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Abstract
The programming demands of multi-core processors re-
quire support for applications to synchronize access to op-
erating system resources. Operating systems should pro-
vide system transactions that let users group updates to
heterogeneous system resources with atomicity, consis-
tency, isolation, and durability (ACID). System transac-
tions can eliminate time-of-check-to-time-of-use (TOCT-
TOU) race conditions in the file system, a class of secu-
rity vulnerability that are difficult to eliminate with other
techniques. New processes can be created and run as part
of a system transaction, allowing a software installation
script to execute transactionally. A failed installation can
be rolled back without having to roll back concurrent, in-
dependent updates to the file system.

This paper describes TxOS, a variant of Linux 2.6.22.
TxOS is the first operating system to implement system
transactions on commodity hardware with strong isolation
and fairness between transactional and non-transactional
system calls. The prototype demonstrates that a mature
OS can provide system transactions at a reasonable per-
formance cost, and has minimal performance cost for pro-
cesses that do not use transactions. For instance, a transac-
tional installation of OpenSSH incurs only 40% overhead.
Having the OS support transactions gives users and sys-
tem developers a powerful new tool to provide innovative
services. For example, with TxOS, one developer trans-
formed ext3 into a transactional file system in less than
one month.

1 Introduction
Operating systems manage resources for user programs,
but those programs currently lack the ability to group op-
erations into logically consistent updates. The POSIX sys-
tem call API, while providing support for atomic and iso-
lated execution of individual system calls, provides no sup-
port for composing multiple calls into a consistent update
to OS-managed resources. As a result, the consistency
guarantees provided by the POSIX API are difficult, if not
impossible, to extend to operations that are too complex to
fit into a single system call.

With the current proliferation of multi-core processors,
concurrent processing is becoming more prevalent, expos-
ing the POSIX API’s weakness at managing consistent up-

dates. This paper proposes system transactions to provide
atomicity, consistency, isolation, and durability (ACID) for
system state. System transactions are easy to use: code re-
gions with consistency constraints need only be enclosed
within the appropriate system calls, sys xbegin()and
sys xend(). The user can abort an in-progress transac-
tion with sys xabort(). Placing system calls within a
transaction alters the semantics of when and how their re-
sults are published to the rest of the system. Outside of a
transaction, actions on system resources are visible as soon
as the relevant internal kernel locks are released. Within a
transaction, all updates are kept isolated until commit time,
when they are atomically published to the rest of the sys-
tem. System transactions provide a simple and powerful
way for applications to express consistency requirements
for concurrent operations to the OS.

Applications currently struggle to make consistent up-
dates to system resources. In simple cases, programmers
can serialize operations by using a single system call, such
as using rename to atomically replace the contents of a
file. Unfortunately, more complex operations, such as soft-
ware installation or upgrade, cannot be condensed to a sin-
gle system call. For example, software install alters the file
system and also creates, kills and signals processes. Exe-
cuting an entire software install atomically and in isolation
from running tasks would be a powerful tool for the system
administrator, but would require different types of system
resources to be updated consistently. No mainstream op-
erating system provides a combination of system abstrac-
tions to express that consistent update.

In the presence of concurrency, applications must en-
sure consistency by isolating a series of modifications to
important data from interference by other tasks. Concur-
rency control mechanisms currently available to user pro-
grams (e.g., file locking) are clumsy and difficult to pro-
gram. Moreover, they are often insufficient for protecting
a series of system calls from interference by other applica-
tions, especially when the other applications are buggy or
malicious.

In practice, addressing the lack of concurrency control
in the system call API has been ad hoc: new, semantically
rich system calls are added piecemeal to solve new prob-
lems that arise. Eliminating file system race conditions is
a vital problem that has motivated the Linux developers to
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add thirteen new system calls in 2006 (the openat family
of system calls, also supported by Solaris). The close-on-
exec flag was added to fifteen system calls in the 2.6.27
version of Linux [12] to eliminate a race condition between
calls to open and fcntl. Individual file systems have
introduced new operations to address consistency needs:
the Google File System supports atomic append opera-
tions [15], while Windows has recently adopted support
for transactions in NTFS [35]. Rather than requiring users
to lobby OS developers for new system calls or file system
features, why not allow users to solve their own problems
by supporting composition of multiple system calls into
arbitrary atomic and isolated units?

System transactions allow programmers to continue us-
ing the POSIX API in the presence of increased concur-
rency. They directly solve the problem of consistent up-
dates to system state, eliminating the need for many of
the complicated API changes that have been recently in-
troduced to modern operating systems.

This paper describes an implementation of system trans-
actions on Linux called TxOS, which provides transac-
tional semantics for 134 out of 323 system calls. To ef-
ficiently provide strong guarantees, the TxOS implemen-
tation redesigns several key OS data structures and inter-
nal subsystem interfaces. TxOS supports transactional se-
mantics for all of its internal data structures, which trans-
lates directly to considerable freedom for users and sys-
tem implementors to create powerful applications and ser-
vices. Given an initial implementation of TxOS, a single
developer needed less than a month to convert ext3 into
a transactional file system.

This paper makes the following contributions.
1. Describes a new approach to OS implementation that

supports transactions with strong atomicity and isola-
tion guarantees, while maintaining low performance
overheads on commodity hardware.

2. Demonstrates the utility of system transactions to
eliminate race conditions in the system call API
and to increase OS scalability. Transactional
link/unlink on TxOS can outperform rename
on Linux by a 3.9× at 8 CPUs.

3. Demonstrates the utility of process-independent sys-
tem transactions to provide complete recovery for a
failed software install without losing concurrent up-
dates to the file system.

4. Demonstrates that a transactional OS with an inte-
grated transactional file system performs provides a
lightweight alternative to a database for concurrency
management and crash consistency purposes, while
being far simpler to maintain. OpenLDAP using flat
files and system transactions outperforms the Berke-
leyDB on a write-mostly workload by a factor of 2.

5. Demonstrates that the open problem of supporting
system calls within user-level transactional applica-
tions can be cleanly solved with system transactions.

The remainder of the paper is structured as follows. Sec-
tion 2 provides an overview of the system transaction API

and motivating use-cases. Section 3 positions TxOS in re-
lated work and Section 4 describes its design principles.
Section 5 describes how certain key subsystems provide
transactional semantics. Section 6 provides kernel im-
plementation details, while Section 7 measures the per-
formance overhead of system transactions and evaluates
TxOS in a number of application case studies. Section 8
concludes.

2 Overview and motivation
This section illustrates the utility of system transactions
with two use cases. System transactions support failure
atomicity for software installs without disrupting concur-
rent, independent updates to the file system and can elimi-
nate race conditions in the file system API.

2.1 Software install

Installing new software or software patches is an increas-
ingly common system activity as time to market pressures
and good network connectivity combine to make software
updates frequent for users. Yet software upgrade remains
a dangerous activity. For example, Microsoft pulled a pre-
requisite patch for Vista service pack 1 because it caused
an endless cycle of boots and reboots [27]. Unfortunately,
a partial upgrade can leave a system in an unusable state.

Microsoft Windows, and other systems provide a
checkpoint-based solution to the software update prob-
lem [29]. Users can take a checkpoint of disk state be-
fore they install software: if something goes wrong, they
roll back to the checkpoint. However, any updates to the
file system that are concurrent but independent from the
software install are lost, which significantly decreases the
usability of the feature. Moreover, the user or the sys-
tem must create and manage the disk-based checkpoints
to make sure a valid image is always available, further de-
creasing usability. Finally, if the install problem affects
volatile system state, the system can corrupt files unrelated
to the install.

TxOS provides a simple interface to address these is-
sues. The software install or update can be executed within
a transaction, which isolates the rest of the system until the
install is judged successful either by a human or by soft-
ware. An additional advantage to this approach is that in-
dependent updates made concurrently with the install are
not reverted as a side-effect.

2.2 Eliminating races for security

Figure 1 depicts a scenario in which an application wants
to make a single, consistent update to the file system by
checking the access permissions of a file and conditionally
writing it. This pattern is common in setuid programs,
and the source of a major and persistent security problem
in modern operating systems. An attacker can change the
file system name space using symbolic links between the
victim’s access control check and the file open, perhaps
tricking a setuid program into overwriting a sensitive
system file like the password database. The API provides
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Victim Attacker
if(access(’foo’)){

symlink(’secret’,’foo’);
fd=open(’foo’);
write(fd,...);
...

}

Victim Attacker
symlink(’secret’,’foo’);

sys xbegin();
if(access(’foo’)){

fd=open(’foo’);
write(fd,...);
...

}
sys xend();

symlink(’secret’,’foo’);

Figure 1: An example of a TOCTTOU attack, followed by an
example that eliminates the race using system transactions. The
attacker’s symlink is serialized (ordered) either before or after the
transaction, and the attacker cannot see partial updates from the
victim’s transaction, such as changes to atime.

no way for the application to express this requirement to
the operating system.

Although most common in the file system, system API
races, or time-of-check-to-time-of-use (TOCTTOU) races,
in other OS resources can be exploited. Local sockets used
for IPC are vulnerable to a similar race between creation
and connection. Versions of OpenSSH before 1.2.17 suf-
fered from a socket race exploit that allowed a user to steal
another’s credentials [1]; the Plash sandboxing system suf-
fers a similar vulnerability [2]. Zalewski demonstrates
how races in signal handlers can be used to crack appli-
cations, including sendmail, screen, and wu-ftpd [53].

While conceptually simple, TOCTTOU vulnerabilities
are pervasive in deployed software and are difficult to elim-
inate. At the time of writing, a search of the U.S. national
vulnerability database for the term “symlink attack” yields
over 600 hits [34]. Further, recent work by Cai et al. [6]
exploits fundamental flaws to defeat two major classes of
TOCTTOU countermeasures: dynamic race detectors in
the kernel [49] and probabilistic user-space race detec-
tors [48]. This continuous arms race of measure and coun-
termeasure illustrates that TOCTTOU attacks can only be
eliminated with change to the API.

In practice, these races are addressed with ad hoc ex-
tension of the system API. Linux has added a new close-
on-exec flag to fifteen different system calls to eliminate a
race condition between calls to open and fcntl. Tsafrir
et al. [47] demonstrate how programmers can use the
openat() family of system calls to construct determinis-
tic countermeasures for many races by traversing the di-
rectory tree and checking user permissions in the appli-
cation. However, these techniques cannot protect against
all races without even more API extensions. In particular,
Tsafrir’s technique is incompatible with the O CREAT flag
to open that is used to prevent exploits on temporary file
creation [8].

Such a reactive approach to fixing race conditions is not
likely to be effective long term. Complicating the API in
the name of security is a risky: code complexity is often
the enemy of code security [4]. Because system transac-
tions provide deterministic safety guarantees and a natu-
ral programming model, they are an easy-to-use, general
mechanism that can eliminate all API race conditions.

3 Related Work
In this section we contrast TxOS with previous research in
OS transactions, transactional memory, Speculator, trans-
actional file systems, and distributed transactions.
Previous transactional operating systems. Locus [51]
and QuickSilver [19,41] are historical systems that provide
some system support for transactions. Both systems use
database implementation techniques for transactions, iso-
lating data structures with two-phase locking and rolling
back failed transactions from an undo log. A shortcom-
ing of this approach is that simple locks, and even reader-
writer locks, do not capture the semantics of container ob-
jects, such as a directory. Multiple transactions can con-
currently and safely create files in the same directory so
long as none of them use the same file name and none of
them read the directory. Unfortunately, creating a file in
these historical systems requires a write lock on the di-
rectory, which serializes the writing transactions and elim-
inates concurrency. To compensate for the poor perfor-
mance of reader-writer locks, both systems allow direc-
tory contents to change during a transaction, which rein-
troduces the possibility of the TOCTTOU race conditions
that system transactions ought to eliminate.
Transactional Memory. The system transactions sup-
ported by TxOS solve a fundamentally different problem
from those solved by TxLinux [40]. TxLinux is a variant
of Linux that uses hardware transactional memory (HTM)
as a synchronization primitive to protect OS data struc-
tures within the kernel, whereas TxOS exports a transac-
tional API to user programs. The techniques used to build
TxLinux support short critical regions that enforce consis-
tency for accessing memory: these techniques are insuf-
ficient to implement TxOS, which must guarantee consis-
tency across heterogeneous system resources, and which
must support arbitrarily large transactions. TxOS runs on
currently available hardware, unlike TxLinux.

Volos et al. [50] extend the Intel STM compiler with
xCalls, which support deferral or rollback of common sys-
tem calls when performed in a memory transaction. Be-
cause xCalls are implemented in a single, user-level appli-
cation, they cannot isolate transaction effects from other
applications on the system, ensure durable updates to a
file, or support multi-process transactions, all of which are
needed to perform a transactional software install and are
supported by TxOS.
Speculator. Speculator [32] applies an isolation and roll-
back mechanism to the operating system that is very simi-
lar to transactions, allowing the system to speculate past
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Feature Amino TxF Valor TxOS
Low overhead kernel
implementation

No Yes Yes Yes

Can be root fs? No Yes* Yes Yes
Framework for
transactionalizing
other file systems

No No Yes Yes

Transactional and non-
transactional access

No No Yes Yes

Simple programmer
interface

Yes No No Yes

Other kernel resources
in a transaction

No No No Yes

Figure 2: A summary of features supported by recent transac-
tional file systems.

high-latency remote file system operations. The trans-
actional semantics TxOS provides to user programs is a
more complicated endeavor. In TxOS, transactions must
be isolated from each other, while applications in Specu-
lator share speculative results. Speculator does not elim-
inate TOCTTOU vulnerabilities. If a TOCTTOU attack
occurred in Speculator, the attacker and victim would be
part of the same speculation, allowing the attack to suc-
ceed. Speculator has been extended to parallelize security
checks [33] and to debug system configuration [46], but
does not provide a general-purpose interface for users to
explicitly delimit speculative code regions, it is insufficient
for applications like atomic software install/update.
Transactional file systems. TxOS simplifies the task of
writing a transactional file system by detecting conflicts
and versioning data in the virtual filesystem layer. Some
previous work such as OdeFS [14], Inversion [36], and
DBFS [31] provide a file system interface to a database,
implemented as a user-level NFS server. These systems
do not address the problem of atomic isolated operations
on local disk, and cannot address the problem of coor-
dinating access to OS-managed resources. Berkeley DB
and Stasis [42] are transactional libraries, not file systems.
Amino [52] supports transaction file operation semantics
by interposing on system calls using ptrace, using a
user-level database to store and manage file system data
and metadata. Another approach to transactional file sys-
tem implementation, exemplified by Valor [45] and Trans-
actional NTFS [35], and others [13, 35, 41, 43] implement
all transactional semantics directly in the file system.

Figure 2 lists several desirable properties for a transac-
tional file system and compares TxOS with recent systems.
Because Amino’s database must be hosted on a native file
system, it cannot be used as the root file system. TxF can
be used as the root file system, but the programmer must
ensure that the local system is the two-phase commit coor-
dinator for any distributed transactions it participates in.

Unlike TxF, TxOS allows the same resources to be ac-
cessed by transactional and non-transactional threads. For
example, TxF does not let a non-transactional thread open
a file that is open in a transactional thread. The importance

Function Name Description
int sys xbegin
(int restart, int
durable)

Begin a transaction. If restart is true, OS
automatically restarts the transaction af-
ter an abort. Durable sets whether the re-
sults should be on stable storage, where
appropriate. Returns status code.

int sys xend() End of transaction. Returns whether
commit succeeded.

void sys xabort
(int no restart)

Aborts a transaction. If the transac-
tion was started with restart, setting
no restart overrides that flag and does
not restart the transaction.

Table 1: TxOS API

of interoperability is discussed in Section 4.2. Like TxOS,
Valor provides kernel support in the page cache to simplify
the task of adding transactions to new file systems. Valor
supports transactions larger than memory, which TxOS
does not currently do. Valor primarily provides logging
and coarse-grained locking for files; moreover, because di-
rectory operations require locking the directory, Valor, like
QuickSilver, is more conservative than necessary with re-
spect to concurrent directory updates.

TxOS provides programmers with a simple, natu-
ral interface, augmenting the POSIX API with only
three system calls (sys xbegin(), sys xend(),
sys xabort()). Other transactional file systems re-
quire application programmers to understand implementa-
tion details, such as two-phase commit (TxF) and the log-
ging and locking mechanism (Valor).
Distributed transactions. A number of systems, includ-
ing TABS [44], Argus [25], and Sinfonia [3], provide sup-
port for distributed transactional applications at the lan-
guage or library level. Because these systems implement
transactions at user level, they cannot isolate system re-
sources, while TxOS system transactions can.

4 TxOS Design
System transactions are designed to meet the key imple-
mentation goals of strong isolation guarantees for transac-
tions, while retaining good performance and simple inter-
faces. This section outlines how the TxOS design achieves
these goals.

4.1 Overview
System transactions in TxOS provide programmers with
ACID semantics for system state, as opposed to applica-
tion state. System state includes OS data structures and
device state stored in the OS’s address space, whereas ap-
plication state is the data structures stored in the applica-
tion’s address space. When using system transactions, the
application must be able to restore its pre-transaction state
if a system transaction aborts. Application state can be
managed in several ways: the application state may need
no explicit management (as in the TOCTTOU example),
the OS can automatically checkpoint and restore the ap-
plication’s address space (as in Speculator [32]), or the
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application can implement its own checkpoint and recov-
ery mechanism, perhaps using hardware or software trans-
actional memory. See Section 4.5 for information about
how TxOS coordinates with existing hardware and soft-
ware transactional memory systems.

TxOS uses existing OS memory buffers and kernel data
structures to isolate data read and written in a transaction.
When an application writes data to a file system or de-
vice, the updates generally go into an OS buffer first, al-
lowing the OS to optimize device accesses. By making
these buffers copy-on-write for transactions, TxOS isolates
transactional data accesses until commit.

TxOS isolates updates to kernel data structures, includ-
ing objects that represent file system metadata or a pro-
cess’s address space, using recent implementation tech-
niques from object-based software transactional memory
systems. These techniques are a departure from the log-
ging and two-phase locking approaches of databases and
historic transactional operating systems.

Buffering updates in memory during transactions lim-
its the size of transactions, and restricts the transactional
model. For instance, if an application’s outgoing message
is buffered, it cannot receive a response within the same
transaction. Future work could examine using secondary
storage to help buffer changes and extending transactions
over the network. This paper argues for a more expressive
system call framework that can serve as the interface for
future enhancements.

4.2 Interoperability and fairness

TxOS allows flexible interaction between transactional and
non-transaction kernel threads. Allowing users to freely
mix transactional and non-transactional accesses to the
same resources is crucial to maintaining a simple inter-
face to system resources. Most programs are not written
to use transactions. TxOS can run all of these programs
alongside programs that do take advantage of transactions,
even if the two programs access the same resources, such
as files.

TxOS provides a total order for all operations on sys-
tem resources, transactional and non-transactional. A total
order makes all operations serializable, which matches the
intuitive semantics programmers expect [17]. We call the
ordering of transactional and non-transactional updates to
the same resources strong isolation.

TxOS provides strong isolation efficiently by requiring
all threads to use the same locking discipline, and by re-
quiring that transactions annotate accessed objects. When
a thread, transactional or non-transactional, accesses an
object for the first time, it must check for a conflicting an-
notation. The scheduler arbitrates conflicts when they are
detected. In many cases, this check is performed at the
same time as a thread acquires a lock for the object.

Interoperability is a weak spot for previous transactional
systems. In most transactional systems, a conflict be-
tween a transaction and a non-transactional thread (called
an asymmetric conflict) must be resolved by aborting the

transaction. This approach undermines fairness. In TxOS,
because asymmetric conflicts are often detected before a
non-transactional thread enters a critical region, the sched-
uler has the option of suspending the non-transactional
thread, allowing for fairness between transactions and non-
transactional threads.

4.3 State management

Databases and historical transactional operating systems
typically adopt eager version management [24], which
updates data in place and maintains an undo log. These
systems isolate transactions by locking all data encoun-
tered and holding the lock until commit (two-phase lock-
ing). Because data accesses are not ordered by applica-
tions, these systems can deadlock.

The possibility of deadlock complicates the programing
model of transactional systems. Deadlock is commonly
addressed by exposing a timeout parameter to users. Set-
ting the timeout properly is a challenge. If it is too short,
it can starve long-running transactions. If it is too long, it
can destroy the performance of the system.

Eager version management degrades responsiveness in
ways that are not acceptable for an operating system. If an
interrupt handler, high priority thread, or real-time thread
aborts a transaction, it must wait for the transaction to walk
its undo log before it can safely proceed. This wait can
jeopardize the system’s ability to meet its timing require-
ments.

TxOS, in contrast, uses lazy version management,
where transactions operate on private copies of a data
structure. Because lazy versioning requires TxOS to hold
locks only long enough to make a private copy of the rel-
evant data structure, deadlock is avoided. Applications
never hold kernel locks across system calls. Transactions
can be aborted instantly, and no latency is incurred walking
the undo log.

The primary disadvantage of lazy versioning is that at
commit time transactional updates are copied from the
speculative version to the stable version of the data struc-
tures. As we discuss in Section 6, TxOS minimizes this
overhead by splitting up objects, turning a memcpy of the
entire object into a pointer copy.

4.4 Precise conflict semantics

A common performance problem with transactional im-
plementations derives from overly conservative, read/write
conflict semantics. For instance, linked-lists are heavily
used to organize data structures in the Linux kernel, and in
many cases can safely permit multiple concurrent writes.
TxOS isolates list updates with a lock and defines conflicts
according to the compatibility lattice described in Table 2.
For instance, a A list in the write state can allow concur-
rent transactional and non-transactional writers, as long as
they do not access the same entry. Individual entries that
are transactionally added or removed are annotated with a
transaction pointer and used to detect conflicts. If a writ-
ing transaction also attempts to read the list contents, it
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State Description
exclusive Any attempt to access the list is a con-

flict with the current owner
write Any number of insertions and deletions

are allowed, provided they do not access
the same entries. Reads (iterations) are
not allowed. Writers may be transac-
tions or non-transactional tasks.

read Any number of readers, transactional or
non-transactional, are allowed, but in-
sertions and deletions are conflicts.

notx There are no active transactions, and
a non-transactional thread may perform
any operation. A transaction must first
upgrade to read or write mode.

Table 2: The states for a transactional list in TxOS. Having
multiple states allows TxOS lists to tolerate access patterns that
would be conflicts in previous transactional systems.

must upgrade the list to exclusive mode by aborting
all other writers. The read state behaves similarly. This
design allows maximal list concurrency while preserving
correctness.

4.5 Integrating with user transactions

System transactions protect system state, not application
state. For multi-threaded programs, the OS has no efficient
mechanism to save and restore the memory state of an indi-
vidual thread. User-level transactional memory (TM) sys-
tems do provide atomic and isolated updates to application
data structures. Transactional memory is implemented ei-
ther in hardware (building on cache coherence) [18,30], in
software [11], or as a hybrid of the two [7, 9]. User and
system transactions can coordinate to create a simple and
complete transactional programming model.

One of the most troublesome limitations of transactional
memory systems is the lack of support for system calls
within transactions. For example, a file append inside of
a transaction can occur an arbitrary number of times when
executed on current TM systems (both hardware and soft-
ware), depending on how often the user-level transaction
has to abort and retry. Because transactional semantics do
not extend to the system call, there is no way to rollback
previous appends when the transactions retries.

System transactions complete the transactional seman-
tics of user-level transactional systems. When a TM ap-
plication makes a system call, the runtime begins a sys-
tem transaction. The user-level transactional memory sys-
tem handles buffering and possibly rolling back the user’s
memory state, and the system transaction buffers updates
to system state. The updates to system state are commit-
ted or aborted by the kernel atomically with the commit or
abort of the user-level transaction. We can coordinate user
and system transactions by modifying the TM runtime li-
braries; programmers need only write atomic blocks. The
implementation is discussed in Section 6.6.

5 Design of kernel subsystems
This subsection discusses how we extend different ker-
nel subsystems to support ACID semantics. We note that
adding transactional semantics often required extending
functionality already present in the subsystem, rather than
developing it from scratch. We use the journal in ext3
to provide true, multi-operation durability. We use Linux’s
ability to defer signal delivery to manage signals sent from
transactional threads.

We also observe that having the kernel provide trans-
actional semantics for system resources makes it easy to
extend the kernel to provide transactional services. The
one-month turnaround for converting ext3 into a trans-
actional filesystem is a good example. While the journal
support of ext3 helps, having the kernel’s data structures
support atomicity and isolation provides the heavy lifting
of transactional semantics for the subsystems.

One benefit of TxOS is to make it easier for kernel de-
velopers to bring transactional semantics to new kernel ser-
vices. Transactions have proven to be a useful abstraction
for concurrent programming, and such abstractions will be
necessary to ease the task of programming the proliferating
cores on modern CPUs.

5.1 Transactional file system
TxOS simplifies the task of writing a transactional file sys-
tem by detecting conflicts and versioning data in the vir-
tual filesystem layer. The OS provides the transactional
semantics—isolating updates and detecting conflicts. The
file system merely has to provide the ability to atomically
commit updates (e.g., via a journal), and then it can func-
tion as a transactional file system for the user.

By simply ensuring that all committed changes are writ-
ten in a single journal transaction, ext3 was converted
into a transactional file system. Memory-only file systems,
such as proc and tmpfs, are automatically transactional
when used within TxOS.

Durability is only relevant for some system resources,
like file systems on non-volatile storage. Providing dura-
bility can slow performance because of the increased la-
tency of stable storage, so users should have the option of
relaxing it when they do not need it. For instance, eliminat-
ing the TOCTTOU race does not require durable updates.

5.2 Multi-process transactions
The paradigm for UNIX application development is to
compose more complex tasks from simple, powerful util-
ity programs. Programs might wish to transactionally fork
a number of child processes to execute utilities and wait
for the results to be returned through a pipe. To support
this programming paradigm in a natural way, TxOS allows
multiple tasks to be part of the same transaction. Processes
in the same transaction share and synchronize on specula-
tive state.

When a process forks a child inside a transaction,
the child process is in the same transaction until it per-
forms an sys xend()or it exits. The transaction com-
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mits when all tasks in the transaction have issued an
sys xend(). The exit system call is considered an im-
plicit sys xend(). This method of process manage-
ment allows transactional programs to call high-level con-
venience functions like system to easily create a process
with a complicated command line using the full compli-
ment of shell functionality. The execed program runs
with transactional semantics, though it might not contain
any explicitly transactional code. After a child process
commits, it is no longer part of the transaction and sub-
sequent sys xbegin()calls will begin transactions that
are completely independent from the parent.

TxOS does not need to checkpoint task state for transac-
tionally forked processes. Because an abort will ultimately
terminate them, no rollback is required. A range of system
calls can update task state, ranging from memory alloca-
tion to installing a new file descriptor. These calls do not
incur the performance overhead of checkpointing private
task data in a transactionally forked task.

5.3 Signal delivery

Signal semantics in TxOS derive from the need to pro-
vide isolation between processes in different transactions,
as well as isolation between non-transactional and transac-
tional processes. Transactionally forked processes enlisted
in the same multi-process transaction can send and receive
signals freely with other processes in the same transaction.
Signals sent by transactional processes are deferred until
commit by placing them in a deferred queue, regardless of
whether the receiving process is transactional. Signals in
the queue are delivered in order if the transaction commits,
and discarded if the transaction aborts.

Signals sent to a process that has an active transaction
can either be deferred until commit (deferred receive), or
speculatively handled in the transaction (speculative re-
ceive). When signals are received speculatively, they must
be logged. If the transaction aborts, these signals must
be re-delivered to the receiving process so that from the
sender’s perspective the signals do not disappear. When
a transaction that has speculatively received a signal com-
mits, logged signals are discarded. When received signals
are deferred, incoming signals are placed in a queue and
delivered in order when the transaction commits.

Deferred receive addresses atomicity vulnerabilities in
signal handlers [53]. Enclosing signal handling code in a
transaction ensures that system calls in handler are atomic,
and forces calls to the same handler to serialize. This
eliminates atomicity vulnerabilities without the need for
the additional API complexity of sigaction. While
the sigaction API can address signal handler atomicity
within a single process by making handlers non-reentrant,
the API does not make signal handlers atomic with respect
to other processes.

The SIGSTOP and SIGKILL signals cannot be blocked
or ignored outside of a transaction. TxOS does not alter
these semantics, and these signals are delivered to trans-
actional threads and handled, even if the transaction was

Subsystem Tot. Part. Examples
Credentials 35 5 getuid, getcpu, setrlimit (par-

tial)
Processes 4 1 fork, vfork, clone, exit, exec

(partial)
Signals 8 0 rt sigaction, rt sigprocmask,

kill
Filesystem 56 2 link, access, stat, chroot, dup
File Access 11 4 open, close, write, lseek, trun-

cate
Other 4 4 time, nanosleep, ioctl (par-

tial), mmap2 (partial)
Totals 118 16 Grand total: 134

Figure 3: Summary of system calls that TxOS completely sup-
ports (Tot.) and partially supports (Part.) in transactions.

started in deferred receive mode.

6 TxOS Kernel Implementation
This section describes how system transactions are imple-
mented in the TxOS kernel. TxOS provides transactional
semantics to 134 of 323 system calls in Linux, presented in
Table 3. The classes of system calls include process cre-
ation/termination, sending and receiving signals, and file
system operations.

System transactions in TxOS add roughly 3,300 lines of
code for transaction management, and 5,300 lines for ob-
ject management. TxOS also requires about 14,000 lines
of minor changes to convert kernel code to use the new ob-
ject type system and to insert checks for asymmetric con-
flicts when executing non-transactionally.

6.1 Versioning data

TxOS must maintain multiple versions of kernel data struc-
tures for system transactions to isolate the effects of sys-
tem calls until the transaction commits and to undo the ef-
fects of a transaction if it cannot complete. Data struc-
tures private to a process, such as the current user id or
the file descriptor table, can be versioned with a simple
checkpoint and restore scheme. For shared kernel data
structures, however, TxOS implements a versioning sys-
tem that borrows techniques from modern software trans-
actional memory systems [20] and other recent concurrent
programming systems [23].

When a transaction accesses a shared kernel object, such
as an inode, it acquires a private copy of the object,
called a shadow object. For the rest of the transaction,
this shadow object is used in place of the stable object.
Shadow objects ensure that transactions always have a con-
sistent view of the system state. When the transaction com-
mits, the shadow objects replace their stable counterpart. If
a transaction cannot complete, the shadow objects are sim-
ply discarded.

Any given kernel object may be the target of pointers
from several other objects, presenting a challenge to re-
placing a stable object with a newly-committed shadow
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struct inode_header {
atomic_t i_count; // Reference count
spinlock_t i_lock;
inode_data *data; // Data object
// Other objects
address_space i_data; // Cached data pages
tx_data xobj; // used for conflict detection
list i_sb_list; // kernel bookkeeping };

struct inode_data {
inode_header *header;
// Common inode data fields
unsigned long i_ino;
loff_t i_size; // etc. };

Figure 4: A simplified inode structure, decomposed into
header and data objects in TxOS. The header contains the refer-
ence count, locks, kernel bookkeeping data, and the objects that
are managed transactionally. The inode data object contains
the fields commonly accessed by system calls, such as stat,
and can be updated by a transaction by replacing the pointer in
the header.

object. A naı̈ve approach might update those pointers at
commit, but the pointer writes will abort any transactions
using the objects being updated.

Splitting objects into header and data. TxOS ad-
dresses object replacement by decomposing the object into
a stable header component and a volatile, transactional
data component. Figure 4 provides an example of this
decomposition for an inode. The object header contains
a pointer to the object’s data; this pointer can be changed
during commit to point to a new copy of the data object.
The header itself is never replaced by a transaction, which
eliminates the need to update pointers in other objects;
pointers point to headers. The header can also contain data
that is not accessed by transactions. For instance, the ker-
nel garbage collection thread (kswapd) periodically scans
the inode and dentry (directory entry) caches looking
for cached file system data that can be reused. By keep-
ing the data for kernel bookkeeping, such as the reference
counter and the superblock lists (i sb list in Figure 4),
in the header, these scans never need to access the asso-
ciated inode data objects and avoid restarting active
transactions.

Decomposing objects into headers and data also pro-
vides the advantage of the type system ensuring that trans-
actional code always has a speculative object. For in-
stance, in Linux, vfs link takes pointers to inodes
and dentries, but in TxOS these pointers are converted
to the shadow types inode data and dentry data.
When converting a large code base such as Linux, us-
ing the type system allows the compiler to find all of the
code that needs to acquire a speculative object, ensuring
completeness. The type system also allows the use of in-
terfaces that minimize the time spent looking up shadow
objects. For example, the vfs link and vfs unlink
helper functions are generally called after path name res-
olution, which acquires the shadow data object and passes

it on. Shadow objects are acquired upon entry to the vir-
tual file system code, eliminating the need for filesystem-
specific code to acquire shadow objects.

Multiple data objects. An object can also be de-
composed into multiple data payloads when it stores
data that can be accessed disjointly. For instance, the
inode header houses both file metadata (owner, per-
missions, etc.) and the mapping of file blocks to cached
pages in memory (i data). A process may often read or
write a file without updating the metadata. TxOS versions
these objects separately, allowing metadata operations and
data operations on the same file to execute concurrently
when it is safe.

Read-only objects. In the common case, many kernel
objects are only read in a transaction, such as the parent
directories in a path lookup. To avoid the cost of making
shadow copies, a transaction can mark object data as read-
only for the length of the transaction. Each data object has
a transactional reader reference count. If the reader count
is non-zero, a non-transactional writer must create a new
copy of the object and install it as the new stable version.
The old copy of the data is garbage collected via read-copy
update [28] when all transactional readers release it and af-
ter all non-transactional tasks have been descheduled. This
ensures that all active references to the old, read-only ver-
sion have been released before it is freed and all tasks see
a consistent view of kernel data. The only caveat is that a
non-transactional task that blocks must re-acquire any data
objects it was using after waking, as they may have been
replaced and freed by a transaction commit. Although it
complicates the kernel programming model slightly, mark-
ing data objects as transactionally read is a structured way
to eliminate substantial overhead for memory allocation
and copying.

6.2 Conflict detection and resolution

As discussed in Section 4.2, it is important to properly se-
rialize transactions with other transactions as well as with
processes executing system calls outside of a transaction.
To detect conflicts, TxOS leverages the current locking
practice in Linux and augments stable objects with infor-
mation about transactional readers and writers. Transac-
tional and non-transactional threads can detect conflicts
when they acquire a kernel object for writing.

Conflicts occur when a thread writes an object that is be-
ing written by a non-transactional thread, or that is read or
written by a transactional thread. A locked object indicates
a non-transactional writer. TxOS embeds a tx data ob-
ject in all shared objects that can be accessed transaction-
ally. The tx data object includes a pointer to a transac-
tional writer and a reader list. A non-null writer pointer in-
dicates an active transactional writer, and an empty reader
list indicates there are no readers. By locking and testing
the transactional readers and writer fields, TxOS detects
transactional and asymmetric conflicts. When a thread de-
tects a conflict, it calls the contention manager to arbitrate.
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6.2.1 Contention Management
When a conflict is detected between two transactions or
between a transaction and non-transactional thread, TxOS
invokes the contention manager to resolve the conflict. The
contention manager implements a policy to arbitrate con-
flicts among transactions, dictating which of the conflict-
ing transactions may continue. All other conflicting trans-
actions must abort.

As a default policy, TxOS adopts the osprio policy [40].
Osprio always selects the higher priority process as the
winner of a conflict, eliminating priority and policy inver-
sion in transactional conflicts. When processes with the
same priority conflict, the older transaction wins (a policy
known as timestamp [37]), guaranteeing liveness within a
given priority level.

6.2.2 Asymmetric conflicts
A conflict between a transactional and non-transactional
thread is called an asymmetric conflict [38]. Unlike trans-
actional threads, non-transactional threads cannot be rolled
back, so the system has fewer options when dealing with
these conflicts. TxOS must have the freedom to resolve an
asymmetric conflict in favor of either the transactional or
non-transactional thread. Otherwise, asymmetric conflicts
will undermine fairness in the system, possibly starving
transactions.

While non-transactional threads cannot be rolled back,
they can often be preempted, which allows them to lose
conflicts with transactional threads. Kernel preemption is
a recent feature of Linux that allows processes to be pre-
emptively descheduled while executing system calls inside
the kernel, unless they are inside of certain critical regions.
In TxOS , non-transactional threads detect conflicts with
transactional threads before they actually update state, usu-
ally when they acquire a lock for a kernel data structure. A
non-transactional thread can simply deschedule itself if it
loses a conflict and is in a preemptible state. If a non-
transactional, non-preemptible process aborts a transaction
too many times, the kernel can still prevent it from starving
the transaction by placing the non-transactional process on
a wait queue the next time it makes a system call. The
kernel wakes it up only after the transaction commits.

Within Linux, a kernel thread can be preempted if it is
not holding a spinlock and is not in an interrupt handler.
TxOS has the additional restriction that it will not preempt
a thread that holds one or more mutexes (or semaphores).
Otherwise, TxOS risks a deadlock with the committing
transaction, which might need that lock to commit. By
using kernel preemption and lazy version management,
TxOS has more flexibility to coordinate transactional and
non-transactional threads than was possible in previous
transactional operating systems.

6.3 Managing transaction state
To manage transactional state, TxOS adds transaction ob-
jects to the kernel, which store metadata and statistics
for a transaction. The transaction object, shown in Fig-

struct transaction {
atomic_t tx_status; // live, aborted, inactive
uint64 tx_start_time;// timestamp
uint32 retry_count;
struct pt_regs *checkpointed_registers;
workset_hlist *workset_hashtable;
deferred_ops; // operations done at commit
undo_ops; // operations undone at abort

};

Figure 5: Data contained in a system transaction object, which
is pointed to by the user area (task struct).

ure 5, is pointed to by the kernel thread’s control block (the
task struct in Linux). A process can have at most one
active transaction, though transactions can flat nest, mean-
ing that all nested transactions are subsumed into the en-
closing transaction. Multiple tasks may also share a trans-
action, as discussed in the next section.

Figure 5 summarizes the fields of the transaction object.
The transaction includes a status word (tx status). If
another thread wins a conflict with this thread it will up-
date this word atomically (e.g. using a compare-and-swap
instruction. The kernel checks the status word when at-
tempting to add a new shadow object to its workset and
checks it before commit.

If a transactional system call reaches a point where it
cannot complete because of a conflict with another oper-
ation, it must immediately abort execution. This abort is
required because Linux is written in an unmanaged lan-
guage and cannot safely follow pointers if it does not have
a consistent view of memory. To allow roll-back at ar-
bitrary points during execution, the transaction stores the
register state on the stack at the beginning of the current
system call in the checkpointed registers field. If
the transaction is aborted midway through a system call, it
restores the register state and jumps back to the top of the
kernel stack (like the C library function longjmp). Be-
cause a transaction can hold a lock or other resource when
it aborts, supporting the longjmp-style abort involves a
small overhead to track certain events within a transaction
so that they can be cleaned up on abort.

Transactions must defer certain operations until com-
mit time, such as freeing memory, delivering signals and
dnotify events. The deferred ops field stores these
events. Similarly, some operations must be undone if a
transaction is aborted, such as releasing the locks it holds
and freeing the memory it allocates. These are stored in
the undo ops field. The tx start time field is used
by the contention manager (see section 6.2.1), while the
retry count field stores the number of times the trans-
action aborted.

The workset hashtable is a private hashtable that
stores references to all of the objects for which the transac-
tion has private copies. Each entry in the workset contains
a pointer to the stable object, a pointer to the shadow copy,
information about whether the object is read-only or read-
write, and a set of type-specific methods (commit, abort,
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lock, unlock, release). When a transactional thread adds
an object to its workset, the thread increments the refer-
ence count on the stable copy. This increment prevents the
object from being unexpectedly freed while the transaction
still has an active reference to it. Kernel objects are not
dynamically relocatable, so ensuring a non-zero reference
count is sufficient for guaranteeing that memory addresses
remain consistent for the duration of the transaction.

6.4 Commit protocol
When a system transaction calls sys xend(), it is ready
to begin the commit protocol. The flow of the commit pro-
tocol is shown in Figure 6. In the first step, the transaction
acquires all of the locks in the conflict table that protect
objects in its workset. The transaction collects the locks in
the following order:

1. Sorts the workset in accordance with the locking dis-
cipline (i.e., kernel virtual address).

2. Acquires all blocking locks on objects in its workset.
3. Acquires any needed global locks (e.g., the

dcache lock).
4. Acquires all non-blocking locks (e.g., spinlocks) on

objects in its workset.
After acquiring all locks, the transaction does a fi-

nal check of its status word. If it has not been set to
ABORTED, then the transaction can successfully com-
mit (this is the transactions’ linearization point [22]). The
committing process holds all relevant object locks dur-
ing commit, thereby excluding any transactional or non-
transactional threads that would compete for the same ob-
jects.

After acquiring all locks, the transaction copies its up-
dates to the stable objects. The transaction references are
removed from the objects and locks are released in the op-
posite order they were acquired. Between releasing spin-
locks and mutexes, the transaction performs deferred op-
erations (like memory allocations/frees and delivering fs-
notify events) and performs any pending writes to stable
storage. TxOS is careful to acquire blocking locks before
spinlocks. Acquiring or releasing a mutex or semaphore
can cause a process to sleep, and sleeping with a held spin-
lock can deadlock the system.

During commit, TxOS holds locks that are not other-
wise held at the same time in the kernel. As a result, it
extends the locking discipline slightly, for instance by re-
quiring that rename locks inodes entries in order of ker-
nel virtual address. TxOS also introduces additional fine-
grained locking on objects, such as lists, that are not locked
in Linux. Although these additional constraints compli-
cate the locking discipline, they also allow TxOS to elide
coarse-grained locks such as the dcache lock, yielding
improved performance scalability.

6.5 Abort Protocol
If a transaction detects that it loses a conflict, it must abort.
The abort protocol is similar to the commit protocol, but
simpler because it does not require all objects to be locked

at once. If the transaction is holding any locks, it first re-
leases them to avoid stalling other processes. The trans-
action then iterates over its working set and locks each
object, removes any references to itself from the object’s
transactional state, and then unlocks the object. This pro-
cess allows other transactions to access the objects in its
working set. Next, the transaction frees its shadow ob-
jects and decrements the reference count on their stable
counterparts. The transaction walks its undo log to release
any other resources, such as memory allocated within the
transaction.

6.6 User-level transactions

This section discusses the protocols that coordinate user
and system transactions.

6.6.1 Lock-based STM requirements

TxOS uses a simplified variant of the two-phase commit
protocol (2PC) [16] to coordinate a lock-based user-level
software transactional memory (STM) with a system trans-
action. The TxOS commit consists of the following steps.

1. The user prepares a transaction.
2. The user requests that the system commit the transac-

tion through the sys xend()system call.
3. The system commits or aborts.
4. The system communicates the outcome to the user

through the sys xend()return code.
5. The user commits or aborts in accordance with the

outcome of the system transaction.
This protocol naturally follows the flow of control be-

tween the user and kernel, but requires the user transaction
system to support the prepared state. We define a prepared
transaction as being finished (it will add no more data to
its working set), safe to commit (it has not currently lost
any conflicts with other threads), and guaranteed to re-
main able to commit (it will win all future conflicts until
the end of the protocol). In other words, once a transac-
tion is prepared, another thread must stall or rollback if it
tries to perform a conflicting operation. In a system that
uses locks to protect a commit, prepare is accomplished
by simply holding all of the locks required for the commit
during the sys xend()call. On a successful commit, the
system commits its state before the user, but any compet-
ing accesses to the shared state are serialized after the user
commit.

6.6.2 HTM and obstruction-free STM requirements

Hardware transactional memory (HTM) and obstruction-
free STM systems [21] use a single instruction (xend and
compare-and-swap, respectively), to perform their com-
mits. For these systems, a prepare stage is unnecessary.
Instead, the commit protocol should have the kernel issue
the commit instruction on behalf of the user once the ker-
nel has validated its workset. Both the system and user
level transaction now commit or abort depending upon the
result of this specific commit instruction.
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Figure 6: The major steps involved in committing Transaction A with inode 57 in its workset, changing the mode from 0777 to 0755.
The commit code first locks the inode. It then replaces the inode header’s data pointer to the shadow inode. Finally, Transaction A
frees the resources used for transactional bookkeeping and unlocks the inode.

For HTM support, TxOS requires that the hardware al-
low the kernel to suspend user-initialized transactions on
entry to the kernel. Every HTM proposal that supports an
OS [30,40,54] contains the ability to suspend user-initiated
transactions so that user and kernel addresses do not enter
the same hardware transaction. Doing so would create a
security vulnerability in most HTM proposals. Also, the
kernel needs to be able to issue an xend instruction on
behalf of the application.

Though TxOS supports user-level HTM, it runs on com-
modity hardware and does not require any special HTM
support itself.

7 Evaluation
This section evaluates the overhead of system transac-
tions in TxOS, as well as the behavior for several case
studies: transactional software installation, a transactional
LDAP server, a transactional ext3 file system, eliminat-
ing TOCTTOU races, scalable atomic operations, and inte-
gration with hardware and software transactional memory.

All of our experiments are performed on a server with
with 1 or 2 quad-core Intel X5355 processors (total of 4
or 8 cores) running at 2.66 GHz and 4 GB. All single-
threaded experiments were performed on the 4-core ma-
chine, and scalability measurements were taken on the 8
core machine. TxOS is compared against an unmodified
Linux kernel, version 2.6.22.6—the same version extended
to create TxOS .

The hardware transactional memory experiments were
run using MetaTM [38] on Simics version 3.0.27 [26]. The
simulated machine has 16 1000 MHz CPUs, each with a
32k L1 and 4 MB L2 cache. An L1 miss costs 24 cy-
cles and an L2 miss costs 350 cycles. We use the times-
tamp contention management policy and linear backoff on
restart.

7.1 Transaction overhead
TxOS serializes non-transactional tasks with transactions,
introducing overhead for non-transactional system calls.
TxOS was designed to minimize this overhead, so that

Call Linux NoTx Bgnd Tx Tx
access 2.1 2.9 (1.3×) 3.2 (1.5×) 8.1 (3.8×)
stat 2.4 3.2 (1.3×) 3.5 (1.4×) 8.3 (3.4×)
open 2.6 3.7 (1.4×) 3.8 (1.4×) 13.0 (4.9×)
unlink 6.4 9.6 (1.5×) 10.0 (1.6×) 16.0 (2.6×)
link 7.7 11.0 (1.5×) 13.0 (1.6×) 38.0 (4.9×)
mkdir 64.0 68.0 (1.1×) 72.0 (1.1×) 90.0 (1.4×)
read 2.7 3.4 (1.3×) 3.5 (1.3×) 8.7 (3.3×)
write 120.0 120.0 (1.0×) 120.0 (1.0×) 140.0 (1.2×)

Figure 7: Execution time in thousands of processor cycles
of common system calls on TxOS and performance relative to
Linux. NoTX indicates the speed of non-transactional system
calls on TxOS. Bgnd Tx indicates the speed of non-transactional
system calls when another process is running a transaction in the
background, and Tx is the cost of a system call inside a transac-
tion.

applications benefitting from transactions incur the ma-
jority of the cost. Table 7 compares the average execu-
tion times of common file system operations on TxOS to
Linux. The “NoTx” is the cost of non-transactional sys-
tem calls when no transactions are active, reflecting single-
thread overhead increases (0-50%) due to code reorgani-
zation. The “Bgnd Tx” column shows the overhead for
a non-transactional system call to check for conflicts with
a concurrent transaction on the system, generally an extra
10%.

Figure 7 shows the worst-case performance of TxOS
transactions (1-4.9×), as transaction with a single sys-
tem call has no opportunity to amortize the cost of cre-
ating shadow objects and commit. The “Tx” column
shows just the time for the system call, excluding the
sys xbegin()and sys xend()system calls. In prac-
tice, a user would not write a transaction consisting of a
single system call, as a single system call is already atomic.

Figure 8 shows the performance of TxOS on a range of
micro-benchmarks as well as software installation. Post-
mark is version 1.51 with the same transactions as used
by Amino [52]. The LFS small benchmark operates on
10,000 100 bytes files, and the large benchmark reads and
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Bench ACI ACID
Linux TxOS Linux TxOS

postmark .04 .12 3.0× .05 .06 1.2 ×
lfs small
create 4.5 5.5 1.2× 26.0 32.0 1.2×
read 1.2 1.0 .8× 63.2 62.0 1.0×
delete .1 1.2 12.0× 3.7 3.7 1.0×
lfs large
write seq 1.38 .34 .2× 1.58 1.67 1.1×
read seq .04 .13 3.2× .04 .07 1.7×
write rnd 1.60 .36 .2× 1.29 1.44 1.1×
read rnd .07 .14 2.0× .06 .15 2.5×
MAB
1 .00017 .00041 2.4× .00028 .00031 1.1×
2 .0011 .0034 2.9× .0018 .053 2.9×
3 .54 1.10 2.0× .51 1.61 3.2×
4 .58 .91 1.5× .56 2.69 4.8×
dpkg .63 .84 1.3× 2.7 3.8 1.4×
make 5.48 4.9 5.0 1.0×

Figure 8: Execution time in seconds for several transactional
benchmarks on TxOS and slowdown relative to Linux. ACI rep-
resents non-durable transactions, with a baseline of ext2, and
ACID represents durable transactions with a baseline of ext3 with
full data journaling. Data for make ACI was not available at the
time of submission.

writes a 100MB file. We scaled back the LFS small file
sizes because durable transactions pathologically exacer-
bate a memory leak present in the Linux 2.6.22.6 ext3 jour-
naling code. The Modified Andrew Benchmark (MAB)
wraps each phase, excluding compilation, in a transaction.
Dpkg and Make are software installation benchmarks that
wrap the entire installation in a transaction, as discussed in
the following subsection.

As the workloads get larger, the overhead of system
transactions decreases, often 0–50% for workloads that
run for more than a second. Benchmarks that repeatedly
write files in a transaction, such as the LFS large bench-
mark, are more efficient than Linux because transaction
commit groups the writes and presents them to the I/O
scheduler at once, improving disk arm scheduling. Write-
intensive workloads out-perform non-transactional writers
by as much as a factor of 5×.

7.2 Software installation

By wrapping system commands in a transaction, we ex-
tend both make install and dpkg, the Debian pack-
age manager, to provide ACID properties to software in-
stallation. We test make with an installation of the Sub-
version revision control system, version 1.4.4, and test
dpkg installing the package for OpenSSH version 4.6.
The OpenSSH package was modified not to restart the dae-
mon as the script responsible sends a signal and waits for
the running daemon to die, whereas TxOS defers the sig-
nal until commit. This script could be rewritten to match
the TxOS signal API in a production system.

As Figure 8 shows, the overhead for adding transactions
is quite reasonable (1.0-1.4×), especially considering the
qualitative benefits. For instance, by checking the return

Back end Search Throughput Add/Delete Throughput
BDB 969.3 57.6
LDIF 744.6 416.7
LDIF-TxOS 781.4 116.3

Figure 9: Throughput in queries per second of OpenLDAP’s
slapd server (higher is better) for a read-only and write-mostly
workload. LDIF is a back end that uses flat files and provides
no consistency guarantees. The BDB back end uses Berkeley
DB, and LDIF-TxOS augments the LDIF back end to use system
transactions on a flat file. LDIF-TxOS provides the same crash
consistency guarantees as BDB with double the write throughput.

code of dpkg, our transactional wrapper was able to au-
tomatically roll back a broken Ubuntu build of OpenSSH
(4.6p1-5ubuntu0.3), and no concurrent tasks were able to
access the invalid package files during the installation.

7.3 Transactional LDAP server

Many applications, such as OpenLDAP, have fairly mod-
est concurrency control requirements for their stable data
storage, yet use heavyweight solutions, such as a database
server. System transactions provide a simple, lightweight
solution for such applications. To demonstrate this, we
modified the slapd server in OpenLDAP 2.3.35’s LDIF
(flat file) back end to use system transactions.

Table 9 shows throughput for the unmodified Berke-
ley DB back end, the unmodified LDIF back end, and the
LDIF back end using TxOS. We used SLAMD to exercise
the server, running in single-thread mode. While LDIF-
TxOS shows a 24% slowdown over the BDB version on
a read-only workload, on a write-mostly workload it im-
proves over the BDB version by 2×. LDIF-TxOS provides
higher read throughput than LDIF because of a few sim-
ple optimizations, such as caching file contents in mem-
ory. Unmodified LDIF provides higher write throughput,
but provides no consistency guarantees in the presence of
a crash or concurrency. LDIF-TxOS provides the same
guarantees as the BDB back end with respect to concur-
rency and recoverability after a crash.

7.4 Transactional ext3

In addition to measuring the overheads of durable trans-
actions, we validated the correctness of our transactional
ext3 implementation by powering off the machine dur-
ing a series of transactions. After the machine is powered
back on, we ran an fsck on the disk to validate that it was
in a consistent state. To facilitate scripting, we performed
these checks using Simics. At the time of submission, our
system has successfully passed 763 trials, giving us a high
degree of confidence that TxOS transactions correctly pro-
vide atomic, durable updates to stable storage.

7.5 Eliminating race attacks

System transactions provide a simple, deterministic
method for eliminating races on system resources. To
qualitatively validate this claim, we reproduced several
race attacks from recent literature on Linux and validated
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Figure 10: Time to perform 500,000 renames divided across
a number of threads (lower is better). TxOS implements its
renames as calls to sys xbegin(), link, unlink, and
sys xend(), using 4 system calls for every Linux rename
call. Despite higher single-threaded overhead, TxOS provides
better scalability, outperforming Linux by 3.9× at 8 CPUs.
At 8 CPUs, TxOS also outperforms a simple, non-atomic
link/unlink combination on Linux by 1.9×.

that TxOS prevented the exploit.

We downloaded the attacker code used by Borisov et
al. [5] to defeat Dean and Hu’s probabilistic countermea-
sure [10]. This attack code creates memory pressure on the
file system cache to force the victim to deschedule for disk
I/O, thereby lengthening the amount of time spent between
checking the path name and using it. This additional time
allows the attacker to win nearly every time on Linux.

TxOS successfully resists this attacker by reading a con-
sistent view of the directory structure and opening the cor-
rect file. The attacker’s attempt to interpose a symbolic
link creates a conflicting update that occurs after the trans-
actional access check starts, so TxOS puts the attacker
to sleep on the asymmetric conflict. The performance of
the safe victim code on TxOS is statistically indistinguish-
able from the vulnerable victim on Linux.

To demonstrate that TxOS improves robustness while
preserving simplicity for signal handlers, we reproduced
two of the attacks described by Zalewksi [53]. The first
attack, which is representative of a vulnerability present in
sendmail up to 8.11.3 and 8.12.0.Beta7, in which an at-
tacker can induce double-free in a signal handler. The sec-
ond attack, representative of a vulnerability in the screen
utility, which exploits lack of signal handler atomicity.
Both attacks lead to root compromise; the first can be fixed
by using the sigaction API rather than signal, while
the second cannot. We modified the signal handlers in
these attacks by wrapping handler code in sys xbegin,
sys xend pair, which provides signal handler atomic-
ity without requiring the programmer to change code use
sigaction. In our experiments, TxOS serializes han-
dler code with respect to other system operations, and is
therefore able to withstand both attacks.

7.6 Concurrent performance
System calls like rename and open have been used as
ad hoc solutions for the lack of general-purpose atomic ac-
tions. These system calls have become semantically heavy,
resulting in complex implementations whose performance
does not scale. As an example in Linux, rename has
to serialize all cross-directory renames on a single file-
system-wide mutex because finer-grained locking would
risk deadlock.

Transactions allow simpler, semantically lighter system
calls to be combined to perform heavier weight operations
yielding better performance scalability and a simpler im-
plementation. Figure 10 compares the unmodified Linux
implementation of rename to calling sys xbegin(),
link, unlink, and sys xend()in TxOS. TxOS has
worse single-thread performance because it makes four
system calls for each Linux system call. But TxOS
quickly recovers the performance, performing within 6%
at 2 CPUs and out-performing rename by 3.9× 8 CPUs.
We also compare the TxOS atomic link/unlink to a non-
atomic link/unlink pair on Linux, in which TxOS outper-
forms Linux by a factor of 1.9× at 8CPUs. The scalability
is directly due to TxOS using fine-grained locking to im-
plement transactions, while Linux must use conservative,
coarse-grained locks in order to keep implementation com-
plexity reasonable.

7.7 HTM with system calls
To evaluate integration with hardware transactional mem-
ory, we use the genome benchmark from the STAMP
benchmark suite [7], to fix a memory leak in the distributed
version. Genome allocates memory during a transaction,
and the allocation sometimes calls mmap. When the trans-
action restarts, mmap gets called repeatedly, leaking mem-
ory. With TxOS, the mmap is made part of a system
transaction and is properly rolled back when the user-level
transaction aborts.

Table 3 shows the execution time, number of system
calls within a transaction, and the number of allocated
pages at the end of the benchmark for both TxOS and
unmodified Linux running on MetaTM. TxOS rolls back
mmap in unsuccessful transactions, allocating 3× less heap
memory to the application, without effecting performance.
No source code or libc changes are required for TxOS to
detect that mmap is transactional.

The possibility of an mmap leak is a known prob-
lem [54], with several proposed solutions, including open
nesting and a transactional pause instruction. All solutions
complicate the programming model, the hardware, or both.
System transactions address the memory leak with the sim-
plest hardware model and user API.

7.8 Integration with software transactional memory
We integrated a Java-based software transactional mem-
ory system (DATM-J [39]) with system transactions. We
extend DATM-J to use the system call API provided by
TxOS. The only modification to the STM is to follow the
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Execution Time System Calls Allocated Pages
TxOS Linux TxOS Linux TxOS Linux

.05 .05 1,084 1,024 8,755 25,876

Table 3: Execution Time, number of system calls, and allocated
pages for the genome benchmark on the MetaTM HTM simulator
with 16 processors.

commit protocol when committing a user level transaction
that invokes a system call, as outlined in Section 4.5.

We tested the integration of DATM-J with TxOS by
modifying Tornado, a multi-threaded web server that is
publicly available on sourceforge, to use transactions. Tor-
nado protects its data structures with STM transactions,
and the STM transparently protects concurrent reads and
writes to its data files from interfering with each other.
Compared to the original code, augmented to use file lock-
ing to protect against concurrent file writes, transactions
perform up to 47% better with 7 threads.

8 Conclusion
Adding efficient transactions to the Linux system call API
provides a general-purpose, natural way for programmers
to synchronize access to system resources, a problem cur-
rently solved in an ad hoc manner. This paper demon-
strates how system transactions can solve a number of
important, long-standing problems from a number of do-
mains, including file system races and supporting system
calls within transactional memory, while maintaining scal-
able performance.
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