
Network Security Via Explicit Consent

Jad Naous∗, Michael Walfish†, David Mazières∗, Antonio Nicolosi‡, and Arun Seehra†
∗Stanford †UT Austin ‡Stevens Institute of Technology

Abstract
Securing real-world operating systems is hard; drop-
ping packets headed to those systems is easy. Thus,
network-layer defenses have become indispensable to
end-host security. Unfortunately, most defenses inflict
collateral damage, require hardware modification, or ne-
cessitate coordination between organizations’ adminis-
trators. Yet, for all that, each defense addresses only a
subset of attacks. This paper describes ICING, a network
layer that allows all stakeholders (senders, receivers, and
providers) to deploy new network defenses unilaterally,
with enough precision to avoid collateral damage, and
without further hardware modification. ICING captures
many prior network-layer defenses within a coherent
framework: for a packet to flow from sender to receiver,
every entity along the path must have consented to the
entire path. To enforce this property, ICING’s data plane
must address a key challenge: how mutually distrustful
realms that cannot rely on per-packet or per-flow public
key cryptography ensure that packets follow their pur-
ported paths. We demonstrate ICING’s technical feasibil-
ity with a prototype that forwards at over 2 Gbit/s.

1 Introduction
Although the Internet architecture is commonly regarded
as a disaster for end-host security, it does offer some se-
curity benefits. The assignment of functions to layers al-
lows people to sidestep intractable systems problems by
relying on the network as a “choke point”: rather than
secure real-world operating systems, people filter pack-
ets headed to those systems.

But of course Internet security is a disaster. First,
the architecture enables attacks (malware epidemics,
denial-of-service, route hijacking, etc.). Second, it in-
hibits defenses: conceptually simple actions, like iden-
tifying and blocking a troublesome traffic transmitter,
are research problems. More generally, network-layer
defenses—ACLs, VPNs, NATs, firewalls, probabilistic
signature matching, pleading with your ISP at midnight,
pleading with your attacker’s ISP at midnight, whitelist-
ing, blacklisting, redirecting traffic to a DoS defender,
securing BGP, network capabilities, proof-of-work, up-
grading your router, etc.—inflict collateral damage, re-
quire hardware modifications, or necessitate coordina-
tion between organizations’ administrators.

Worse, each defense addresses only a subset of at-
tacks, so people incur the above costs repeatedly. Worse

still, not every defense can coexist with every other. And
worst of all, attacks continue to evolve. Is a better world
possible? We note that despite the continual evolution of
attacks, the network stakeholders—senders, providers,
and receivers—remain constant.

This paper presents a new network layer, ICING.
ICING’s deployment requires hardware modification—
but only once. In an ICING network, each stakeholder can
deploy new network defenses unilaterally, with enough
precision to avoid collateral damage, and without further
hardware modification. Many proposed defenses that so
far require different, overlapping mechanisms can, under
ICING, coexist in a coherent framework.

ICING divides the network into mutually distrustful
administrative realms. To communicate with a destina-
tion, the sender must identify an appropriate sequence of
realms, which we call a path, between it and the destina-
tion. ICING’s approach to “path finding” involves senders
contacting path servers that are akin to today’s DNS
servers (an approach inspired by [43]), but ICING also
works with any other approach to path finding.

Before sending a packet along a path, a sender must
get explicit consent from each realm. (For now, we take
the two endpoints to be their own realms, but we revisit
that simplification in §3.4.) To get a realm’s consent,
a sender communicates with a general-purpose server
that is physically separate from the realm’s forwarding
hardware (a decomposition inspired by [14, 15, 23, 37]).
The sender proposes the path. In making its decision,
the server can incorporate arbitrary factors besides the
proposed path (billing relationships [36], authentication,
etc.). Upon consent, the server issues a proof-of-consent
(PoC) that authenticates the proposed path. PoCs gener-
alize network capabilities [8, 36, 42, 44] and Visas [18]
(see §8). On the data path, an honest forwarder drops
packets with invalid PoCs; it also drops packets that have
deviated from their authorized paths.

In practice, many “control plane” steps can be com-
bined; for example, the sender may, in one step, obtain a
path and PoCs for a large subsequence of that path.

ICING upholds a coherent security property. We say
that the path, P, taken by a packet is conforming when
P itself conforms to the security policies of the enti-
ties along P—the sender, the receiver, and all transited
realms. The process described above ensures that pack-
ets flow from senders to receivers only along conforming

1

paths, a property that we call consent-to-connectivity.
Consent-to-connectivity subsumes or generalizes the

high-level goals of many prior proposals (§7.3). In
those proposals, some stakeholder along a packet’s path
decides whether to drop the packet. The decision is
based on various factors, but one frequent factor is the
path itself, or rather, some component of the path—
the source [6, 8, 13, 25, 32, 42, 44], the two end-
points [18, 24, 36], a suffix [41], a prefix [9], an arbitrary
subsequence [22], the whole path [34], etc. A network
that lets entities grant consent on an arbitrary basis in the
control plane and that enforces consent-to-connectivity
in the data plane serves to unify these proposals.

Consent-to-connectivity also leads to security innova-
tions (§7.3). For example, under ICING, receivers and
providers can control paths toward them. Such control
allows them to invoke network services selectively (e.g.,
forcing the traffic of certain sources or classes to go
through a third-party deep packet inspector).

In explicitly empowering intermediate providers to
reject flows, consent-to-connectivity apparently violates
the IPv4 ideal of global connectivity. But we observe
that today providers can and do drop packets with no re-
course for the endpoints. Under ICING, providers can ex-
ercise their legitimate interests but can do so explicitly,
while endpoints can choose any conforming path. And,
because decisions are made in general-purpose servers,
prior to packet flow, they can incorporate arbitrary evi-
dence, permitting them to avoid the coarse-grained rules
(e.g., “block all traffic on particular ports from particular
areas of the network”) that cause collateral damage.

This separation of control plane software from for-
warding hardware facilitates innovation, as articulated by
others [14, 15, 23]. ICING’s contribution to this separa-
tion is to permit a realm to unilaterally express security
policies in its own software but to have other realms’
forwarding hardware participate in enforcing those poli-
cies (§3.4,§7). More generally, deploying new security
measures under ICING is closer to updating one’s DNS
servers than one’s routers (§7.1). And, ICING encourages
other kinds of innovation; for example, it permits coex-
isting inter-domain routing protocols (§7.1).

Our main focus in this paper is on upholding consent-
to-connectivity, which requires addressing some chal-
lenges (§3). First, it is not clear how a sequence, S, of mu-
tually distrustful realms can, without prior coordination
or prohibitive per-packet public key cryptography, ensure
that a packet follows S only if the realms along S con-
sented to S (§3.2). Second, to avoid the overhead of ex-
ecuting the consent-granting process for every flow that
it carries, a realm needs a way to selectively delegate its
authority (§3.4). Third, senders must request consent, but
how do they get consent to request the consent? In prior
work, such bootstrapping requires great care [10, 32, 44];

ICING must address a similar challenge (§3.5).
ICING is technically viable: our prototype forwarder,

built on an FPGA (§5), forwards at over 2 Gbit/s for
all packet sizes. A production ASIC implementation of
ICING would of course be far faster and could handle
backbone links. We believe that ICING’s space overhead
is heavy but acceptable: for 1514-byte packets, the aver-
age header is 18% of the packet; for IP it is 1% (§6).

However, technical viability alone does not address the
questions of how to gain adoption and how ICING coex-
ists with other proposals of similar scope. We make only
passing reference to these questions (§8, §9) and for now
note that ICING promotes the coexistence of naming,
routing and access control mechanisms. Ultimately, we
believe that these questions are premature. Our purpose
in this paper is to give an existence proof that ICING’s
goals are realizable; that proof must precede discussion
about backwards compatibility with the Internet or co-
habitability with other proposals, because without know-
ing if something is possible, we certainly cannot figure
out how to deploy it.

Many other “clean slate” architectures have been pro-
posed recently, some of which partially inspire this
work (§8). ICING’s contributions are its overall architec-
ture (§2), particularly that mutually distrustful realms co-
operate to enforce each other’s policies; the articulation
of consent-to-connectivity as a unifying property (§7); a
protocol that upholds this property (§3); and a prototype
that serves as an existence proof (§5,§6).

2 Overview of ICING and rationale
We now give an overview of ICING and describe the ra-
tionale for our high-level approach. §3–§4 detail ICING’s
design. This paper’s focus is ICING’s data plane, specifi-
cally interrealm transit. §7 gives example uses of ICING.

2.1 Overview
ICING divides the network into realms. Realms are de-
fined by trust boundaries, and no two realms need trust
each other. ICING does not change the basic network
topology and peering model: today’s ASes map naturally
to realms. However, the granularity of a realm is variable.
An organization that centrally administers its forwarders
and hosts may form a single realm. When different ma-
chines belong to different people, each host, or virtual
machine, or even process can be its own realm. (In §3.4,
we describe a more convenient way to name endpoints.)
For deploying ICING, it may be useful to regard the cur-
rent Internet as one realm.

A packet’s route brings it from the source, through
intermediate realms, to the destination. We call this se-
quence of realms a path. The essence of ICING is as
follows: Each realm decides whether a path, or set of
paths, conforms to its security policy. These decisions

2

path
auth

vector

(1) len

idx
path

counter

...

realm (R0)
[20 bytes]

[20 bytes]
realm (Rn)

...

[12 bytes]
Van

pkt lenproto payload

Va1
[12 bytes]

[4 bytes]

[4 bytes]

[4 bytes]

[4 bytes]

vnode (rn)

Vb1

Vbn

vnode (r0)

vers path

Figure 1—Format of a ICING packet (which follows a 14-byte
Ethernet header).

are made in general-purpose servers, prior to a packet
flowing, and can incorporate arbitrary information that
the realm finds relevant (e.g., billing [36]). Forwarders
collectively enforce these decisions, a property that we
defined as consent-to-connectivity (§1). Below, in §2.2,
we explain why ICING is built around this essence.

Figure 1 depicts the packet format. The packet con-
tains its path as well as cryptographic values that allow
the forwarders to validate the path.

The forwarders within a realm share two keys: a sym-
metric key, called the PoC key, and a public/private key
pair, called the realm key. The PoC key allows the en-
tity that makes policy decisions on behalf of a realm
to indirectly communicate those decisions to the realm’s
forwarders. The way it does so is by issuing a proof-of-
consent (PoC) to the sender. Because the cryptographic
values in the sender’s packets are bound to the PoC,
the forwarders can verify that the realm issued consent
(§3.2). We note that any machine that knows the PoC
key can issue consent; the machine need not be physi-
cally located in the realm and can be an explicit delegate
of the realm (§3.4).

A realm’s name is its public realm key. This key al-
lows realms earlier in the path to prove to later realms
that they have processed a packet. Thus, forwarders can
verify not only that the local realm consented to the path
but also that the packet has actually followed its path.
As ICING is so far described, this verification is concep-
tually simple: every realm that touches a packet could
theoretically sign the packet with its private realm key.
However, in practice, per-packet public key operations
are prohibitive. Our actual approach is given in §3.2.

To send a packet, an application running on the source
passes the path, a set of appropriate PoCs, and a payload

to its local networking stack.
To obtain a path and PoCs, a sender, S, exercises con-

trol plane functions. These functions are conceptually
distinct but in practice can happen simultaneously:
1. Configuration (when S attaches to a network);
2. Resolution of a name (e.g., a human-friendly name)

to a realm name, Rdest;
3. Resolution of Rdest to a suitable path, P, that leads

from S to Rdest; and
4. Retrieval of PoCs that authenticate P.
Control plane traffic travels in ICING packets. Thus, only
after presenting the data plane do we describe the details
of the functions above (§4) and address bootstrapping
questions (e.g., how senders get PoCs to send packets
that request PoCs). We give a simplified and very brief
summary now: S uses a broadcast configuration proto-
col (ICING’s equivalent of DHCP) when joining the net-
work to obtain its first PoCs. These PoCs allow S to com-
municate with a path server (an approach inspired by
NIRA [43]). S queries the path server, supplying a name,
and receives a path and PoCs for that path.

2.2 Rationale
We now explain how our high-level approach derives
from three requirements.

The security benefits of network-layer defenses stem
from the ability to drop packets. While different propos-
als invest this ability in different stakeholders (e.g., the
receiver), our view is that if we have a clean slate oppor-
tunity, we should design in the interests of all stakehold-
ers. For a given packet, the stakeholders are the source,
the destination, and the intermediate providers.1 Each of
these stakeholders has legitimate reasons for dropping
traffic (as also argued in [24]). Thus, our first require-
ment is (1) give all stakeholders a way to refuse to carry
traffic.

Of course, any entity along a packet’s path has always
had the ability to drop traffic. But today entities make
silent decisions. There is little transparency and no op-
portunity for endpoints to use alternate paths. Worse, en-
tities make bad decisions. Because they lack information,
they cause damage from drops that they commit (e.g.,
blocking traffic from Web sites that share IP prefixes with
spammers) and drops that they omit (e.g., not shutting
down denial-of-service attacks because doing so would
deny service to legitimate hosts). Thus, our next require-
ments are that (2) allow/deny decisions be explicit and
prior to packet flow, allowing senders and receivers to
avoid providers that would drop their flows, and that (3)
these decisions be informed, based on the precise infor-

1Certainly, there are other higher-level stakeholders, such as the hu-
man whose medical records are traveling from source to destination,
but we are concerned with network-level security here so can uphold
the interests only of stakeholders that are visible at that level.

3

mation that is needed, rather than heuristics.
These three requirements imply that all entities in a

packet’s path should make an allow/deny decision in
the control plane, prior to packets flowing, based on
arbitrary factors. But why is ICING’s data plane de-
signed to enforce consent-to-connectivity? While any en-
tity’s policies are likely to be idiosyncratic, any policy
based in part on the path requires that the forwarding
infrastructure constrain packet flow to meet the policy.
And, as mentioned in §1, such policies are common;
in the allow/deny decisions in prior work, entities of-
ten use some component of the path as an input, such
as the source [6, 8, 13, 25, 32, 42, 44], the two end-
points [18, 24, 36], a suffix [41], a prefix [9], an arbitrary
subsequence [22], the whole path [34], etc.

We further discuss consent-to-connectivity in §7.

3 Design of ICING’s data plane
We start with a simplified version of the protocol that
assumes that each realm consists of a single forwarder.
We then augment the protocol with vnodes, a mechanism
that enables delegation of PoC-minting ability, bootstrap-
ping, intrarealm forwarding, and more.

3.1 Threat model
We assume that some realms (end-hosts and providers)
are controlled by attackers who are subject to standard
cryptographic hardness assumptions. We refer to the
realms they control as malicious. These realms can de-
viate arbitrarily from the protocols that we describe, in-
cluding sending arbitrary packets or flooding the links
they have direct access to.

Realms that obey the protocol we term honest. Hon-
est realms can carry packets between other realms. We
make no assumptions on how malicious realms are im-
plemented (they may directly connect to one another
and be controlled by a single attacker). ICING concerns
the behavior of honest realms, in particular determining
when they have carried or should carry a packet.

3.2 Basic protocol
To uphold consent-to-connectivity, the data plane en-
sures that packets may transit an honest realm R only
under the following conditions:
1. [Path Validity] The path P in the packet’s header must

have been previously approved by R; and
2. [Provenance Verification] The packet must verifiably

have transited all honest realms before R in P.
Note that neither condition explicitly constrains the tra-
jectory packets take after leaving a given realm R. Taken
together, however, they guarantee that packets that skip
any honest realm will be dropped at the next honest realm
that they traverse. In other words, the two conditions to-
gether imply the following:

P 〈R0, R1, R2, . . . , Rn−1, Rn〉. A packet’s path.
M {vers, ctr, proto, len, payload}. Its contents.
Ri A public key which is also the realm name.
xi The private key of realm Ri.
si The symmetric PoC key used by Ri’s

forwarders to verify packets.
ki,j SHA-1(Ri, Rj, gxixj). A symmetric key

shared by realms Ri and Rj, and derived
from their names using non-interactive
Diffie-Hellman key exchange.

pocP,i CMAC(si, P). Proof of consent (PoC) to
path P by realm Ri.

V i 〈Vai
1, Vb1, Vai

2, Vb2, . . . , Vai
n, Vbn〉. Auth

vector when packet leaves Ri; allows
downstream realms to verify provenance.

Aj H′
(
pocP,j, H([P,] M)

)
.

Va0
j PRF-96 (k0,j, {[H(P, M),] first 96 bits of Aj}).

Vai
j PRF-96(ki,j, {[H(P, M),] Vai−1

j }). Proves to
Rj that packet has transited path through Ri.
Unused if i ≥ j.

Vbj Last four bytes of Aj. Guards the forwarder
slow path from DoS attacks.

Figure 2—Cryptographic values in ICING. PRF-96 is AES-
XCBC-MAC-96 [21]. H′ is CMAC (but may change). Hash H
and the bracketed quantities in A and Va were not implemented
for the benchmarks, but will be for the camera-ready version.

3. [No Path Deviation] Packets that fork off their de-
clared path P by skipping an honest realm Rskip cannot
traverse any honest realm that succeeds Rskip in P.
Designing a viable protocol that enforces the above

conditions requires some care: in particular, per-packet
public-key operations would induce an unacceptable per-
formance penalty. Our protocol avoids this penalty by
sharing symmetric keys between each pair of realms. Es-
tablishing the shared keys without adding hard state to
forwarders requires public-key cryptography but only the
first time the two given realms appear on the same path
(or after a symmetric key has been evicted from cache).

Preliminaries and notation. As mentioned above, the
name of a realm, Ri, is a public key. Because public keys
are carried in packets, we wanted them to be as small as
possible. Thus, we chose to use elliptic curve cryptogra-
phy. Every Ri is a point on NIST’s B-163 [5], which is a
binary-field elliptic curve group. The corresponding pri-
vate key, xi, is the discrete logarithm of the public key:
gxi = Ri, where g is a globally agreed upon generator. 2

To make our protocol more amenable to a hardware

2The elliptic curve literature uses additive notation, but here, for
readability, we use the more familiar multiplicative notation.

4

function SENDPACKET(P, pocs, m)
// P = 〈R0, R1, . . . , Rn〉
// pocs =

˘
pocP,i = CMAC(si, P) | 1 ≤ i ≤ n

¯
// m = {proto, packet-len, [return path + PoCs,]data}
// M = vers||ctr||m

for (i = 1 . . . n) do
Ai = H′(pocP,i, H([P,] M))
Vai = PRF-96(k0,i, {[H(P, M),] first 96 bits of Ai})
Vbi = last 4 bytes of Ai

V0 = 〈Va1, Vb1, Va2, Vb2, . . . , Van, Vbn〉
path-idx = 1
pkt = ver||path-len||path-idx||cntr||P||V0||m
transmit pkt to R1 // may need intrarealm forwarding
cntr++

Figure 3—Pseudocode for packet construction: S = R0 con-
structs a packet to send payload m along path P. Note that P is
0-indexed and V0 is 1-indexed.

implementation, we reduce the representation of the key
from 163 bits to 160 bits. We do so by requiring the top
3 bits of Ri to equal a hash of the rest of Ri; the cost is
a factor of 8 in expected key generation time. The secu-
rity attained is roughly 80-bit security, comparable to the
security of RSA-based systems with 1024-bit moduli [5].

We label the source of a packet R0, the destination
Rn, and the path P = 〈R0, R1, ..., Rn〉. For each Ri, as-
sume the source holds a PoC that proves to forwarders
in Ri that Ri has consented to P. For the purpose of
creating PoCs, every realm Ri has a symmetric key, si,
known to the equipment in that realm. A PoC is set as
pocP,i = CMAC(si, P). (We use CMAC-AES-128 [4], a
deterministic message authentication code with pseudo-
random outputs.) Realms change their PoC keys, si, pe-
riodically to safeguard against chosen-message cryptan-
alytic attacks.

Each realm implicitly has a pairwise shared key with
every other realm. The keys are generated by non-
interactive Diffie-Hellman key exchanges: realms Ri and
Rj share ki,j = SHA-1(Ri, Rj, gxixj).3 The purpose of these
keys is for realms along a packet’s path to provide each
other with cryptographic evidence of packet provenance.

Figure 2 summarizes the protocol’s constructs.

Packet construction by sources. To send a packet, a
source follows the pseudocode in Figure 3. Sources do
not place PoCs in packets directly (see Figure 1): the
presence of a PoC, say pocP,i, in the packet would only
inform realm Ri’s forwarders that the realm consented to
the purported path, P, listed in the packet. However, there

3Realms also use their private keys to sign certificates (§4). Such
“dual purposing” of key material is wisely discouraged by folklore be-
cause the resulting interplay among distinct cryptographic functions
might void their individual guarantees. A careful security analysis in-
dicates that ICING’s protocol is safe in this regard, but the details are
outside this paper’s scope.

function RECEIVE(pkt)
// pkt = vers||path-len||path-idx||cntr||P||V i−1||m
// M = vers||ctr||m

pocP,i = CMAC(si, P)
Ai = H′(pocP,i, H([P,] M))

// extract components in V i−1 that we need to verify
let 〈Vai−1

i , Vbi〉 = the ith entry in V i−1

// following line protects slow path from spurious calls
check that Vbi equals last 4 bytes of Ai: if not, drop

// following line may require slow path invocation
compute k0,i, k1,i, . . . , ki−1,i

// simulate what earlier forwarders should have done to
// the ith component of the authorization vector

W = first 96 bits of Ai

for 0 ≤ j ≤ i− 1 do
W = PRF-96 (kj,i, {[H(P, M),] W})

check that W = Vai−1
i : if not, drop

// following line may require slow path invocation
compute ki,i+1, . . . , ki,n

// construct V i

V i = V i−1

for i + 1 ≤ j ≤ n do
Vai

j = PRF-96
`
ki,j,

˘
[H(P, M),] Vai−1

j

¯´
increment pkt.path-idx to i + 1
transmit pkt to Ri+1 // may need intrarealm forwarding

Figure 4—Pseudocode for packet forwarding: Ri validates pkt
and transforms V i−1 to V i before sending pkt to the next realm.
Note that P is 0-indexed and V i−1, V i are 1-indexed.

would be no guarantee that the packet actually took this
path, and nothing to constrain the packet to continue to
follow the path.

To provide such a guarantee, the packet contains an
authorization vector, V i. Each realm Ri receives a packet
with V i−1 and transforms the vector to V i. The source
constructs V0 from a set of packet- and realm-specific
authenticators, A1, . . . , An. The authenticators bind the
PoC, path, and payload together in a concise value that
can be certified by each realm on the packet’s path. Intu-
itively, V0

j assures realm Rj that realm R0 claims to have
sent this packet because only realms R0 and Rj know the
key k0,j used to certify this value.

Packet verification and transformation by for-
warders. Figure 4 depicts the handling of packets by
a realm, here represented as a single forwarder. Con-
sider the ith entry of V i−1, the vector at the time that
Ri receives the packet. It is in two pieces: Vai−1

i and Vbi.
The first piece, Vai−1

i , should, in the absence of attack,
be a recursive application of PRF-96 to Ai under keys
k0,i, . . . , ki−1,i. Rj can verify Vai−1

i by recomputing it; if
the value is correct, Ri knows all previous realms in the
packet claim to have carried the packet, so at least the
subset of them that is honest will have carried the packet.

5

To verify the integrity of Vai−1
i , Ri’s forwarder must

derive any of {k0,i, . . . , ki−1,i} that it is not already
caching. This derivation entails a non-interactive Diffie-
Hellman key exchange, which is performed4 in the for-
warder’s slow path and requires ∼ 4 msec in our envi-
ronment (see §6.3).

The purpose of the second piece, Vbi, is to guard
the forwarder’s slow path. Vbi is always verified on the
fast path and the packet dropped if the verification fails.
Without this check, an attacker could invent realms and
bogus paths to force spurious slow path operations on
forwarders. Vbi is only 32 bits, so it does not rule out
such attacks altogether, just decreases their effectiveness
by a factor of 232, sufficient to avoid DoS.

Return paths. Most network applications require bi-
directional communication. While a destination, Rn, can
reply to a source, R0, by resolving R0 at path servers and
obtaining its own PoCs, it is more efficient for R0 to ne-
gotiate the return path at the same time as it is negotiat-
ing the forward one. Thus, the payload of a packet begins
with a return path and set of return PoCs that the recipi-
ent can use to reply. This offloads return path negotiation
to clients, which helps in settings where it is important to
minimize load on servers.

3.3 Analysis and limitations
ICING allows realms to innovate and deploy a variety of
new security policies in the network (§7), but it is also
important to realize what ICING does not achieve. While
realms can enforce policy based on where a packet has
been and on where it claims to be going, they cannot
control where a packet actually goes downstream. If, for
instance, realm B consents to path 〈A, B, C, D〉 but not to
〈A, B, C, D′〉 , it is still possible for A, C, and D′ to col-
lude to use the latter path (which could potentially result
in B charging D for traffic that actually went to D′).

ICING also cannot meaningfully enforce negative poli-
cies against edge realms. While the Internet’s IP address
scarcity makes it somewhat reasonable to blacklist bad
IP addresses, edge realms can easily generate new keys.
However, a bad edge realm’s provider (and the vnodes
assigned to that edge realm, as discussed in the next sec-
tion) may be harder to change, in which case one could
achieve similar results by blacklisting the provider (or
one of its vnodes).

More generally, the policies ICING serves best are
those that can be expressed in terms of either authenti-
cation or network topology. For example, the policy em-
bodied by a typical corporate VPN, whereby employees
authenticate themselves to access a network, is easily ac-

4An additional level of caching in software (not currently imple-
mented) would ensure that a forwarder incurs the cost of the NIDH key
derivation only the first time it encounters another realm.

commodated by ICING, with the added bonus that ICING
can stop unauthorized traffic upstream. In contrast, a pol-
icy to deny network access to all machines in the US
would not be enforceable without a database of all US
realms with international links.

ICING does not offer confidentiality, except as far as it
allows realms to conceal communication patterns from
hostile realms by routing around them. Proper confi-
dentiality requires transport-layer encryption, a simpler
project we have undertaken separately and hope to com-
bine with ICING.

Finally we note that ICING cannot solve some control
plane problems that are primarily social or business is-
sues. For instance, providers can still drop packets that
they have consented to carry. Or, ICING can secure host-
name lookups with certificates, but deployment would
run into the same political problems as DNSSEC.

3.4 Vnodes
Thus far we have described ICING as though each realm
consisted of a single forwarder. In reality, ICING divides
realms into vnodes [22] denoted by 32-bit identifiers. As
shown in Figure 5, a packet’s path actually consists of a
series of (realm, vnode) pairs.

Vnodes provide end-host addressing. For ordinary
unicast packets, the vnode of the last element in a
packet’s path designates the packet’s destination within
that realm. We also intend to use vnodes for intra-domain
routing. Vnode identifiers are large enough to contain
IPv4 addresses so as to facilitate using ICING to con-
nect networks that run IPv4 rather than ICING internally.
Vnodes need not correspond to individual devices, how-
ever. They can, for instance, be used for anycast (in par-
ticular to reach a realm’s control-plane servers).

Every vnode is not necessarily reachable from every
other vnode in a realm. Given two vnodes r1 and r2, it
may be possible for packets to flow from r1 to r2, or from
r2 to r1, or both, or neither. Similarly, neighboring realms
can only put packets onto a subset of a realm’s vnodes
and receive packets from a (generally different) subset.
We expect typical providers to assign a different vnode
or set of vnodes to each customer.

The virtual topology connecting a realm’s vnodes is
an important part of its configuration. Others [22] have
shown how vnodes can enforce a variety of inter-domain
routing policies such as valley-free routing. We envisage
prioritizing traffic by vnode and charging for it by vnode.

When two realms peer at multiple points, each peer-
ing point may connect to a different set of vnodes. For
instance, to charge more for long-haul traffic, a provider
can offer each customer two cheap vnodes, one limited
to East-cost peering points and the other to West-coast
ones, while a third, more expensive, vnode reaches all
networks connected to the provider.

6

P Path is now 〈T0, T1, T2, . . . , Tn−1, Tn〉.
Ti A pair (Ri, ri). Ri is a realm; ri is a vnode

within Ri.
sTi The PoC key for vnode Ti = (Ri, ri).

POCP,i CMAC(sTi , P).

Figure 5—Modification to cryptographic constructs in §3;
compare to Figure 2.

Each vnode has its own PoC key, which simplifies
changing PoC keys—one can gradually migrate traffic
to a new vnode before changing the old one’s key. A
realm may chose to divulge the PoC key for one of its
vnodes to another realm, thereby delegating the ability
to create PoCs. We expect providers to give PoC keys
to customers who run their own path servers. Customers
may then deny upstream PoCs according to their own
policy, stopping unwanted traffic before it transits their
provider’s networks.

A backbone provider will likely give PoC keys to the
ISPs it sells transit to. Those ISPs may wish to subdele-
gate the backbone’s PoC key. To allow controlled delega-
tion, a backbone provider may delegate a block of vnodes
to each ISP, who can then further subdelegate them in-
dividually or in smaller blocks. Like Platypus [36], we
generate all vnode keys for a given prefix from a sin-
gle master key in a way that allows further subdelegation
along bit boundaries. (If sp is the master key for prefix p,
then sp||b = H(sp, b).)

3.5 Bootstrapping
One particularly important application of delegation
is bootstrapping. Realms will want to host their own
control-plane servers, in which case potential senders
need a PoC to contact the server that grants PoCs. For
this purpose, each realm can create a bootstrap vnode
that connects only to its PoC server. Bootstrap vnode
keys can be published in naming service glue records
(much like DNS). Anyone possessing such a key can
create PoCs to reach the realm’s PoC server. Since the
bootstrap vnode does not connect to any other networks,
knowledge of its PoC key does not allow non-bootstrap
traffic to transit the realm. We discuss potential “Denial
of PoC” attacks [10] in §4.1.

4 Control plane functions
Our focus in this paper is ICING’s data plane. For con-
text and concreteness, we now mention some control
plane functions. We have space to give only a sketch.
The sketch covers only the “common case”; many other
uses are possible.

Configuration. When an ICING host joins a network,
it receives from a local configuration server the fol-
lowing state: (1) partial interrealm paths to and from

upstream realms. For example, the configuration server
might give a host at a university partial paths to a local
provider that peers with the university, to the Internet2
network, to the university’s commercial ISP, and to the
top-tier ISP from which the commercial ISP buys ser-
vice (as well as the reverse directions of those partial
paths). (2) For each realm in the partial path, a PoC key
that allows the host to mint PoCs for those realms. The
idea here is that each provider would have sub-delegated
(§3.4) a slice of vnode space to each of its customers.
At the extreme, an end-host has permission to mint PoCs
that allow the end-host’s traffic to flow over, for exam-
ple, a “slice” of a backbone network. (3) The full path,
and accompanying bootstrap PoC keys, to at least one
path server, PS0.

Path construction. When an ICING host wants to
reach a desired destination (steps 2–4 at the end of §2.1),
it submits a human-friendly name to PS0. The host and
PS0 perform a negotiation. If it is successful, they will
have identified a path that goes through an intermediate
realm I such that: (a) the host can mint PoCs to reach I
and (b) the path server can mint PoCs to get from either
I to the destination or from I to the next path server that
the ICING host should query, at which point the process
continues. (Here, the path server has the ability to mint
PoCs on behalf of intermediate realms just as the sender
does.) This approach is inspired by NIRA [43].

Consent servers and consent certificates. So far, we
have described senders and path servers as minting PoCs.
But in fact, each realm has a consent server (CS) that
takes as input proposed paths and ancillary information,
and issues PoCs on behalf of the realm. The ancillary in-
formation is arbitrary. The option that we envision (and
have implemented) is for the CS to require a set of con-
sent certificates from each realm along the proposed
path. Such certificates are signed by a realm’s private key.
An honest CS never issues a PoC unless it gets a set of
consent certificates from each realm along the proposed
path. Thus, packets with non-conforming paths will not
travel further than the first honest realm along the path.

Topology propagation. The topology propagation
protocol that we have designed “pushes information
to the edges” (i.e., to path servers and configuration
servers). We do not have space for more than a few
words. Under this protocol, advertisements flow down-
ward, from transit providers to customers. A provider,
say T , collects the advertisements that it has heard, ap-
pends a group of certificates that express information
about T’s interrealm links, and forwards the augmented
set of advertisements to its transit customers. Thus, when
a realm receives an advertisement, it gets information
about its provider, its provider’s peers, its providers’
providers, etc. This process can handle topology changes
at coarse grain time scales. There are several possibili-

7

ties for handling dynamic topology changes at fine grain
time scales, but we have not implemented them, and
there are some issues that require care (as also observed
in [11, 12]) so leave this to future work for now; see §9.

4.1 Flooding attacks
If a realm wishes to receive traffic from anyone in the
world (for instance because it runs a Web server), that
realm will be vulnerable to packet-flooding DoS attacks.
In the general case, such attacks are inevitable and im-
possible to defend against. ICING cannot solve the gen-
eral problem, but the specifics of a scenario often leave
room for effective defense measures; ICING allows vic-
tims to capitalize on those specifics.

We give three scenarios in which ICING can help. The
DoS victim may have user accounts, only a small frac-
tion of which are compromised (even if many machines
attack). The attacks may be coming through a small num-
ber of providers. Or the attacker’s machines may mostly
reside behind honest forwarders and path servers.

However, we must consider two types of DoS attack—
a flooding attack against an application server, and a
“denial of PoC” attack against the victim’s consent
server, which may be located on a bootstrap vnode with
a publicly known PoC key.

DoS attacks on application servers can be mitigated
by withholding consent (not granting PoCs), a common
approach [8, 32, 42, 44]. ICING contributes the ability
to base decisions on the full path, allowing victims to
recognize and deny a malicious provider emulating many
customers. If the victim has some notion of authenticated
users, each user can be redirected to a different vnode
and fair queuing used among vnodes to ensure a small
number of bad users cannot crowd out the honest ones.

Several measures can combat “denial of PoC” attacks
in which attackers flood a realm’s consent server with
traffic. We first note that a consent server can be reach-
able though multiple vnodes. Some will likely be public,
while others may be reserved for employees (who might
cache PoC keys on their laptops), and so with fair queu-
ing at least an attack on the public vnode will not crowd
employees out from reaching the company.

Alternatively, an organization need not host its own
public consent server. Today, third-party DoS defend-
ers exist that mediate all traffic to customers [35]. With
ICING, such services need only host (or mediate access
to) the public consent server. Authenticated users can
then communicate directly with the organization.

5 Implementation
We describe our implementation of the data plane and
then our (partial) control plane implementation.

Data plane. Our prototype ICING forwarder accepts
ICING packets carried in Ethernet frames. The core of

Figure 6—Hardware logic area costs.

the prototype is an image that runs on the NetFPGA pro-
grammable hardware platform [3], which has 4 Gigabit
Ethernet ports. The hardware executes the fast path (see
Figure 4 in §3.2). When an ICING packet enters the fast
path, if the packet’s path contains one or more realms Rj

for which the forwarder, representing realm Ri, does not
have ki,j (§3.2) cached in hardware, the hardware sends
the packet to a software slow path (again, see Figure 4)
over the PCI bus to an x86 processor running Linux (ver-
sions 2.6.18 and 2.6.25 in our experiments).

The slow path, implemented in the Click modular soft-
ware router, calculates the needed keys and installs them
in the hardware’s key cache, possibly evicting old keys.
The Diffie-Hellman is implemented with the publicly
available MIRACL cryptographic library. Together, the
fast path and software implement the protocol described
in §3.2. We have not yet implemented per-vnode PoC
keys (§3.4) and plan to do so soon.

The hardware image is based on the reference base
package provided by the NetFPGA project. We imple-
mented the ICING-specific logic, including the crypto-
graphic modules and re-used the reference package’s
support modules—Ethernet logic, DMA logic, queueing,
and the interface to host software.

The total equivalent gate count for our 2 Gbit/s
NetFPGA forwarder design is 11.1M gates. In compar-
ison, the 4 Gbit/s reference IP router from the NetFPGA
project [3] has an equivalent gate count of 8.65M. The
implementation uses 78% of the total FPGA logic area.
The relative costs in terms of logic area, or lookup ta-
bles (LUTs) used, of the main components are shown in
Figure 6. Of the 78% total, the ICING-specific logic uses
approximately 46.7%, while the support modules men-
tioned earlier use the other 53.3%. Figure 7 shows the
major hardware blocks.

We now address an important performance concern.
From Figure 4, one might expect the cost of processing
a packet to depend on the length of a packet’s path and
on a realm’s position in the path (the value of i): a larger
path length means more iterations of AES-XCBC-MAC-
96, and the value of i affects whether the forwarder is
doing more “verification” or more “MACing”. However,
the number of AES-ENCRYPT operations—the slowest

8

Figure 7—Block diagram for ICING forwarder fast path show-
ing (a) the output port lookup module and (b) the opl unit
module. output port lookup encapsulates two opl units that
process data arriving from the Ethernet interface and that share
a single key lookup module. Inside opl unit, the process pkt
module pre-processes the packet and verifies V i−1 while the
write pkt module transforms it into V i (§3.2).

operations used in our protocol—performed per packet is
proportional to the packet size. The result is that our pro-
totype ICING forwarder’s per-packet processing cost de-
pends only on the total size of the packet, not on the path
length, the forwarder’s position in the path, or the other
header values; that is, its throughput (in bits per second)
is well-defined (and very close to the AES-ENCRYPT
throughput without pipelining). We validate this claim
experimentally in §6.3.

Control plane. Our control plane software currently
runs over IP; our near-term work is to make it run over
ICING, as well as to address the other incomplete items
that we are about to describe. So far, we have imple-
mented a combined consent server and path server (§4).
It is implemented in C++, exposes a getpath call over
XDR RPC, and runs on Linux 2.6.18 and 2.6.27. It can
participate in a DNS-like hierarchy by supporting non-
recursive queries that return partial paths to a desired des-
tination or to other path servers. We emulated the results
of a routing protocol by using configuration files to seed
the path server with paths to realms. Clients requesting
paths from the path server were manually bootstrapped
with paths to intermediate realms.

Endpoints. We implemented ICING-aware sender and
receiver applications. After communicating with the path
server, a sender calls a user-level library function, which
creates ICING packets (per SENDPACKET in Figure 3 in
§2.1), embeds them in dummy IP packets, and directs
them to a local Click instance using tun. Click strips the
IP header and transmits the ICING packet in an Ether-
net frame. The receiver application gets the ICING packet
encapsulated in another dummy IP packet from a local
Click instance through tun. The application then strips
the IP header and calls another user-level library func-

The average packet overhead is 18.4%. §6.2

Our prototype forwarder processes packets at
2.1 Gbit/s for all packets. The same hardware plat-
form processes IP packets at 4 Gbit/s using 78% of
the logic used in the ICING implementation, suggest-
ing that the hardware cost of ICING is tolerable.

§6.3

Over the WAN, the link delays are the major contrib-
utor to end-to-end latency and control path latency is
negligible relative to the end-to-end latency.

§6.4

Table 1—Summary of main evaluation results.

tion that verifies the packet (the function is similar to
RECEIVE in Figure 4). We ran this software on Linux
2.6.25 and 2.6.27.

6 Evaluation
The ICING protocol (§3.2) introduces a number of per-
packet cryptographic operations. One of our principal
questions is the degree to which it is practical to perform
such checks at today’s Internet backbone link speeds.

We began by collecting microbenchmarks (§6.3). We
also deployed our ICING prototype in the Internet2 back-
bone and used it to carry traffic between hosts at geo-
graphically distant locations. We used this deployment
to evaluate the feasibility and performance of a potential
ICING backbone network (§6.4). In §6.5 we extrapolate
from our findings to assess ICING’s future feasibility in
the Internet core. Table 1 summarizes our main results.

6.1 Setup and Parameters
We used four types of machines when evaluating ICING:
a slow machine, with an Intel Core 2 Duo 1.86 GHz pro-
cessor and 2 GB of RAM; a medium1 machine, equipped
with an Intel Core 2 Quad 2.40 GHz CPU and 4 GB
RAM, also running Linux 2.6.25; a medium2 machine,
with an Intel Core 2 Duo 2.33 GHz CPU and 2 GB
RAM, running Linux 2.6.27; and 3 fast Intel quad Xeon
3.0 GHz machines with 2 GB RAM and, running Linux
2.6.18. The slow and medium1 machines were setup in
one lab, while the medium2 machine was located in a ge-
ographically distant lab. The fast machines are installed
in 3 Internet2 Point-of-Presence (PoP) locations: Hous-
ton, Los Angeles, and New York. All machines, except
the medium2, are configured with NetFPGA cards.

The NetFPGAs in the Internet2 nodes were connected
in a full mesh by dedicated 100Mbit/s circuits. The nodes
themselves were accessible from the Internet.

In our measurements, we often vary packets’ path
lengths, path indices, or sizes. Here, we present three
sets of points that we have used in §6.3 and §6.4. When
the path length was a parameter, it varied over {3, 7, 10,
20, 30, 37}, with the path index set to one. For through-
put measurement the payload was set to give 1514-byte

9

Payload Size Path Len Path Idx
0

1

2

3

Parameter changed

T
hr

ou
gh

pu
t (

G
bi

t/s
)

Min
Avg
Max

Figure 8—Maximum, average, and minimum throughputs
when each parameter was varied as described in §6.1. For each
30-second sample, the standard deviation was less than 5% of
the mean. The throughput varies slightly as packet parameters
are changed.

packets, while for latency measurements the payload size
was set to zero. When the path index was a parameter, it
varied over {1, 5, 10,15, 18} and the path length was set
to 20 and the packet size to 831 bytes. When the packet
size was a parameter, it varied over {311, 567, 823, 1335,
1514} while keeping the path length and path index con-
stant at 7 and 3 respectively.

6.2 Packet overhead
The ICING header size is significant. The header fields
that are not dependent on the packet’s path length use 13
bytes (see Figure 1). Each (Ri, ri) is 24 bytes, and each
component of V uses 16 bytes (the notation is from Fig-
ures 2 and 5). Thus, the total overhead in bytes is:

13 + 24 + 40 · (path length− 1)

For a packet whose path is 7 realms long—the average
length of an AS level path found in [28]—the header is
277 bytes or 18.3% of a 1514-byte packet. By compari-
son, IP’s 20-byte header is 1.3% of a 1514-byte packet.

6.3 Microbenchmarks
ICING forwarder We began with our prototype’s
throughput and per-packet latency, for both the fast path
and the slow path. As mentioned in §5, we expect the
first two metrics to be independent of the path length and
of the forwarder’s position, i or the path index, in the
path (except as far as these factors affect the total packet
length).

Forwarder fast path throughput. In our lab, we
connected the four ports of the ICING forwarder to a
NetFPGA packet generator that can send ICING packets
at line-rate. We varied the packet’s path length, path in-
dex, and the payload size and measured the throughput
over 20 30-second samples at the measurement points
described in §6.1. The ICING forwarder looped ingress
packets back into the packet generator, which measured
the average rate of packet arrivals. All required symmet-
ric keys were already in the hardware cache.

0 500 1000 1500
0

10

20

30

Packet size

L
at

en
cy

 (
µs

)

Path len varied

Payload varied

Path idx varied

Trend line

Figure 9—Summary of the three latency measurement results
using the points described in §6.1. The standard deviation was
2% less than the mean in all measurements. The prototype’s
forwarding latency is independent of the ratio of path size to
payload size or current path index. The latency depends only
on total packet size; the trend line has slope 15 ns/byte.

Figure 8 plots the measurement results.The standard
deviation of each of the 20 samples we collected was
less than 5% of the mean. The minimum aggregate
throughput—over the four ports and including the Eth-
ernet preamble and inter-packet gap—was 2.1 Gbit/s.

Forwarder fast path latency. To measure latency,
again we employed the packet generator and used the
points described in §6.1. The packet generator can accu-
rately send packets simultaneously and timestamp packet
arrivals (with errors of a few nanoseconds). In our lab,
we connected two ports of the packet generator together
through the ICING forwarder and the other two ports di-
rectly to each other. All required symmetric keys were
again in the hardware cache.

The packet generator simultaneously sent packets
through the ICING forwarder and through the loop-back
cable and timestamped packet arrivals. The difference
between the timestamps is the forwarder latency.

We sampled 100 single packet latencies for each mea-
surement point. Figure 9 shows that latency grew linearly
with packet size and was independent of the forwarder’s
position in the packet path, as hypothesized in §5.

Forwarder slow path latency. We do not consider the
time a packet takes to travel from the fast path to the slow
path via the PCI bus or vice versa because the PCI bus
latency is negligible (tens of microseconds) compared to
the shared key calculation as will be shown.

The primary function of an ICING forwarder’s slow
path is the calculation of the shared symmetric keys (ki,j)
that are not currently in the hardware cache. To measure
the cost of this operation, we ran the shared key calcula-
tion function in a tight loop to calculate 3, 000 keys. We
ran the calculations on the slow machine (§6.1) because
both end-hosts and forwarders will need to get shared
keys in an ICING network. On average, a single key cal-
culation took 4 ms, with a standard deviation of 43 µs.
Writing this new key to hardware cache was negligible
in comparison, taking approximately 9 µs.

Because elliptic curve cryptography (ECC) is

10

0 10 20 30 40
0

10

20

30

Path length

L
at

en
cy

 (
µs

)

Avg
Trend

Figure 10—Average latency of the example consent server
as the requested paths’ lengths is varied. Standard deviation
was less than 2% of the mean. The trend line has slope
0.648 µs/realm

amenable to a hardware implementation, it is possible to
considerably speed up the slow path using a hardware
ECC co-processor.

Path server and consent server To better represent the
hardware that would run ICING control plane servers, we
used the fast Internet2 nodes (§6.1) to run server bench-
marks. We measured the throughput of our prototype
path server and consent server by isolating the two bot-
tleneck functions: getpath and getpocs.

Our prototype getpath function generates complete
paths by finding a common intermediate realm (as de-
scribed in §4). We bootstrapped the path server with 20
paths from intermediate realms to destination realms, and
called its getpath function providing it a random num-
ber between 1 and 20 of paths from sources to interme-
diate realms. We measured the throughput of getpath
by calling it in a tight loop over 20 30-second inter-
vals. The prototype path server generated approximately
6,990 paths/s, with a standard deviation of 42.6 paths/s.

We measured the throughput of the getpocs function
of a consent server by calling it in a tight loop and vary-
ing the path length in each request. Since the consent
server is single-threaded, we plot the latency of a sin-
gle request as the inverse of the throughput. The plot in
Figure 10 shows that the latency to generate a PoC is pro-
portional to the path length, which is expected because
the PoC is a CMAC of the path.

End-host We measured the throughput at which senders
can create and receivers can verify packets. For these ex-
periments, we used the medium1 machine (S6.1).

Sender. We measured the sender latency as the path
length varied when it already had all the required PoCs.
The sender generated 1000 1514-byte sized packets in a
tight loop with variable path length as in §6.1.

Receiver. We also measured receiver latency as the
path length varied using the same parameters. We sent
the same packet to the receiver (in the same memory lo-
cation) in a tight loop and measured the latency for 1000
packets. The results of both the sender and receiver la-
tency measurements are in Figure 11.

0 10 20 30 40
0

200

400

600

800

Path length

L
at

en
cy

 (
µs

)

Sender Receiver

Figure 11—Average latency of senders and receivers when the
total packet size was constant at 1514 bytes and the path length
changes using the path length measurement points from §6.1.
Standard deviation was less than 2% of the mean at each point.
The sender has the worst latency when the number of encryp-
tions is maximized at path length = 20. The receiver latency is
proportional to the path length with a slope of 0.55 µs/realm.

Figure 12—Our Internet2 experimental deployment. Two end-
hosts in geographically distant locations are connected over
the Internet to a path server and to Internet2 nodes running as
ICING forwarders.

The receiver is similar to a forwarder and incurs la-
tency proportional to the path length for a constant packet
size. The sender, on the other hand, CMACs the payload
path length times. And since the payload size is the dif-
ference of the packet size and path size, it follows that, as
the path length increases, the latency follows a parabola
as shown in Figure 11.

6.4 End-to-End
In our end-to-end experiment, each node is a unique
realm in an attempt to emulate a microcosm of three
peering network providers sharing a single path and con-
sent server. Figure 12 shows our deployment. We ran
forwarders on the fast Internet2 machines and used the
medium1 and medium2 machines as sender and receiver
respectively (see §6.1). The Los Angeles Internet2 node
ran a path server that could be queried by ICING-enabled
end-hosts over IP. The end-hosts connected to the back-
bone using a software IP tunnel.

The first packet of a new flow experiences two ICING
delays: path/PoC query and slow path invocation. To
measure these two operations, we use an ICING ping ap-
plication on the end-hosts. The sender initiates the ping
by first querying the path server for a path to the end-
host at the other end of the Internet2 network. The path
server acts as both a path and consent server, returning
a complete path and the necessary PoCs for communi-

11

First Pkt Subsequent Pkts
0

100

200

300

400

La
te

nc
y

(m
s)

Control
Plane

Latency

ICING
Latency

Link
Latency

Link
Latency

ICING
Latency

Figure 13—End-to-end latency by component for the first
packet in a new path and the subsequent packets going over
Internet2. The ICING latency includes the IP tunnel processing.
The path query adds negligible delay, and the link delay is ap-
proximately as large as the total processing delays.

cation in both directions. The sender generates a packet,
and includes the “return” PoCs in the payload. We mea-
sured the round trip time as the time from when a path
server request is sent by an end-host to the time when a
ping echo reply is received. The measurement results are
summarized in Figure 13.

The latency to query the path server is 3.4% of the
total latency, and thus negligible. Note that because the
forwarder’s fast path latency (Figure 9) is on the order of
tens of microseconds, and the sender and receiver laten-
cies are on the order of hundreds of microseconds (Fig-
ure 11), while the ICING processing latency from Fig-
ure 13 is on the order of hundreds of milliseconds, we
conclude that most of the ICING processing latency is
due to the IP tunnel and the overhead of using Click in
user space. In future work, we will move the IP encap-
sulation/decapsulation into the hardware and use kernel-
level Click.

6.5 Scaling
In this section, we extrapolate the measured performance
of our ICING prototype to assess whether a production
implementation could meet the Internet’s backbone rates.
We examine throughput and key cache size.

Throughput. Current backbone links run at 40 Gbit/s,
which should increase to 100 Gbit/s by 2010 [27].
Our NetFPGA implementation gets 2 Gbit/s with older
technology—the latest Virtex6 FPGAs are more than 10
times as dense and can run at a much higher clock speeds.
Thus, we expect ICING hardware to be neither expensive
nor difficult to build to meet backbone requirements.

Key cache size. The key cache (§5) stores the calcu-
lated symmetric shared keys in the forwarder’s hardware.
To ensure that traffic through an ICING forwarder runs at
line rate, the cache must fit the symmetric shared keys
for all realms in all packet paths in the traffic. Here, we
estimate the required size.

If we assume that each realm corresponds roughly to
an autonomous system, we can set an upper bound on the
maximum size of the key cache by looking at the num-
ber of advertised Autonomous System Numbers (ASNs).
As of March 3rd, 2009 this number is less than 32k and

growing at less than 3.2k/year [1], so the key cache size
for an ICING forwarder that can handle today’s traffic
and the traffic for at least the next 5 years—assuming
the growth rate remains constant—is less than 100k en-
tries. Note that a forwarder will almost certainly never
be receiving flows passing through every realm on the
Internet, so the actual required number is less. The esti-
mate found above, however, does suggest that it might be
possible to eliminate the slow path by precalculating the
symmetric keys for all realms.

Current IP routers and switches already have tables in
the order of hundreds of thousands of entries[2], and so
we do not believe the key cache will be an obstacle. In
fact, most packets will tend to follow very similar paths
since backbone link topologies are sparse, and, hence,
the number of keys that need to be stored in the key cache
will be much less than 100k.

7 Implications, applications, unifications
A benefit of ICING is that, once deployed, it allows peo-
ple to meet the goals of many other proposals without
further data plane modifications. To illustrate ICING’s
versatility, we begin with some high-level observations
(§7.1), move onto specific uses of ICING that are not
explicitly related to security (§7.2), and then discuss
ICING’s potential to unify many previous proposals and
current mechanisms (§7.3). As part of this discussion, we
give a (crude) taxonomy that references a sizeable quan-
tity of related work. We discuss other related work in §8.

7.1 High-level implications
Much of ICING’s flexibility stems from the separation
of path and consent servers from the forwarding hard-
ware. Updating these servers is akin to updating one’s
DNS servers today—and far easier than changing one’s
routers. And, just as one could introduce a new naming
facility to the Internet without disabling DNS, ICING al-
lows multiple naming, routing, and access control frame-
works to coexist on the same forwarding infrastructure.
This decomposition promotes innovation (as argued by
others [14, 15, 23]): it allows people to evaluate new
ideas on production infrastructure without the global co-
ordination from tier-1 ISPs and router vendors that would
be required to test, say, a BGP replacement.

Moreover, because ICING is specifically geared to-
ward enforcing a coherent security property—namely
that packets not take non-conforming paths—people can
experiment with new control plane functions without
having to worry that doing so violates the security poli-
cies of any realms. In other words, ICING treats routing
and security as the same problem, in the same frame-
work. (With few exceptions [15, 37] these two problems
are handled with different mechanisms in the literature,
despite their natural connection.)

12

7.2 Non-security applications
Under ICING, the existence of multiple paths from clients
to servers is not hidden. One consequence is that ICING
provides a natural solution to “multipath”, i.e., permit-
ting sources to choose from multiple paths to a destina-
tion or to use several paths simultaneously.

Another consequence is that ICING facilitates anycast.
Path multiplicity is already explicit in ICING, and the
mechanism works whether the paths terminate at the
same or different physical instances. Thus, clients and
servers can negotiate between them to devise optimal
routes to nearby replicas. Today, commercial content dis-
tribution networks approximate this functionality with
DNS tricks, but doing so requires detailed, proprietary
knowledge of the Internet’s topology.

7.3 Potential unifications
We now try to give some intuition for how ICING
can express the high-level goals—except for backward
compatibility—of current mechanisms and prior work.

Consider blacklisting. One can implement it unilater-
ally in ICING’s control plane servers by withholding con-
sent and not returning PoCs for any path that contains a
blacklisted realm. More interesting, using delegation via
vnodes [22] (see §3.4), a destination realm can get other
realms to drop blacklisted packets closer to the source.
As discussed in §3.4, if providers delegate PoC creation
for each vnode to the path server of the customer billed
for that vnode, then a destination’s path server can with-
hold upstream consent for blacklisted paths.

Consider VPNs, in which an organization wants only
employees to send packets to its network. Under ICING,
the organization simply sets its consent and path servers
not to return paths or PoCs to non-employees. Doing so
requires a way for employees to authenticate themselves
to the company’s consent servers (e.g., single-sign-on au-
thentication systems). But ICING can also permit richer
and more precise policies than VPNs. For instance, each
employee may be given a separate vnode which can
reach only an employee-specific set of servers.

Note that in this example, the organization’s consent
server is likely to be a target of denial-of-service attacks,
but it can be located off-site, possibly hosted by a DoS-
prevention company [35]. Or an organization might dis-
pense with consent servers and instead issue employ-
ees tamper-resistant hardware devices containing present
and future PoC keys. So long as each employee is given
a separate vnode, revocation is simple.

A number of recent proposals have shown how to
derive security benefits from scenarios in which edge
routers are honest even if the hosts behind them are com-
promised [8, 13, 25, 32, 42, 44]. ICING offers similar
benefits when a host’s local path resolver (§4) is hon-
est, as follows. If a host is “undesirable” in the view of

some destination, then its local resolver will not be able
to negotiate a valid path from it to the destination. With
no valid path, an honest resolver will refuse to generate
PoCs that allow the host to send traffic out of the local
network along that path; this refusal “contains” the “un-
desirable” host, in the view of the given destination.

Crude taxonomy. We now give a taxonomy of pro-
posals (which is necessarily incomplete) and show how
ICING captures this taxonomy. By upholding consent-to-
connectivity, ICING captures the cross product of which
entity along the path gets to make a decision with which
entities along the path form the basis of the decision.
That is, consent-to-connectivity captures senders con-
trolling the path [34], receivers deciding which hosts
can send them traffic [8, 13, 25, 32, 42, 44], providers
controlling inbound paths [9], providers controlling on-
ward paths [41], providers controlling subsequences of
paths [22], middleboxes controlling each other [24], etc.

And, this cross-product directly suggests new security
notions that are not expressible or enforceable under the
status quo. For example, receivers should be able to con-
trol the path toward them. This would allow an organiza-
tion (financial, medical, intelligence, legal) that handles
sensitive data to ensure that only providers that it trusts
carry data to it or between two remote offices.5

Of course, many allow/deny decisions today are based
on packet contents rather than some component of the
path (e.g., “packet washing”, intrusion detection, or mal-
ware detection). ICING permits such defenses. Within an
organization, it suffices to configure the vnode topology
to force traffic through these middleboxes. More interest-
ingly, however, such defenses need not be implemented
inside the realm that wants them. A company might con-
sent only to inbound traffic whose path transits some
third-party security service. The service may be many
hops away from the company on the network, but if the
service appears in the path, then any honest realm be-
tween the service and the company will drop forged traf-
fic that has not transited the service.

Note that we do not discuss “control plane” security
proposals (e.g., [26, 29, 40]); the issues addressed by
these proposals don’t arise under ICING. Also, given our
focus on the network layer, we do not discuss proposals
that work at other layers (e.g., DNS, overlays [7, 17, 30]).

8 Other related work
In §7.3, we referenced many related works during our
argument that ICING unifies the high-level goals of many
prior proposals. Here we just single out a few research
strands that ICING borrows from or builds on.

ICING’s PoCs generalize network capabilities [8, 36,

5Such an organization might not want to rely on end-to-end encryp-
tion alone because, even with encryption, network eavesdroppers can
sometimes learn useful information from packet sizes and timing [38].

13

42, 44] and Visas [18]. In all cases, some logical entity
“mints” a permission that a sender can use for packet
transit. At a very high level, the principal differences be-
tween a PoC and a capability or a Visa are that (1) PoCs
explicitly consent to the entire path that a packet is sup-
posed to take and (2) the forwarding infrastructure con-
strains the packet to take this path. These requirements
permit ICING to uphold consent-to-connectivity but lead
to a very different design that, compared to these propos-
als, is a harder “deployment sell”.

ICING’s approach to delegation is inspired by Path-
let routing [22] (from which we borrow vnodes) and
Platypus [36] (whose hierarchical subdelegation tech-
nique ICING uses for delegating “slices” of vnode space).
ICING also borrows some of its control plane techniques
from NIRA [43]. And ICING’s instantiation of policy in
general-purpose servers apart from forwarding hardware
echoes [14, 15, 23].

As mentioned in §7.1, a natural consequence of ICING
is that packets’ paths respect providers’ policies. Of
course, there has been much work in policy routing over
the years from early frameworks like [16, 19, 20] through
more recent attention to BGP (e.g., [41]), but none of
these proposals upholds consent-to-connectivity.

ICING is trying to solve a variant of the “secure for-
warding” problem [11, 12, 33, 34]. In contrast to this
work, ICING does not rely on a trusted entity or central-
ized administration (as in [33, 34]). ICING’s recursive ap-
plication of PRF-96 (§3.2) is reminiscent of a construc-
tion in [12], but ICING operates under a different trust
model and cannot assume pairwise coordination. Also,
in contrast to these proposals, ICING explicitly upholds
all stakeholders’ interests, not just the source’s.

Of course, many “clean slate” proposals have emerged
recently. ICING’s relationship to this work is that ICING
respects traditional layering (mostly) and is a network
layer so is mostly orthogonal to proposals that focus on
other layers (e.g., [31, 39], etc.).

9 Summary and future work

Summary. Our purpose in this work was exploratory: to
identify a coherent security property and to find a way to
uphold it with a viable implementation; we believe this
effort was successful.

Near-term work. In the data plane, we will enhance
our prototype to implement the bracketed quantities in
Figure 2 and per-vnode keys (§3.4). In the control plane,
we will run control traffic over ICING, improve our path
server, and handle route failures and topology changes at
fine grain. Last, we will consider how to use the momen-
tum behind various clean slate efforts to identify poten-
tial ICING deployments.

References
[1] The 32-bit autonomous system number report.

http://www.potaroo.net/tools/asn32/index.html.
Last accessed on 3/2/2009.

[2] Integrated device technology (IDT) quick reference guide.
http:

//www.idt.com/products/getDoc.cfm?docID=18640144.
Last accessed on 1/30/2009.

[3] NetFPGA: Programmable networking hardware.
http://netfpga.org.

[4] Recommendation for block cipher modes of operation: The
CMAC mode for authentication. Special Publication
(800-series), May 2005. DRAFT FIPS PUB 186-3.

[5] Digital signature standard (DSS). Federal Information
Processing Standards Publication, November 2008. DRAFT
FIPS PUB 186-3.

[6] D. Andersen, H. Balakrishnan, N. Feamster, T. Koponen,
D. Moon, and S. Shenker. Accountable Internet protocol. In
SIGCOMM, Aug. 2008.

[7] D. G. Andersen. Distributed filtering for Internet services. In
Proc. USENIX Symposium on Internet Technologies and Systems
(USITS), Mar. 2003.

[8] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet
denial-of-service with capabilities. In HotNets, Nov. 2003.

[9] K. Argyraki and D. R. Cheriton. Loose source routing as a
mechanism for traffic policies. In Proc. SIGCOMM Workshop
on Future Directions in Network Architecture, Sept. 2004.

[10] K. Argyraki and D. R. Cheriton. Network capabilities: The
good, the bad and the ugly. In HotNets, Nov. 2005.

[11] I. Avramopoulos, H. Kobayashi, R. Wang, and
A. Krishnamurthy. Amendment to: Highly secure and efficient
routing. Feb. 2004.

[12] I. Avramopoulos, H. Kobayashi, R. Wang, and
A. Krishnamurthy. Highly secure and efficient routing. In
INFOCOM, Mar. 2004.

[13] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and
S. Shenker. Off by default! In HotNets, Nov. 2005.

[14] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe. Design and implementation of a routing
control platform. In NSDI, May 2005.

[15] M. Casado, M. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker. Ethane: Taking control of the enterprise. In
SIGCOMM, Aug. 2007.

[16] D. Clark. Policy routing in internet protocols. RFC 1102, May
1989.

[17] C. Dixon, T. Anderson, and A. Krishnamurthy. Phalanx:
Withstanding multimillion-node botnets. In NSDI, Apr. 2008.

[18] D. Estrin, J. Mogul, and G. Tsudik. VISA protocols for
controlling inter-organizational datagram flow. IEEE JSAC,
7(4), May 1989.

[19] D. Estrin, Y. Rekhter, and S. Hotz. Scalable inter-domain
routing architecture. In SIGCOMM, Aug. 1992.

[20] D. Estrin and G. Tsudik. Security issues in policy routing. In
Proc. IEEE Symposium on Security and Privacy, May 1989.

[21] S. Frankel and H. Herbert. The AES-XCBC-MAC-96 algorithm
and its use with IPsec. RFC 3566, Network Working Group,
September 2003.

[22] P. B. Godfrey, S. Shenker, and I. Stoica. Pathlet routing. In
HotNets, Oct. 2008.

[23] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean slate
4D approach to network control and management. ACM CCR,
35(5), Oct. 2005.

[24] S. Guha and P. Francis. An end-middle-end approach to
connection establishment. In SIGCOMM, Aug. 2007.

[25] M. Handley and A. Greenhalgh. Steps towards a DoS-resistant
Internet architecture. In Proc. SIGCOMM Workshop on Future
Directions in Network Architecture, Aug. 2004.

14

http://www.potaroo.net/tools/asn32/index.html
http://www.idt.com/products/getDoc.cfm?docID=18640144
http://www.idt.com/products/getDoc.cfm?docID=18640144
http://netfpga.org

[26] Y.-C. Hu, A. Perrig, and M. Sirbu. SPV: Secure path vector
routing for securing BGP. In SIGCOMM, Sept. 2004.

[27] IEEE 802.3ba Working Group. IEEE P802.3ba 40Gb/s and
100Gb/s Ethernet task force. http:
//grouper.ieee.org/groups/802/3/ba/index.html.

[28] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley.
Measurement and classification of out-of-sequence packets in a
Tier-1 IP backbone. In INFOCOM, 2003.

[29] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol
(S-BGP). IEEE JSAC, 18(4), Apr. 2000.

[30] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure
overlay services. In SIGCOMM, Aug. 2002.

[31] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H.
Kim, S. Shenker, and I. Stoica. A data-oriented (and beyond)
network architecture. In SIGCOMM, Aug. 2007.

[32] X. Liu, X. Yang, and Y. Lu. To filter or to authorize:
Network-layer DoS defense against multimillion-node botnets.
In SIGCOMM, Aug. 2008.

[33] A. T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage. Fatih:
Detecting and isolating malicious routers. In IEEE DSN, June
2005.

[34] R. Perlman. Routing with byzantine robustness. Technical
Report TR-2005-146, Sun Microsystems, Aug. 2005.

[35] Prolexic Technologies, Inc. http://www.prolexic.com.
[36] B. Raghavan and A. C. Snoeren. A system for authenticated

policy-compliant routing. In SIGCOMM, Sept. 2004.
[37] T. Roscoe, S. Hand, R. Isaacs, R. Mortier, and P. Jardetzky.

Predicate routing: Enabling controlled networking. In HotNets,
Oct. 2002.

[38] D. X. Song, D. Wagner, and X. Tian. Timing analysis of
keystrokes and timing attacks on SSH. In USENIX SECURITY,
Aug. 2001.

[39] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet indirection infrastructure. In SIGCOMM, Aug. 2002.

[40] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. H. Katz.
Listen and whisper: Security mechanisms for BGP. In NSDI,
Mar. 2004.

[41] W. Xu and J. Rexford. MIRO: Multi-path interdomain routing.
In SIGCOMM, Sept. 2006.

[42] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless Internet flow
filter to mitigate DDoS flooding attacks. In Proc. IEEE
Symposium on Security and Privacy, May 2004.

[43] X. Yang, D. Clark, and A. W. Berger. NIRA: A new
inter-domain routing architecture. ACM/IEEE Transactions on
Networking, 15(4), Aug. 2007.

[44] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting
network architecture. In SIGCOMM, Aug. 2005.

15

http://grouper.ieee.org/groups/802/3/ba/index.html
http://grouper.ieee.org/groups/802/3/ba/index.html
http://www.prolexic.com

	1 Introduction
	2 Overview of icing and rationale
	2.1 Overview
	2.2 Rationale

	3 Design of icing's data plane
	3.1 Threat model
	3.2 Basic protocol
	3.3 Analysis and limitations
	3.4 Vnodes
	3.5 Bootstrapping

	4 Control plane functions
	4.1 Flooding attacks

	5 Implementation
	6 Evaluation
	6.1 Setup and Parameters
	6.2 Packet overhead
	6.3 Microbenchmarks
	6.4 End-to-End
	6.5 Scaling

	7 Implications, applications, unifications
	7.1 High-level implications
	7.2 Non-security applications
	7.3 Potential unifications

	8 Other related work
	9 Summary and future work

