions of privacy are effectively the same, our goal

is substantially different and complimentary to PINQ. We

focus not on the operations that the data owner performs

on his own data prior to its public release, but on preserv-

ing privacy in large-scale, distributed MapReduce compu-

tations that operate on the data from multiple owners. We

aim to use differential privacy as the basis for declassifica-

tion in this setting.

Alternate definitions of privacy. Cryptographically se-

cure multi-party computation(as in [31]) ensures that a dis-

tributed protocol leaks no more information about the in-

dividual inputs than is revealed by the result of the com-

putation. This concept of privacy focuses on keeping the

intermediate steps of the computation secret and is not ap-

propriate in our setting, where the goal is to ensure that the

result itself does not leak too much information about the

inputs.

While differential privacy mechanisms tend to employ

output perturbation (i.e., adding random noise to the re-

sult of a computation), several approaches to privacy-

preserving data mining focus on input perturbation (i.e.,

adding random noise to individual data entries). Unfor-

tunately, the guarantees provided in this case are usually

average-case and do not imply anything about the privacy

of individual inputs. For example, the algorithm given in

the seminal paper by Agrawal and Srikant [3] fails to hide

individual data entries, as shown by Agrawal and Aggar-

wal [2]. In turn, Evfimievski et al. show that the definitions

of [2] are too weak to provide individual privacy [21].

The concept of k-anonymity focuses on non-interactive

releases of relational data and requires that every record

in the released dataset be syntactically indistinguishable

from at least k − 1 other records on the so-called quasi-

identifying attributes (like ZIP code and date of birth) [11,

45]. This is achieved by syntactic generalization and sup-

pression of these attributes (e.g., [29]). Unfortunately, k-

anonymity does not provide meaningful privacy guaran-

tees. It fundamentally assumes that the adversary’s knowl-

edge is limited to the quasi-identifying attributes and thus

fails to provide any protection against adversaries who have

additional information [32, 33]. It does not hide whether a

particular individual is in the database [41], nor the sensi-

tive attributes associated with any individual [30,32]. Mul-

tiple releases of the same dataset or even knowledge of the

k-anonymization algorithm may completely break the pro-

tection [22, 51]. Modifications of k-anonymity, such as l-
diversity [32] and m-invariance [47], suffer from many of

the same flaws. Therefore, k-anonymity and its variants do

not provide an appropriate privacy notion for cloud com-

puting.

9 Conclusion

Airavat is the first system that integrates the DIFC model

with concepts of differential privacy, allowing declassifica-

tion without the need to audit code. We show how these

techniques can be used to secure distributed computations

that are expressed in the MapReduce model.
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