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Abstract—With the phenomenal growth of wireless networks
and applications, it is increasingly important to deliver content
efficiently and reliably over wireless links. However, wireless
performance is still far from satisfactory due to limited wire-
less spectrum, inherent lossy wireless medium, and imperfect
packet scheduling. While significant research has been done
to improve wireless performance, much of the existing work
focuses on individual design space. We take a holistic approach
to optimizing wireless performance and resilience. We propose
Fast Resilient Jumbo frame (FRJ), which exploits the synergy
between three important design spaces: (i) frame size selection,
(ii) partial packet recovery, and (iii) rate adaptation. While these
design spaces are seemingly unrelated, we show that there is a
strong interactions between them and effectively leveraging these
techniques can provide increased robustness and performance
benefits in wireless LANs. FRJ uses jumbo frames to boost
network throughput under good channel conditions and uses
partial packet recovery to efficiently recover packet losses under
bad channel conditions. FRJ also utilizes partial recovery aware
rate adaptation to maximize throughput under partial recovery.
Using real implementation and testbed experiments, we show
that FRJ out-performs the existing approaches in a wide range
of scenarios.

Index Terms—Wireless LAN, jumbo frame, partial recovery,
rate adaptation.

I. I NTRODUCTION

The popularity of wireless networks has grown at a phe-
nomenal rate. Yet wireless performance is still far from
satisfactory due to limited wireless spectrum, inherent lossy
wireless medium, and imperfect packet scheduling. Emerging
trends such as rapidly growing densities and increasing traffic
volumes only exacerbate this problem.

Many novel techniques have been proposed to improve
the efficiency and resilience of wireless networks. In par-
ticular, sending large frames has been suggested to reduce
MAC overhead (e.g. [1], [2], [3], [13]); a series of novel
packet recovery schemes (e.g., [16], [10], [24], [14]) have
been proposed to combat wireless losses; and a variety of
rate adaptation algorithms (e.g., [4], [18], [14]) have been
developed to automatically adapt MAC sending rate according
to the current link condition. While each of these existing
techniques are useful, each alone is insufficient and there
exist strong interactions between these seemingly orthogonal
techniques. We now explain the relationships between these
techniques.

Interactions between partial packet recovery and jumbo
frames: A natural way to boost network throughput is to

Fig. 1. Interactions between partial packet recovery, jumboframes, and rate
adaptation.

use a large frame size, since the MAC overhead for every
frame remains constant and its relative overhead becomes
smaller when using a larger payload size. However, the loss
rate of a frame tends to increase with frame size. As a
result, even though sending a jumbo frame boosts network
throughput under no-loss scenarios, its performance would
suffer significantly under either collision losses or inherent
wireless medium losses. Interestingly, partial packet recovery
schemes help reduce the impact of losses so that it enables
jumbo frames to achieve good performance under both low
loss and high loss environments.

In addition, the use of jumbo frames also improves the
effectiveness of partial packet recovery, because it reduces
the relative cost of RTS/CTS, which helps to significantly
reduce collision losses. Partial recovery techniques workbest
if the number of erroneous bits in a frame is small, whereas
collisions tend to result in large erroneous bits. Therefore
reducing collision losses makes it easier for partial packet
recovery to succeed.

Interactions between partial packet recovery and rate
adaptation: Traditional auto-rate adaptation schemes adapt
the transmission rate according to the frame loss rate, which
does not reflect the actual loss rate after partial recovery.
Therefore the data rates these schemes select tend to be overly
conservative when partial recovery is used [14]. In comparison,
partial packet recovery reduces the effective data loss rate
so that higher transmission rates can be used. In addition,
increased transmission rate reduces the medium occupancy
duration and hence reduce contention losses, which further
improves the success of partial packet recovery.

Interactions between jumbo frames and rate adaptation:
As the effectiveness of rate adaptation schemes improves,
higher transmission rates are more likely to be chosen.
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However, most MAC overhead (e.g., transmission time of
RTS/CTS, preamble, DIFS, SIFS) take constant time and
its relative overhead compared to useful payload transmis-
sion time increases with the transmission rate. For example,
consider a transmission of 1500-byte UDP packet in IEEE
802.11a. The MAC overhead under no RTS/CTS is 12%
for 6 Mbps and increases to 43% for 54 Mbps, and the
corresponding overheads under RTS/CTS are 16% and 53%,
respectively. As jumbo frames reduces this relative overhead,
its benefit increases with increased transmission rates, and
effective rate adaptation helps to maximize the benefit of
jumbo frames and vice versa.

Overview: Based on the above insights, in this paper we
propose Fast Resilient Jumbo frames (FRJ). FRJ combines
seemingly orthogonal established techniques in order to in-
crease performance and robustness in wireless LANs. FRJ
uses jumbo frames to boost network throughput under good
channel conditions and uses partial packet recovery to effi-
ciently recover packet losses under bad channel conditions. It
further uses partial recovery aware rate adaptation to maximize
effective throughput under partial recovery.

We implement FRJ using the Madwifi driver [15] and Click
toolkit [5]. Using real implementation and testbed experi-
ments, we demonstrate that FRJ achieves efficient and resilient
performance in wireless LANs. Its improvement over the
existing schemes is 10-36% under a single flow and increases
to 10-161% under multiple flows.

To summarize, we make the following contributions:

• We show the interactions between the three techniques, and
develop the FRJ protocol to exploit the synergy between
these schemes.

• We leverage partial-packet recovery techniques in order to
support jumbo frames to achieve high throughput under both
low loss and high loss conditions.

• We advocate the use of RTS/CTS with jumbo frames to
mitigate hidden terminals in multiple flow environments
and reduce the relative overhead incurred for each packet
transmission.

• We develop a prototype implementation and use testbed
experiments to demonstrate its effectiveness.

The rest of the paper is organized as follows. In Section II,
we survey related work. We present our design of FRJ in
Section III. We describe our evaluation methodology in Sec-
tion IV and performance results in Section V. We conclude in
Section VI.

II. RELATED WORK

As mentioned earlier, the existing literature mainly focuses
on individual design space. In this section, we give a brief
overview of recent work in these areas.

Jumbo frames: Using jumbo frames to boost wireless net-
work performance has received increasing attention from

industry. Original approaches to frame aggregation included
Atheros’ Super G [1] fast framing and Texas Instruments’
frame concatenation feature [2]. These proprietary optimiza-
tions combine multiple packets into a single frame. Unlike
FRJ, they require specific hardware support. These works and
others lead to frame aggregation in 802.11n standard [3].
Similar to FRJ, 802.11n can support block acknowledgements
for each combined packet within an aggregated frame. In these
schemes, even when a few bits of a packet are corrupted, the
entire packet needs to be retransmitted. In contrast, FRJ only
needs to retransmit the corrupted segments of a packet, which
reduces overhead. In addition, FRJ is a software-based solution
and compatible with existing 802.11a/b/g chip-sets, so that we
can benefit immediately without hardware modifications.

Partial packet recovery: To protect against wireless link
losses, a number of partial packet recovery schemes have
been proposed recently. Miu et al. [16] develop MRD, which
leverages multiple receivers to recover corrupted packets.
When the same packet received at multiple receivers differs
in one or more blocks, MRD exhaustively searches over
all possible block combinations to find the one that passes
the packet checksum. As MRD, SOFT proposed by Woo
et al. [24] also takes advantage of multiple receivers for
packet recovery. Different from MRD, SOFT has an efficient
combining strategy that exploits the physical layer information
to maximize the likelihood of packet recovery. Kyle et al.
[10] describe PPR scheme in which a single receiver performs
partial packet recovery (PPR). In this scheme, the receiver
leverages the confidence information at the physical layer to
identify bits with high uncertainty and requests retransmission
of these bits. By exploiting physical layer information in soft-
ware defined radio, PPR out-performs segment-based partial
recovery, proposed by Ganti et al. [6], however its performance
improvement over the latter is usually around 25%. Like
PPR, FRJ uses a single receiver but can be extended to
multiple receivers. These previous works all require hardware
changes. More recently, Lin et al. [14] proposes ZipTx –
a software technique based on retransmitting parity code of
corrupted packets. This work also modifies SampleRate [?] to
maximize the correct-byte throughput. Like ZipTx, our work
is also a software solution and can be implemented directly
on existing commodity hardware and software platforms. On
the other hand, when PHY layer information is available, FRJ
can benefit from it to achieve even higher gain. In addition,
different from the existing partial packet recovery schemes,
FRJ improves their effectiveness by using jumbo frames.

Rate adaptation: Rate adaptation has received significant
research attention and various rate adaptation algorithmshave
been developed [7], [22], [20], [12], [4], [23], [11], [18].For
example, [18] is the rate adaptation algorithm used in the
MadWiFi driver. It uses long-term loss rate estimation and
threshold to determine rate changes. SampleRate [4], proposed
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by Bicket et al., probes the performance at a random rate
every 10 frames, and selects the rate that minimizes expected
transmission time including retransmission time. Based on
previous works [4], [23] and our own experiments, SampleR-
ate out-performs [18] so we use it as the baseline scheme.
More recently, Wong et al. [23] identify the limitations of
existing design guidelines for rate adaptation. Based on their
observations, they develop Robust Rate Adaptation Algorithm
(RRAA), which uses short-term loss ratio to opportunistically
change rate and incorporates an adaptive RTS filter to prevent
collision losses from reducing data rate. All these existing rate
adaptation schemes adapt rate according to frame loss rate.
When partial packet recovery is used, the frame loss rate over-
estimates the actual loss rate experienced by data traffic and
causes an unnecessarily low transmission rate to be used. FRJ
overcomes this limitation by developing partial recovery aware
rate adaptation.

III. O UR APPROACH

In this section, we describe our approach to Fast Resilient
Jumbo frame (FRJ) in detail. We focus our description and
evaluation on single-hop wireless LANs, but the approach is
applicable to multi-hop wireless networks. FRJ consists of
two core components: (i) resilient jumbo frame which applies
partial recovery to jumbo frames, and (ii) partial recovery
aware rate adaptation.

A. Resilient Jumbo Frames

1) Overview: The use of jumbo frames allows us to ef-
fectively reduce MAC-layer overhead, thereby achieving high
throughput. We modify the MadWiFi driver [15] to support
resilient jumbo frames. While our current implementation
supports jumbo frames of size up to 3000 bytes due to the
limitation in hardware abstraction layer (HAL), such limitation
is not inherent and we expect a larger throughput improvement
with even larger frame sizes.

As mentioned in Section I, jumbo frame alone is insufficient
because it is subject to higher losses in wireless networks.
To effectively address the issue, we leverage partial packet
recovery techniques to make them more resilient to such
losses. In particular, we adopt a segment based partial packet
recovery scheme described by Ganti et. al in [6], though our
design can easily benefit from other partial recovery schemes
such as PPR [10] or the systematic codes used in ZipTx [14].
The core idea here is to divide a frame into smaller chunks,
each having their own CRC. Upon data corruption, only the
corrupted chunks need to be retransmitted to recover the frame
thus saving the overhead of retransmitting the complete frame.

Figure 2 shows our data frame format. It consists of frame
header and a series of segments, each of which contains 32-
bit segment CRC and segment payload. The frame header
includes frame ID, frame type, segment bitmap, frame length,
and frame header CRC. The frame ID is an auto-incremental

field which the sender maintains per destination MAC address
it communicates with. The type field is used by the receiver
to distinguish between frame types. In our implementation,
we use four different frame types - data frame, ACK frame,
probe frame and probe response frame. The segment bitmap
indicates which segments are present in the current frame.
Our implementation use 30 segments per frame so a 32-bit
bitmap is sufficient. A bit value of 1 at positioni indicates that
segmenti is present. Consequently, the initial transmission of
a frame will have all the bits set to 1, and the retransmis-
sion frame will have 1’s only at the bits corresponding to
retransmitted segments. A sender packs a data frame from
the upper layer according to this format and hands it over to
the MAC layer for transmission or retransmission. When a
frame arrives at a receiver, if either the preamble is corrupted
or the frame header does not pass its CRC check, the entire
frame is lost. The likelihood of such losses is generally low
due to small header size. Otherwise, the receiver extracts the
segments that pass the segment CRC check and informs the
sender of the correctly received segments. This will trigger
the sender to retransmit unacknowledged segments. When a
retransmission arrives, the receiver combines the new correctly
received segments with already received segments of the same
frame. After the entire frame is received correctly, the frame
is then passed to the upper layer.

Fig. 2. Data frame format.

2) Receiver Feedback:FRJ uses a combination of MAC-
layer ACKs and 2.5-layer ACKs. The MAC-layer ACKs are
used because the adjustment of backoff window in IEEE
802.11 depends on the presence of synchronous ACKs at
MAC-layer [16]. Moreover, the synchronous ACKs at MAC-
layer are more reliable and efficient than 2.5-layer ACKs since
they are more compact and designed to avoid collision with
nearby transmissions [16]. Therefore MAC-layer ACKs allow
senders to quickly remove successfully received frames from
its retransmission queue.

Fig. 3. 2.5-layer ACK frame format.
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In order to support partial recovery, we further use 2.5-layer
ACKs, whose format is shown in Figure 3. These ACKs are
generated after 100 ms or receiving 64 frames since the last
ACK time, whichever comes first. These ACKs are cumulative
in order to reduce the ACK overhead and minimize the impact
of ACK losses. To further improve their reliability, they are
transmitted using MAC-layer unicast with a retry count of 16,
the maximum retry supported in MadWiFi [15]. To improve
their responsiveness, we disable binary backoff on 2.5-layer
ACK frames by settingCWmax = CWmin. Since these ACKs
are sent infrequently (e.g., 10 per second), disabling binary
backoff has negligible impact on competing data traffic while
significantly improving the ACK responsiveness and reducing
unnecessary retransmissions.

The 2.5-layer ACKs contain frame and segment status,
indicating which frames and which segments in those frames
are correctly received. To reduce the 2.5-layer ACK overhead,
a sender aggregates the status of up to 256 frames into one
2.5-layer ACK, which includes start sequence number (start)
and 256-bit bitmap (Bitmapf ). All the frames up tostart

are assumed to be received completely correctly. The bits in
frame bitmap field indicates the status of a frame - thei-
th bit in Bitmapf is 1 if and only if all segments in the
start + i-th frame are received correctly, and is 0 when
the frame is lost partially or completely. For the partially
received frames (these frames haveBitmapf with a 0 bit),
the ACK also reports the status of their segments using tuples
of (offset , bitmaps), whereoffset + start is the frame ID and
bitmaps is the status of its segments in that frame. Thei-th
bit in bitmaps is 1 whenever thei-th segment is received
correctly and 0 otherwise. The use of offset allows us to
omit the completely lost frames in the segment ACK. We
updatestart so that the largest received packet is no more
than start + 256. This implies that it is possible that a node
may not have received all packets up tostart even though it
assumes so. The likelihood of such occurrence is low since
the bitmap size of 256 is generally large enough even under
the highest data rate. Moreover, FRJ is designed to provide
best-effort reliability and leaves the upper-layer to ensure full
reliability if needed.

3) Retransmission:When a frame is not acknowledged
by either MAC-layer ACK or 2.5-layer ACK, it requires
retransmission. In order to allow partial packet recovery,we
disable MAC layer retransmission of data frames by setting
the MAC retry count to 0, and retransmit the frames at the
2.5-layer.

The retransmissions can be triggered by either 2.5-layer
ACKs or retransmission timeout. A 2.5-layer ACK will cause
(partial or complete) retransmission of framei if (i) it is the
first retransmission and either some frames with sequence
number higher thani or some segments in framei are
acknowledged, or (ii) it is the second or higher retransmission

and the ACK acknowledges some new segments in frame
i. The reason for different treatment between the first and
subsequent retransmissions is that the first data transmissions
in IEEE 802.11 is in-order delivery (i.e., frames with lower
sequence number are received earlier), but this is not the case
for subsequent transmissions (e.g., a retransmitted frame with
smaller sequence number can arrive later than those with larger
sequence numbers).

All the other retransmissions are triggered by retransmission
timeout. We use a standard approach to estimate retransmis-
sion timeout (RTO), similar to TCP [19]. Specifically, for
every frame that has not been retransmitted, a node measures
the time difference between when the frame was transmitted
and when the corresponding 2.5-layer ACK was received.
Let T denote the measured round-trip time (RTT) of the
current frame. Then the node updates itsRTO based on
smoothened RTT and RTT variance as shown in Figure 4.
RTO is initialized based on the PHY transmission data rate.
Our evaluation usesK = 4, α = 1/8, andβ = 1/4 as in [8].

if (T is the first RTT measurement)
SRTT = T;
RTTVAR = T/2;
RTO = SRTT + K*RTTVAR;

else
RTTV AR = (1 − β) × RTTV AR + β × |SRTT − T |;
SRTT = (1 − α) × SRTT + α × T ;
RTO = SRTT + K ∗ RTTV AR;

end

Fig. 4. Estimation ofRTO.

B. Partial Recovery Aware Rate Adaptation

Rate adaptation is critical to the performance of IEEE
802.11 networks. Existing rate adaptation schemes identify
the optimal rate based on the frame loss rate. With partial
recovery, the frame loss rate over-estimates the actual loss rate
experienced by the data traffic, thereby causing traditional rate
adaptation schemes to select lower transmission data rate than
necessary [14]. In order to fully exploit the benefit of partial
recovery scheme, it is necessary to design a partial recovery
aware rate adaptation scheme.

Designing a partial recovery aware rate adaptation scheme
poses the following challenges. First, how to accurately and
efficiently estimate channel condition at various data rates?
Second, how to select the rate that maximizes throughput
under partial recovery? This requires us to estimate throughput
under partial recovery based on loss statistics. Below we
describe our design to address both issues.

1) Estimation of channel condition:To estimate channel
condition, a sender periodically broadcasts probes at different
data rates. Figure 5(a) shows probe frame format. The probe
ID field is maintained per rate and incremented on every
probe, so gaps in probe IDs indicate loss of probe frames
due to corrupted header (including preamble). The receiver
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(a) Probe frame.

(b) Probe response frame.

Fig. 5. Probe and probe response frame format.

then estimates the channel condition using header loss rate
(HL) and segment loss rate (SL), whereHL is defined as
the fraction of frames lost due to header corruption (or not
receiving the packet) andSL is the fraction of corrupted
segments. The estimates ofHLr and SLr (i.e., HL and
SL values for rater that a probe was received) are then
communicated to the sender in a probe response packet, whose
format is shown in Figure 5(b).

Since loss of probe response may cause the sender to use
incorrect estimates, it is important to make the response reli-
able. To provide high reliability for the probe response frame,
it is transmitted via MAC-layer unicast with the maximum
retry count of 16, the maximum in MadWiFi. Furthermore,
whenever the maximum MAC-layer retry count is reached,
the response frame is further retransmitted at 2.5-layer, thereby
achieving full reliability of probe response.

In addition, in order to ensure that the sender receives probe
response in a timely fashion, we disable binary backoff on the
probe response by settingCWmax = CWmin. This improves
the responsiveness of probe responses with no impact on
competing traffic due to their very low frequency (e.g., once
per 5 seconds) and allows for quick rate adaptation at the
sender.

To limit the probing overhead, a sender transmits probes at
three data rates (at most): (i) its current data rate (CurrRater),
(ii) one data rate below its current data rate (CurrRate−r ), and
(iii) one data rate above its current data rate (CurrRate+

r ).
To further reduce probing overhead, we could optionally
omit probing at the current data rate and use existing traffic
to estimate channel condition. A sender uses the probing
frequency of 5 probes per second for each data rate, and its
receiver sends probe responses every 5 seconds containingHL

andSL estimates at all three data rates. In case no probes have
been received over the last 5 seconds at rater, the receiver
sends a default probe response, which containsHLr = 1

and SLr = 1. We use 5 probes per second because our
measurement shows that they give accurate loss rate estimation
without incurring much overhead (i.e., the loss rate estimation
error decreases fast with increasing probing frequency below
5 probes/second and then tapers off afterwards).

2) Rate Selection:Given the loss estimates at different data
rates, the sender estimates throughput based onHLr andSLr,

and selects the data rate that yields the highest throughput
using equations in Figure 6.

Specifically, letDatai denote time to send thei-th data
transmission (e.g., 1st transmission indicates the original trans-
mission of the data frame, and 2nd transmission indicates the
first retransmission of the frame, etc.),NSi denote the number
of segments ini-th transmission,Pi denote the probability
of sending i-th transmission, andHS denote header size.
useRTS is 1 only when RTS/CTS is enabled. Contention
window (CW), preambleTime, slot time, DIFS, SIFS, RTS,
and CTS duration are as specified in the IEEE 802.11 stan-
dard [17].

First, to compute the total transmission time of a frame
(including all retransmissions), we observe that the MAC/PHY
overhead does not change while the data frame size changes
depending on how many segments in the previous transmission
are lost. The expected time spent ini-th transmission isPi

multiplied by the sum of the overhead and thei-th data
transmission time. Therefore the expected total time spent
in transmitting a data frame is sum over alli’s, where
i = 1..MaxRetries + 1. This is shown in Equation 1, where

RTSOverhead = RTS + SIFS + CTS + SIFS

DATA = preambleT ime +
(HS + NSi × segmentSize)

rate

and Backoff = CWmin

2 × slotT ime. CWmin is used to
compute average backoff time because the MAC retry count
is set to 0 to allow partial recovery in FRJ.

To computePi, we note thatPi = 1 for the first transmission
since each frame should be transmitted at least once. When
i > 1, the transmission is sent when either the header or at
least one segment in the previous transmission is corrupted.
This observation gives Equation 2.

To computeNSi (i.e., the number of segments ini-th trans-
mission), we observeNS1 = 30, since the initial data frame
contains 30 segments. For the subsequent retransmissions,if
the previous transmission is lost due to header corruption,the
entire frame should be retransmitted; otherwise we retransmit
the lost segments. The former isHLr ×NSi−1 and the latter
is (1 − HLr) × SLr × NSi−1, where NSi−1 is the total
number of segments ini − 1-th transmission. Therefore, we
have Equation 3.

Finally, we estimate throughput based on the following
insight:NSMaxRetries+2 is the expected number of segments
that will be lost when a frame is retransmitted up to MaxRe-
tries (plus 1 original transmission). Therefore the expected
data transmitted successfully is(NS1 − NSMaxRetries+2) ×

SegmentSize. This size divided by total transmission timeT

gives expected throughput, as shown in Equation 4.
The rate selection is performed either upon receipt of

probe response (sent once every 5 seconds) or till 6-second
elapse since the last time rate selection was performed to
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T =
∑

i=1..MaxRetries+1

Pi × (Backoff + DIFS + DATA + SIFS + ACK + useRTS × RTSOverhead) (1)

Pi =

{

1 i = 1

Pi−1 × (HL + (1 − HL) × (1 − (1 − SL)NSi−1)) otherwise
(2)

NSi =

{

30 i = 1

NSi−1 × (HL + (1 − HL) × SL) otherwise
(3)

Throughput = (NS1 − NSMaxRetries+2) × SegmentSize/T (4)

Fig. 6. Throughput calculation in FRJ

accommodate the delay in (re)transmission of probe response.
In case the probe response is not received before the rate has
to be chosen, the sender estimatesHL andSL at the current
rate based on the actual data traffic performance. In addition,
since loss rate tends to be lower for a lower data rate, we
assumeHL = 0 and SL = 0 at the rate immediately below
the current rate, and apply the above throughput estimation
to select the one that gives higher throughput. The rate is re-
selected as soon as the next probe response is received or
another 6 seconds elapses, whichever comes first.

IV. EXPERIMENTAL METHODOLOGY

We evaluate FRJ using testbed experiments. We implement
FRJ using the Madwifi driver [15] and Click toolkit [5].
This allows us to understand the performance benefits in real
networks. Our testbed consists of 24 DELL dimensions 1100
PCs, located on two adjacent floors of an office building
as shown in Figure 7. Each machine has a 2.66 GHz Intel
Celeron D Processor 330 with 512 MB of memory and is
equipped with a 802.11 a/b/g NetGear WAG511 wireless card.
For all our experiments, we use 802.11a to avoid interference
from our campus networks that use 802.11b/g. Every node
uses an initial PHY transmission rate of 24 Mbps and a
transmission power of 18 dBm. We randomly pick source and
destination pairs from the testbed and establish CBR transfer
with saturated demand between them. We measure throughput
over a 60-second transfer for each flow, and compare total
throughput, per flow throughput, and Jain’s fairness index,
which is defined as(

∑

xi)
2/(n ∗

∑

xi
2), where xi is the

throughput of flowi andn is the total number of flows in the
network [9].

We compare the following schemes in our evaluation:

1. SampleRate using 1500-byte frames (SR/1500-bytes): This
algorithm was developed by Bicket [4]. It is shown to be
one of the most competitive rate adaptation schemes [23].

2. SampleRate using 3000-byte frames (SR/3000-bytes): This
is the same as the above except it uses a jumbo frame size

Fig. 7. Node placement in the testbed topology.

of 3000 bytes. This is similar to using the fast frame feature
in Atheros Super G [1].

3. FRJ: This is the scheme described in Section III. It uses
3000-byte frames and 30 segments per frame for partial
recovery.

All the above schemes retransmit a frame up to 7 times
(the default 802.11 retransmission count). In addition, they
can work with or without RTS/CTS. In general, when the
background traffic is low, the schemes without RTS/CTS
yield better performance because of lower overhead and more
opportunities to send data frames. The latter is because when
using RTS/CTS under lossy links, data frames cannot be sent
out until both RTS and CTS frames are successful. As the
background traffic increases, the performance under RTS/CTS
improves because it prevents data collisions arising from
hidden terminals or the random backoff counter expiring at
the same time.
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V. EXPERIMENTAL RESULTS

A. Single flow

We first compare the different schemes by plotting the
CDF distribution of throughput using a single flow without
RTS/CTS. As shown in Figure 8, the performance benefit of
FRJ over SR is largest under moderate link conditions. For
example, 20-th percentile throughput is 0.68 Mbps for both
SR/1500-bytes and SR/3000-bytes and 1.11 Mbps for FRJ;
and 80-th percentile throughput is 14.17 Mbps for SR/1500-
bytes, 16.93 Mbps for SR/3000-bytes, and 23.81 Mbps for
FRJ, resulting in improvement of 40.6% to 68.0%. The larger
improvement under moderate link conditions is because un-
der highly reliable links all schemes can effectively utilize
bandwidth and in highly lossy links all schemes incur severe
preamble losses and suffer. Under moderate link conditions,
many losses come from a small number of corrupted segments
per frame, which makes the segment-based partial recovery
scheme effective.
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Fig. 8. CDF of both SR protocols and FRJ over all runs in the single flow
experiments.

B. Multiple flows

Next we evaluate the performance of FRJ under multiple
flow settings. We vary the number of simultaneous flows from
1 to 8, and repeat the experiments 10 times for each number
of flows. We compare FRJ with SR/1500-bytes and SR/3000-
bytes in terms of total throughput, throughput distribution, and
Jain’s fairness index.

Figure 9 shows the average total throughput versus the
total number of flows with and without RTS/CTS, where the
error bars denote the standard deviation of the sampled mean.
The standard deviation is generally quite high because we
randomly choose flows – some flows are across links with
high delivery rate and get high throughput while others are
across lossy links and experience low throughput. We make
the following observations.

First, comparing the performance between the schemes
under RTS/CTS with their counterparts under no RTS/CTS,
we see that the schemes without RTS/CTS perform better
under 1 and 2 flows and the schemes with RTS/CTS perform
better under more flows. This is expected since the use of
RTS/CTS prevents collisions arising from hidden terminals
or the backoff counter expiring at the same time and such
collisions are more prevalent under a large number of flows.

Second, FRJ without RTS/CTS performs the best among
all the schemes under 1 and 2 flows, and FRJ with RTS/CTS
performs the best under more flows. In other words, with
an appropriate RTS/CTS configuration, FRJ consistently out-
performs all SR schemes. Compared with the best performing
scheme for each configuration among SR/1500-bytes and
SR/3000-bytes with and without RTS/CTS, the benefit of FRJ
ranges from 10% (1 flow) to 64% (6 flows).

Furthermore, in all the runs with RTS/CTS, FRJ consistently
out-performs both SR/3000-bytes and SR/1500-bytes. Its im-
provement over SR/1500-bytes ranges from 42% to 161%, and
over SR/3000-bytes ranges from 20% to 80%. In addition,
SR/3000-bytes out-performs SR/1500-bytes due to reduced
MAC/PHY-layer overhead.

In comparison, the performance difference across various
schemes is less pronounced under no RTS/CTS, because in
this case collision losses increase and reduce the effectiveness
of the jumbo frame, partial recovery, and rate adaptation
scheme. Specifically, collision losses often result in corruption
of headers or a large fraction of payload, which are harder to
recover. Moreover, FRJ’s rate adaptation scheme may respond
to collision losses by unnecessarily reducing its transmission
rate. Techniques to adaptively configure RTS/CTS [23] and
diagnose the reason for wireless losses [21] would be very
helpful to further improve the effectiveness of FRJ.

We further compare throughput with RTS/CTS using a
CDF of per flow throughput over all multiple flow runs,
as shown in Figure 10. The median throughput are: 0.30
Mbps for SR/1500-bytes, 0.38 Mbps for SR/3000-bytes, and
0.57 Mbps for FRJ. The average per-flow throughput over all
runs (not shown in the figure) are 0.84 Mbps for SR/1500-
bytes, 1.05 Mbps for SR/3000-bytes, and 1.68 Mbps for FRJ,
which translates to 100% improvement over SR/1500-bytes
and 60% improvement over SR/3000-bytes. These numbers
further demonstrate the effectiveness of FRJ in achieving good
performance.

In order to better understand the performance benefits of
FRJ, we compare the transmission rate used by different
schemes with RTS/CTS. Figure 11 shows a CDF of the
transmission rates used for each scheme. The transmission
rate used in FRJ is generally higher than both SR/1500-
bytes and SR/3000-bytes. For example, 25% of SR/1500-
bytes frames and 40% of SR/3000-bytes frames use the lowest
transmission rate, while only 2% of FRJ frames use the lowest
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rate. Moreover, the gap between different CDF curves is larger
under low rates because in these cases links tend to be more
lossy and partial recovery and partial recovery-aware rate
adaptation are more useful. The average transmission rates(not
shown in the figure) are: 20.61 Mbps for SR/1500-bytes, 17.75
Mbps for SR/3000-bytes, and 24.03 Mbps for FRJ. SR/3000-
bytes uses lower transmission rate than SR/1500-bytes because
the former experiences higher frame loss rate due to larger
frame size and adapts to lower transmission rate, which offsets
the benefit of jumbo frame. In comparison, FRJ is able to use
both large frame and high transmission rates by using partial-
recovery aware rate adaptation so that it out-performs both
schemes.

Finally, Figure 12 compares Jain’s fairness index across
different schemes. FRJ’s fairness index is comparable to the
other schemes – the difference in all cases is within 10% and in
most cases is close to 0. This indicates that the performance
benefits from FRJ do not come at the cost of some flows
unfairly occupying the medium.

-5

 0

 5

 10

 15

 20

 25

1 2 4 6 8

A
ve

ra
ge

 T
ot

al
 T

hr
ou

gh
pu

t (
M

bp
s)

# Flows

FRJ
SR/1500 bytes
SR/3000 bytes
FRJ w/ RTS
SR/1500 bytes w/ RTS
SR/3000 bytes w/ RTS

Fig. 9. Average total throughput versus the number of flows.

VI. CONCLUSION

In this paper, we develop Fast Resilient Jumbo frame (FRJ)
to enhance the efficiency and robustness of wireless perfor-
mance. We explore the interplay between three seemingly
unrelated technologies and show effectively integrating them
yields significant performance benefits in wireless LANs. FRJ
uses jumbo frames with partial packet recovery to boost
network throughput under good channel conditions and effi-
ciently recover packet losses under bad channel conditions. It
further uses partial recovery aware rate adaptation to maximize
effective throughput under partial recovery. Our evaluation,
based on a real implementation and testbed experiments,
shows that FRJ consistently out-performs the existing schemes
under different channel and traffic conditions.

The design space for integrating jumbo frames, rate adap-
tation and partial-packet recovery is large, and many other
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design choices are possible. The goal of this paper is to show
that there exists synergy between jumbo frame, rate adaptation
and partial-packet recovery, and it is important to exploitsuch
synergy to maximize effectiveness.

Moving forward, we are considering the following enhance-
ments to further improve performance. First, the effectiveness
of FRJ closely depends on the partial recovery scheme. For
simplicity and ease of deployment, we use one of the simplest
partial recovery techniques – segment-based partial recovery,
and already observe a large benefit. The effectiveness of FRJ
can further improve when applied to a more effective partial
recovery scheme. In particular, the postamble technique in
PPR [10] is effective to reduce header losses and increase the
success rate of partial recovery; coding techniques are also
useful to partial recovery and reduce control overhead [14].
Second, as shown in Section V-B, the RTS/CTS configuration
is important to achieve high performance. This configuration
is especially important under lossy links, because a data frame
can be transmitted only after both RTS and CTS succeed
and RTS/CTS loss can significantly reduce the number of
data frames to be transmitted. We are interested in explor-
ing dynamically configurable RTS/CTS. Third, FRJ can be
directly applied to multihop wireless networks by improving
the performance over each hop. Furthermore, to maximize its
effectiveness, it would be useful to design FRJ-aware routing
metrics to select paths that maximize effective throughputafter
partial recovery.
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