
Efficient, Context-Sensitive Detection of Semantic Attack s

UT Austin Computer Sciences technical report TR-09-14. Under submission to CCS 2009.

Michael D. Bond Varun Srivastava Kathryn S. McKinley Vitaly Shmatikov
The University of Texas at Austin

{mikebond, varun, mckinley, shmat}@cs.utexas.edu

ABSTRACT
Software developers are increasingly choosing memory-safe lan-
guages such as Java because they help deploy higher-qualitysoft-
ware faster. As a result, semantic vulnerabilities—omitted security
checks, misconfigured security policies, and other software design
errors—are supplanting memory-corruption exploits as theprimary
cause of security violations.

We present PECAN, a precise, efficient defense against semantic
attacks based on dynamic anomaly detection. We show that detec-
tion of semantic exploits requires both context and historysensi-
tivity. PECAN supports very efficient run-time tracking of calling
contexts and histories, and thus enables accurate detection of un-
usual behaviors associated with security violations.

We evaluate our approach on several real-world semantic ex-
ploits that target subtle bugs in real Java applications andlibraries.
Our sample attacks are representative of common types of seman-
tic vulnerabilities. All were successfully detected by PECAN. The
run-time overhead of our approach on standard benchmarks is5%
on average and at most 9%. The efficiency of PECAN is a qualita-
tive advance in the state of the art: unlike many existing methods,
PECAN can be deployed in a production system with a minimal
performance penalty. Furthermore, we investigate the tradeoff be-
tween sensitivity and accuracy, and empirically demonstrate that
PECAN achieves high sensitivity with few false positives.

1. INTRODUCTION
With the increasing popularity of memory-safe languages such

as Java, C#, JavaScript, and Ruby, semantic vulnerabilities have
overtaken memory corruption bugs as the primary cause of secu-
rity violations in software applications [27]. Exploitable semantic
bugs include accidental omission of access-control checks, unin-
tentional exposure of security-sensitive methods to untrusted code,
misconfiguration of security policies, and other security-logic er-
rors.

Detecting attacks that target semantic vulnerabilities isa difficult
task. Unlike memory-corruption exploits, semantic attacks do not
rely on a violation of the underlying programming language seman-
tics, nor, typically, do they involve code injection. Static analysis-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

based intrusion detection methods, which ensure that the program’s
dynamic behavior conforms to the statically inferred control-flow
graph and memory-access patterns [1, 2, 9, 14, 40], are ineffec-
tive against semantic attacks because the code paths and memory
accesses executed during such an attack are already presentin the
original code. Static and dynamic taint-tracking methods,which
can detect injection attacks on Web applications [5, 25, 29,42], do
not help against other semantic attacks,e.g., a malicious Java ap-
plet that exploits a sensitive method mistakenly left accessible by a
misconfigured security policy.

Dynamic anomaly detection is potentially capable of recogniz-
ing that an unusual code path is being executed, and is thus attrac-
tive as a defense against semantic attacks. Practical implementa-
tions, however, face two major challenges. The first isprecision.
As we show in this paper, detection of many semantic attacks re-
quires context sensitivity,i.e., the defense must consider a method’s
calling context before making the security decision. Furthermore,
some attacks can only be detected by history-sensitive defenses that
take into account whether certain calls—for example, thoseassoci-
ated with mandatory security checks—have occurred or not. Unfor-
tunately, simplistic approaches such as blindly increasing the size
of the context and/or history considered by the detection algorithm
can lead to a dramatic increase in the number of false positives
when monitoring legitimate executions.

The second challenge isefficiency. Naive solutions for context
sensitivity, such as direct stack inspection, can result inprohibitive
performance overheads, precluding their deployment in production
applications.

Efficient context sensitivity is an especially important challenge
for modern, object-oriented languages. Programs written in these
languages typically have many small methods and use virtualmeth-
ods, making dynamic calling context critical to understanding pro-
gram behavior [7]. These features also tend to lead to deepercall
stacks, increasing the cost of maintaining calling contextin dy-
namic analyses.

This paper aims to develop a general anomaly detection method
that provides both the precision and the efficiency requiredto de-
tect modern semantic attacks. We emphasize that the objective is
not merely a quantitative improvement in performance. In the case
of dynamic anomaly detection, there is aqualitativedifference be-
tween an efficient defense that can be feasibly deployed in a pro-
duction system and techniques that may be of academic interest,
but impose prohibitive run-time overheads and/or result inan over-
whelming number of false positives when monitoring complexap-
plications and libraries.

We argue that testing onreal-world exploitsshould be an essen-
tial part of evaluation for any anomaly detection system. None of
the previous work on context-sensitive anomaly detection demon-

1

strated real-world semantic attacks that require non-trivial context
sensitivity. For example, Fenget al. construct artificialmemory-
corruption exploits to motivate context sensitivity [11], while our
focus is on semantic attacks that only use code paths alreadypresent
in the program. As we show in this paper, real-world exploitsoften
exhibit fairly complex behavior that can expose limitations of naive
detection methods. We use representative real-world attacks to cal-
ibrate the tradeoff between sensitivity and accuracy in oursystem.

Our contributions. We design and implement a new approach to
detecting semantic attacks on Java applications based on dynamic
anomaly detection. We chose Java because of its popularity,but
the principles behind our approach apply to other memory-safe lan-
guages.

Our attack detection system is called PECAN (Precise, Efficient,
Context-sensitive ANomaly detection). PECAN keeps track of the
application’s execution context and history by dynamically com-
puting a compact, probabilistically unique 32-bit value. When mon-
itoring program execution, PECAN checks this value at each secu-
rity-sensitive call and verifies whether it was observed during train-
ing.

Since higher sensitivity can lead to false positives, the context
must bedepth-limited. This presents a technical challenge: how
to compute a depth-limited representation of the calling stack effi-
ciently andcontinuously, as the context changes. To the best of our
knowledge, PECAN is the first anomaly detection system that pro-
vides context sensitivity of arbitrary depth and history sensitivity
for memory-safe languages in a practically efficient manner.

We show the effectiveness of our approach by systematically
evaluating it on standard benchmarks and several real vulnerabil-
ities in Java (listed below), which are representative of important
categories of semantic security violations. We view the demon-
stration that context sensitivity is essential for detecting real-world
semantic attacks—in particular, attacks on Java applications that
do not involve memory corruption and execution of infeasible code
paths—as an important contribution of this paper.

The average performance overhead of our detection method is
5%, whereas other context-sensitive techniques such as stack-walk-
ing add 100% overhead for some programs.

Four representative vulnerabilities. The first vulnerability is a
bug in Sun Java Virtual Machine 1.3 [34]. It permits a malicious
applet to circumvent the security manager by providing a class path
with “/” instead of “.”. This exploit is representative of the “mis-
takenly omitted security check” category. We emphasize that a
conventional history-based anomaly detector wouldnot be able to
detect this attack because there are legitimate call sequences—for
example, when the class is loaded from the root package—in which
the security check is not performed. Therefore, it is impossible to
differentiate between legitimate and malicious behavior simply by
asking whether the execution history contains acheckPermis-
sion call. Furthermore, detection must take place inside the Java
API libraries and not just at the boundary between the appletand
the libraries.

The second vulnerability is a bug in the Java 2 Runtime Environ-
ment 1.4 [28]. It allows a malicious applet to load unsafe classes
and execute arbitrary code via the reflection API. This exploit is
representative of the “sensitive methods mistakenly exposed to un-
trusted code” category.

The third vulnerability is a bug in the Sun Java System Portal
Server 7.0 [45], which allows untrusted code contained in a ma-
licious XSLT stylesheet to bypass the standard security checks.
This exploit is representative of the “untrusted code executed in
the wrong security context” category. It is fundamentally context-

dependent, requiring a non-trivial context-sensitive defense. This
exploit is also interesting because the vulnerable application is a
recursive XML parser, and the depth of recursion depends on the
structure of the input. This structure makes it infeasible to enu-
merate all valid contexts during training, presenting a challenge to
any context-sensitive attack detection method (to the bestof our
knowledge, none of the context-sensitive anomaly detection sys-
tems in the literature have been evaluated on recursive applications
of this kind). We solve the problem by usingdepth-limitedcontext
sensitivity, which is still precise enough to detect the attack.

The fourth vulnerability is a bug in the custom security manager
of the Opera Web browser version 7.24, which allows untrusted
applets to elevate their privileges [35]. This exploit is representative
of the “misconfigured security policy” category.

PECAN detects all of these exploits, demonstrating its effective-
ness against many types of semantic attacks. Very precise intrusion
detection methods run the risk of “overfitting” the model of normal
behavior to the training runs, resulting in a large number offalse
positives during benign production runs. Our analysis explores the
tradeoff between accuracy and sensitivity. We show that by cali-
brating and bounding the system’s context and history sensitivity,
dynamic detection can precisely recognize malicious activity with-
out a prohibitive increase in the number of false positives.

2. RELATED WORK
Much of previous research on run-time detection of maliciously

behaving applications focuses on defenses against memory-corrup-
tion exploits. These attacks affect programs implemented in unsafe
languages such as C. In contrast, this paper focuses on attacks that
exploit application semantics and thus affect even programs imple-
mented in memory-safe languages such as Java.

Our approach is based on anomaly detection. It constructs a
model of correct application behavior in the training phaseand then
detects deviations from this model during production runs.Even
outside the realm of security, anomalies are broadly usefulfor find-
ing semantic errors. For example, DIDUCE establishes and records
dynamic invariants such as variable values, variable inequalities,
and branch directions and finds that anomalous paths and values
often reveal bugs in programs [16]. Unfortunately, high run-time
overheads are a bane of anomaly detection systems. For example,
DIDUCE increases execution times of monitored applications by a
factor of 2 to 10.

Forrestet al.observed that system-call histories associated with
security violations often appear anomalous viz. correct executions,
and developed acontext-insensitiveanomaly detection system op-
erating at the level of system calls [12, 18]. Sekaret al.show how
to learn a finite state automaton (FSA), which provides a morecom-
pact representation of system-call histories [37]. Because these
approaches target memory-unsafe languages, monitoring must be
performed beyond the reach of injected malicious code and re-
quires system-call interposition. The latter imposes overheads be-
tween 100% and 250% [32, 37]. Inoue and Forrest extend context-
insensitive call monitoring to application methods in Javaprograms [21,
22]. A violation is reported if the program executes a methodthat
has never been seen in a training run. For several vulnerabilities an-
alyzed in this paper (e.g., SlashPath), this simple method would
result in false negatives because malicious and benign behavior
cannot be differentiated on the basis of system-call history alone.
Context-insensitive detection methods can be evaded by “mimicry
attacks” [41], in which the malicious code executes the samese-
quence of system calls as the correct application.

Much work has been devoted to combining static analysis with
anomaly detection in order to accurately detect execution of infea-

2

sible control paths [40]. Because the statically computed control-
flow graph over-approximates the set of feasible paths, thisap-
proach suffers from false negatives, which can be reduced byad-
ding context sensitivity—for example, using the Dyck model[14],
or the Dyck model combined with stack-walking [10]. Infeasible
control transfers can also be found by a combination of static and
dynamic analysis [48]. On the other hand, Kruegelet al. present
a mimicry attack against context-sensitive anomaly detection that
uses adversarial static analysis of the vulnerable application to con-
struct a fake call stack and then return control back to the injected
code [26]. This entire line of research focuses on memory-unsafe
languages. By contrast, semantic attacks on applications imple-
mented in Java do not involve execution of any control paths that
are not already present in the original code. Therefore, techniques
for detecting execution of infeasible paths do not offer anyaddi-
tional power.

It has been observed that context sensitivity is essential for im-
proving precision of anomaly detection [11, 20, 46, 47]. Feng et
al. record the calling context at each system call and compare suc-
cessive histories of length two. They prune any stack context that
the two successive system calls have in common and store the con-
text differences, which results in more precise detection than us-
ing just the history [11]. Performance overhead is only reported in
milliseconds per system call, making it difficult to determine the
penalty on realistic benchmarks, but the mechanism fundamentally
depends on system-call interposition and walking the stack, both
of which would be prohibitively expensive in production systems:
as we mention above, the overhead of system call interposition can
exceed 100% [32, 37], and as we show in Figure 1, the overhead
of walking the stack depends on the application and can be very
high as well. It appears very challenging to extend the techniques
of [11] to object-oriented languages like Java, with many small
methods and virtual methods, while achieving practical efficiency.
Xu et al. introduce waypoints, which make the stack more visible
to the monitor, but reduce efficiency [46]. Zhuanget al.efficiently
find anomalous interprocedural paths, which include calling con-
text, but their approach requires new hardware [47].

In contrast to the prior work on context-sensitive anomaly detec-
tion, our approach (1) targets an entirely different class of attacks
(we focus on semantic attacks that exploit existing code paths as
opposed to memory-corruption attacks that involve execution of
infeasible code paths); (2) provides an especially efficient imple-
mentation of continuously available context of arbitrary depth that
requires neither walking the stack, nor special hardware, and has
a demonstrated overhead of 2-9% on realistic applications;and (3)
is evaluated on real-world semantic attacks against deployed Java
applications that have been reported in the National Vulnerability
Database, as opposed to artificially constructed memory-corruption
exploits.

3. SEMANTIC VULNERABILITIES
We present several concrete attacks that will serve as our running

examples throughout this paper. These exploits are representative
of different classes of semantic vulnerabilities and will allow us to
explore the tradeoffs between sensitivity and accuracy in dynamic
intrusion detection. We use the termsemantic vulnerabilityto refer
to logic bugs and design errors in the code. Technically, attacks
against these vulnerabilities are characterized by control-flow be-
havior that exploits code paths already present in the code,but not
observed during training (in Section 4, we explain why it is realistic
to expect that modern techniques for application testing will have
exercised all legitimate paths, including error handling). Because
attacks of this type have received relatively little attention in the

literature, we start by surveying their essential featuresand explain
why they require development of conceptually new defenses.

First, unlike memory-corruption exploits, these attacks do not
violate the semantics of the underlying programming language and
do not involve execution of statically infeasible code sequences.
Therefore, standard methods for ensuring code integrity and mem-
ory safety do not help.

Second, unlike cross-site scripting and SQL injection, these at-
tacks do not generate executable statements from untrustednetwork
inputs. Therefore, taint-tracking and similar methods do not help.

Third, all of our sample attacks work “in the wild” and have been
reported in the National Vulnerability Database [31]. For the pur-
poses of this paper, we reproduced them in a controlled virtual en-
vironment. Previous context-sensitive intrusion detection systems
have been evaluated primarily on artificial examples. By contrast,
the attacks analyzed in this paper exploit design errors in deployed
Java applications and libraries, demonstrating the variety and sub-
tlety of real-world semantic vulnerabilities. Semantic vulnerabil-
ities in memory-safe languages are still poorly understood. We
argue that analyzing real-world attacks is a critical component in
developing principled defenses, and view our work as a step in this
direction.

Two of the four exploits require context sensitivity to be detected
(note that there are no examples of real-world exploits whose detec-
tion requires context-sensitivity in prior literature—see Section 2).
This illustrates the importance of context sensitivity in real-world
intrusion detection, even for programs written in memory-safe lan-
guages like Java. The other two exploits are detectable witha
context-insensitive detector, but we present them here forcomplete-
ness.

SlashPath . This vulnerability is representative of a common mis-
take in the implementation of security managers and reference mon-
itors, where the enforcement mechanism forgets to perform aman-
datory security check.

In the Java security model, Java libraries rely on the security
manager to check access permissions for all security-sensitive ac-
tions. A security check in the Sun Java Virtual Machine (JVM)
version 1.3 and earlier cannot detect class paths expressedusing “/”
instead of “.” [34]. Therefore, even if the security managerdisal-
lows the loading of some class, a malicious applet can circumvent
the restriction by specifying the path with “/”. After loading, the
class executes within the existing applet environment.

This attack is somewhat subtle and cannot be detected by a pure
history-based detector. The security check iscorrectlyomitted for
class paths that do not contain any “/” or “.” characters. Therefore,
a history-based detector would accept histories that do notcon-
tain security checks as legitimate. Similarly, this vulnerability—
and “omitted-check” vulnerabilities in general—cannot becharac-
terized as a simple source-sink property, because there exist valid
paths on which the check need not be performed.

Our approach, on the other hand, combines context sensitivity
with history sensitivity and is thus capable of telling the difference
between the class-loading context in which the check shouldbe
omitted and those in which it must be performed.

XSLT. This vulnerability is representative of a common class of
bugs, where untrusted code is mistakenly executed in the wrong
security context (e.g., outside the normal Java sandbox).

“The Java XML Digital Signature implementation in Sun JDK
and JRE 6 before Update 2 does not properly process XSLT style-
sheets in XSLT transforms in XML signatures, which allows con-
text-dependent attackers to execute arbitrary code via a crafted sty-
lesheet” [45]. Similar vulnerabilities occur in the Sun Java System

3

Application Server and Web Server 7.0 through 9.0 [43] and the
Sun Java System Portal Server 7.0 [44].

Hill provides a detailed explanation of this vulnerability[17].
XSLT (Extensible Stylesheet Language Transform), which isused
for XML document processing, permits platform-specific extension
mechanisms, including embedded code. TheKeyInfo field of a
digital signature used to authenticate XML and other content can be
used to trick the victim system into executing this embeddedcode
outside the normal security context for untrusted code.

We emphasize that this vulnerability is characterizednot by the
fact that untrusted code is executed (which is not a bug, but afea-
ture of XSLT), but by the fact that the code executes in the wrong
context. This exploit highlights the importance of contextsensi-
tivity in detecting this and similar attacks. Furthermore,because
XML parsing is recursive, it is essential that only contextsof a cer-
tain depth be considered. We are not aware of any prior work that
focused on the importance of bounded context sensitivity.

LiveConnect . This vulnerability involves gaining access to secu-
rity-sensitive methods that are not normally available to untrusted
code.

“The Sun Java Plugin capability in Java 2 Runtime Environment
(JRE) 1.4.2_01, 1.4.2_04, and possibly earlier versions, does not
properly restrict access between JavaScript and Java applets during
data transfer, which allows remote attackers to load unsafeclasses
and execute arbitrary code by using the reflection API to access pri-
vate Java packages” [28]. This vulnerability is caused by a design
error in a Web browser feature called LiveConnect, which allows
Java and JavaScript code to communicate with one another on a
Web page,i.e., a Java applet can access JavaScript objects, and
JavaScript code can access Java runtime libraries.

The bug in LiveConnect allows a malicious applet to invoke
a netscape.javascript.JSObject JavaScript object and
use it to determine the user’s browser and to obtain a reference
to sun.plugin.liveconnect.SecureInvocation. The
applet then disables the security manager with a call to theset-
SecurityManager() method, executed via theSecureIn-
vocation proxy. Once outside the sandbox, the applet can down-
load the executable payload and run it on the victim’s machine. It
can also use the reflection API to get access to desirable methods.
In our virtual environment, we reproduced the exploit usingcode
provided by Dino Dai Zovi.

OperaPolicy . This vulnerability is representative of logic errors
and misconfigurations in custom security policies.

The Opera 7.54 Web browser uses the JRE directly with a pro-
prietary adapter, in contrast to other major browsers, which use the
Java Plugin. Opera also introduces its own default policy, allowing
unprivileged applets access to internal Sun-packages by specifying
in Opera.policy:

grant {
permission java.lang.RuntimePermission
"accessClassInPackage.sun.*";

};

“This [feature] opens the gate to some undocumented functionality
and violates Sun’s guidelines for secure Java programming”[36].
We reproduced this vulnerability with the exploit code provided by
Marc Schonefeld onsecurityfocus.com.

4. DETECTING SEMANTIC ATTACKS
WITH CONTEXT AND HISTORY
SENSITIVITY

We now describe the design and implementation of our PECAN

system for detecting semantic attacks on Java code. As explained
in Section 3, semantic attacks exploit unintended behaviors of im-
plementations that have not been considered by the programmer.
Our approach is based on the standard two-stage paradigm fordy-
namic anomaly detection. First, PECAN is trained to learn normal
behaviors; then, during deployment, the code is monitored to de-
tect execution of unusual behaviors,i.e., those not observed during
training.

We assume thattraining is sufficiently thorough to exercise all
normal behaviors and thus reduce the false positive rate. Train-
ing can be easily “piggybacked” onto standard quality-assurance
testing, in which the program is executed on comprehensive test in-
puts. The tools for systematic, exhaustive testing of all legitimate
code paths are now widely available [15, 33, 23]. These approaches
are driven by the intended functionality of the software being tested
and thus guarantee that the training phase is free of semantic attacks
(which, by definition, exploit unintended functionality).Further-
more, these tools specifically exercise error-handling functionality,
thus reducing the danger that an infrequently executed codepath
will be flagged as anomalous after deployment. Our experimental
evaluation, too, shows that false positives can be eliminated and/or
greatly reduced with sufficient training.

PECAN’s deploymentphase observes program behavior and re-
ports history/context combinations that it did not observeduring
training. PECAN may be optionally configured to terminate the ap-
plication when anomalous behavior is detected, or to write awarn-
ing to a log. Developers can examine the report to decide whether
the anomaly represents an attack or a false positive,i.e., legitimate,
but previously unobserved, behavior. The latter can be added to the
training set to avoid future false positives.

The critical design issue for any anomaly-detection systemis
the four-way tradeoff between (i) granularity of monitoring (which
method invocations to monitor and how often), (ii) efficiency and
scalability, (iii) false positive rate, and (iv) comprehensiveness of
training. Frequent monitoring of a large number of methods,with
context and history sensitivity, enables more precise and timely de-
tection of anomalies. At the same time, it imposes a larger perfor-
mance overhead and makes it more likely that the system will gen-
erate a false positive due to valid behavior that was not observed
during training. Therefore, finer granularity requires much more
comprehensive training in order to exercise all possible contexts of
every method call in the application. If taken to the extremeof ex-
haustive testing, the defense would apply only to relatively small
applications. The investigation of this tradeoff is one of the contri-
butions of this paper.

4.1 Security Calls
To limit the number of false positives and restrict the amount of

information that needs to be maintained by the system, PECAN only
tracks calls to methods that can potentially throw ajava.lang.-
SecurityException, which we refer to assecurity calls. Se-
curity calls are important because they can affect the system out-
side the JVM,e.g., I/O and system calls. Similarly, prior work on
anomaly-based intrusion detection typically tracks behavior at the
level of system calls [18]. To identify the methods that can poten-
tially throw aSecurityException, our implementation parses
the Java API documentation.

The SecurityManager class provides methods that enable
applications to implement their own security policies. This flexible
model leaves applications that need special security policies open
to bugs of omission and misconfiguration. For example, the devel-

4

oper can forget a corner case and omit a needed check in a new
policy. This bug can go undetected at testing time and will leave
the application vulnerable. Dynamic anomaly detection is the last
line of defense in this case.

In our experience, limiting monitoring to security calls provides
a good balance between efficiency and precision, while ensuring a
low false positive rate. Because these methods are an inherent part
of the application’s security policy, the context and history of their
behavior are indicative of security violations, as confirmed by our
experiments.

4.2 Context Sensitivity
Dynamic calling contextis the sequence of active call sites that

lead to a program location. It is an important component of pro-
gram behavior because the same call may be malicious or benign,
depending on its context. Prior work recognized the importance of
context sensitivity for precise anomaly detection, but focused on
memory-corruption attacks involving invalid code paths [11, 46,
47]. Inoue considered context sensitivity in intrusion detection, but
did not build or evaluate an actual intrusion detector [20].Con-
text is a critical element of program behavior for programs written
in modern, object-oriented languages, which typically have small
methods and use virtual methods [7].

Obtaining context is expensive if done frequently. A typical ap-
proach is to walk the stack to obtain the list of active call sites [30],
but as our experiments show, the overhead of stack-walking is high
for some applications. An alternative approach is to build acalling
context tree (CCT) in which each node represents a distinct call-
ing context [4, 38]. Application-level instrumentation constructs
the CCT and maintains each thread’s position in the CCT. When
the intrusion detector needs to record the current context,it sim-
ply records a pointer to the current node in the CCT. Unfortunately,
CCT-based approaches add high time and space overhead.

Our efficient solution is to keep track of context continuously
andprobabilisticallyby continuously computing a probabilistically
unique value (e.g., a 32-bit integer) that represents the current call-
ing context. PECAN uses this value to represent context-sensitive
calls; an anomalous value indicates an anomalous context-sensitive
call. Prior dynamic analyses have computed a hash value for call-
ing contexts, e.g., computing a hash value is essential for virtually
any context-sensitive analysis, in order to look up contexts in a hash
table. However, unlike most prior approaches, (1) we want tocom-
pute context incrementally, i.e., compute a new hash value at each
call site using only the current hash value and a call site identifier,
and (2) we need a function that produces ideally very few conflicts,
i.e., two distinct contexts that map to the same hash value.

Prior work introducesprobabilistic calling context(PCC), which
computes a probabilistically unique value that naturally represents
every call site in the current calling context [7]. However,we have
found that full context sensitivity provides too much sensitivity, re-
sulting in many false positives on real programs, especially highly
object-oriented and recursive programs. For example, XML pro-
cessing performed byXSLT often executes mutually recursive con-
texts, resulting in many contexts flagged as anomalous even after
thorough training. This example crisply illustrates the tradeoff be-
tween precision and accuracy, and motivates the need fork-limited
context sensitivity, which limits context to the topk methods on the
stack.

While the function from prior work represents a infinite-depth
calling context [7], it is challenging to design a function that pro-
duces values that represent only a fraction of context. particularly
so that each call site in the depth-limited context affects many bits
of the value (to reduce the potential for conflicts between similar

contexts). The difficulty arises because, at each call site,the func-
tion needs to “eliminate” thekth call site from the calling context
value so that the value represents only the topk call sites on the
stack. We propose an approach calledk-limited probabilistic call-
ing context (k-PCC), and we introduce thek-PCC functionas fol-
lows:

f(V, cs) ≡ 2⌈bits/k⌉
× V + cs

The function takes two inputs: the k-PCC value,V , and an iden-
tifier for the call site at which the function is computed,cs. In
our implementation, both of these inputs are 32-bit values.On the
right-hand side,bits is the size of the k-PCC value (32 in our im-
plementation), andk is context depth. For example, ifk = 3,

f(V, cs) ≡ 211
× V + cs

This function is equivalent to shifting the current k-PCC value 11
bits to the left, then adding the call site value. Bits affected by call
sites lower on the stack are pushed off the end of the value, sothat
only the topk call sites affect the PCC value.

We modify the dynamic, just-in-time (JIT) compiler in the JVM
to insert instrumentation at each call site that computes the next k-
PCC value from the current k-PCC value and the current call site
ID. The following example shows the instrumentation the compiler
adds to a method:

method() {
int tmp = V; // save current k-PCC value
...
V = f(tmp, cs_1); // compute k-PCC value

cs_1: foo();
...
V = f(tmp, cs_2); // compute k-PCC value

cs_2: bar();
...
V = f(tmp, cs_3); // compute k-PCC value

cs_3: bar();
...

}

Note that different k-PCC values are computed at different call sites
to the same method (cs_2 andcs_3).

This instrumentation continuously maintains the k-PCC value,
but this value only needs to beexaminedat call sites of interest,
which in the case of PECAN are security calls. Consider the exam-
ple below. The system adds instrumentation to compute the k-PCC
value at all call sites, but only checks the k-PCC value for calls that
may throw aSecurityException.

method() {
int tmp = V; // save current k-PCC value
...
V = f(tmp, cs_1); // compute k-PCC value

cs_1: foo();
...
V = f(tmp, cs_2); // compute k-PCC value
check(V); // check k-PCC value

cs_2: SecurityManager.checkPermission(...);
...
V = f(tmp, cs_3); // compute k-PCC value
check(V); // check k-PCC value

cs_3: readFile(...);
...

}

Thecheck() method looks up the k-PCC value in a global hash
table:

check(V) {
if (!table.contains(V)) {

5

table.add(V);
if (deployed) {
walkStack();
reportAnomaly();

}
}

}

If the value is anomalous, then the resulting context is guaranteed
to be anomalous. If PECAN is executing in training mode, it simply
adds the anomalous k-PCC value to the table. In deployed mode,
it also reports the anomalous context, which it obtains by walking
the stack.

A disadvantage of the k-PCC function is that only the top call
site affects all bits in the k-PCC value. Fork = 3, the top call site
affects all 32 bits of the PCC value, the second call site affects 21
bits, and the third call site affects only 10 bits. Thus the chance
of a conflict may be increased if another call site shares the third
call site’s lowest 10 bits. However, a mediating factor is that for a
conflict to occur, this call site must be capable of calling the sec-
ond call site and causing it to invoke the top call site. In practice,
we find thatk-limited context sensitivity is sufficient for accurately
recognizing anomalies associated with real attacks.

4.3 History Sensitivity
Context sensitivity alone is not sufficient for detecting real-world

semantic exploits. Programhistory is an essential ingredient of ac-
curate anomaly detection, as we show in Section 5 and others have
shown [12, 18, 37]. For example, Java API methods often call
a security check method, such asSecurityManager.check-
Permission(), prior to a security call that performs some po-
tentially dangerous action,e.g., reading a file. If the file read occurs
without a priorSecurityManager check, this anomaly repre-
sents a possible attack. Note that there are two types of secu-
rity calls: (1) calls toSecurityManager methods that check
whether an action is permitted and (2) calls that actually perform
some potentially dangerous task. To reduce the number of histories
that need to be tracked and to mitigate false positives, PECAN only
considers the program’s history of calls toSecurityManager,
because correctly executing these checks is critical to enforcing se-
curity policies.

PECAN naturally combines history and context sensitivity by
combining prior k-PCC values forSecurityManager calls with
the current k-PCC value. The following modifiedcheck() me-
thod incorporates history using a hash functionh(H,V):

check(value) {
if (useHistory) {

H = h(thread.history, V);
if (isSecurityManagerCall) {
thread.history = V;

}
}
if (!table.contains(H)) {

table.add(H);
if (production) {
walkStack();
reportAnomaly();

}
}

}

Each thread uses a variablethread.history that maintains the
SecurityManager call history, if any. Thecheck() method
hashes this value together with the current k-PCC valueV to obtain
a new valueH . Whenevercheck() is called by aSecurity-
Manager call (which occurs at some, but not all security calls),
it updatesH to include this latestSecurityManager call. We

have found that, as with context sensitivity, using unlimited his-
tory provides too much sensitivity, resulting in many falseposi-
tives. Thus, PECAN uses only the k-PCC value from the most re-
centSecurityManager call, and combines it with the current
k-PCC value.

PECAN uses the following functionh(H, V) for hashing together
history and k-PCC values (this is the same function as used in[7]):

f(H, V) ≡ 3 × H + V

In the rest of this paper, we will refer to the k-limited probabilistic
context/history value tracked by our system as thek-PCH value.

4.4 Component Granularity
Modern software is usually assembled from independently de-

veloped components. PECAN training and monitoring may be ap-
plied only to some of the components. For example, an application
developer may configure PECAN to instrument only the application
that she is implementing, and in the deployment stage only monitor
for anomalies in that application (as opposed to the Java libraries).
On the other hand, an implementer of a library routine may only be
interested in anomalous executions inside the code he is responsible
for, as opposed to the entire context from the application tothe li-
brary. When PECAN is applied to the Java libraries, it resets history
before each application→ library call. This helps avoid mimicry
attacks,e.g., a malicious applet might call a security check prior to
calling a buggy library method in a such a way that a security check
is skipped.

5. EVALUATION
This section evaluates PECAN’s performance and ability to de-

tect attacks. We first describe our implementation of PECAN in a
Java Virtual Machine. Then we compare the overhead of k-PCH
to stack-walking. Next we evaluate PECAN’s ability to detect real-
world semantic exploits. Finally, we perform leave-one-out cross-
validation on non-vulnerable programs to evaluate PECAN’s false
positive rate.

5.1 Implementation
We implemented PECAN in Jikes RVM 2.9.2, a research Java

Virtual Machine [3, 24]. Jikes is a research tool, but its performance
compares well with commercial VMs: same, on average, as Sun
Hotspot 1.5, and 15–20% worse than Sun 1.6, JRockit, and J9 1.9,
as of August 2008 [8]. Our performance measurements are thus
relative to an excellent baseline.

Like other VMs, Jikes RVM uses just-in-time compilation to pro-
duce machine code for each method at run time. When a method
executes for the first time, a baseline compiler quickly generates
machine code directly from bytecode. If a method executes many
times and becomeshot, the VM recompiles it with an optimizing
compiler at successively higher optimization levels. We modify
both compilers to insert instrumentation that (1) maintains the k-
PCH value and (2) records (training) or checks (deployment)the k-
PCH value at method calls that can potentially throw aSecurity-
Exception.

5.2 Performance
PECAN adds overhead to applications because it inserts instru-

mentation to track the k-PCH value and check it at security-critical
method calls. In this section, we show that using k-PCH for context
sensitivity is superior to techniques such as stack-walking. Walking
the stack only when needed,i.e., at security-critical points, some-
times has low overhead, but in some programs increases overhead
by factors of two or more, for unlimited context sensitivity, and up

6

to 31% for k-limited context sensitivity whenk = 3. By contrast,
the overhead of k-PCH is consistently low across multiple bench-
marks.

Figure 1 shows the normalized execution time of our approach
for the DaCapo benchmarks and fixed-workload version of SPEC-
jbb2000 calledpseudojbb [6, 39]. Each bar is the median of three
trials. We use an execution methodology calledreplay compilation
to eliminate nondeterminism due to timer-based sampling [13, 19].
We exclude thebloat benchmark since its performance is erratic
even with replay compilation.

Each bar is the overhead compared with the execution time on
unmodified Jikes RVM.1 Pecan is the overhead of continuously
maintaining k-PCH values and checking them at security calls. We
usek = 3, but the overhead is the same for any value ofk. Pecan
adds 5% on average and at most 9%. We have found that almost
all of this overhead comes from maintaining the k-PCH value;less
than a tenth of the overhead comes from checking the k-PCH value
at security calls. TheWalk stackconfigurations show the estimated
overhead of alternate approaches that walk the stack when context
is needed, rather than keeping track of context continuously. These
configurations walk the top three call sites and all call sites of the
stack, respectively. They have low overhead for most programs, but
for two programs (antlr andpseudojbb) they add very high over-
head. Walking the entire stack adds very high overhead for these
programs, but admittedly full context sensitivity produces too many
false positives in practice, as we show in Section 5.4. Even for con-
text sensitivity with depth 3, overheads are lower, but as high as 18
and 31% forantlr andpseudojbb, which have relatively frequent
security calls. Programs with more frequent security callswill in-
cur higher overheads. In short, stack-walking does not scale well
to higher levels of context sensitivity, nor to more frequent secu-
rity checks. In contrast, k-PCH’s overhead is minimally affected
by higher values ofk and programs with more frequent security
checks.

5.3 Detecting Real Attacks
This section evaluates PECAN’s ability to detect semantic attacks

from Section 3. For each of the exploits, we train the system using a
benign input that leads to functionality that is similar to the exploit
(but not malicious). For example, the training runs forSlashPath
load a class named using the conventional dot syntax and a class
that has no package (and thus uses no dots). We then execute the
exploits in the trained system and observe whether PECAN reports
anomalous behavior. Our experiments explore several combina-
tions of granularity, history, and context sensitivity.

The granularity of PECAN’s checks is important for avoiding
both false positives and false negatives. As discussed previously,
PECAN checks the k-PCH value only at call sites to methods that
can throw aSecurityException, since these security calls
may be harmful, but are not so numerous as to cause many false
positives. Similarly, developers may choose to further restrict the
granularity of these checks to reduce false positives.

The first three exploits,SlashPath, LiveConnect, andOper-
aPolicy, are applets that take advantage of misconfigured security
policies or bugs in the Java libraries. To detect this class of vulner-
abilities (i.e., errors in libraries), monitoring can be restricted to the
libraries because exploits will trigger anomalies in the library code.
Furthermore, it does not make sense to check for anomalies inthe
applets because each applet has different code, which may not even
be known in advance, and will generate many false positives.The

1Overheads are negative in a few cases because of architectural
effects,e.g., instrumentation perturbs code layout, which can affect
caching performance for better or worse.

fourth exploit,XSLT, takes advantage of a semantic bug in a spe-
cific application. To detect this class of vulnerabilities,monitoring
must be performed inside that application.

We experiment with two levels of history sensitivity: none and
one. Without history, PECAN records and checks k-PCH values that
represent the current (context-sensitive) program location. With
history of level one, PECAN combines the current location with the
previous context-sensitive call toSecurityManager methods
(Section 4.3). One level of history is sufficient to detect all of our
attacks (often context sensitivity is also needed). We haveexper-
imented with infinite history as well, but we do not report results
because we found this configuration reports too many false posi-
tives.

Finally, we experiment with different amounts ofcontext sensi-
tivity. By default, PECAN uses three levels of context sensitivity.
We compare it to lower levels of context sensitivity: 0, which uses
the callee method as the program location, and 1, which uses the
caller method as the program location. We have collected results
for infinite context sensitivity, but we do not present them here be-
cause these configurations produce many false positives forthe pro-
grams in Section 5.4. Deeper context sensitivity leads to a richer set
of behaviors and thus more false positives, but some attacks(e.g.,
SlashPath) require context sensitivity to be detected.

The rest of this section refers to configurations of PECAN with
the notationCkHh, wherek is the context depth andh is the
amount of history used. Our recommended configuration, bolded
in the tables that follow, isC3H1, which can detect all exploits but
also produces few false positives.

SlashPath . The SlashPath vulnerability exploits the fact that
Sun JVM 1.3 does not correctly check whether it is okay to loada
class if that class’s package is delimited with slashes (e.g., sun/
applet/AppletClassLoader) instead of dots (e.g., sun.
applet.AppletClassLoader). We found that this vulner-
ability is present in the system class loader in Jikes RVM. This
loader calls the security manager to check if the application can
load the package, but it assumes that package names are delimited
with dots. The following code shows a simplified version of the
vulnerabile class loader:

protected Class loadClass(String name,
boolean resolve) {

SecurityManager sm =
SecurityManager.current;

if (sm != null) {
int lastDot = name.lastIndexOf(’.’);
if (lastDot != -1)

// [paper authors’ note:
// won’t execute if no dots in name]
String pkg =

name.substring(0, lastDot);
sm.checkPackageAccess(pkg);

}
return super.loadClass(name, resolve);

}

Our exploit code (based on an available sample exploit [34])is an
applet that loads a class in a package that applets should notbe able
to access. We execute this applet with a custom-defined security
manager that allows all operations. This setup makes sense because
one important application of PECAN is to detect malicious behavior
allowed by a faulty security manager or security policy.

Table 1 shows results for executing theSlashPath attack in a
system monitored by PECAN. Each row is a configuration with
varying levels of context sensitivity and history. The cells show the
number of anomalous behaviors associated with the attack and, in

7

antlr
chart

eclipse

fop hsqldb
jython

luindex

lusearch

pmd
xalan

pseudojbb

geomean

0

50

100

150

200

O
ve

rh
ea

d
(%

)

Pecan
Walk stack (k = 3)
Walk stack (k = inf)

Figure 1: Application execution time overhead of maintaining the k-PCH value and querying it at calls toSecurityException
methods, compared with walking the stack.

No history 1-level history
k Config Anom (All) Config Anom (All)
0 C0H0 0 (35) C0H1 0 (59)
1 C1H0 0 (54) C1H1 1 (90)
3 C3H0 0 (110) C3H1 2 (145)

Table 1: Intrusion detection results for SlashPath . Detecting
this exploit requires both context sensitivity and history.

parentheses, the total number of behaviors observed duringtrain-
ing. We only check for anomalies inside the Java libraries, because
the objective is to detect exploitation of faults in the security logic
of library code.

Table 1 shows that context and history sensitivity are required
for PECAN to detect theSlashPath attack. Sometimes the number
of anomalies is greater than 1 because an attack triggers multiple
anomalous k-PCH values. In general, the tables can be interpreted
as follows: if Anom is 0, the PECAN configuration cannot detect
the attack; otherwise, the PECAN configuration detects the attack,
although detection could fail with a more thorough trainingset be-
cause the call used in the attack would no longer appear anomalous.

We also implemented amimicry attack that callsSecurity-
Manager.checkPackageAccess() immediately prior to at-
tempting to load a class name delimited with slashes. This attack
would defeat naive history-based detection, but is successfully de-
tected by PECAN because PECAN clears history on each applet→
library call.

XSLT. To reproduce this exploit in our Jikes-based experimental
setup, we used the Xalan XML parsing library, which comes with
the Sun JVM. We wrote an XSL file with embedded code in the “se-
lect” attribute of thexsl:variable tag. If a user gives this XSL
file as an input for parsing an XML command, the JVM executes
the embedded code on the client machine. The code invokes a test
script, to which it should not have access, on the client machine.

Table 2 shows that context sensitivity is essential for detecting
the attack. We do not show various levels of history for this at-
tack because the XSLT application does not directly call anySe-
curityManager methods (PECAN only instruments the appli-
cation for this exploit, since it is a standalone application and not
an applet). Thus, results are equivalent regardless of the amount of

Config Anom (All)
CS = 0 C0H1 0 (20)
CS = 1 C1H1 0 (40)
CS = 3 C3H1 2 (42)

Table 2: Intrusion detection results for XSLT. Detecting this
exploit requires context sensitivity. SecurityManager his-
tory is not relevant sincePECAN profiles only the application,
which does not makeSecurityManager calls.

history sensitivity.
Context is essential because executing arbitrary security-sensi-

tive methods from the context of parsing XSL files is semanti-
cally incorrect, but it is reasonable for the XSLT application to call
security-sensitive methods in some other context (e.g., to load local
configuration files). Our training set calls security-sensitive meth-
ods outside the context of XSL parsing in order to demonstrate the
need for context sensitivity.

LiveConnect . As with theSlashPath exploit, we executeLive-
Connect with a security manager that allows all operations, so
PECAN can record all behavior during training and report anoma-
lous behavior during deployment.LiveConnect uses Sun’s browser
plugin, so we track calls only in the plugin, not in the other Java li-
braries.

Table 3 shows the anomalies reported by PECAN for different
amounts of context sensitivity and history. For this exploit, PECAN

detects anomalous behavior regardless of the amounts of context
sensitivity and history. The reason is that the exploit relies on call-
ing a method that should not be accessible to applets, so a benign
applet will not call it. Thus, calling this method always triggers
an anomaly, even without context or history sensitivity. However,
a more thorough training set or a potential mimicry attack could
further constrain the precision required to detect this exploit.

OperaPolicy . TheOperaPolicy attack exploits the security pol-
icy of the Opera 7.54 browser. Our test exploit uses theget-
BootstrapClassPath() method of thesun.misc.Laun-
cher class to get the URLs and access core JVM library classes of
thesun.* package.

We reproduce the exploit in Jikes RVM with a security man-
ager that allows all behaviors. Table 4 shows that PECAN detects

8

No history 1-level history
k Config Anom (All) Config Anom (All)
0 C0H0 6 (6) C0H1 6 (6)
1 C1H0 6 (6) C1H1 6 (6)
3 C3H0 6 (6) C3H1 6 (6)

Table 3: Intrusion detection results for LiveConnect . Detect-
ing this exploit does not require context or history sensitivity.

No history 1-level history
k Config Anom (All) Config Anom (All)
0 C0H0 3 (3) C0H1 3 (3)
1 C1H0 4 (4) C1H1 4 (4)
3 C3H0 5 (5) C3H1 5 (5)

Table 4: Intrusion detection results for OperaPolicy . Detect-
ing this exploit does not require context or history sensitivity.

the attack at all levels of history and context sensitivity.Similar
to LiveConnect, theOperaPolicy calls a method that should not
be accessible. When the attack code calls this method, it appear
anomalous regardless of the amount of context or history sensitiv-
ity.

5.4 Evaluating False Positives with Regular
Programs

The prior results showed how well PECAN detects semantic ex-
ploits, i.e., how well it avoids false negatives. Now we estimate
PECAN’s false positive rate by evaluating it onnon-vulnerableap-
plications, since any anomalies must be false positives. Weuse two
classes of programs: applets, which are similar to the first three
vulnerabilities, and XSL inputs, which are similar to theXSLT ex-
ploit.

We useleave-one-out cross-validationto measure false positives
fairly. For each ofn programs, PECAN trains on the othern − 1
programs.

Table 5 shows the number of false positives (anomalous k-PCH
values) using leave-one-out cross-validation for 12 sample applets.
The methodology of training on one set of applets and deploying
on a different applet is reasonable because PECAN only profiles
the libraries called by the applets, not the applets themselves (Sec-
tion 4.4). The number in parentheses is the total number of distinct
k-PCH values. For higher levels of context and history sensitiv-
ity, there are many more false positives. We do not show these
configurations because the number of false positives makes them
impractical. This highlights the advantage of using depth-limited
(rather than infinite) context sensitivity.

For our recommended configuration,C3H1, the number of false
positives is always less than 10 and often equal to 0. For the four
applets with more than one false positive, the number of anomalous
behaviorsis fewer than the number of false positives because a sin-
gle anomalous execution path often executes several security calls.
AtomViewer, DitherTest, Euler, andReflFrame execute just 1,
3, 3, and 2 distinct anomalous behaviors. Even if the false-positive
rate shown forC3H1 is too high for production use, standard in-
dustrial testing will be much more comprehensive than the limited
set of programs we use here, further reducing the number of false
positives (Section 4).

Table 6 shows false positives using leave-one-out cross-valida-
tion running XSLT on eight XSL inputs we obtained by searching
with Google. History sensitivity is omitted since XSLT doesnot
call SecurityManager methods directly, so results are not af-
fected by history sensitivity (Section 5.3). The number of false
positives is low: 0 in most cases and 2 at most. The false positive

rate could be even lower with a more comprehensive test suite.

6. LIMITATIONS AND TRADEOFFS
Like most anomaly detection methods, PECAN can suffer from

false positives (valid calls mistakenly flagged as attacks)and false
negatives (calls associated with attacks permitted to go through).
Because PECAN considers a call to a security-sensitive method
anomalous if it occurs in a context and/or history other thanthose
observed during the training phase, good training is crucial for ac-
curate detection.

To minimize false negatives, the training runs should be attack-
free. This assumption is common to anomaly detection systems,
and we do not view it as a significant limitation. As we argue in
Section 4, modern approaches to comprehensive software testing
are driven by the software’s intended functionality, and itis highly
unlikely that automatically generated test inputs containa semantic
attack. As we show in Section 5, PECAN has been able to success-
fully detect a broad range of semantic attacks. While mimicry at-
tacks remain possible, they are significantly more difficultto stage
because they have to match not just the history, but also the context
in which a legitimate call takes place. In one of our experiments,
PECAN successfully detected an (artificially constructed) mimicry
attack targeting theSlashPath vulnerability.

To minimize false positives, it is important that the training phase
exercise all legitimate contexts of the application. This can be
achieved during normal testing, as long as the latter tests all of
the application’s intended functionality. Developing comprehen-
sive test suites is a topic of active research, and there exist several
tools for systematic generation of test inputs with exhaustive cov-
erage [15, 33, 23]. As shown by our experiments in Section 5,
PECAN generates few, if any, false positives on real-world Java ap-
plications. That said, there is a tradeoff between precision and the
number of false positives. The more precise the contexts (i.e., the
deeper the context and the longer the history), the higher the chance
that a legitimate context, which varies only slightly from acontext
observed in training, will be flagged as anomalous.

Recursive applications such as XML parsers, which is one of our
case studies, present an interesting challenge to context-sensitive
anomaly detection. Because the depth of recursion depends on the
structure of the input and a typical input may result in dozens or
even hundreds of recursive calls, it is not feasible to enumerate all
possible valid calling contexts during training. A typicalrun in-
volves thousands of distinct contexts, which vary only in the num-
ber of invocations of some recursive function. It is worth noting that
none of the existing context-sensitive intrusion detection methods
(see Section 2) have been evaluated on applications that exhibit this
behavior.

Our solution is to consider only contexts of depthk and history
of lengthh during both training and detection, wherek andh are
parameters to the system. In our experience, this provides suffi-
cient precision to detect attacks, yet does not generate hundreds of
false positives due to new recursive contexts which have notbeen
observed during training. The recommended configurationC3H1

detects all the real-world exploits and incurs few false positives on
benign programs.

7. SUMMARY
Semantic attacks are hard to detect because they violate rules that

typically exist only in the programmer’s head. Anomaly detection
can help recognize attacks, but many existing methods suffer from
false positives and poor performance. PECAN is a novel anomaly
detection system for Java with probabilistic, depth-limited context

9

False positives (total distinct behaviors)
ArcTest AtomViewer CardTest DiffEq DitherTest DrawTest

C0H0 0 (31) 0 (31) 0 (31) 0 (33) 0 (31) 0 (31)
C0H1 0 (53) 0 (53) 0 (52) 0 (60) 0 (54) 0 (52)
C1H0 0 (45) 0 (45) 0 (45) 0 (56) 0 (45) 0 (45)
C1H1 0 (75) 0 (74) 0 (71) 0 (100) 0 (75) 0 (71)
C3H0 0 (96) 0 (93) 0 (93) 0 (125) 4 (100) 0 (93)
C3H1 1 (127) 9 (125) 0 (111) 1 (184) 7 (133) 0 (123)

Euler Gas Matrix Puzzle ReflFrame StringWave
C0H0 0 (33) 0 (31) 0 (33) 0 (31) 0 (31) 0 (31)
C0H1 0 (60) 0 (54) 0 (54) 0 (52) 0 (43) 0 (42)
C1H0 0 (56) 0 (45) 0 (56) 0 (45) 0 (44) 2 (47)
C1H1 0 (100) 0 (75) 0 (100) 0 (74) 0 (62) 0 (55)
C3H0 2 (127) 0 (99) 0 (121) 0 (93) 4 (89) 0 (65)
C3H1 6 (189) 1 (130) 0 (173) 0 (123) 6 (114) 0 (84)

Table 5: Leave-one-out cross-validation for 12 non-vulnerable applets. Even though this experiment represents relatively little
training compared with expected industrial efforts, falsepositive rates are low for our recommended configuration,C3H1. For the
applets with more than one false positive k-PCH value, the number of anomalousbehaviors is smaller the number of false positives
because one anomalous path often results in several security calls.

False positives (total distinct behaviors)
ui resume testcase testcase2 testcase3 testcase4 testcase5 testcase6

C0H1 0 (5) 0 (5) 0 (6) 0 (5) 0 (5) 0 (5) 0 (6) 0 (5)
C1H1 0 (21) 0 (21) 0 (23) 2 (22) 0 (21) 1 (22) 0 (23) 0 (21)
C3H1 0 (22) 0 (22) 1 (25) 2 (23) 0 (22) 1 (22) 0 (23) 0 (21)

Table 6: Leave-one-out cross-validation for eight non-vulnerable XSLT inputs. The recommended configuration ofPECAN, C3H1,
generates few false positives.SecurityManager history is not relevant sincePECAN profiles only the application, which does not
makeSecurityManager calls.

and history sensitivity and low overhead. We evaluate PECAN on
four real-world exploits and with various levels of contextand his-
tory sensitivity. Context and history sensitivity are bothimportant,
but limiting them is key to keeping false positives low. PECAN’s
demonstrated ability to detect attacks precisely, accurately, and ef-
ficiently on real-world programs makes it compelling for all-the-
time use in deployed systems.

Acknowledgments
We would like to thank Elton Pinto for help with finding and repro-
ducing semantic exploits; Brad Hill, Marc Schonefeld, and Dino
Dai Zovi for providing exploit code; Graham Baker for porting
PCC to Jikes 2.9.2; Chris Ryder for PCC bug fixes; Sam Guyer
for helpful discussions; and Wei Le and the anonymous reviewers
for valuable feedback on the text.

8. REFERENCES
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity. InACM Conference on Computer and
Communications Security, 2005.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro.
Preventing memory errors with WIT. InIEEE Symposium on
Security and Privacy, 2008.

[3] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. Mergen,
T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. Shepherd,
S. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The
Jalapeño Virtual Machine.IBM Systems Journal,
39(1):211–238, 2000.

[4] G. Ammons, T. Ball, and J. R. Larus. Exploiting Hardware
Performance Counters with Flow and Context Sensitive
Profiling. InACM Conference on Programming Language

Design and Implementation, pages 85–96, Las Vegas, NV,
1997.

[5] P. Bisht, P. Madhusudan, and V. Venkatakrishnan. CANDID:
Preventing SQL injection attacks using dynamic candidate
evaluations.TISSEC, 2008.

[6] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo
Benchmarks: Java Benchmarking Development and
Analysis. InACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages
169–190, 2006.

[7] M. D. Bond and K. S. McKinley. Probabilistic Calling
Context. InACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages
97–112, 2007.

[8] DaCapo Benchmark Regression Tests.
http://jikesrvm.anu.edu.au/~dacapo/.

[9] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. Necula. XFI: Software guards for system address spaces.
In OSDI, 2006.

[10] H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P.
Miller. Formalizing Sensitivity in Static Analysis for
Intrusion Detection. InIEEE Symposium on Security and
Privacy, pages 194–208, 2004.

[11] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and
W. Gong. Anomaly Detection Using Call Stack Information.
In IEEE Symposium on Security and Privacy, page 62. IEEE
Computer Society, 2003.

[12] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff.
A Sense of Self for Unix Processes. InIEEE Symposium on

10

Security and Privacy, pages 120–128, 1996.
[13] A. Georges, L. Eeckhout, and D. Buytaert. Java Performance

Evaluation through Rigorous Replay Compilation. InACM
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 367–384, 2008.

[14] J. Giffin, S. Jha, and B. Miller. Efficient Context-Sensitive
Intrusion Detection. InNetwork and Distributed Systems
Security Symposium, 2004.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. InACM Conference on
Programming Language Design and Implementation, pages
213–223, 2005.

[16] S. Hangal and M. S. Lam. Tracking Down Software Bugs
Using Automatic Anomaly Detection. InACM International
Conference on Software Engineering, pages 291–301, 2002.

[17] B. Hill. Command injection in XML signatures and
encryption.http://www.isecpartners.com/files/
XMLDSIG_Command_Injection.pdf, 2007.

[18] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion
Detection Using Sequences of System Calls.J. Comput.
Secur., 6(3):151–180, 1998.

[19] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss,
Z. Wang, and P. Cheng. The Garbage Collection Advantage:
Improving Program Locality. InACM Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, pages 69–80, 2004.

[20] H. Inoue.Anomaly Detection in Dynamic Execution
Environments. PhD thesis, University of New Mexico, 2005.

[21] H. Inoue and S. Forrest. Anomaly Intrusion Detection in
Dynamic Execution Environments. InWorkshop on New
Security Paradigms, pages 52–60, 2002.

[22] H. Inoue and S. Forrest. Inferring Java Security Policies
Through Dynamic Sandboxing. InInternational Conference
on Programming Languages and Compilers, pages 151–157,
2005.

[23] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun. A
concolic whitebox fuzzer for Java. InNASA Formal Methods
Workshop, 2009.

[24] Jikes RVM.http://www.jikesrvm.org.
[25] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static

analysis tool for detecting Web application vulnerabilities
(short paper). InS&P, 2006.

[26] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Automating Mimicry Attacks Using Static Binary Analysis.
In USENIX Security Symposium, pages 11–11, 2005.

[27] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have
things changed now?: an empirical study of bug
characteristics in modern open source software. InASID,
pages 25–33, 2006.

[28] CVE-2004-1029.http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2004-1029, 2004.

[29] B. Livshits and M. Lam. Finding security vulnerabilities in
Java applications with static analysis. InUSENIX Security,
2005.

[30] N. Nethercote and J. Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. InACM
Conference on Programming Language Design and
Implementation, pages 89–100, 2007.

[31] National Vulnerabilities Database.
http://nvd.nist.gov/.

[32] N. Provos. Improving host security with system call policies.

In USENIX Security, 2003.
[33] V. Roubtsov. EMMA: a free Java code coverage tool.

http://emma.sourceforge.net/, 2005.
[34] SecurityFocus. Sun Java Virtual Machine slash path security

model circumvention vulnerability.
http://www.securityfocus.com/bid/8879/info,
2003.

[35] SecurityFocus. Java vulnerabilities in Opera 7.54.
http://www.securityfocus.com/archive/1/381634,
2004.

[36] SecurityTracker. Opera Java sandbox flaws let malicious
applets access system information and crash the browser.
http://securitytracker.com/alerts/2004/Nov/
1012279.html, 2004.

[37] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast
automaton-based method for detecting anomalous program
behaviors. InIEEE Symposium on Security and Privacy,
pages 144–155, 2001.

[38] J. M. Spivey. Fast, Accurate Call Graph Profiling.Softw.
Pract. Exper., 34(3):249–264, 2004.

[39] Standard Performance Evaluation Corporation.
SPECjbb2000 Documentation, release 1.01 edition, 2001.

[40] D. Wagner and D. Dean. Intrusion detection via static
analysis. InIEEE Symposium on Security and Privacy, 2001.

[41] D. Wagner and P. Soto. Mimicry Attacks on Host-Based
Intrusion Detection Systems. InACM Conference on
Computer and Communications Security, pages 255–264,
2002.

[42] G. Wassermann and Z. Su. Sound and precise analysis of
Web applications for injection vulnerabilities. InACM
Conference on Programming Language Design and
Implementation, 2007.

[43] CVE-2007-3715.http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2007-3715, 2007.

[44] CVE-2007-4289.http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2007-4289, 2007.

[45] CVE-2007-3716.http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2007-3716, 2007.

[46] H. Xu, W. Du, and S. J. Chapin. Context Sensitive Anomaly
Monitoring of Process Control Flow to Detect Mimicry
Attacks and Impossible Paths. InInternational Symposium
on Recent Advances in Intrusion Detection, pages 21–38,
2004.

[47] T. Zhang, X. Zhuang, S. Pande, and W. Lee. Anomalous Path
Detection with Hardware Support. InInternational
Conference on Compilers, Architectures and Synthesis for
Embedded Systems, pages 43–54, 2005.

[48] X. Zhuang, T. Zhang, and S. Pande. Using Branch
Correlation to Identify Infeasible Paths for Anomaly
Detection. InIEEE/ACM International Symposium on
Microarchitecture, pages 113–122, 2006.

11

