Efficient, Context-Sensitive Detection of Semantic Attack

S

UT Austin Computer Sciences technical report TR-09-14. égrsthbmission to CCS 2009.

Michael D. Bond Varun Srivastava

Kathryn S. McKinley Vitaly Shmatikov

The University of Texas at Austin

{mikebond, varun, mckinley,

ABSTRACT

Software developers are increasingly choosing memorey-ksad-
guages such as Java because they help deploy higher-caattity
ware faster. As a result, semantic vulnerabilities—ordigecurity
checks, misconfigured security policies, and other sofivaasign
errors—are supplanting memory-corruption exploits aptireary
cause of security violations.

We present BCAN, a precise, efficient defense against semantic
attacks based on dynamic anomaly detection. We show thet-det
tion of semantic exploits requires both context and hissegsi-
tivity. PECAN supports very efficient run-time tracking of calling
contexts and histories, and thus enables accurate detextion-
usual behaviors associated with security violations.

We evaluate our approach on several real-world semantic ex-
ploits that target subtle bugs in real Java applicationslianaries.
Our sample attacks are representative of common types afrsem
tic vulnerabilities. All were successfully detected bgdaN. The
run-time overhead of our approach on standard benchmaBé is
on average and at most 9%. The efficiency aCRN is a qualita-
tive advance in the state of the art: unlike many existinghogs,
PECAN can be deployed in a production system with a minimal
performance penalty. Furthermore, we investigate theetfidbe-
tween sensitivity and accuracy, and empirically demotestthat
PecAN achieves high sensitivity with few false positives.

1. INTRODUCTION

With the increasing popularity of memory-safe languageshsu
as Java, C#, JavaScript, and Ruby, semantic vulnerabilizee
overtaken memory corruption bugs as the primary cause of sec
rity violations in software applications [27]. Exploita&$emantic
bugs include accidental omission of access-control chaahis-
tentional exposure of security-sensitive methods to stedicode,
misconfiguration of security policies, and other seculdigic er-
rors.

Detecting attacks that target semantic vulnerabilitiesdficult
task. Unlike memory-corruption exploits, semantic attadk not
rely on a violation of the underlying programming languagman-
tics, nor, typically, do they involve code injection. Staginalysis-

Permission to make digital or hard copies of all or part o thvork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

shmat}@cs.utexas.edu

based intrusion detection methods, which ensure that trgggum’s
dynamic behavior conforms to the statically inferred cokfiow
graph and memory-access patterns [1, 2, 9, 14, 40], areeneff
tive against semantic attacks because the code paths andrynem
accesses executed during such an attack are already piresieat
original code. Static and dynamic taint-tracking methasglsich
can detect injection attacks on Web applications [5, 25429,do
not help against other semantic attaokgy, a malicious Java ap-
plet that exploits a sensitive method mistakenly left asit¥s by a
misconfigured security policy.

Dynamic anomaly detection is potentially capable of reimgn
ing that an unusual code path is being executed, and is ttras-at
tive as a defense against semantic attacks. Practical rimepii-
tions, however, face two major challenges. The firgiriscision
As we show in this paper, detection of many semantic attaeks r
quires context sensitivity,e., the defense must consider a method’s
calling context before making the security decision. Femtore,
some attacks can only be detected by history-sensitivedegehat
take into account whether certain calls—for example, tlasseci-
ated with mandatory security checks—have occurred or nafior)
tunately, simplistic approaches such as blindly increntiie size
of the context and/or history considered by the detectigarg¢ghm
can lead to a dramatic increase in the number of false pesitiv
when monitoring legitimate executions.

The second challenge éfficiency Naive solutions for context
sensitivity, such as direct stack inspection, can resyitahibitive
performance overheads, precluding their deployment idymtion
applications.

Efficient context sensitivity is an especially importanattenge
for modern, object-oriented languages. Programs writtethése
languages typically have many small methods and use virtati-
ods, making dynamic calling context critical to understaggro-
gram behavior [7]. These features also tend to lead to desgbler
stacks, increasing the cost of maintaining calling contaxdy-
namic analyses.

This paper aims to develop a general anomaly detection metho
that provides both the precision and the efficiency requicede-
tect modern semantic attacks. We emphasize that the olgesti
not merely a quantitative improvement in performance. &ndase
of dynamic anomaly detection, there igjaalitativedifference be-
tween an efficient defense that can be feasibly deployed ima p
duction system and techniques that may be of academic sttere
but impose prohibitive run-time overheads and/or resudinover-
whelming number of false positives when monitoring comgpx
plications and libraries.

We argue that testing aeal-world exploitsshould be an essen-
tial part of evaluation for any anomaly detection systemné&lof
the previous work on context-sensitive anomaly detectemah-

strated real-world semantic attacks that require nornatrsontext
sensitivity. For example, Fengt al. construct artificiaimemory-
corruption exploits to motivate context sensitivity [11], while our
focus is on semantic attacks that only use code paths alpFadgnt
in the program. As we show in this paper, real-world exploften
exhibit fairly complex behavior that can expose limitasaf naive
detection methods. We use representative real-worldkattaccal-
ibrate the tradeoff between sensitivity and accuracy insyatem.

Our contributions. We design and implement a new approach to
detecting semantic attacks on Java applications basedramndy
anomaly detection. We chose Java because of its populhity,
the principles behind our approach apply to other memofgisa-
guages.

Our attack detection system is calleddnN (Precise,_Hicient,
Context-sensitive AMmaly detection). PCAN keeps track of the
application’s execution context and history by dynamicalbm-
puting a compact, probabilistically unique 32-bit valueh&d mon-
itoring program execution, BCAN checks this value at each secu-
rity-sensitive call and verifies whether it was observedrdytrain-
ing.

Since higher sensitivity can lead to false positives, thetexd
must bedepth-limited This presents a technical challenge: how
to compute a depth-limited representation of the callisglseffi-
ciently andcontinuously as the context changes. To the best of our
knowledge, BCAN is the first anomaly detection system that pro-
vides context sensitivity of arbitrary depth and historpstvity
for memory-safe languages in a practically efficient manner

dependent, requiring a non-trivial context-sensitiveedsé. This
exploit is also interesting because the vulnerable appicas a
recursive XML parser, and the depth of recursion depend$ien t
structure of the input. This structure makes it infeasiblestu-
merate all valid contexts during training, presenting dlehge to
any context-sensitive attack detection method (to the besur
knowledge, none of the context-sensitive anomaly detectics-
tems in the literature have been evaluated on recursivécatiphs

of this kind). We solve the problem by usidgpth-limitedcontext
sensitivity, which is still precise enough to detect thaeikt

The fourth vulnerability is a bug in the custom security ngara
of the Opera Web browser version 7.24, which allows untdiste
applets to elevate their privileges [35]. This exploit ipnesentative
of the “misconfigured security policy” category.

PECAN detects all of these exploits, demonstrating its effeetive
ness against many types of semantic attacks. Very predisisiion
detection methods run the risk of “overfitting” the model ofmal
behavior to the training runs, resulting in a large numbefatsfe
positives during benign production runs. Our analysis @gsd the
tradeoff between accuracy and sensitivity. We show thatdby c
brating and bounding the system’s context and history teitgi
dynamic detection can precisely recognize malicious egtivith-
out a prohibitive increase in the number of false positives.

2. RELATED WORK

Much of previous research on run-time detection of malisipu
behaving applications focuses on defenses against mecoonyp-

We show the effectiveness of our approach by systematically tion exploits. These attacks affect programs implementehsafe

evaluating it on standard benchmarks and several real ralbite

ities in Java (listed below), which are representative gfantant

categories of semantic security violations. We view the alem
stration that context sensitivity is essential for detegtieal-world

semantic attacks—in particular, attacks on Java appbieatihat
do not involve memory corruption and execution of infeasitiide

paths—as an important contribution of this paper.

languages such as C. In contrast, this paper focuses oksatteat
exploit application semantics and thus affect even progrianple-
mented in memory-safe languages such as Java.

Our approach is based on anomaly detection. It constructs a
model of correct application behavior in the training phase then
detects deviations from this model during production ruBsen
outside the realm of security, anomalies are broadly usefdind-

The average performance overhead of our detection method ising semantic errors. For example, DIDUCE establishes aratds

5%, whereas other context-sensitive techniques suchds\stk-
ing add 100% overhead for some programs.

Four representative vulnerabilities. The first vulnerability is a
bug in Sun Java Virtual Machine 1.3 [34]. It permits a maliio
applet to circumvent the security manager by providing asctath
with “/" instead of “.". This exploit is representative ofaH'mis-
takenly omitted security check” category. We emphasizeé sha
conventional history-based anomaly detector wadtlbe able to
detect this attack because there are legitimate call segaerfor
example, when the class is loaded from the root package—iichwh
the security check is not performed. Therefore, it is imfiedo
differentiate between legitimate and malicious behavimpsy by
asking whether the execution history containsheckPer mi s-

si on call. Furthermore, detection must take place inside tha Jav
API libraries and not just at the boundary between the apidt
the libraries.

The second vulnerability is a bug in the Java 2 Runtime Enviro
ment 1.4 [28]. It allows a malicious applet to load unsafessts
and execute arbitrary code via the reflection API. This exp¢o
representative of the “sensitive methods mistakenly esghds un-
trusted code” category.

The third vulnerability is a bug in the Sun Java System Portal
Server 7.0 [45], which allows untrusted code contained inaa m
licious XSLT stylesheet to bypass the standard securitgkshe
This exploit is representative of the “untrusted code etextin
the wrong security context” category. It is fundamentatytext-

dynamic invariants such as variable values, variable iakigs,
and branch directions and finds that anomalous paths andsvalu
often reveal bugs in programs [16]. Unfortunately, high-time
overheads are a bane of anomaly detection systems. For Eamp
DIDUCE increases execution times of monitored application a
factor of 2 to 10.

Forrestet al. observed that system-call histories associated with
security violations often appear anomalous viz. correetations,
and developed eontext-insensitivanomaly detection system op-
erating at the level of system calls [12, 18]. Se&tal. show how
to learn a finite state automaton (FSA), which provides a roone-
pact representation of system-call histories [37]. Beeahgse
approaches target memory-unsafe languages, monitorirsg neu
performed beyond the reach of injected malicious code and re
quires system-call interposition. The latter imposes losads be-
tween 100% and 250% [32, 37]. Inoue and Forrest extend cntex
insensitive call monitoring to application methods in Jar@grams [21,
22]. A violation is reported if the program executes a mettiad
has never been seen in a training run. For several vulngiedan-
alyzed in this papere(g, SlashPath), this simple method would
result in false negatives because malicious and benignvioeha
cannot be differentiated on the basis of system-call hisatone.
Context-insensitive detection methods can be evaded bmitny
attacks” [41], in which the malicious code executes the same
quence of system calls as the correct application.

Much work has been devoted to combining static analysis with
anomaly detection in order to accurately detect executionfea-

sible control paths [40]. Because the statically computatrol-
flow graph over-approximates the set of feasible paths, ahis
proach suffers from false negatives, which can be reduceadby
ding context sensitivity—for example, using the Dyck mogdé],
or the Dyck model combined with stack-walking [10]. Infd#si
control transfers can also be found by a combination ofcstatt
dynamic analysis [48]. On the other hand, Kruegehl. present
a mimicry attack against context-sensitive anomaly detedhat
uses adversarial static analysis of the vulnerable apjaitto con-
struct a fake call stack and then return control back to theeiad
code [26]. This entire line of research focuses on memosatm
languages. By contrast, semantic attacks on applicatiopset
mented in Java do not involve execution of any control patlas t
are not already present in the original code. Thereforénigoes
for detecting execution of infeasible paths do not offer adgi-
tional power.

It has been observed that context sensitivity is essermtidahi-
proving precision of anomaly detection [11, 20, 46, 47]. d-eh

al. record the calling context at each system call and compare su

cessive histories of length two. They prune any stack comket

the two successive system calls have in common and storethe ¢

text differences, which results in more precise detecti@mtus-
ing just the history [11]. Performance overhead is only regabin
milliseconds per system call, making it difficult to detenmithe
penalty on realistic benchmarks, but the mechanism fundtathe
depends on system-call interposition and walking the sthokh
of which would be prohibitively expensive in production ®rmss:
as we mention above, the overhead of system call interposiin

literature, we start by surveying their essential featareexplain
why they require development of conceptually new defenses.

First, unlike memory-corruption exploits, these attacksnot
violate the semantics of the underlying programming lagguand
do not involve execution of statically infeasible code sues.
Therefore, standard methods for ensuring code integrityna@m-
ory safety do not help.

Second, unlike cross-site scripting and SQL injectionsé¢hat-
tacks do not generate executable statements from untmstedrk
inputs. Therefore, taint-tracking and similar methods dohelp.

Third, all of our sample attacks work “in the wild” and haveebe
reported in the National Vulnerability Database [31]. Hue pur-
poses of this paper, we reproduced them in a controlledalign-
vironment. Previous context-sensitive intrusion detetsystems
have been evaluated primarily on artificial examples. Bytremt,
the attacks analyzed in this paper exploit design errorepiayed
Java applications and libraries, demonstrating the wagrtl sub-
tlety of real-world semantic vulnerabilities. Semantidnarabil-
ities in memory-safe languages are still poorly understodde
argue that analyzing real-world attacks is a critical congrd in
developing principled defenses, and view our work as a stés
direction.

Two of the four exploits require context sensitivity to beatged
(note that there are no examples of real-world exploits wihiztec-
tion requires context-sensitivity in prior literature—es8ection 2).
This illustrates the importance of context sensitivity @alrworld
intrusion detection, even for programs written in memaafedan-
guages like Java. The other two exploits are detectable avith

exceed 100% [32, 37], and as we show in Figure 1, the overheadcontext-insensitive detector, but we present them heredimplete-
of walking the stack depends on the application and can bge ver ness.

high as well. It appears very challenging to extend the tiegles
of [11] to object-oriented languages like Java, with manyakm
methods and virtual methods, while achieving practicatiefficy.

Xu et al. introduce waypoints, which make the stack more visible

to the monitor, but reduce efficiency [46]. Zhuaeigal. efficiently
find anomalous interprocedural paths, which include agléon-
text, but their approach requires new hardware [47].

In contrast to the prior work on context-sensitive anomalied-
tion, our approach (1) targets an entirely different clasatacks
(we focus on semantic attacks that exploit existing codaspas
opposed to memory-corruption attacks that involve exeoutf
infeasible code paths); (2) provides an especially efftciemple-
mentation of continuously available context of arbitragpth that
requires neither walking the stack, nor special hardwand, feas
a demonstrated overhead of 2-9% on realistic applicatiamd;(3)
is evaluated on real-world semantic attacks against dedldpva
applications that have been reported in the National Valoiéty
Database, as opposed to artificially constructed memanysygtion
exploits.

3. SEMANTIC VULNERABILITIES

We present several concrete attacks that will serve as onirg
examples throughout this paper. These exploits are rapetse
of different classes of semantic vulnerabilities and witha us to
explore the tradeoffs between sensitivity and accuracyirachic
intrusion detection. We use the tesemantic vulnerabilityo refer
to logic bugs and design errors in the code. Technicallgchtt
against these vulnerabilities are characterized by cbfiow be-
havior that exploits code paths already present in the dagejot
observed during training (in Section 4, we explain why igalistic
to expect that modern techniques for application testinghave
exercised all legitimate paths, including error handlinBecause
attacks of this type have received relatively little attemtin the

SlashPath . This vulnerability is representative of a common mis-
take in the implementation of security managers and refereron-
itors, where the enforcement mechanism forgets to perfomara
datory security check.

In the Java security model, Java libraries rely on the sgcuri
manager to check access permissions for all securitytgenac-
tions. A security check in the Sun Java Virtual Machine (JVM)
version 1.3 and earlier cannot detect class paths expressegl/”
instead of “.” [34]. Therefore, even if the security manadesal-
lows the loading of some class, a malicious applet can civeun
the restriction by specifying the path with “/”. After loadj, the
class executes within the existing applet environment.

This attack is somewhat subtle and cannot be detected byea pur

history-based detector. The security checkasrectly omitted for
class paths that do not contain any “/” or “." characters.ré€fare,
a history-based detector would accept histories that docant
tain security checks as legitimate. Similarly, this vubdglity—
and “omitted-check” vulnerabilities in general—cannotdbarac-
terized as a simple source-sink property, because these\atid
paths on which the check need not be performed.

Our approach, on the other hand, combines context sengitivi
with history sensitivity and is thus capable of telling th#etence
between the class-loading context in which the check shbeld
omitted and those in which it must be performed.

XSLT. This vulnerability is representative of a common class of
bugs, where untrusted code is mistakenly executed in thegvro
security contexté.g, outside the normal Java sandbox).

“The Java XML Digital Signature implementation in Sun JDK
and JRE 6 before Update 2 does not properly process XSLT-style
sheets in XSLT transforms in XML signatures, which allowsco
text-dependent attackers to execute arbitrary code viaftedrsty-
lesheet” [45]. Similar vulnerabilities occur in the Sund&ystem

Application Server and Web Server 7.0 through 9.0 [43] ar th
Sun Java System Portal Server 7.0 [44].

Hill provides a detailed explanation of this vulnerabili/7].
XSLT (Extensible Stylesheet Language Transform), whiahsisd
for XML document processing, permits platform-specificemgion
mechanisms, including embedded code. Kegl nf o field of a
digital signature used to authenticate XML and other cdrtaen be
used to trick the victim system into executing this embedcimte
outside the normal security context for untrusted code.

We emphasize that this vulnerability is characterinetby the
fact that untrusted code is executed (which is not a bug, fed-a
ture of XSLT), but by the fact that the code executes in thengro
context. This exploit highlights the importance of contegnsi-
tivity in detecting this and similar attacks. Furthermadoecause
XML parsing is recursive, it is essential that only conteodts. cer-
tain depth be considered. We are not aware of any prior wak th
focused on the importance of bounded context sensitivity.

LiveConnect . This vulnerability involves gaining access to secu-
rity-sensitive methods that are not normally available ntrusted
code.

“The Sun Java Plugin capability in Java 2 Runtime Environimen
(JRE) 1.4.2_01, 1.4.2_04, and possibly earlier versionses aot
properly restrict access between JavaScript and Javatsppieng
data transfer, which allows remote attackers to load undagses
and execute arbitrary code by using the reflection API tosxpe-
vate Java packages” [28]. This vulnerability is caused bgsigh
error in a Web browser feature called LiveConnect, whicbves
Java and JavaScript code to communicate with one another on
Web page,.e., a Java applet can access JavaScript objects, and
JavaScript code can access Java runtime libraries.

The bug in LiveConnect allows a malicious applet to invoke
anetscape.javascri pt.JSObj ect JavaScript object and
use it to determine the user’s browser and to obtain a referen
tosun. pl ugi n. |l i veconnect . Secur el nvocati on. The
applet then disables the security manager with a call testte-
Securi t yManager () method, executed via th@ecur el n-
vocat i on proxy. Once outside the sandbox, the applet can down-
load the executable payload and run it on the victim’s mazhlh
can also use the reflection API to get access to desirableoaeth
In our virtual environment, we reproduced the exploit usiogle
provided by Dino Dai Zovi.

OperaPolicy . This vulnerability is representative of logic errors
and misconfigurations in custom security policies.

The Opera 7.54 Web browser uses the JRE directly with a pro-
prietary adapter, in contrast to other major browsers, iwbge the
Java Plugin. Opera also introduces its own default polibgwing
unprivileged applets access to internal Sun-packagesdnifging

in Oper a. policy:
grant {

pernmi ssion java.l ang. Runti mePer m ssi on
"accessC assl nPackage. sun. *";

I

“This [featurd opens the gate to some undocumented functionality
and violates Sun’s guidelines for secure Java programniBej:

We reproduced this vulnerability with the exploit code pdad by
Marc Schonefeld osecuri t yf ocus. com

4. DETECTING SEMANTIC ATTACKS
WITH CONTEXT AND HISTORY
SENSITIVITY

We now describe the design and implementation of cec AN
system for detecting semantic attacks on Java code. Asiezgla
in Section 3, semantic attacks exploit unintended behs\abim-
plementations that have not been considered by the progeamm
Our approach is based on the standard two-stage paradigy-for
namic anomaly detection. FirsteBAN is trained to learn normal
behaviors; then, during deployment, the code is monitooediet
tect execution of unusual behaviorg,, those not observed during
training.

We assume thataining is sufficiently thorough to exercise all
normal behaviors and thus reduce the false positive ratain-Tr
ing can be easily “piggybacked” onto standard quality-eeste
testing, in which the program is executed on compreheneitan-
puts. The tools for systematic, exhaustive testing of gitiimate
code paths are now widely available [15, 33, 23]. These @mhres
are driven by the intended functionality of the softwarengaested
and thus guarantee that the training phase is free of serratacks
(which, by definition, exploit unintended functionality)-urther-
more, these tools specifically exercise error-handlingtionality,
thus reducing the danger that an infrequently executed patie
will be flagged as anomalous after deployment. Our expetiahen
evaluation, too, shows that false positives can be elirathand/or
greatly reduced with sufficient training.

PECAN's deploymentphase observes program behavior and re-
ports history/context combinations that it did not obseduging
training. FECAN may be optionally configured to terminate the ap-

aolication when anomalous behavior is detected, or to writeuan-

Ing to a log. Developers can examine the report to decidehehnet
the anomaly represents an attack or a false posit&glegitimate,
but previously unobserved, behavior. The latter can bedhtidhe
training set to avoid future false positives.

The critical design issue for any anomaly-detection sysiem
the four-way tradeoff between (i) granularity of monitayifwhich
method invocations to monitor and how often), (i) efficigramd
scalability, (iii) false positive rate, and (iv) comprelsaéreness of
training. Frequent monitoring of a large number of methedth
context and history sensitivity, enables more precise ianely de-
tection of anomalies. At the same time, it imposes a largegppe
mance overhead and makes it more likely that the system anll g
erate a false positive due to valid behavior that was notrebde
during training. Therefore, finer granularity requires imuaore
comprehensive training in order to exercise all possibtgeds of
every method call in the application. If taken to the extrevhex-
haustive testing, the defense would apply only to relagigshall
applications. The investigation of this tradeoff is oneha tontri-
butions of this paper.

4.1 Security Calls

To limit the number of false positives and restrict the amafn
information that needs to be maintained by the systemgAR only
tracks calls to methods that can potentially throwaaa. | ang. -
Securit yExcept i on, which we refer to asecurity calls Se-
curity calls are important because they can affect the sysuat-
side the JVMe.g, I/0O and system calls. Similarly, prior work on
anomaly-based intrusion detection typically tracks bédraat the
level of system calls [18]. To identify the methods that catep-
tially throw aSecur i t yExcept i on, our implementation parses
the Java API documentation.

The Securi t yManager class provides methods that enable
applications to implement their own security policies. STtéxible
model leaves applications that need special security ipsligpen
to bugs of omission and misconfiguration. For example, thelde

oper can forget a corner case and omit a needed check in a newcontexts). The difficulty arises because, at each call thieefunc-

policy. This bug can go undetected at testing time and wallée
the application vulnerable. Dynamic anomaly detectiorméslast
line of defense in this case.

In our experience, limiting monitoring to security callopides
a good balance between efficiency and precision, while ergar
low false positive rate. Because these methods are an imthgaet
of the application’s security policy, the context and higtof their
behavior are indicative of security violations, as confidnig our
experiments.

4.2 Context Sensitivity

Dynamic calling contexis the sequence of active call sites that
lead to a program location. It is an important component of pr
gram behavior because the same call may be malicious orrhenig
depending on its context. Prior work recognized the impuargéeof
context sensitivity for precise anomaly detection, butuf®d on
memory-corruption attacks involving invalid code pathg,[46,
47]. Inoue considered context sensitivity in intrusionea¢ibn, but
did not build or evaluate an actual intrusion detector [2Cpn-
text is a critical element of program behavior for progranmiten
in modern, object-oriented languages, which typicallyehamall
methods and use virtual methods [7].

Obtaining context is expensive if done frequently. A typia-
proach is to walk the stack to obtain the list of active caés{30],
but as our experiments show, the overhead of stack-walkihggh
for some applications. An alternative approach is to buitdling
context tree (CCT) in which each node represents a distatt ¢
ing context [4, 38]. Application-level instrumentationnstructs

the CCT and maintains each thread’s position in the CCT. When

the intrusion detector needs to record the current coniesin-
ply records a pointer to the current node in the CCT. Unfately,
CCT-based approaches add high time and space overhead.

Our efficient solution is to keep track of context continugus
andprobabilisticallyby continuously computing a probabilistically
unique value (e.g., a 32-bit integer) that represents theucall-
ing context. RCAN uses this value to represent context-sensitive
calls; an anomalous value indicates an anomalous coreesitve
call. Prior dynamic analyses have computed a hash valueafbr ¢
ing contexts, e.g., computing a hash value is essentialifrally
any context-sensitive analysis, in order to look up comstéxa hash
table. However, unlike most prior approaches, (1) we wanbto-
pute context incrementally, i.e., compute a new hash valeaeh
call site using only the current hash value and a call sitetifier,
and (2) we need a function that produces ideally very few isfl
i.e., two distinct contexts that map to the same hash value.

Prior work introducegrobabilistic calling contex{PCC), which
computes a probabilistically unique value that naturadigresents
every call site in the current calling context [7]. Howeusg have
found that full context sensitivity provides too much sémgy, re-
sulting in many false positives on real programs, espegciaghly
object-oriented and recursive programs. For example, XMi- p
cessing performed bYSLT often executes mutually recursive con-
texts, resulting in many contexts flagged as anomalous dten a
thorough training. This example crisply illustrates thedeoff be-
tween precision and accuracy, and motivates the neddlfoited
context sensitivitywhich limits context to the top methods on the
stack.

While the function from prior work represents a infinite-tiep
calling context [7], it is challenging to design a functidrat pro-
duces values that represent only a fraction of contextiquéatly
so that each call site in the depth-limited context affecémyrbits
of the value (to reduce the potential for conflicts betweenilar

tion needs to “eliminate” thé&th call site from the calling context
value so that the value represents only the kogall sites on the
stack. We propose an approach cakelimited probabilistic call-
ing context (k-PCG)and we introduce thk-PCC functionas fol-
lows:

f(V,ce) = 2M/kl v 4 ¢cs

The function takes two inputs: the k-PCC valig, and an iden-
tifier for the call site at which the function is computezs In
our implementation, both of these inputs are 32-bit val@sthe
right-hand sidebits is the size of the k-PCC value (32 in our im-
plementation), and is context depth. For example, kf= 3,

f(V,c9) = 2" x V +cs

This function is equivalent to shifting the current k-PCQueall
bits to the left, then adding the call site value. Bits aféecby call
sites lower on the stack are pushed off the end of the valuihaso
only the topk call sites affect the PCC value.

We modify the dynamic, just-in-time (JIT) compiler in the NV
to insert instrumentation at each call site that computesiéxt k-
PCC value from the current k-PCC value and the current da&ll si
ID. The following example shows the instrumentation the piden
adds to a method:

met hod() {
int tmp = V; // save current k-PCC val ue
V: f(tnp, cs_1); // conpute k-PCC val ue
cs_1: foo();
V= f(tnp, cs_2); // conpute k-PCC val ue
cs_2: bar();
.\/”: f(tnp, cs_3); // conpute k-PCC val ue
cs_3:

bar () ;
)

Note that different k-PCC values are computed at differafisites
to the same methoat§_2 andcs_3).

This instrumentation continuously maintains the k-PCQueal
but this value only needs to examinedat call sites of interest,
which in the case of BCAN are security calls. Consider the exam-
ple below. The system adds instrumentation to compute PER-
value at all call sites, but only checks the k-PCC value féisthat
may throw aSecuri t yExcepti on.

net hod() {
int tmp = V; // save current k-PCC val ue
.\/' - f(tnp, cs_1); // conpute k-PCC val ue
cs_1: foo();
.VI = f(tnp, cs_2); // conpute k-PCC val ue
check(V); /'l check k-PCC val ue
cs_2: SecurityManager.checkPerm ssion(...);
.VI = f(tnp, ¢s_3); // conpute k-PCC val ue
check(V); /'l check k-PCC val ue
cs_3:

readFile(...);
)

Thecheck() method looks up the k-PCC value in a global hash
table:

check(V) {
if (!table.contains(V)) {

tabl e.add(V);

if (deployed) {
wal kSt ack() ;
report Anomal y();

}
}

If the value is anomalous, then the resulting context is apuized

to be anomalous. If BCANis executing in training mode, it simply
adds the anomalous k-PCC value to the table. In deployed mode
it also reports the anomalous context, which it obtains biking

the stack.

A disadvantage of the k-PCC function is that only the top call
site affects all bits in the k-PCC value. For= 3, the top call site
affects all 32 bits of the PCC value, the second call sitec&dfal
bits, and the third call site affects only 10 bits. Thus tharde
of a conflict may be increased if another call site sharestiind t
call site’s lowest 10 bits. However, a mediating factor iattfor a
conflict to occur, this call site must be capable of calling Hec-
ond call site and causing it to invoke the top call site. Incfice,
we find thatk-limited context sensitivity is sufficient for accurately
recognizing anomalies associated with real attacks.

4.3 History Sensitivity

Context sensitivity alone is not sufficient for detectinglrevorld
semantic exploits. Prograhistoryis an essential ingredient of ac-
curate anomaly detection, as we show in Section 5 and othees h
shown [12, 18, 37]. For example, Java API methods often call
a security check method, such®scur i t yManager . check-

Per mi ssi on(), prior to a security call that performs some po-
tentially dangerous actiom,g, reading afile. If the file read occurs
without a priorSecuri t yManager check, this anomaly repre-
sents a possible attack. Note that there are two types of secu
rity calls: (1) calls toSecur it yManager methods that check
whether an action is permitted and (2) calls that actuallyopm
some potentially dangerous task. To reduce the number tofrigis
that need to be tracked and to mitigate false positives,AR only
considers the program’s history of calls$ecuri t yManager,
because correctly executing these checks is critical toreimy se-
curity policies.

PECAN naturally combines history and context sensitivity by
combining prior k-PCC values f@ecur i t yManager calls with
the current k-PCC value. The following modifietheck() me-
thod incorporates history using a hash functtgdz, V'):

check(val ue) {
if (useHistory) {
H = h(thread. history, V);
if (isSecurityManagerCall) {
thread. history =V,
}

}
if (!table.contains(H) {
tabl e. add(H);
if (production) {
wal kSt ack() ;
report Anomal y();

}
}

Each thread uses a variablbr ead. hi st or y that maintains the
Securi t yManager call history, if any. Thecheck() method
hashes this value together with the current k-PCC vilue obtain

a new valueH. Whenevercheck() is called by aSecuri ty-
Manager call (which occurs at some, but not all security calls),
it updatesH to include this latesBecuri t yManager call. We

have found that, as with context sensitivity, using unleditis-
tory provides too much sensitivity, resulting in many fajsesi-
tives. Thus, BCAN uses only the k-PCC value from the most re-
centSecuri t yManager call, and combines it with the current
k-PCC value.

PecAN uses the following functioh(H, V') for hashing together
history and k-PCC values (this is the same function as usgf])in

FH,V)=3xH+V

In the rest of this paper, we will refer to the k-limited praldastic
context/history value tracked by our system asktiRCH value

4.4 Component Granularity

Modern software is usually assembled from independently de
veloped components. HZ AN training and monitoring may be ap-
plied only to some of the components. For example, an agjita
developer may configureB AN to instrument only the application
that she is implementing, and in the deployment stage onlyitoo
for anomalies in that application (as opposed to the Javarlés).
On the other hand, an implementer of a library routine may bal
interested in anomalous executions inside the code hepsmsible
for, as opposed to the entire context from the applicatiothédi-
brary. When BcaN is applied to the Java libraries, it resets history
before each application- library call. This helps avoid mimicry
attackse.g, a malicious applet might call a security check prior to
calling a buggy library method in a such a way that a secuhgck
is skipped.

5. EVALUATION

This section evaluateseR AN’s performance and ability to de-
tect attacks. We first describe our implementation BERN in a
Java Virtual Machine. Then we compare the overhead of k-PCH
to stack-walking. Next we evaluateEBAN's ability to detect real-
world semantic exploits. Finally, we perform leave-one-oss-
validation on non-vulnerable programs to evaluatcBN's false
positive rate.

5.1 Implementation

We implemented BcaN in Jikes RVM 2.9.2, a research Java
Virtual Machine [3, 24]. Jikes is a research tool, but itfpenance
compares well with commercial VMs: same, on average, as Sun
Hotspot 1.5, and 15-20% worse than Sun 1.6, JRockit, and®J9 1.
as of August 2008 [8]. Our performance measurements are thus
relative to an excellent baseline.

Like other VMs, Jikes RVM uses just-in-time compilation top
duce machine code for each method at run time. When a method
executes for the first time, a baseline compiler quickly gates
machine code directly from bytecode. If a method executasyma
times and becomedsot, the VM recompiles it with an optimizing
compiler at successively higher optimization levels. Wedifyo
both compilers to insert instrumentation that (1) mairgaime k-
PCH value and (2) records (training) or checks (deploymibetk-

PCH value at method calls that can potentially thrdBeaur i t y-
Excepti on.

5.2 Performance

PECAN adds overhead to applications because it inserts instru-
mentation to track the k-PCH value and check it at securitycel
method calls. In this section, we show that using k-PCH fortext
sensitivity is superior to techniques such as stack-wglkitlalking
the stack only when needeik., at security-critical points, some-
times has low overhead, but in some programs increaseseaacrh
by factors of two or more, for unlimited context sensitiyiand up

to 31% for k-limited context sensitivity whel = 3. By contrast,
the overhead of k-PCH is consistently low across multiplecbe
marks.

Figure 1 shows the normalized execution time of our approach

fourth exploit, XSLT, takes advantage of a semantic bug in a spe-
cific application. To detect this class of vulnerabilitiesonitoring
must be performed inside that application.

We experiment with two levels of history sensitivity: noneda

for the DaCapo benchmarks and fixed-workload version of SPEC one. Without history, BcAN records and checks k-PCH values that

jbb2000 callecpbseudojbb [6, 39]. Each bar is the median of three
trials. We use an execution methodology calieplay compilation

to eliminate nondeterminism due to timer-based sampliBg19].
We exclude thebloat benchmark since its performance is erratic
even with replay compilation.

represent the current (context-sensitive) program lonatiWith
history of level one, BCAN combines the current location with the
previous context-sensitive call ®ecur it yManager methods
(Section 4.3). One level of history is sufficient to deteti@lour
attacks (often context sensitivity is also needed). We lexyper-

Each bar is the overhead compared with the execution time on imented with infinite history as well, but we do not reportuks

unmodified Jikes RVM. Pecanis the overhead of continuously
maintaining k-PCH values and checking them at securitgchllle
usek = 3, but the overhead is the same for any valué.oPecan

because we found this configuration reports too many falsé po
tives.
Finally, we experiment with different amounts adntext sensi-

adds 5% on average and at most 9%. We have found that almosttivity. By default, FECAN uses three levels of context sensitivity.

all of this overhead comes from maintaining the k-PCH valess
than a tenth of the overhead comes from checking the k-PQi¢val
at security calls. Th#Valk stackconfigurations show the estimated
overhead of alternate approaches that walk the stack wheaxto
is needed, rather than keeping track of context continyotislese
configurations walk the top three call sites and all callssi&the
stack, respectively. They have low overhead for most progréut
for two programs &ntlr andpseudojbb) they add very high over-
head. Walking the entire stack adds very high overhead &seth
programs, but admittedly full context sensitivity prodsiteo many
false positives in practice, as we show in Section 5.4. Egendn-
text sensitivity with depth 3, overheads are lower, but gb lais 18
and 31% forantlr andpseudojbb, which have relatively frequent
security calls. Programs with more frequent security oallsin-
cur higher overheads. In short, stack-walking does noeswall

to higher levels of context sensitivity, nor to more frequsecu-
rity checks. In contrast, k-PCH’s overhead is minimallyeafed
by higher values of and programs with more frequent security
checks.

5.3 Detecting Real Attacks

This section evaluatesge AN's ability to detect semantic attacks
from Section 3. For each of the exploits, we train the systsimga
benign input that leads to functionality that is similar e exploit
(but not malicious). For example, the training runs $tashPath
load a class named using the conventional dot syntax andsa cla

We compare it to lower levels of context sensitivity: 0, whigses
the callee method as the program location, and 1, which bees t
caller method as the program location. We have collectealtses
for infinite context sensitivity, but we do not present theenenbe-
cause these configurations produce many false positivéisdqro-
grams in Section 5.4. Deeper context sensitivity leadsitther set
of behaviors and thus more false positives, but some at{@ciis
SlashPath) require context sensitivity to be detected.

The rest of this section refers to configurations &cRN with
the notationCyx Hy, wherek is the context depth and is the
amount of history used. Our recommended configuration,dabld
in the tables that follow, i€’s H;, which can detect all exploits but
also produces few false positives.

SlashPath . The SlashPath vulnerability exploits the fact that
Sun JVM 1.3 does not correctly check whether it is okay to l@ad
class if that class’s package is delimited with slaskeg,(sun/
appl et/ Appl et O assLoader) instead of dotsd.g, sun.
appl et . Appl et d assLoader). We found that this vulner-
ability is present in the system class loader in Jikes RVMisTh
loader calls the security manager to check if the appliocatian
load the package, but it assumes that package names aré@ei@lim
with dots. The following code shows a simplified version af th
vulnerabile class loader:

protected d ass | oadC ass(String nane,
bool ean resolve) {

that has no package (and thus uses no dots). We then exeeute th Securi tyManager sm =

exploits in the trained system and observe whethaz AN reports
anomalous behavior. Our experiments explore several gw@nbi
tions of granularity, history, and context sensitivity.

The granularity of PECAN's checks is important for avoiding
both false positives and false negatives. As discussedousdy,

PeEcAN checks the k-PCH value only at call sites to methods that

can throw aSecurit yExcepti on, since these security calls

may be harmful, but are not so numerous as to cause many false

positives. Similarly, developers may choose to furthetrigisthe
granularity of these checks to reduce false positives.
The first three exploitsSlashPath, LiveConnect, and Oper-

Secur |t yManager. current;
if (sm!=null) {

int |lastDot = nane.lastlndexOf(’.");

if (lastDot != -1)
/1 [paper authors’ note:
/1 won't execute if no dots in nane]
String pkg =

nane. substring(0, |astDot);

sm checkPackageAccess(pkg);

return super.|oadd ass(name, resolve);

aPolicy, are applets that take advantage of misconfigured security Our exploit code (based on an available sample exploit [344n

policies or bugs in the Java libraries. To detect this cléssimer-
abilities (.e., errors in libraries), monitoring can be restricted to the
libraries because exploits will trigger anomalies in thedry code.
Furthermore, it does not make sense to check for anomalidgin
applets because each applet has different code, which maye
be known in advance, and will generate many false positivVes.

applet that loads a class in a package that applets shout raditie
to access. We execute this applet with a custom-definedigecur
manager that allows all operations. This setup makes secseibe
one important application of ECAN is to detect malicious behavior
allowed by a faulty security manager or security policy.

Table 1 shows results for executing tB&ashPath attack in a

10verheads are negative in a few cases because of archaectur SyStém monitored by #CAN. Each row is a configuration with

effects,e.g, instrumentation perturbs code layout, which can affect
caching performance for better or worse.

varying levels of context sensitivity and history. The sehow the
number of anomalous behaviors associated with the attatkimn

200

= Pecan
= Walk stack (k = 3)
mm Walk stack (k = inf)
150
3
3
o 100
=
)
>
®)
50
% ¢ S, % A Ly 2 2, %) +5, s, 9q
N U, ~ Doy Vg, g, K K
S, (&7 R) Z 7 7
Q 6 7 U /'06 O'Q/bé @Q/)

Figure 1: Application execution time overhead of maintainng the k-PCH value and querying it at calls toSecuri t yExcepti on

methods, compared with walking the stack.

No history 1-level history
k || Config Anom (All) | Config Anom (All)
0 "o Ho 0 (35) | CoHy 0 (59)
1| CiHo 0 G4 | CiHy 1 (90)
3| CzHo 0 (110) | CsH: 2 (145)

Table 1: Intrusion detection results for SlashPath . Detecting
this exploit requires both context sensitivity and history

parentheses, the total number of behaviors observed dirairg
ing. We only check for anomalies inside the Java librariesalbise
the objective is to detect exploitation of faults in the sé@guogic
of library code.

Table 1 shows that context and history sensitivity are megui
for PECAN to detect theSlashPath attack. Sometimes the number
of anomalies is greater than 1 because an attack triggetiptaul
anomalous k-PCH values. In general, the tables can be ietetp
as follows: if Anomis 0, the RECAN configuration cannot detect
the attack; otherwise, theel AN configuration detects the attack,
although detection could fail with a more thorough traingsg be-
cause the call used in the attack would no longer appear doosma

We also implemented mimicry attack that callSecuri ty-
Manager . checkPackageAccess() immediately prior to at-
tempting to load a class name delimited with slashes. Theglat
would defeat naive history-based detection, but is sutuéssle-
tected by RCAN because PcAN clears history on each applet
library call.

XSLT. To reproduce this exploit in our Jikes-based experimental
setup, we used the Xalan XML parsing library, which comediwit
the Sun JVM. We wrote an XSL file with embedded code in the “se-
lect” attribute of thexs| : var i abl e tag. If a user gives this XSL
file as an input for parsing an XML command, the JVM executes
the embedded code on the client machine. The code invokes a te
script, to which it should not have access, on the client rimech
Table 2 shows that context sensitivity is essential for ctetg
the attack. We do not show various levels of history for this a
tack because the XSLT application does not directly call &&y
curi tyManager methods (BCAN only instruments the appli-
cation for this exploit, since it is a standalone applicatamd not
an applet). Thus, results are equivalent regardless ofrtioeiat of

Config Anom (Al
CS=0| CoH: 0 (20)
CS=1|[CiH: 0 (40)
CS=3| CsH:1 2 (42)

Table 2: Intrusion detection results for XSLT. Detecting this
exploit requires context sensitivity. Securi t yManager his-
tory is not relevant since PECAN profiles only the application,
which does not makeSecur i t yManager calls.

history sensitivity.

Context is essential because executing arbitrary seeseitgi-
tive methods from the context of parsing XSL files is semanti-
cally incorrect, but it is reasonable for the XSLT applioatio call
security-sensitive methods in some other contexd,(to load local
configuration files). Our training set calls security-sémsimeth-
ods outside the context of XSL parsing in order to demorestiad
need for context sensitivity.

LiveConnect . As with theSlashPath exploit, we executé.ive-
Connect with a security manager that allows all operations, so
PecAN can record all behavior during training and report anoma-
lous behavior during deploymeritiveConnect uses Sun’s browser
plugin, so we track calls only in the plugin, not in the othaval li-
braries.

Table 3 shows the anomalies reported IscRN for different
amounts of context sensitivity and history. For this extplBECAN
detects anomalous behavior regardless of the amounts téxton
sensitivity and history. The reason is that the exploieetn call-
ing a method that should not be accessible to applets, soigrben
applet will not call it. Thus, calling this method alwaysgugers
an anomaly, even without context or history sensitivity.wéwer,

a more thorough training set or a potential mimicry attackldo
further constrain the precision required to detect thidakp

OperaPolicy . The OperaPolicy attack exploits the security pol-
icy of the Opera 7.54 browser. Our test exploit usesgbeé -
Boot st rapC assPat h() method of thesun. mi sc. Laun-
cher class to get the URLs and access core JVM library classes of
thesun. * package.

We reproduce the exploit in Jikes RVM with a security man-
ager that allows all behaviors. Table 4 shows that RN detects

No history 1-level history
k || Config Anom (All) | Config Anom (All)
0 [CoHo 6 ®) [CoH: & (0
T CiHo 5 (6) | O H: 5 ®)
3 CsHo 6 (6) | CsH1 & (0

Table 3: Intrusion detection results for LiveConnect . Detect-
ing this exploit does not require context or history sensitiity.

No history 1-level history
k || Config Anom (All) | Config Anom (All)
0 o Ho 3 Q)| CoHy 3 3)
T CiHo 4 4| iy 4 4)
3| CzHo 5 B) | CsH1 5 ®)

Table 4: Intrusion detection results for OperaPolicy . Detect-
ing this exploit does not require context or history sensitiity.

the attack at all levels of history and context sensitivi§imilar
to LiveConnect, the OperaPolicy calls a method that should not
be accessible. When the attack code calls this method, é@aapp
anomalous regardless of the amount of context or historgitsen

ity.

5.4 Evaluating False Positives with Regular
Programs

The prior results showed how welERAN detects semantic ex-
ploits, i.e., how well it avoids false negatives. Now we estimate
PECAN's false positive rate by evaluating it eron-vulnerableap-
plications, since any anomalies must be false positivesus#dwo
classes of programs: applets, which are similar to the firgtet
vulnerabilities, and XSL inputs, which are similar to tK8LT ex-
ploit.

We usdeave-one-out cross-validatidn measure false positives
fairly. For each ofn programs, BCAN trains on the othen — 1
programs.

Table 5 shows the number of false positives (anomalous k-PCH
values) using leave-one-out cross-validation for 12 sarapplets.
The methodology of training on one set of applets and deptpyi
on a different applet is reasonable because\ only profiles
the libraries called by the applets, not the applets therasdSec-
tion 4.4). The number in parentheses is the total numberstihdi
k-PCH values. For higher levels of context and history g@nsi
ity, there are many more false positives. We do not show these
configurations because the number of false positives méless t
impractical. This highlights the advantage of using ddpttited
(rather than infinite) context sensitivity.

For our recommended configuratiabl H,, the number of false
positives is always less than 10 and often equal to 0. Forahe f
applets with more than one false positive, the number of ahaus
behaviords fewer than the number of false positives because a sin-
gle anomalous execution path often executes several secalls.
AtomViewer, DitherTest, Euler, and ReflFrame execute just 1,
3, 3, and 2 distinct anomalous behaviors. Even if the fatssgtipe
rate shown forCs H; is too high for production use, standard in-
dustrial testing will be much more comprehensive than timétdid
set of programs we use here, further reducing the numbels# fa
positives (Section 4).

Table 6 shows false positives using leave-one-out crolédava
tion running XSLT on eight XSL inputs we obtained by searghin
with Google. History sensitivity is omitted since XSLT doest
call Securi t yManager methods directly, so results are not af-
fected by history sensitivity (Section 5.3). The number afté
positives is low: 0 in most cases and 2 at most. The falseipesit

rate could be even lower with a more comprehensive test suite

6. LIMITATIONS AND TRADEOFFS

Like most anomaly detection methodss &N can suffer from
false positives (valid calls mistakenly flagged as attaeks) false
negatives (calls associated with attacks permitted to gmugh).
Because PCAN considers a call to a security-sensitive method
anomalous if it occurs in a context and/or history other ttreose
observed during the training phase, good training is ctdicieac-
curate detection.

To minimize false negatives, the training runs should becétt
free. This assumption is common to anomaly detection system
and we do not view it as a significant limitation. As we argue in
Section 4, modern approaches to comprehensive softwanegtes
are driven by the software’s intended functionality, anid highly
unlikely that automatically generated test inputs congesemantic
attack. As we show in Section 5EBAN has been able to success-
fully detect a broad range of semantic attacks. While miynatr
tacks remain possible, they are significantly more difficlstage
because they have to match not just the history, but alsootiext
in which a legitimate call takes place. In one of our experitag
PecAN successfully detected an (artificially constructed) migic
attack targeting th&lashPath vulnerability.

To minimize false positives, itis important that the tragphase
exercise all legitimate contexts of the application. This de
achieved during normal testing, as long as the latter tdbtsf a
the application’s intended functionality. Developing qmehen-
sive test suites is a topic of active research, and ther¢ sveral
tools for systematic generation of test inputs with exhaestov-
erage [15, 33, 23]. As shown by our experiments in Section 5,
PECAN generates few, if any, false positives on real-world Java ap
plications. That said, there is a tradeoff between pregiaitd the
number of false positives. The more precise the contéxs the
deeper the context and the longer the history), the higleectiance
that a legitimate context, which varies only slightly fronre@ntext
observed in training, will be flagged as anomalous.

Recursive applications such as XML parsers, which is oneipof o
case studies, present an interesting challenge to cosgesitive
anomaly detection. Because the depth of recursion depentdso
structure of the input and a typical input may result in dazen
even hundreds of recursive calls, it is not feasible to emateeall
possible valid calling contexts during training. A typicain in-
volves thousands of distinct contexts, which vary only i@ tlum-
ber of invocations of some recursive function. Itis wortting that
none of the existing context-sensitive intrusion detectizethods
(see Section 2) have been evaluated on applications thiaitetiis
behavior.

Our solution is to consider only contexts of deptland history
of lengthh during both training and detection, wheteand i are
parameters to the system. In our experience, this providifis s
cient precision to detect attacks, yet does not generatéréds of
false positives due to new recursive contexts which havéraen
observed during training. The recommended configuratiphl;
detects all the real-world exploits and incurs few falseitp@s on
benign programs.

7. SUMMARY

Semantic attacks are hard to detect because they violatethat
typically exist only in the programmer’s head. Anomaly d¢iten
can help recognize attacks, but many existing methodsrdudia
false positives and poor performanceedAN is a novel anomaly
detection system for Java with probabilistic, depth-leditontext

False positives (total distinct behaviors)

ArcTest AtomViewer CardTest DiffEq DitherTest DrawTest
CoHo |0 (BDT O BDT0 BDHTO @3] 0 @BDT 0 [€3D)
CoH,y | 0 (53)| 0O 53)] 0 (52){ 0 (60)| O B4)| 0 (52)
CiHy |0 (@50 @510 @50 6| 0 @510 (45)
CiHy | 0 (75| 0O (74)| 0 (71)| 0 (100)| O (75)| O (71)
CsHy |0 (96)[O @©3)| 0 (93)| 0 (I25)| 4 (100)| O (93)
CsH, | 1 (127)| 9 (125)| 0 (111)f 1 (184)| 7 (133)| O (123)

Euler Gas Matrix Puzzle ReflFrame StringWave
CoHo | O (33)] 0 BHJ0 ()]0 @BH[O @BDT O (31)
CoH; | 0O (60)| O 54| 0 (G40 (52)| 0 43)| 0 (42)
CiHy |0 ((56) 0 4510 (60 4570 a5 2 47)
Ci1H, | 0 (100)| O (75)| 0 (100){ O (74)| O 62)| 0 (55)
CsHo | 2 (I27)| © 99 0 (I2)| 0 (©3)] 4 @890 (65)
CsH, | 6 (189)| 1 (130)| 0 (173)| 0 (123)| 6 (114)| O (84)

Table 5: Leave-one-out cross-validation for 12 non-vulneable applets. Even though this experiment represents relately little
training compared with expected industrial efforts, falsepositive rates are low for our recommended configuration(Cs H;. For the
applets with more than one false positive k-PCH value, the nmber of anomalousbehaviors is smaller the number of false positives
because one anomalous path often results in several secyrialls.

False positives (total distinct behaviors)
ui resume testcase testcase2 testcase3 testcased testtastcaseb
CoH; 0 B0 (B)JOo (®O0 B)J 0 ®)J] 0 ®)J 0 ®)] 0 5)
C1H, 02D 0 2D 0 23] 2 @220 (@D 1 @20 @23 0 21
CsH, |0 220 22 1T 25 2 @30 (221 (220 @23 0 (21

Table 6: Leave-one-out cross-validation for eight non-vuierable XSLT inputs. The recommended configuration ofPECAN, Cs Hq,
generates few false positivesSecur i t yManager history is not relevant sincePECAN profiles only the application, which does not

make Secur i t yManager calls.

and history sensitivity and low overhead. We evaluate /N on
four real-world exploits and with various levels of contextd his-
tory sensitivity. Context and history sensitivity are bottportant,
but limiting them is key to keeping false positives lowE@nN's
demonstrated ability to detect attacks precisely, acelyrand ef-
ficiently on real-world programs makes it compelling for-tilé-
time use in deployed systems.

Acknowledgments

We would like to thank Elton Pinto for help with finding and rep
ducing semantic exploits; Brad Hill, Marc Schonefeld, andd

Dai Zovi for providing exploit code; Graham Baker for podin
PCC to Jikes 2.9.2; Chris Ryder for PCC bug fixes; Sam Guyer
for helpful discussions; and Wei Le and the anonymous resisw

for valuable feedback on the text.

8. REFERENCES
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity. INACM Conference on Computer and

Communications Securit2005.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro

Preventing memory errors with WIT. lEEE Symposium on

Security and Privacy2008.

B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,

P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,

M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. Mergen,

(3]

T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. Shepherd,
S. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The

Jalapefio Virtual MachindBM Systems Journal
39(1):211-238, 2000.

[4] G. Ammons, T. Ball, and J. R. Larus. Exploiting Hardware
Performance Counters with Flow and Context Sensitive
Profiling. INnACM Conference on Programming Language

10

(5]

(6]

(7]

(8]
9]

[10]

[11]

[12]

Design and Implementatippages 85-96, Las Vegas, NV,
1997.

P. Bisht, P. Madhusudan, and V. Venkatakrishnan. CANDID
Preventing SQL injection attacks using dynamic candidate
evaluationsTISSEC 2008.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,

J. E. B. Moss, A. Phansalkar, D. Stefarivl. VanDrunen,

D. von Dincklage, and B. Wiedermann. The DaCapo
Benchmarks: Java Benchmarking Development and
Analysis. INACM Conference on Object-Oriented
Programming, Systems, Languages, and Applicatipages
169-190, 2006.

M. D. Bond and K. S. McKinley. Probabilistic Calling
Context. INACM Conference on Object-Oriented
Programming, Systems, Languages, and Applicatipages
97-112, 2007.

DaCapo Benchmark Regression Tests.

http://jikesrvm anu. edu. au/ ~dacapo/ .

U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and

G. Necula. XFI: Software guards for system address spaces.
In OSD]|, 2006.

H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P.
Miller. Formalizing Sensitivity in Static Analysis for
Intrusion Detection. IREEE Symposium on Security and
Privacy, pages 194-208, 2004.

H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and

W. Gong. Anomaly Detection Using Call Stack Information.
In IEEE Symposium on Security and Privapgge 62. IEEE
Computer Society, 2003.

S. Forrest, S. A. Hofmeyr, A. Somayaiji, and T. A. Londfta
A Sense of Self for Unix Processes.|[EEE Symposium on

Security and Privacypages 120-128, 1996.

A. Georges, L. Eeckhout, and D. Buytaert. Java Perfocaa

Evaluation through Rigorous Replay Compilation AGM

Conference on Object-Oriented Programming, Systems,

Languages, and Applicationpages 367—384, 2008.

J. Giffin, S. Jha, and B. Miller. Efficient Context-Sens

Intrusion Detection. INetwork and Distributed Systems

Security Symposiur2004.

P. Godefroid, N. Klarlund, and K. Sen. DART: Directed

Automated Random Testing. KCM Conference on

Programming Language Design and Implementatjmeges

213-223, 2005.

S. Hangal and M. S. Lam. Tracking Down Software Bugs

Using Automatic Anomaly Detection. IACM International

Conference on Software Engineerjpgges 291-301, 2002.

[17] B. Hill. Command injection in XML signatures and

encryptionhtt p: // www. i secpartners. com fil es/

XMLDSI G_Command_I nj ect i on. pdf , 2007.

S. A. Hofmeyr, S. Forrest, and A. Somayaiji. Intrusion

Detection Using Sequences of System Cadll<omput.

Secur, 6(3):151-180, 1998.

X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss,

Z.Wang, and P. Cheng. The Garbage Collection Advantage:

Improving Program Locality. INCM Conference on

Object-Oriented Programming, Systems, Languages, and

Applications pages 69-80, 2004.

H. Inoue.Anomaly Detection in Dynamic Execution

EnvironmentsPhD thesis, University of New Mexico, 2005.

H. Inoue and S. Forrest. Anomaly Intrusion Detection in

Dynamic Execution Environments. Workshop on New

Security Paradigmspages 52-60, 2002.

H. Inoue and S. Forrest. Inferring Java Security Pefici

Through Dynamic Sandboxing. International Conference

on Programming Languages and Compilgrages 151-157,

2005.

K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun. A

concolic whitebox fuzzer for Java. NASA Formal Methods

Workshop 2009.

Jikes RVM.ht t p: // www. j i kesrvm org.

N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static

analysis tool for detecting Web application vulneralskti

(short paper). IIB&P, 2006.

[26] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna
Automating Mimicry Attacks Using Static Binary Analysis.
In USENIX Security Symposiypages 11-11, 2005.

[27] Z.Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have
things changed now?: an empirical study of bug
characteristics in modern open source softwaréd 3D,
pages 25-33, 2006.

[28] CVE-2004-1029nttp://cve. m tre. org/ cgi- bin/
cvenamne. cgi ?nane=CVE- 2004- 1029, 2004.

[29] B. Livshits and M. Lam. Finding security vulnerabiés in
Java applications with static analysis.USENIX Security
2005.

[30] N. Nethercote and J. Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. ACM
Conference on Programming Language Design and
Implementationpages 89-100, 2007.

[31] National Vulnerabilities Database.
http://nvd. ni st.gov/.

[32] N. Provos. Improving host security with system callipigs.

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

11

[46]

[47]

[48]

In USENIX Security2003.

[33] V. Roubtsov. EMMA: a free Java code coverage tool.
htt p: // emma. sour cef or ge. net/, 2005.

[34] SecurityFocus. Sun Java Virtual Machine slash pathrigc

model circumvention vulnerability.

http://ww. securityfocus. coni bi d/8879/info,

2003.

SecurityFocus. Java vulnerabilities in Opera 7.54.

http://ww. securityfocus. confarchive/ 1/ 381634,

2004.

SecurityTracker. Opera Java sandbox flaws let mal&ciou

applets access system information and crash the browser.

http://securitytracker.coni al erts/ 2004/ Nov/

1012279. ht m , 2004.

R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. Atfas

automaton-based method for detecting anomalous program

behaviors. INEEE Symposium on Security and Privacy

pages 144-155, 2001.

[38] J. M. Spivey. Fast, Accurate Call Graph Profilitgpftw.
Pract. Exper, 34(3):249-264, 2004.

[39] Standard Performance Evaluation Corporation.
SPECjbb2000 Documentatiprelease 1.01 edition, 2001.

[40] D. Wagner and D. Dean. Intrusion detection via static
analysis. INEEE Symposium on Security and Priva2@01.

[41] D. Wagner and P. Soto. Mimicry Attacks on Host-Based
Intrusion Detection Systems. RCM Conference on
Computer and Communications Securftgges 255-264,
2002.

[42] G.Wassermann and Z. Su. Sound and precise analysis of
Web applications for injection vulnerabilities. KCM
Conference on Programming Language Design and
Implementation2007.

[43] CVE-2007-3715http://cve.nitre.org/ cgi- bin/
cvenamne. cgi ?nanme=CVE- 2007- 3715, 2007.

[44] CVE-2007-4289http://cve. m tre. org/ cgi- bin/
cvenare. cgi ?nanme=CVE- 2007- 4289, 2007.

[35]

[36]

[37]

[45] CVE-2007-3716http://cve.nitre.org/ cgi- bin/

cvenamne. cgi ?nanme=CVE- 2007- 3716, 2007.

H. Xu, W. Du, and S. J. Chapin. Context Sensitive Anomaly
Monitoring of Process Control Flow to Detect Mimicry
Attacks and Impossible Paths. limernational Symposium

on Recent Advances in Intrusion Detectipages 21-38,
2004.

T. Zhang, X. Zhuang, S. Pande, and W. Lee. Anomalous Path
Detection with Hardware Support. International
Conference on Compilers, Architectures and Synthesis for
Embedded Systensages 43-54, 2005.

X. Zhuang, T. Zhang, and S. Pande. Using Branch
Correlation to Identify Infeasible Paths for Anomaly
Detection. INEEE/ACM International Symposium on
Microarchitecture pages 113-122, 2006.

